A Functional and Attribute Based Computational Model for
Fault-Tolerant Software

Masato Suzuki, Takuya Katayama,! and Richard D. Schlichting

TR93-8

Abstract

Programs constructed using techniques that alow software or operational faults to be tolerated are
typically written using an imperative computational model. Here, an dternativeis described in which
such programs are written using a functional and attribute based model called FTAG. This approach
offers several advantages, includingadeclarative style, separation of semantic and syntactic definitions,
and the simplicity of a functional foundation. While important for any type of programming, these
advantages are especialy pronounced for writing fault-tolerant programs that involve the use of state
rollback, including the recovery block technique for software faults and checkpointing for operational
faults. A pure value reference mode is described in which redoing is introduced as a fundamental
operation. A formal description of the model is also given, together with an outline of how this model
can be implemented in a computer system containing multiple processors. Several rollback-oriented
examples are used to illustrate the model.

March 8, 1993

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

! Thefirst two authors are affiliated with the School of Information Science, Japan Adv. Ingt. of Sci. and Tech., 15
Asahidai, Tatsunokuchi, Ishikawa, 923-12, Japan.

1 Introduction

Fault-tolerant software is software that is constructed to continue providing service despite the existence
of software faults (i.e., program bugs) and/or operational faults (i.e., faults in the underlying computing
platform.) Over the years, a variety of techniques, mechanisms, and structuring paradigms have been
developed for building software of thistype. These include such things as recovery blocks [Ran75] and N-
version programming [Avi85] for dealing with software faults, and checkpointing [BHG87], atomic actions
[Lis85], and the replicated state machine approach [Sch90] for dealing with operational faults. All of
these simplify the problems associated with faults by providing the programmer with higher-level modelsor
abstractions.

Despite the inherent differences in these approaches, one common thread is that they all have typically
been conceived and expressed using an imperative computational moddl. In this paper, we describe FTAG,
an aternative in which fault-tolerant software is written using a functiona and attribute based model. The
model is derived from an existing collection of models that use an attribute grammar formalism [Knu68] for
such diversepurposesasfunctiona programming[Kat81, SK88], object-oriented programming [SK904], and
modeling of the software devel opment process [Kat89]. This approach offers severa advantages, including
a declarative style, separation of semantic and syntactic definitions, and the simplicity of a functiona
foundation. While important for any type of programming, these advantages are especially pronounced for
writing fault-tolerant programs that involve the use of state rollback, such as those that use recovery blocks
or checkpointing. The experience modeling the software process cited above is especidly relevant in this
regard, since many of the characteristics of higher level software development—for example, the possibility
of incomplete or incorrect execution of a development step due to human erro—have natural analoguesin
fault-tolerant software.

This paper isorganized as follows. In Section 2, a pure val ue reference model for FTAG isdescribed in
which redoing [SK90b] isintroduced as afundamental operation; thisoperation, together with the functional
characteristic of themodel, providethe fundamental requirementsfor performing staterollback and recovery.
Thisis followed in Section 3 by a description of how this model can be used for fault-tolerance; severa
rollback-oriented examples are given to illustrate the process. Section 4 then gives aformal description of
the FTAG model. An outline of how thismodel can berealized as a practical programming systemis given
in Section 5; thisincludes describing a system model involving multiple processors and an object base, and
giving a mapping from the reference modd to the system model. Finally, Section 6 contains conclusions
and directions for future work.

2 Value Reference M odel

In this section, we introduce the FTAG computational model. The model is based on the HFP (Hierarchical
and Functional Process) model [Kat81], which is in turn derived from attribute grammars [Knu68]. The
basics of the model are outlined first, followed by a description of redoing.

21 TheFTAG Computational M odel

In FTAG, every computation consists of a collection of pure mathematical functions called modules. Each
module has multiple inputs and outputs. A module M with inputs z,, ..., z, and outputs yy, . . ., y,, iS
denoted by

M(zy, ooz | Y1y oy Ym)

We cal =1,...,2,.01,.--,Un the attributes of M, where z,,...,z, ae inherited attributes and
Yty .- U A€ synthesized attributes.
When M is simple enough to be performed directly, we call it a primitive module and denoteit by

M(zy,.o o2 | Y1y oy Ym) = return where E

where F isacollection of equationsby which g, ..., y,, arecaculated from z4, ..., x,. Otherwise, M is
decomposed into submodules. To do this, theway inwhich M is decomposed into submodules M, .., M,
and the relationship among inputs and outputs of M and M; are specified as follows:

M(zy, ..oz | Y1y Ym) = My .. .M, where F

Here, F isacollection of equationsthat denotesthe rel ationship among theinherited attributesof M; andthe
synthesized attributesof M. Thisexplicit definition of £ issometimes omitted, in which case the following
convention is used: when an output y of the function A7; is transferred to A/; as one of its inputs, say
x, we omit the definition = = y and simply put y for = in M;. A pair of M, ... M, and I are called a
decomposition and denoted by D hereafter.

Sometimes amodul e decompositionis specified with acondition C' controllingwhen thisdecomposition
isto be applied, leading to the following general form.

