
A TEXT COMPRESSION SCHEME THAT ALLOWS FAST SEARCHING

DIRECTLY IN THE COMPRESSED FILE

Udi Manber

Technical report #93-07

(March 1993)

Department of Computer Science

The University of Arizona

Tucson Arizona



A TEXT COMPRESSION SCHEME THAT ALLOWS FAST SEARCHING

DIRECTLY IN THE COMPRESSED FILE

Udi Manber1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

March 1993

ABSTRACT

A new text compression scheme is presented in this paper. The main purpose of this scheme is to

speed up string matching by searching the compressed file directly. The scheme requires no

modification of the string-matching algorithm, which is used as a black box, and any such pro-

gram can be used. Instead, the pattern is modified; only the outcome of the matching of the

modified pattern against the compressed file is decompressed. Since the compressed file is smaller

than the original file, the search is faster both in terms of I/O time and processing time than a

search in the original file. For typical text files, we achieve about 30% reduction of space and

slightly less of search time. A 70% compression is not competitive with good text compression

schemes, and thus should not be used where space is the predominant concern. The intended

applications of this scheme are files that are searched often, such as catalogs, bibliographic files,

and address books. Such files are typically not compressed, but with this scheme they can remain

compressed indefinitely, saving space while allowing faster search at the same time. A particular

application to an information retrieval system that we developed is also discussed.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Supported in part by an Presidential Young Investigator Award DCR-8451397, with matching funds from AT&T, and by

NSF grant CCR-9001619. Part of this work was done while the author was visiting the University of Washington.



2

1. Introduction
Text compression is typically used to save storage or communication costs. We suggest an

additional purpose in this paper. By reducing the size of a text file in a special way, we reduce the

time it takes to search through it. Our scheme improves the speed of string matching and we also

save space in the process. The savings are not spectacular, but they are in a sense for free. Files

that are usually not compressed because they are often read, can now be compressed and at the

same time the speed of searching is improved. The improvement is independent of current tech-

nology, because it comes from the fact that the compressed files are smaller than the original and

therefore less work is done. The same improvement will hold for faster CPU or I/O. Another

important advantage of our scheme is that it is independent of the actual string-matching program.

There is no need to modify the search program in any way; we only add a preprocessing step and

a postprocessing step. As will be discussed in section 3.1, in our implementation the name of the

search program is part of the input to the search.

As far as we know, this is the first attempt to speed up string matching through the use of

text compression. There have been attempts to compress full-text information-retrieval systems

([KBD89] [WBN92]). Such systems contain an inverted index, and the main problem is how to

implement random access into a compressed file. Although our scheme allows random access and

can be used to compress indexed text, this is not our main goal. We will assume throughout the

paper that the search is sequential. Sequential search occurs in many other applications, including

DNA and protein search (although in that case approximate matching is used most of the time),

bibliographic search, etc. Sequential search also plays a key role in an information-retrieval sys-

tem that we designed [MW93], based on a two-level approach; more on that in section 4.

We first present the idea behind the compression scheme, and then describe in detail the

algorithms involved and their implementation. Although an NP-complete problem needs to be

solved as part of the compression algorithm, we present a solution to it that turns out to be fast and

effective in practice. We then discuss how the search is done and present experimental results for

different search routines. We conclude with a discussion of possible applications, in particular

one to an information retrieval system.

2. The Compression Algorithm
The basis of the compression is a very simple pattern-substitution method that has been used

by Jewell [Je76] and most likely reinvented by many others. The goal is to substitute common

pairs of characters with special symbols that are still encoded in one byte. A byte allows 256 pos-

sible encodings, but typical text uses much fewer. ASCII encoding, for example, uses only 128

characters, leaving us 128 additional encodings to be used for pairs. The compression consists of

substituting each of the common pairs with the special byte allocated for it, and decompression is

achieved by reversing this procedure. Both are very fast. This kind of compression is not as good

as adaptive compression techniques (such as the Lempel-Ziv based algorithms [ZL77] or context-



3

modeling algorithms [BCW90]). However, with adaptive compression one cannot perform string

matching without keeping track of the compression mechanism at the same time, because the

compression depends on previous text. Our goal is to perform the string matching directly on the

compressed text so that it takes less time than a matching to the original text. If we perform even

a small amount of additional processing to do decompression on the fly, we defeat the purpose.

