
E�cient Timestamp Input and Output

Curtis E. Dyreson

1

Richard T. Snodgrass

2

TR 93-01

February 25, 1993

Abstract

In this paper we provide e�cient algorithms for converting between the internal form of a

timestamp, and various external forms, principally character strings specifying Gregorian dates.

We give several algorithms that explore a range of time and space tradeo�s. Unlike previous

algorithms, those discussed here have a constant time cost over a greatly extended range of

timestamp values. These algorithms are especially useful in operating systems and in database

management systems.

1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

curtis@cs.arizona.edu

2

Department of Computer Science

University of Arizona

Tucson, AZ 85721

rts@cs.arizona.edu

E�cient Timestamp Input and Output

1

Copyright

c

 Curtis E. Dyreson and Richard T. Snodgrass 1993

Contents

1 Introduction 1

2 Timestamp Semantics and Representation 1

3 Timestamp Operations 2

4 Gregorian Output 3

4.1 Brute Force Approach : 4

4.2 Trading Space for Time : 5

4.3 Further Optimizations : 6

4.4 Leap Seconds : 8

4.5 Hours, Minutes, and Seconds : 10

4.6 Time and Space Analysis : 10

5 Gregorian Input 13

5.1 Brute Force Approach : 13

5.2 Trading Space for Time : 14

5.3 Further Optimizations : 14

5.4 Leap Seconds : 16

5.5 Hours, Minutes, and Seconds : 16

5.6 Time and Space Analysis : 18

6 Existing Input and Output Packages 19

7 Non-Gregorian Input and Output 22

8 Summary 23

Acknowledgements 24

i

References 24

ii

1 Introduction

In this paper we provide e�cient algorithms for converting between the internal form of a times-

tamp, an integer, and various external forms, principally character strings specifying Gregorian

dates, such as \January 1, 1993."

Algorithms that perform timestamp input and output are prevalent in most operating systems

and database management systems. E�ciency has not been considered critical, in part because

input and output performance is ultimately limited to the latency of I/O devices, which can be

orders of magnitude slower than CPU speeds. As we'll demonstrate empirically later in this paper,

input of the above-mentioned date using a commercially available routine takes approximately 3

msec, while output is substantially faster at 0.12 msec (on a 12-MIPS machine). To display the

resulting string on a screen at 9600 baud takes much longer, about 13 msec.

The need for more e�cient algorithms becomes apparent when considering temporal databases

[Tansel, A. et al. 1993] that store time-varying information. Current input and output algorithms

apply to restricted intervals of time (generally 1970 to 2038). If temporal databases are to be

useful to astronomers, historians, archaeologists, and geologists, the time interval must be greatly

lengthened. Unfortunately, the cost of these I/O algorithms is linear in the distance from the origin

of the date to be input or output. So if we move the origin from 1970 to 1 A.D., inputting the

above date will take 145 msec of CPU time!

In this paper we present a series of algorithms for both input and output. The �nal algorithms

exhibit e�ectively constant performance over all of time (18 Billion B.C.E. to 18 Billion A.D.). By

employing several algorithmic re�nements and by trading space for time, we are able to get input

down to about 8 �sec, and output down to about 22 �sec.

Section 2 presents a data model for timestamps, discussing both their semantics in terms

of physical clocks and their representation as bit patterns. The next section argues that input

and output are the most di�cult of the timestamp operations to implement e�ciently. We then

develop output and input algorithms for Gregorian values in Sections 4 and 5, respectively. These

algorithms are empirically compared with existing packages in Section 6. We brie
y discuss the

generality of the proposed approach by applying it to input and output of temporal constants using

the Chinese lunar calendar.

Source code for all the algorithms is in the public domain. The programs and the test cases

used to derive the results in this paper can be accessed via anonymous FTP from cs.arizona.edu

in the subdirectory tsql/fastIO.

2 Timestamp Semantics and Representation

There are three basic temporal data types: events , spans , and intervals [Soo & Snodgrass 1992].

An event is an isolated instant in time. A span is an unanchored duration of time, while an

interval is an anchored duration, the time between two events. In this paper we consider only

1

event timestamps and operations on event timestamps. Span and interval operations are similar

[Soo et al. 1992].