Mz, o 2alYy e s Um) =

case
' = D,
C, =D,
otherwise = Dg
end

The conditions C',, . .., C, are tested sequentially with the decomposition D; being applied when C; is
satisfied. If noneof C, ..., C, aresatisfied, the default decomposition D, ; is selected and performed.

Execution of an FTAG program is performed by successively applying the above module decomposition
process until every module is decomposed into primitive modules. The synthesized attributes are then
calculated based on the given equations and returned. Hence, the resulting execution takes the form of a
computation tree inwhich inherited attributes flow down the tree and synthesized attributes up.

Figure 1 shows how quicksort might be expressed using FTAG, with Figure 2 being the corresponding
computation tree. In Figure 1, “seq isused to denote thefirst value of the sequence seq, ~seq the sequence
except thefirst value, and seq.1 + seq.2 the concatenation of sequences.

The order in which modules are decomposed is determined solely by attribute dependencies among
submodules, making this model highly amenable to paralel execution. As an example, consider the
otherwise clause in the gsort module of Figure 1. There are only two dependencies among the submodul es
labeled (1),(2),(3) and (4): between (1) and (3) due to seq.less, and between (2) and (4) dueto seq.grir.
Thus, inthiscase, it is guaranteed only that (3) is executed after (1), and (4) after (2); the execution order of
(1) and (2), and (3) and (4) isindeterminate.

Besides this implicit ordering, FTAG has features for explicitly ordering module decomposition. For
example, we can enforce the execution of M, before M, by using the sequencing operator *;" and the
grouping construct { }, asin { M;; M,}. Thus, to force (2) to execute after (1) in Figure 1, we could change
the otherwise clause as follows:

type
seq = sequence of z
r = anytype

qsort(seq.in|seq.out) =

case
when (seq.in ==<>) or
(Tseq.in ==<>) =
return
where

seq.oul = seq.in

otherwise =
less_hal f("seq.in, “seq.in|seq.less)
grir_hal f("seq.in, “seq.in|seq.grtr)
qsort(seq.less|seq.lessout)
qsort(seq.griv|seq.grirout)

where
seq.out = seq.lessout
+ < “seq.tn > +seq.grirout

end

less_hal f(x.ref, seq.in|seq.out) =
case
when seq.in ==<>=
return
where
seq.oul = seq.in
when seq.in >= z.ref =
less_hal f(x.ref, ~seq.in|seq.out)
where
(¥ No attribute equations *)

when seq.in < z.ref =
less_half(x.ref, seq.in|seq.subout)
where
seq.out =< “seq.in > +seq.subout
otherwise =
return
where
seq.oul = seq.in
end

grir_half(z.ref, seq.in|seq.out) =
case
when seq.in ==<>=
return
where
seq.oul = seq.in
when seq.in < z.ref =
grir_hal f(z.ref, “seq.in|seq.out)
where
(¥ No attribute equations *)
when seq.in >= z.ref =
grir_half(z.ref, ~seq.in|seq.subout)
where
seq.out =< “seq.in > +seq.subout
otherwise =
return
where
seq.oul = seq.in
end

Figure 1. Quicksortin FTAG

otherwise =
{less_hal f("seq.in, " seq.in|seq.less);
grtr_hal f("seq.in, ~“seq.in|seq.grtr)} (1;2)
gsort(seq.less|seq.lessout) (3)
gsort(seq.grir|seq.grirout) (4)

Submodules (1) and (2) are now combined into (1;2) and executed sequentially, with the combination being
treated as a single module with input seq.in and outputs seq.less and seq.grtr. The execution order of (3)
and (4) is till indeterminate due to lack of dependencies.

Therearesevera advantagesto thefunctional approach usedin FTAG asopposed to traditional imperative
styles. Oneisthat it is static and declarative. This makes reading and understanding the description easier,
and simplifiesincremental creation and evolution of the program. The separation of syntactic and semantic
definitions al so contributesto the readability of the program. Another is that a module decomposition only
represents the structure of the computation and relationships among the attributes, rather than the way the
computationis performed. Finally, the program exhibitsahigh degree of locality; informationis only passed

gsort
DN

|Iess half[| gsort | |grtr han| J gsort |

|I&&s half | gsort | |grtr ha|f| | gsort |

Figure 2: Quicksort Computation Tree

between functions using attributes, and only then between functions that have a parent/child relationship.
As aresult, it is easy to determine attribute dependencies, facilitating, for example, paralel execution as
noted above.

2.2 Redoing

In thissection, we introducethe notion of redoing, in which a portion of the computationtreeis replaced by
anew computation. Although redoing has many uses, here we focus on its use as a mechanism for replacing
apart of the computation that has failed—that is, generated incorrect results or no results at all—with anew
computation. Here, we assume that all failures of interest are manifested by incorrect attribute values that
can betested by aconditional. Such anassumptioniscommon for softwarefaults[Ran75], whileoperational
faults such as crashed processors can be translated into a distinguished value L (“bottom”) that is assigned
to the appropriate attribute values by the underlying system. Such afacility for operational faultsis outlined
in Section 5.