Not only do we revert to the original string matching procedure with the original text, but we

spend extra time for the decompression. Speeding up string matching is a difficult goal because

string matching can be done very efficiently; with Boyer-Moore filtering [BM77], the matching

procedure skips many characters and only a fraction of the text is looked at. As we will show, a

pattern-substitution method can be modified to allow a direct search in the compressed file.

Essentially, the search for a given pattern will work by modifying the pattern, but not the search

routine, and matching the modified pattern to the compressed file. There is, however, one major

problem with this idea.

Suppose that the pattern we are looking for is the word wood. Suppose further that both wo

and od belong to the list of common words. We’ll use c ijddiic to denote the encoding of the pair ij, and

` to denote a blank. The pattern wood is thus translated into cwoddddiiiic c oddddiiic, but that is not necessarily

how the word wood appears in the compressed file. For example, the pairs `w, oo, and d` could

be common pairs as well, in which case it is possible that the word wood was compressed into

c`wddddiiiic c oodddiiic c d`dddiiic, which are 3 totally different characters. But, under the same assumptions, it could

be that the word preceding wood in the text ended with d, and the encoding is c d`dddiiic cwoddddiiiic c oddddiiic. And

these are not the only two possibilities. The word wood could start a new line, it could be a part of

a larger word (say, deadwood in which case the encoding could be c dwddddiiiic c oodddiiic c d`dddiiic), or it could be

followed by a period — c`wddddiiiic c oodddiiic c d.dddiiic. Each of these combinations leads to a different encoding of

the word wood in the compressed text.

The reason for the many different combinations of the encoded word wood is that, even if

we know all the common pairs, we cannot determine ahead of time whether the first character w

will belong to the end of a pair, the beginning of a pair, or to no pair; it depends on the text. Sup-

pose for a minute that w is not a second character in any pair. In that case, the encoding for wood

must start with either w or cwoddddiiiic depending on whether or not wo is a common pair. Since the com-

mon pairs are known, we could determine when we see the pattern wood what to look for: the

modified pattern will either be cwoddddiiiic c oddddiiic, wo c oddddiiic, w c oodddiiic d, and so on, depending on the common

pairs. (Notice however that, if c oddddiiic is not part of the encoding, then we may still not be able to

determine the end of it. For example, cwoddddiiiic o c d`dddiiic and cwoddddiiiic o c d.dddiiic are two possibilities that depend

on the actual text.) But, of course, all that depends on w not being a second character in any pair.

We want to have many common pairs, so many characters will be second characters of those

pairs.

The main idea of this paper is to devise a way to restrict the number of possible encodings

for any string, and still achieve good compression. One possible approach would be to start the

compression always from the beginning of a word. In other words, compress the words



4

separately, and leave all other symbols intact. This will partially solve our problem, but it has two

major weaknesses. First, it restricts the search to whole words. If the pattern is compression and

the text has decompression, it may not be found (because of the problem mentioned above).

Second, blanks, commas, and periods are very common characters. Removing them from con-

sideration for compression limits the compression rate significantly. We present a different

approach.

We choose the common pairs in a special way, not just according to their frequency. The

main constraint that we add is that no two chosen pairs can overlap. An equivalent way to pose

this constraint is that no character can be a first character in a pair and a second character in a

(possibly another) pair. This constraint does not completely make the encoding unique but it

reduces the ambiguities to a minimum that we can handle and, as we will show, it allows a speedy

matching. But before we see the matching part, let’s see how to enforce this constraint in the best

possible way. To do that we abstract the problem.

2.1. Finding the Best Non-Overlapping Pairs

Let’s assume that we first scan the text and find, for each possible pair of characters, the

number of times it appears in the text. We denote by f (ab) the frequency of the pair ab. We now

construct a directed graph G = (V, E), such that the vertices of G correspond to the different char-

acters in the text, one vertex for each unique character, and the edges correspond to character

pairs. The weight of each edge ab is f (ab). We want to find the "best" edges (corresponding to

pairs) such that no edges "overlap." More precisely, we want to partition the vertices into two sets

V 1 and V 2, such that the sum of the weights of the edges that go from V 1 to V 2 (these are the

edges we choose) is maximized. We also need to restrict the number of edges we select (there is a

limit on the number of unused byte combinations, which we assume is 127), but let’s leave this

aside for now. The sum of weights of the edges from V 1 to V 2 gives us the exact compression

savings. Each of these edges corresponds to a pair that will be encoded with one byte, thus it con-

tributes one byte of savings.