In the temporal database community, two basic time models have been proposed: the con-

tinuous model , in which time is viewed as being isomorphic to the real numbers, with each real

number corresponding to a \point" in time, and the discrete model , in which time is viewed as

being isomorphic to the integers [Cli�ord & Tansel 1985]. In the discrete model, the continuous

time-line is partitioned into line segments. Each segment is called a chronon [Ariav 1986, Cli�ord

& Rao 1987], which is an indivisible unit of time. We choose to use the discrete model.

The meaning of each chronon in our data model is given by the time-line clock . A time-line

clock is a set of physical clocks coupled with some speci�cation of when each physical clock is

authoritative. Each chronon in a time-line clock is a chronon (or a regular division of a chronon)

in an identi�ed, underlying physical clock. A physical clock is a physical process coupled with a

method of measuring that process. Although the underlying physical process is continuous, the

physical clock measurements are discrete, hence a physical clock is discrete. A physical clock by

itself does not measure time; it only measures the process. For instance, the rotation of the earth

measured in solar days is a physical clock. The time-line clock switches from one physical clock

to the next at a synchronization point. A synchronization point correlates two, distinct physical

clock measurements.

Elsewhere we give the rationale behind a time-line clock composed of four physical clocks

[Dyreson & Snodgrass 1993]. This clock extends from the beginning of time (speci�cally, the \Big

Bang" [Hawking 1988], which occurred between 14 and 18 billion years ago) to 18 billion years into

the future. The time-line granularity is one second. That is, every chronon in our time-line clock

represents one second.

We adopt a particularly simple, yet adequate, timestamp format. The format is a 59-bit inte-

ger, with an additional sign bit, representing the number of seconds (chronons) from an arbitrary

origin. Each timestamp bit pattern represents a unique chronon. This simple timestamp format

facilitates e�cient arithmetic and comparison operations, and is essential for output to and input

from multiple calendars [Soo & Snodgrass 1992]. The algorithms we describe use Midnight January

1, 1970 A.D. as the timestamp origin, but we indicate for each algorithm how a di�erent origin

might be used. In C parlance, our representation is a long long int, which occupies 64 bits.

Elsewhere we show how to exploit the remaining four bits [Dyreson & Snodgrass 1993].

3 Timestamp Operations

Liskov and Guttag have proposed a taxonomy of abstract data type operations [Liskov & Gut-

tag 1986]. Applying this taxonomy to timestamps suggests four general categories of timestamp

operations.

1. Operations that create timestamps without taking any timestamps as input, called primitive

constructors .

2

2. Operations that create timestamps but take timestamps as input, called constructors .

3. Operations that modify timestamps, called mutators .

4. Operations that take timestamps as input and return other types, called observers .

Following this classi�cation scheme, we have identi�ed a comprehensive set of six primitive

operations on event timestamps [Soo et al. 1992].

1. create| Create an event timestamp, the initial value of the timestamp is given as a calendar

speci�c value, a primitive constructor.

2. �rst | Choose the earliest event from among a pair of events, a constructor.

3. last | Choose the latest event from among a pair of events, a constructor.

4. shift | Move an event by a speci�ed duration, a mutator.

5. precedes | Decide if one event is before another, an observer.

6. output | Convert a timestamp value to a calendar speci�c value, an observer.

Note that precedes can be used to build the complete set of temporal predicates [Allen 1981] (e.g.,

equals(e

1

; e

2

) is equivalent to :precedes(e

1

; e

2

) ^ :precedes(e

2

; e

1

)).

E�cient implementation of an event abstract data type depends on e�cient implementation

of these six functions. Some of these functions are hard to implement e�ciently, while others are

straightforward. In particular, precedes is a 64-bit comparison, �rst and last are trivial given

precedes, and shift is but a 64-bit addition operation. In the rest of this paper, we focus on the

two remaining functions, which are di�cult to implement.