The simplest case of redoing isillustrated in Figure 3. Here, amodule M is decomposed into M, M-,
and M3, with afailure being detected at some point during the execution of M;. Assume that an analysis
determines that the failure has been introduced during the execution of M;. Then, the whole computation
starting at M, is discarded, and M, and the successive computations M- and M5 are reexecuted.! We call
this kind of special decomposition a redoing decomposition. After the new computation has completed
successfully, it isregarded asapart of current active computation history. Thetype of redoing decomposition
shown in Figure 3 would be written in a program as follows:

Mz |y) =
My (zy | y1) Ma(zs | ya) Ms(2s | ys)
where

Ms(z | y) =
case
not fail(x) = Mszbody(x | y)
otherwise = redo M
end

In Mj, the condition not fail teststhe value of theinput attributes » to verify that afailure has not occurred.

! In this simple case, of course, we are assuming that the failure was transient, so that executing it a second time will produce
the correct value.

*M3

Redo

\J

1 Ml M2 M3 >

. Contaminated Activities
Current Active Computation History

Figure 3: Redoing

Figure4: A Computation Tree when Redoing Occurs

If true, M3 isdecomposed into M3body, which performsthe actua function. Otherwise, M5 is decomposed
into M using the redoing operator in order to replace the previous execution of M.

Figure 4 illustrates the effect of a redoing operation on the computation tree corresponding to this
example. The redoing operation starts by deleting the subtree 7, which contains improper attribute
values, and produces 7}, ;, astherest of the computationtree. A new tree T),.,, whoseroot isanew instance
of the module M is then created. 7,.,, is grafted to 7., at the appropriate place, with the inputs of M
in7Tj.;, being passed to the new M inT,,.,. After the redoing operation has completed successfully, the
resultsof A inT,.,, arepassedto M in T, asif they were the correct results of the original computation.
Sometimes there are many instances of M in the computation tree. The particular one replaced by the
reexecution is determined by an analysis on the computation tree. In this example, the target of redoing is
the most recent execution of M, defined as the first instance on the path from M3 to the root.

A module M can a'so be replaced by another module A’ during redoing using the with clause.

Ms(z | y) =
case
not fail(x) = Msbody(x | y)
otherwise = redo M with M’
end

In thiscase, M’ isinstantiated as the root of 7),.,, in place of M. Of course, the number and types of the
inherited and synthesized attributes of A/ and M’ must be identical for proper grafting.

Ingeneral, redoing decompositionsare useful for checking input valuesbefore theinvocation of amodule
to guarantee that the operation is meaningful, and the output values after the invocation to guarantee that
the proper operation has been performed. We can describe the combination of pre- and post-checking by a
nested case-structure as follows:

Ms(z | y) =
case
—Cpre () = redo M,,.
otherwise = {Msbody(z | y);
case
“Chost(y) = redo M,y
otherwise = return
end }

end

M,,. and M, are modules with which we begin the recomputation when C,,,.. or C,,,, are not satisfied,
respectively. In the event that input = contains errors and does not satisfy C',,.., M5 is decomposed into
M,,.. Otherwise, Mzbody isexecuted and the output y produced. If y, inturn, does not satisfy the condition
C'ost, We assume that an error has occurred and reexecute starting at M, ...

3 Using FTAG for Fault-Tolerance

The functional model of FTAG together with redoing capabilities make it well-suited for many types of
fault-tolerance. The advantage of the functional approach is that the computation is performed by the
growth of the tree using no other global information, so that a program’s entire execution status and history
is available within the tree. Redoing, of course, captures the state rollback aspect used in various fault-
tolerance techniques; the first step prunes the subtree containing the modules that failed, while the second
doestheappropriaterecovery action. Thestaterollback isimplicit and automatic sincethe remaining parts of
thetree contain all theinput values needed to redo thecalculation. Toillustratethese points, we now describe
how redoing can be used to implement recovery blocks, a technique used primarily to handle software faults
[Ran75], and checkpointing, a technique used to recover from operational faults [BHG87].

In the recovery block method, multiple implementations M., ..., M, are prepared for a module M.
Execution of the multipleversionsisdoneserially in such away that if an acceptancetest following M; fails
due to afailure, the state isrolled back and the next implementation M, , is performed. Such a construct

[

Figure 5: Computation Tree for Recovery Blocks

can be realized using redoing in FTAG asfollows:

M(z | y) = try-My(z | y)

try-M(z | y) =
{Mi (2 [y);
case
when AT, (y) = return
otherwise = redo try_M; with try_M,
end }

try_M(z | y) =
{Ma(x [y);
case
when AT(y) = return
otherwise = redo try_M, with try_M;
end }

try My (x| y) =

Here, try M,,...,try_M, ae used to encapsulate the k& different implementations of M, and
ATy, ..., AT,_, are conditionals that serve as the acceptance tests. Figure 5 shows the corresponding
computation tree. The net result isthat try_M, through try_M, are attempted until one passes its accep-
tance test, with failed modules being replaced in succession using redoing decompositions. We emphasize
again that no explicit state saving or restoration is needed here given the functional nature of the model. To

type seq = seqence of z
sort(seq.in | seq.out) =
ensure
sorted?(seq.out) by quick(seq.in | seq.out)
sorted?(seq.out) by linear(seq.in | seq.out)
end

sorted?(seq.out|bool) =
fori=1.N —-1do
return
where
bool = conjunction of seq.out[i + 1] > seq.out]i]
end
quick(seq.in|seq.out) = ...(x quick sort)
linear(seq.in|seq.out) = ...(x linear sort)