The formulation above is a very clean abstraction of our problem, but unfortunately, it is

also a very difficult problem. It turns out that the problem is NP-complete even for unit weights

and undirected graphs [GJ79]. But, on the other hand, the graphs we are dealing with are not too

large. The important edges correspond to common pairs and not too many characters appear in

common pairs. In fact, the number of characters overall is quite limited. So there is a chance to

be able to solve such problems in practice, even though the problem for large graphs is intractable.

We experimented with several approaches to solving this problem. The following simple heuristic

seems to be the most effective. It is fast, and in all the cases we verified, it gave the optimal solu-

tion. More on the verification later. It is worth to note that standard methods of algorithm

analysis would not be applicable here, because the size of the problem is small and rather fixed.

We believe that the only practical way to evaluate different approaches is to try them on various

texts, which is what we did.



5

The main step of the algorithm is a local optimization heuristic that can be called a 1-OPT

procedure. Given an initial partition of the vertices into V 1 and V 2, we examine each vertex to

see whether switching this vertex to the other set would improve the total. We continue with such

switches until no more are possible (since each switch improves the total, this procedure con-

verges). We also tried a 2-OPT heuristic, in which we attempt to switch 2 vertices at the same

time. This is different from switching each one separately, because the edges connecting these

two vertices count differently. The main question is how to select the initial partition. We tried

several greedy methods, but found that the simplest method is the most effective: use a random

partition. We repeat the algorithm several times with different random partitions. The solutions

were almost uniformly good, even without using 2-OPT. The average total compression over 100

random trials was 98.6% of the best total for one text, 96.1% for the second text, and 96.9% for

the third text. The standard deviation ranged from 2.3% to 4.7%. The worst total we found in 300

random trials for 3 different texts was 80% of the optimal. The best total was typically found in

5-20 random trials, which led us to set the number of trials to 100 to be on the safe side. Running

1-OPT 100 times can be done reasonably fast, as we will show shortly.

The last problem is to limit the number of selected edges to the available unused byte com-

binations. We set this number to be 127, leaving 128 characters for the regular ASCII set plus one

special delimiter (with value 128). We need this delimiter for the (hopefully) rare cases of charac-

ters in the text with values of > 128 (which may occur with non-ASCII text). In these cases, the

compressed file contains the delimiter followed by the non-ASCII character. We could have

achieved a slightly better compression rate by figuring out the exact set of characters used by the

text, and using all other unused byte combinations, but for simplicity, we decided not to do that.

Also, for simplicity, we did not use the newline symbol in any of the pairs, leaving it always

uncompressed.

We could not see any intelligent way to incorporate the limit on the number of pairs during

the pairs selection. Instead, we simply find the best partition, ignoring the limit, and then take the

best (highest weight) 127 edges from V 1 to V 2. We also tried to limit the number of edges ini-

tially; for example, start with, say, the 400 highest-weight edges of the graph and find the best par-

tition for them, and then take the 127 best of those. Or, alternatively, start with, say 30 vertices of

highest degree. The differences in the total compression were usually small (2-3%), although the

running time was, of course, improved because the graphs were smaller. However, there were

added complications because if the graph is reduced too much, the total number of edges becomes

less than the optimal 127. So we decided to stay with the original scheme. The algorithm, using

only 1-OPT switches, is given in pseudo-code in Figure 1.

We leave it to the reader to fill in the details of the implementation. The graphs we handle

are small (hundreds of edges at the most), and for English texts they will always be small (the size

of the graph depends on the number of unique characters in the language, not the size of the text).

Therefore, as long as x (the number of randomizations) is relatively small, the algorithm is quite

fast. In particular, the running time of this algorithm is a small fraction of the running time of the



6

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Algorithm Best_Non_Overlapping_Pairs(G: weighted graph)

repeat x times { x is a constant; we used 100 for ASCII texts }

randomly assign each vertex to either V 1 or V 2 with equal probability;

for each vertex v ∈ V do

put v on the queue;

loop until the queue is empty

pop v from the queue;

if switching v to the opposite set improves the sum of weights then

switch v;

if switching v caused other vertices, not already on the

queue, to prefer to switch then put them on the queue;

store the best solution to date;

output the highest weight 127 edges from the best partition;

Figure 1: The algorithm to select the partition.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

entire compression algorithm (unless the files are very small). Sample of running times are given

in Figure 2 for 5 different texts: Roget’s Thesaurus, the 1992 CIA world facts, and King James’

Bible from Project Gutenberg; a collection of articles from the Wall Street Journals, and the

(almost) complete archives of the Telecom Digest, a discussion group about telecommunication.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Text size compression time for time for % of time

original rate compression decompression for finding pairsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Roget Thesaurus 1.38 69% 10.3 0.9 14.6%

CIA world facts 2.42 72% 11.4 1.7 13.2%

King James’ Bible 4.85 70% 13.3 3.5 9.0%

Wall Street J. 15.84 67% 23.9 11.2 6.7%

Telecom archives 69.21 72% 104.0 52.1 1.9%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Figure 2: Statistics for the compression and decompression algorithms.