Figure 6: Using Recovery Blocksfor Sorting

improve readability, the following syntax can a so be used:

Mz |y) =
ensure
ATy (y) by M(z |y)
AT, (y) by My(z |y)

otherwise M, (z | y)
end

As amore concrete example, consider using recovery blocks to sort numbers into ascending order, as
shown Figure 6. The first implementation uses quicksort, which is faster, while the second uses linear sort,
whichisless complex. Suppose further that quicksort isincorrectly implemented as follows:

grtr_hal f(z.ref, seq.in|seq.out) =

when"seq.in > z.ref = (x Error !! x)
case

grtr_hal f(xz.ref, ”seq.in|seq.subout)

when seq.in ==<>=
where

return . .
seq.out =< "seq.in > +seq.subout

where .
otherwise =

seq.out = seq.n

- . return
when seq.an < z.ref =
- . where
grtr_hal f(z.ref, ~seq.in|seq.out) .
seq.out = seq.an
where
end

(* No attribute equations x)

The output value seq.out is incorrect whenever the first element of the sequence seq.:n is equal to the
referencevalue z.re f. Inthiscase, the acceptance test sorted? rejectsthe erroneous result and usesredoing

toinvokethe linear sort. Notethat no explicit rollback mechanism isneeded here: the values as they existed
before sorting are automatically available where the new subtree is grafted into the original computation
tree.

Checkpointing to recover from operational faults can also be implicitly implemented using the redoing
mechanism, since every state of the computation is captured by a node in the computation tree. Consider
the following program:

Mz |y) = Mi(z|u) My(uly)
Ms(z | u) = My(z|v) Mas(v|u)

The node in the tree corresponding to M. captures the status just after the execution of M, while M,
similarly capturesthe statusjust after M,,. Hence, M,, can be made arestartableaction[Lam81] asfollows
by having M., check itsinput attribute and redo M, should it have thevalue L.

My (v | u) =
case
whenv # 1L = redo M,
otherwise = Mybody(v | u)
end

Toillustratethisuse of FTAG further, consider the outline of along running scientific application shown
in Figure 7. This program calculates a large table of numbers, where the cost of calculating each V[i] is

const N = 1000000 (*a large numbersx)
typeV = array 1..N of v

cale(i | v) = ... (xan expensive calculationx)
main(| V)=
for i =1..N do cale(i | v)

where V[i] = v
end

Figure 7: An Expensive Calculation without Redoing

assumed to be non-trivial. With this organization, should an operational failure such as a crash occur during
its calculation, the entire program would need to be reexecuted. Such an expensive proposition can be
avoided by using the redoing capability of FTAG, as shown in Figure 8. In this case, if a failure occurs
during the execution of a particular iteration, execution isrolled back only to the beginning of that iteration.
This is achieved by changing calc to Cale, which does the calculation and then checks for failure and
executes aredoing decomposition if necessary. While again no explicit state saving or restoration is needed,
this use of redoing doesimply that the attribute val ues needed to reexecute C'alc are stored in stable storage
to guarantee persistence across operational failures [Lam81]; in Section 5, we outline a stable object base
abstraction that servesthis purposefor FTAG. Note al so that it would be possibleto structurethis calculation
so that rollback points are established every i iterationsto minimize use of this stable object base rather than
every iteration as done here.

main(| V) =
fori=1..N do Calc(i| v)
where V[i] = v
end

Cale(i| v) =
{cale(i]| v);
case
when v = 1 = redo Calc
otherwise = return

end }

Figure 8: An Expensive Cd culation Using Redoing

4 Formal Description

In this section, we provide aformal description of the FTAG value reference model outlined in the previous
sections. The following notation will be used in this description:

1. Classes and Instances: In the following definitions, every data object has a class to which it belongs.
a : A denotesthat adataobject a isamember of aclass A, where a is called an instance of A.

2. Powersets: A set of all subsets of aset A iscalled a powerset of A and is denoted by P(A). An
element of P(A) isdenoted by { a4, ...,ax }, whereq; € A.

3. Tuples: A tuple with components ¢,, ..., ¢, is denoted by (¢,...,%,). Whent; : T;, thent =
(t17...7tn) :T1>< XTn

4. Compositionof Mappings: For twomappings M, M, : A — B suchthat dom(M,)Ndom (M) = ¢,
the composed mapping that has all images of any elements M, and M. isdenoted by M, U M,. More
precisaly,fora : A, M = M, U M,

_ [Mi@) if a € dom(M)
M(a) = { My(a) if a € dom(Ms,)

Program Description. In FTAG, aprogram is described as a collection of module definitions and decom-
positions. Each such decomposition has the name of the module and the patternsinto which the module is
decomposed.

Definition 4.1 Theclass Act De f of activity definitionsis defined by
Program = P(Mdef)

M=D
Mdef - { case C; = D, ... otherwise = D,.; end

M isamodule, includingitsinherited and synthesized attributes, C; isacondition, and D, isadecomposition.
The attributes of M are denoted by /nh(M) and Syn (M), respectively.

10

Definition 4.2 The class D of decomposition patternsis one of the following

return where F
D=< M,...M, where F
redo M with M’

E is acollection of expressions e that define the relationship among attributes of M and M, ..., M. It
consists of the name of the defined attribute, a simple function for cal culating the attribute and one or more
attributes that are used as arguments:

e = (atr, func,args)
atr : Atr isan attribute name, func isapredefined function and args areitsarguments. Theclassof func
and args are omitted when obvious from context.

Tree Structure. A tree structureis represented by a 3-tuple consisting of aroot node, a set of nodes, and
amapping function.

Definition 4.3 The class T'ree of generic treesis defined by

Tree = (r,N,C)
r : Node
N : P(Node)
C : Node xint — Node

r is a name of root node, NV is a set of nodes, and C' is a partial function that takes a node » and a
number ; indicating the ordering number of children, and returns the :th child of . If i # 7, then, of course
C'(n,1) # C(n,j). If n hasno children, thevalueof C'(n,) isnot defined; thisisdescribed by C'(n, ¢) = L.
Node isageneric class of nodesand is treated as a primitive.

Computation Tree. The class of computation trees is a subclass of T'ree, which is formalized as the
following 9-tuple.

Definition 4.4 The classC'T" of computationtree is defined by
CompTree = (r,N,C,A,M,I,S,PV)

r Node
N P(Node)
C Node x int — Node
A P(Atr)
M Node — Module
1,5 Node — P(Atr)
P P(p) where p = (atr, func,args)
V P(v) where v = (atr,value), atr : Atr

A isaset of attribute names; M isafunction that maps a node » to the module name indicated by »; I and
S are functions that map a node » to the set of itsinherited and synthesized attributes, respectively; P isa
collection of relationshipsamong attributes; and V' isa set of tuples consisting of an attribute name and its
value. If novaluehasyet been calculated for atr, thereisno corresponding tuplein V. Atr and Module are
the class of attribute and module names, respectively, and are treated as primitives. atr : Atr isan instance
of an attribute for which atr € A must be satisfied. func and args are also primitives, and are identical to
those defined above.

11

Growth of a Computation Tree. A computation tree changes whenever a module decomposition is
performed, with new nodes being added based on the particular decomposition. To do this, new nodes
corresponding to the submodules are first created from the modul e decomposition. Each node has inherited
and synthesized attributes, which are instantiated from the program script in order to make the name of the
nodes and attributes unique in a given computation tree.

Definition 4.5 For CT = (r, N,C, A, M, I, S, P,V) : CompTree,ng € N,ViC(ng, i) = L,
Grow(CT,ng, {My,...,My}) =
(ry, NUNewNode(M, ..., M), C', AU NewAttr(M,,..., M), M', I',S", P, V)
b n; 1fn=mng
i) = { C(n,i) otherwise
M; ifn€ NewNode(M,, ..., M)

A M) = M(n) otherwise
where I'(n) _ Inh; ifn € NewNode(M,..., M)
" N I(n) otherwise
S'(n) _ Syn; if n € NewNode(M, ..., M)
" N S(n) otherwise

NewNode(My, ..., M) = {ny,...,n,} isaset of new nodes instantiated from A, ..., M. For each
n;, New attribute instances Inh,; and Syn; are created, and NewAttr(M,, ..., My) = U, Inh; U Syn;,
M(n;) = M;, I(n;) = Inh;,S(n;) = Syn; areadded to A, M, I, .S, respectively.

Attribute Calculation. After new nodesand attributesare added to the computation tree, the new attribute
values are calcul ated through the evaluation of the attribute equation. This operation is formally described
by afunction C'alculate : CompTree x Node x E — CompTree.

Definition 4.6 For CT = (r, N,C, A, M, I, S, P,V) : CompTree,n, € N, afunction Calculate is
defined by

Calculate(CT,ng, F) = (r, N,C, A, M, 1,5, PU NewProduction(F),V U NewAtrValue(FE))
where
NewProduction(E) = U.cp {p|p= (atr, func,args)}
NewAtrValue(E) = U.cp {(atr,val)| evaluable(atr)}

For each attributeequatione = (atr, func,args) € F,theequationp = instance(e), madeby instantiating
atr and args in e with corresponding attributesfrom A, isadded to . When p isready to be evaluated, the
value of atr iscomputed and the new tuplev = (atr, val) isaddedto V.

Pruning a Computation Tree for Redoing. Aslong as only normal decompositions are performed, the
computation tree grows monotonically. Redoing, however, reduces the tree by discarding some existing
nodes. When a redoing decomposition has awith clause, which means amodule M’ different from M isto
be executed, M isreplaced by M’. Hence, redoing is realized by the following operations: (1) Pruning the
subtree that containsthe computation to be discarded, and (2) replacing the nodeif awith clauseis specified.