Files sizes are given in Mbytes; running times are given in seconds.



7

To verify that the solutions obtained from our algorithm are not too far from optimal, we

also implemented a deterministic algorithm that guarantees the best solution. This algorithm is

exponential, but by using binary reflected Gray codes [BER76] it was possible to run experiments

for up to 30 vertices, which is not too far from real data. In all the tests we ran the solution found

by the random algorithm was indeed the optimal. We also compared the best 127 edges obtained

from the random algorithm on the whole graph (usually about 40-60 vertices) vs. the best 127

edges from the optimal solution for a "good" induced subgraph of 30 vertices, and those solutions

were within 1-2% apart.

Another interesting experiment was done with random text. The compression rates of this

algorithm for random text of uniform distribution are quite predictable. Suppose that the text con-

sists of S characters each with equal probability, and that it is large enough. A partition of the ver-

tices into equal-size sets would yield (S /2)2 edges from the first set to the second set. (if the text

is large all possible edges will most likely appear). All edges occur with the same probability, so

one would expect that the selected edges will have about the same weight as any other set of

(S /2)2 edges, which is one fourth of the total number of edges. The best partition will be better

than the average, but again, if the text is large enough, the variance will be small. Therefore, if

about one fourth of the edges can be chosen, we expect the savings to be close to 25%.2 Since we

can use only 127 edges, the saving would be reduced by a factor of 127/(S /2)2. For example, for

S =30 we get approximately 14% savings for random text (which we verified by experiments)

compared to about 30% for natural text. Just another indication that text is not random.

2.2. Some Additional Implementation Issues

A couple of other points are worth mentioning. The compression algorithm is a two-stage algo-

rithm; the first stage reads the file and computes the best pairs, and the second stage reads the file

again and performs the compression. To improve this process, we use only a sample of the file in

the first stage, usually the first 1 million characters. We keep that part in memory for the next

stage, so it is not too much of a overhead. It is possible to use "standard" pairs that are computed

on a large sample of text. This will save time for the compression, but for most cases, it is prob-

ably not cost effective, as it leads to a less effective compression. For example, we compressed

the version of the Bible we had using the best pairs computed from the Wall Street Journal text

and obtained a compression that required 3.9% more space. We also did it the other way around

and found the Wall Street Journal to be much more sensitive: it required 6.0% more space. We

support an option that reads the pairs from another compressed file rather than computing them for
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 At some point we used the UNIX old rand procedure to generate random text and obtained a perfect compression, for our

algorithm, of 50%. The reason was that the old rand procedure generates "random" numbers that go from odd to even to

odd with no exception. Our heuristic was good enough (it uses much better random numbers) to catch the best partition,

which was, of course, all the odd characters in one set and the even in the other. All edges were then used. This is another

example of the risk of using bad random number generators, or as in our case, copying from old code.



8

the given file, because it allows one to concatenate to a compressed file. If file1 is a compressed

file and we want to add to it file2, we need only to compress file2 using file1’s pairs and concaten-

ate; there is no need to decompress, to concatenate, and to compress again. We can do that in the

middle of the file as well. It is thus possible to adapt a text editor to read and edit a compressed

file directly.

Our compressed files save about 30% space. If searching is not needed, there are much

better compression algorithms, such as UNIX compress, based on the Lempel-Ziv-Welch algo-

rithm ([We84, ZL77]), that can achieve 50-60% reduction. We tested whether compressing our

compressed files further with UNIX compress lead to the same compression rates as compressing

the original file, and to our surprise we found that we got better compression rates. Typically

using both programs together (provided that our scheme is used first) improves the compression

by an extra 6%. For example, the Wall Street Journal text we had was compressed to 6.96MB

with compress, and to 6.55MB using our scheme in addition to compress.