12

Definition 4.7 For C'T = (r,N,C,A,M,1,S,P,V) : CompTree,ny € N, a function Prune :
CompTree x Node — CompTree isdefined by

Prune(CT,ng) = CT" = (n, N — descendant(ng), C', A — Attrof(descendant(ng)), M', I, 5,
P —{p = (atr, func,args) | atr € Attrof(descendant(ng))},
V —{v = (atr,val) | atr € Attrof(descendant(ng))})

1 if n € descendant(ng)
C/(n, Z) = 1 ’Lf n = ny
C(n,i) otherwise
, _ 1 if n € descendant(ng)
b M'(n) N { M(n) otherwise
e I'(n) _ 1 if n € descendant(ng)
" N I(n,t) otherwise
S'(n) _ 1 if n € descendant(ng)

S(n,t) otherwise

Attrof(ns) = Upens(S(n)UI(n))

descendant(n) denotesaset of n’s descendant nodes; more precisely, descendant(n) = {m | 3i; C(n,) =
m V Ji,m* € descendant(n); C(m’, i) = m}. Notethat ng ¢ descendant(ny). C1" isatreein which
all nodes under n,(except n,) have been removed.

Definition 4.8 For CT = (r, N,C, A, Mod, 1,5, P,V) : CompTree,ng € Node, M’ € Module, a
function Replace : CompTree x Node x Node x Module, which replaces the node and modulewith
another node and module, is defined by

Replace(CT, ng, ny, M') = (r, N,C', A, Mod', I, S, P,V)

b g if C(n,1) = ng
i) = C(n,i) otherwise
where v) B
Mod' (n) = if m=mo

Mod(n) otherwise

Recall that the number and type of n, and n{’s attributes must be identical, so there are no effects to any
attribute instances or val ues except the node name.

Execution Semantics. Execution is the process of transforming computation trees by decomposition and
attribute calculation. Each step of the transformation can be described formally as a transform function
Fzec : CompTree x Node x D — CompTree. D denotes the class of decompositions shown in
Definition 4.2. There are three cases to be considered.

Case (1): Norma Decomposition. If DD isanorma decomposition, Fzec isdefined as follows:
Definition 4.9 For CT = (r, N,C, A, M, I, S, P,V) : CompTree,ng € N,ViC(ng, i) = L,

Ezec(CT, ng,{return where I'}) = Calculate(CT, ng, IY)
FEzec(CT,ng,{ My, ..., M, where F}) = Calculate(Grow(CT, ng, {My, ..., My}), no, F)

13

[1 Exec Exec
> - n
L1

Grow Calculate Calculate

Figure 9: Execution by Series of Tree Transformations

If ny is a primitive, synthesized attribute values are calculated by the function C'alculate; otherwise nq
should be decomposed into submodules. The decomposition is performed by the function G'row, with
attributes being calculated by C'alculate.

Case (2): Redoing Decomposition. When D is a redoing decomposition, it is performed by pruning the
computation tree. When awith clauseis specified, a node replacement will also occur.

Definition 410 For CT = (r, N,C, A, Mod, I, S, P,V) : CompTree,ng € N,ViC(ng, i) = L,

Ezec(CT,ng,{ redo M }) = Prune(CT,m)
Fzec(CT,ng,{ redo M with M’ }) = Replace(Prune(CT,m),m,m’, M’)

m isthe most recent occurrence of Mod(m) = M, determined statically by an analysisof the program. m/
isanew node corresponding to M".

Case (3): Execution Sequence. The program is executed by repeated applicationsof Fzec, startingwith an
initial tree containing only aroot node. Figure 9 illustratesthis process; GGrow adds new nodes to the tree,
while C'alculate determines the val ues associated with each node.

5 Implementing FTAG

In this section, we outline how the value reference model described in the previous sections can be im-
plemented in a standard computer system consisting of multiple processors and (logically) shared external
storage (e.g., disk). Specifically, we address the issues of processors and module alocation, and the use of
external storage to implement a stable object base for storing attribute values. Optimization issues are aso
touched upon briefly.

5.1 Processors and Module Allocation

Each processor is assumed to consist of a computing engine and a mechanism for sending and receiving
messages. We abstract this message-passing mechanism as a port, where a port is a pair of synchronous
communication channels. Thus, a value written to a send port is read by another processor from the
corresponding receive port. Each processor has two sets of attributes that represent the send and receive
ports, respectively. Formally,

Proc = P(proc)
proc = (Send, Recv)
where Send, Recv : P(Atr)

14

Proc isaset of processors proc, while Send and Recv are each a set of attributes that are mapped to the
processor’s send and receive ports. A value assigned to a Send port attribute is sent automatically to the
Recv port on another processor to which the same attribute has been mapped.

Processors are assigned to each node in the computation tree, and are responsiblefor all the communica-
tion between the node and its children. Information is passed between processors using the port mechanism.
Thisprocessof assigningnodesto processorsisdescribed formally by partitioning N, A, P, VinCompTree.
Such a partition is defined by atotal function that maps a processor to the set of nodes assigned to that pro-
cessor, Ass : proc — P(Node). For simplicity, N; istaken to be synonymous with Ass(p;), that is, the
set of nodes assigned to the processor p;. Of course, |, N; = N. A; = {Inh(n) U Syn(n) | Yn;n € N;}
means the set of attribute instances assigned to p;. F; and V; are defined in the same manner.

A node is assigned to a processor when it is created. This is performed by changing the assignment
map Ass whenever Grow is applied. Attribute values may be passed between a node and its children
during an attribute calculation. Values destined for a node assigned to another processor must be passed to
appropriate processor. Such attributes must be connected to ports, and must be included in Send and Recv
of the appropriate processors. Thisis performed by changing the processor’s Send and Recv set during
the application of C'alculate. Formally, assume p;,p; € Proc,CT = (r,N,C,A,M,1,S,P, V), A; =
Ass(p;), A; = Ass(p;). Then, whenever C'alculate(CT, no, E) is applied, P, ;,Send, ; and Recv; ; must
be changed for each evaluation of e = (atr, func, args) € F according to the following rules:

(1) Ifatr e A;ndlagsarein A; = add e to P,
(2) Ifatr e AjAdlagsarein A; = addeto F;
(3 Ifatr € A;ndll argsarein A; = add e to P, and atr to Send(p;) and Recv(p;)
(4) Ifatr € A;,Adlagsarein A; = add e to P; and atr to Send(p;) and Recv(p;)

Assignmentof | to attributesof modul esthat were being executed on processorsthat suffered operational
failuresis done using the port mechanism. A timer is set when a reply from a module is expected, and its
attribute values set to L should the expire with no reply being received. Thistechniqueis, of course, just
the standard use of timeoutsfor failure detection.

5.2 StableObject Base

In the valuereference model, no specific mention ismade of where attribute values are actually stored during
a computation. One simple and efficient optionisin primary memory, but thisis appropriate only for those
programs for which the amount of space needed is relatively small. A more redlistic choice is to store the
values on secondary storage using an abstraction that we will refer to asa stable object base. Asaform of
stable storage, values stored in this object base are assumed to survivefailures.

Given the greater access times for the object base relative to primary memory, it isimportant to store
only those values that are required to guarantee continued execution. For FTAG programs, there are two
such sets of values: (1) al inherited and synthesized attributes that are needed for the current calculation,
and (2) all inherited attributesthat may be needed for redoing purposes. We call (1) the set of vital values.
Vital values change as the computation progresses; for example, if amoduleis decomposed and computation
is moved to submodules, the inherited attributes of the module are no longer vital. The set (2) includes
all inherited attributes of modulesin recovery blocks or those that may be the target of rollbacks following
operational failures.

In order to formally characterize the set of vital values, weuse 2 : Atr — Obj to describe the mapping
from attributes to the object base. The notation domain(£2) is used to refer to the set of attributes stored
in the object base. Hence, the addition of an attribute to domain(§2) implies the allocation of new storage
space for that attribute, while its deletion means destruction of the value and release of associated storage.

15

o becomes not vital
e becomesvital
[checkpoints

Inh(C(no.))

Inh(np)
(c) (d)

Figure 10: Rulesfor Storage Mapping

Changes to domain(2) can be defined step by step for each application of G'row or C'alculate. The
actions taken, however, depend on whether a given module might be redone, so wefirst define M as the set
of such modules:

Definition 5.1 M containsall modules M that appear in {redo M} decompositions.

Call suchan M € M acheckpoint module. Note that such modules can be determined statically from the
text of the program.

When an attribute calculation is performed by calculate(CT, ny, F), thefollowing rules are applied for
esch e = (atr, func,args) € F,

(@ After al atr € Syn(ng) have been calculated, all Inh(ny) and Syn(C(ng, 7)) used as
arguments are no longer vital .

() If atr € Inh(C(ng, 1)) and ny ¢ M, al Inh(ny) and Syn(C(ng, j)) used as arguments
areno longer vital.

() Ifatr € Inh(C(ng, 1)) andny € M, al Inh(ny) must be kept in the object base.

(d) [Ifatr € Inh(ng), ng € M and n, overridesm, Inh(ng) replaces Inh(m).

In (d), the node n, issaid to override m if n, and m are instantiations of the same checkpoint module, and
m isan ancestor of ng.

Figure 10 illustrates these rules. (&) denotes the point at which computation is going upwards; in this
case, none of the attributes of »,’s children are needed unless one or both are checkpoint modules. (b),(c)
and (d) showsdifferent situationswhen the computationisflowing down. If there are no checkpoint modules
among n, and C'(ng, 7), no special treatment is needed; otherwise, the appropriateval ues must be kept. Also,
notethat in (d), m isoverridden by n, because both are instantiationsof A/ and 2 is an ancestor of 7.

Finally, we point out that it might be worthwhile to retain attribute values that would normally be over-
written in the object base. For example, thiswould allow failures to be handled even if they require that the

16

computation be rolled back further than the most recent instantiation of a checkpoint module. To do this
would require object versioning with the following characteristics:

(1) Whenever anew valueisstored, it is checked in asanew version.
(2) Whenever redoing occurs, the most recent version is retrieved.
(3) Older versionsare retrieved using an explicit mechanism.