3. Searching Compressed Files

3.1. The Search Algorithm

The search program consists of five parts. In the first part the common pairs used in the compres-

sion are read (they are stored at the beginning of the compressed file) and two translation tables

are constructed. One table maps all new characters (identified by having a value of ≥ 129) to their

original pairs of characters. The second table is the inverse; it maps pairs of original characters

into new characters. In the second part, the pattern is translated (compressed) using the inverse

table. This translation is unique as we showed in the previous section, except possibly for the first

and last character of the pattern. If either the first character belongs to V 2 in the partition or the

last character belongs to V 1, then they are removed from the pattern for now. The third part is to

use the string-matching program — as a black box — to search for the compressed pattern in the

compressed file and output all matches. This is done by creating a new process3 and using

UNIX’s pipe facilities to divert the output to the fourth part, in which the output of the match is

decompressed using the translation table. If either the first or last character of the pattern were

removed in the second part, then the output must be further filtered. We do that by creating

another process and running the same string-matching program on the (decompressed) output of

the fourth part. This can be done more efficiently during the search because we know the exact

location of the match, but since in most cases the output size is small, it makes little difference.

(Adding it to the search would require an access to the source code of the search procedure, which

we do not assume.) An example of a search is given in Figure 3.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 It is possible, of course to use the string-matching procedure directly as a procedure in the search rather than to create a

new process. We chose to create another process to make the whole program more general by allowing any string-

matching program.



9

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

command: cgrep pattern file_name

First part: read the list of common words;

for example, c padddiiic c tedddiiic and c n`dddiiic may be common pairs.

Second part: translate pattern into c padddiiic t c tedddiiic r;

(Notice that we removed the last character n, because it is a first character in a

common pair.)

Third part: search for c padddiiic t c tedddiiic r in file_name using your favorite string-matching

program.

Fourth part: decompress what you find above; for example,

c padddiiic t c tedddiiic r c n`dddiiic ap c pedddiiic a c rsdddiiic c`hdddiiic e c redddiiic — pattern appears here

Fifth part: run the string matching again on the output to filter a possible match to

only patter (recall that we removed the last n).

Figure 3: An example of the search.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The five parts may seem like a lot of work, but in fact only the third part is substantial. The

first part depends on the common pairs and there are at most 127 of them. The second part

depends on the pattern, which is typically very small. The fourth and fifth parts depend on the

size of the output, which again is typically very small. The third part therefore dominates the run-

ning time of the program.

One of the main features of our scheme is that it can work with almost any string-matching

program. The only requirement is that the program can handle any character encoded in a byte

(i.e., that it is 8-bit clean). We encountered no problem using any (UNIX) string-matching pro-

gram. We believe that this is a very important design decision. The modularity allows using our

compression without having to modify existing software. This makes the whole scheme much

more reliable, general, and convenient. In addition, we mark a compressed file with a distinct sig-

nature at its beginning. If our search program does not see this signature it reverts to the original

search procedure. So, one can use our program as a default on all files and get the speedup when-

ever the file is compressed. Of course, there is no way to know whether all future string-matching

algorithms will be suitable for this improvement. (A move to a two-byte representation of text



10

will most probably create even more unused byte combinations so our scheme will still work

effectively; finding the best non-overlapping pairs may be more of a problem.)

3.2. Experiments

We used texts of varying sizes (these texts were also used in Figure 1), and several search pro-

grams. We present the results for three large texts and two representative search programs. The

first program is fgrep, which does not use Boyer-Moore filtering, and the second is our own agrep

[WM92], which does use it and is much faster as a result. We selected 100 random words from

the dictionary (the effectiveness of a Boyer-Moore search depends somewhat on the pattern), and

ran 100 searches for each combination of search and text. We give the average running times in

Figure 4. All experiments were run on a DECstation 5000/240 running Ultrix and times were

obtained from the UNIX time routines (which are not very precise), and given in seconds.

4. Applications
Our scheme can be used for many applications that require searching. For example, we have a

rather large bibliographic database which we often search. Compressing it saves time and space.

(Of course, one can build an inverted index and be able to search much quicker, but that requires

much more space.) The same holds for other large information files. We highlight two other pos-

sible applications of this scheme.

In [MW93] we presented a design of a two-level information retrieval system. We cannot

describe the system in detail here, but the main idea behind it is to partition the information space

(e.g., a personal file system) into blocks, and build an index that is similar to an inverted index but

much much smaller (typically 2-4% of the total size). The index contains all distinct words, but

for each word there are pointers to only the blocks in which it appears (rather than to its exact

location as in an inverted index). Searching for a word consists of finding all its blocks and then

searching those blocks sequentially. Sequential search is fast enough for medium-size files, there-

fore this search strategy, if implemented carefully, is reasonably fast. Its main advantage is the

tiny space occupied by the index (an inverted index typically occupies 50%-300% of the total).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Text compression original file compressed file improvements

savings fgrep agrep fgrep agrep fgrep agrepiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bible 30% 7.5 1.4 5.4 1.0 28% 29%

WSJ 33% 24.9 5.0 17.4 3.8 30% 24%

Telecom 28% 109.2 21.2 80.0 16.4 27% 23%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Figure 4: Running times for agrep and fgrep for various texts.



11

Having a small index allows for many improvements in the search (for more details and experi-

ments see [MW93]). Using the compression described here, one can keep many files compressed

and still be able to perform the sequential search. That will again save time and space. In particu-

lar, the index itself can be compressed.

Another application is in filtering information. For example, the information may consist of

some newsfeed and all articles containing certain patterns are supposed to be extracted. With our

scheme the newsfeed can come in compressed, resulting in faster filtering. (Although we dis-

cussed searching single patterns here, our scheme will work for searching multiple patterns with

either the Aho-Corasick algorithm used in fgrep [AC75] or with agrep’s algorithm [WM92].) If

the setting is such that compression is already used, then, as we said in section 2.2, the original

compression can come on top of our compression and the search can be performed after the origi-

nal compression is removed.

The same approach may also be used for approximate matching, although the problem is

more difficult. An error in the original text may be transformed into two errors in the compressed

text (e.g., by changing a common pair to a pair that is not common), and two errors in the original

text may be transformed into one error in the compressed text (e.g., by substituting one common

pair for another). Therefore, we cannot simply match the compressed pattern to the compressed

file. However, there are efficient techniques for reducing an approximate matching problem to a

different exact matching problem. A simple example [WM92] is to divide the pattern into k +1

parts such that any k errors will leave at least one part intact. An exact search is performed for all

parts, and the output, which is hopefully much smaller, is then filtered appropriately. The scheme

we presented can be used for the exact matching part.

Acknowledgements
Thanks to Dan Hirschberg, Richard Ladner, Martin Tompa, and Sun Wu for helpful discussions,

and to Jan Sanislo for help in improving the code.

References

[AC75]

Aho, A. V., and M. J. Corasick, ‘‘Efficient string matching: an aid to bibliographic search’’,

Communications of the ACM, 18 (June 1975), pp. 333−340.

[BER76]

Bitner J. R., G. Erlich, and E. M. Reingold, ‘‘Efficient generation of the binary reflected

Gray code and its applications,’’ Communications of the ACM, 19 (September 1976), pp.

517−521.

[BCW90]

Bell, T. G., J. G. Cleary, and I. H. Witten, Text Compression, Prentice-Hall, Englewood



12

Cliffs, NJ (1990).

[BM77]

Boyer R. S., and J. S. Moore, ‘‘A fast string searching algorithm,’’ Communications of the

ACM, 20 (October 1977), pp. 762−772.

[GJ79]

Garey M. R., and D. S. Johnson, Computers and Intractability, A Guide to the Theory of

NP-completeness, W. H. Freeman, San Francisco, CA, 1979.

[Je76]

Jewell G. C., ‘‘Text compaction for information retrieval systems,’’ IEEE SMC Newsletter,

5 (February 1976).

[KBD89]

Klein, S.T., A. Bookstein, and S. Deerwester, ‘‘Storing text retrieval systems on CD-ROM:

compression and encryption considerations,’’ ACM Trans. on Information Systems, 7 (July

1989), pp. 230−245.

[MW93]

Manber, U., and S. Wu, ‘‘A two-level approach to information retrieval.’’ Technical report

93-06, Department of Computer Science, University of Arizona (March 1993).

[WBN92]

Witten, I. H., T. C. Bell, and C. G. Nevill, ‘‘Models for compression in full-text retrieval

systems,’’ Data Compression Conference, Snowbird, Utah (April 1991), pp. 23−32.

[We84]

Welch, T. A., ‘‘A technique for high-performance data compression,’’ IEEE Computer, 17

(June 1984), pp. 8−19.

[WM92]

Wu S., and U. Manber, ‘‘Fast Text Searching Allowing Errors,’’ Communications of the

ACM 35 (October 1992), pp. 83−91.

[ZL77]

Ziv, J. and A. Lempel, ‘‘A universal algorithm for sequential data compression,’’ IEEE

Trans. on Information Theory, IT-23 (May 1977). pp. 337−343.