With this scheme, only the most recent version is “visible” within the standard computation model, as
specified by (1) and (2). (3) allows divergence from this model when necessary to retrieve older versions
to cope with failures that require more extensive rollback. Work is just beginning on designing and
implementing a versioning object base along the lines of this design.

5.3 Optimizations

Redoing isinherently an expensive operation, but with afunctional model such as FTAG, optimizationsare
often possible based on module execution order. For example, consider the following:

M = My(z | u) Ma(x|v) Ms(u,v]|y)
Ms(u,v |y) = ...when fail(v) = redo M (z | u)...

Assumethat afailureisdetected during the execution of M; that requiresredoing M. Sincethebad valueis
v, the failure must have occurred during the execution of module A, which generates v. Hence, athough
the target of redoing is M, only M, and M35 need be redone. Such data dependencies can be determined
statically, so that it would be possibleto keep an internal tablelisting exactly which modules need beredone
for each module that is used in a redoing decomposition.

Specification of an explicit computation order can also be exploited for optimization purposesin certain
cases. For example, assumethat M, isacheckpointmodulein { M ; M,; M3}. Thisordering meansthat M
will be reexecuted if M, isever redone, thereby allowing M;’s inherited attributes to be discarded to save
storage space. In contrast, if no ordering were specified here, the inherited attributes of all three modules
would have to be stored since they could potentially be needed for redoing. Of course, a dataflow analysis
of the program could expose this optimization in the implicit case as well, but only at significant cost.

6 Conclusions

FTAG is a computational model that is well-suited for writing fault-tolerant software due to its functional
nature and the inherent ease with which actions can be redone should failures occur. Although others
have noted similar advantages with respect to functional programming [HNS89, JA91], we believethat ours
represents one of thefirst attemptsto develop aformal computational model based on theseideas. Moreover,
asnoted inthelntroduction, thismodel isderived from similar attribute based model sthat have proved useful
is other areas of computer science, such as object-oriented programming and the description of high-level
software design processes.

Future work will concentrate in two different areas. One is implementing a programming system that
will allow execution of programs based on the FTAG model. Such a realization will be based on either a
distributed or multiprocessor architecture. The other is extending the model to incorporate other common
fault-tolerance paradigms such as replication. The goa here would be to determine whether characteristics
of our model offer advantages for active redundancy similar to those illustrated here for rollback-oriented
techniques. In both cases, our efforts will include investigating realistic applicationsto test the true benefits
of this approach.

17

References

[Avigs]

A. Avizienis. The N-Version approach to fault-tolerant software. |EEE Transactions on Software Engineer-
ing, SE-11(12):1491-1501, 1985.

[BHG87] P. A.Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.

[HNS89]

[JA91]

[Kat81]

[Kat89]

[Knu6g]
[Lam81]

[Lis85]

[Ran75]

[Schoo]

[SK88]

[SK904]

[SK90Db]

Addison-Wesley Publishing Company, 1987.

R. Harper, , G. Nagle, and M. Serrano. Use of afunctiona programming model for fault tolerant parallel
programming. In Proceedings of the Nineteenth Symposium on Fault-Tolerant Computing, pages 2026,
Chicago, IL, Jun 1989.

R. Jagannathan and E. Ashcroft. Fault tolerance in parale implementations of functiona languages. In
Proceedings of the 21st Symposium on Fault Tolerant Computing, pages 256—263, Montreal, Canada, Jun
1991.

T. Katayama. HFP, ahierarchica and functional programming based on attribute grammars. In Proceedings
of the Fifth International Conference on Software Engineering, pages 343-353, 1981.

T. Katayama. A hierarchical and functional software process description and its enaction. In Proceedings
of the Eleventh International Conference on Software Engineering, pages 343-352, 1989.

D. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127-145, 1968.

B. Lampson. Atomic transactions. In Distributed Systems—Architecture and | mplementation, pages 246—
265. Springer-Verlag, Berlin, 1981.

B. Liskov. The Argus language and system. In M. Paul and H.J. Siegert, editors, Distributed Systems:
Methods and Tools for Specification, Lecture Notes in Computer Science, Volume 190, chapter 7, pages
343-430. Springer-Verlag, Berlin, 1985.

B. Randdll. System structure for software fault tolerance. 1EEE Transactions on Software Engineering,
SE-1(2):220-232, Jun 1975.

F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutoria. ACM
Computing Surveys, 22(4):299-319, Dec 1990.

Y. Shinodaand T. Katayama. Attributegrammar based programming and its environment. In Proceedings
of the 21st Hawaii International Conference on System Sciences, pages 612—620, Kailu-Kona, Jan 1988.

Y. Shinodaand T. Katayama. OOAG: An object-oriented extension of attributegrammar and itsimplemen-
tation using distributed attribute evaluation algorithm. In Proceedings of WAGA, |nternational Workshop
on Attribute Grammar and its Application, volume 461, pages 177-191. LNCS Springer-Verlag, 1990.

M. Suzuki and T. Katayama. Redoing: A mechanism for dynamics and flexibility of software processes. In
Proceedings of InfoJapan’ 90, pages 151-160, Tokyo, Japan, 1990.

18