Create is challenging to implement since it must convert a calendar speci�c value (e.g., a

Gregorian calendar date) to a timestamp value, the number of seconds from the origin. We call

this conversion task input . We shall see that doing input e�ciently is complex. For the same

reasons, implementing output is hard. We develop algorithms that e�ciently perform Gregorian

calendar input and output. We anticipate that Gregorian calendar input and output will be the

most common kind of input and output and are the topics of the next two sections.

4 Gregorian Output

Output converts the time stored in a timestamp to a calendar speci�c representation, that is, an

array of pertinent calendar values [Soo & Snodgrass 1992]. The Gregorian calendar representation,

for instance, has array values for the year, month, and day, whereas a business calendar represen-

tation has array values for the �scal year, quarter, and work day. Constructing a character string

from such an array is straightforward. With an auxiliary array of month names, the three integer

3

procedure SECONDS TO GREG(in seconds in : integer; out year , out month, out day : integer);

const

seconds between origins : integer = 62167132800; f Origin is 1970 g

var

seconds : integer; f 64 bit integer g

begin

seconds := seconds in + seconds between origins ; f Adjust generic origin g

if seconds > 0 then

OUTPUT AN AD DATE(seconds , year , month, day)

else

OUTPUT A BC DATE(seconds , year , month, day)

end; f SECONDS TO GREG g

Figure 1: Interface to output algorithm

array values 1, 1, and 1993 (denoting month, day in month, and year, respectively) can be mapped

into the string \January 1, 1993."

We describe a series of algorithms, each of which outputs a timestamp in the Gregorian

calendar representation. We anticipate that Gregorian calendar output will be the most common

kind of output. We �rst give a \brute force" algorithm that is space e�cient, but time ine�cient,

and follow with algorithms that improve time e�ciency but incur modest space overheads. We

describe two such algorithms, one requiring 8K bytes of main memory, and the other needing 22K.

The algorithms we give output only A.D. dates. We omit similar algorithms which output

B.C.E. dates for expository brevity. The B.C.E. output algorithms are essentially the same as the

A.D. algorithms, except that di�erent tables are used. When calculating space costs, however, we

only include the size of the tables needed for outputting A.D.; outputting B.C.E. dates doubles the

space costs.

The interface to the output routine is given in Figure 1. The interface merely aligns the

timestamp origin (Midnight January 1, 1970 A.D.) with the Gregorian calendar origin (Midnight

January 1, 1 A.D.) and determines whether the B.C.E. or A.D. output algorithm need be invoked.

Note that a di�erent timestamp origin may be used with no loss of e�ciency by simply rede�ning

the seconds between origins constant.

4.1 Brute Force Approach

The brute force algorithm, shown in Figure 2, converts a timestamp, representing a positive number

of seconds from the origin, to a Gregorian year, month, and day. We assume, initially, that the

timestamp does not count leap seconds. Hence, each day contains exactly 86400 seconds. We

consider code adjustments to handle leap seconds in Section 4.4.

4

Computing the Gregorian date corresponding to some number of seconds from the origin is

complex because, while every day contains the same number of seconds, not every year contains

the same number of days. Gregorian years are 365 days long except leap years which are 366. Leap

years are years that are evenly divisible by 4, but not divisible by 100, unless the year is divisible

by 400 (this is the common leap year rule, although other rules have been proposed [Aveni 1989]).

For example, 1900 is not a leap year while 2000 is a leap year.

The output algorithm is based on the observation that the Gregorian calendar repeats itself in

four hundred year periods. That is, every 400 year period from 1 A.D. is the same number of days,

365� 400 + 97 = 146097 days (there are 97 leap days every 400 years) to be exact. We term this

400 year period a greg . The brute force algorithm calculates the number of gregs between 1 A.D.

and the date to be output and subtracts the appropriate number of seconds from the timestamp.

This reduces the task of outputting a date in the range 1 A.D. to 18 Billion A.D. to outputting a

date in the range 1 A.D. to 401 A.D. (We are hedging our bets that we can e�ciently output a date

in the range 1 A.D. to 401 A.D.) For example, to output a timestamp corresponding to Midnight

July 2nd, 1970 A.D., we observe that there are three gregs prior to 1970. This reduces the output

task to converting the timestamp corresponding to Midnight July 2nd, 370 A.D.

The output algorithm pinpoints a speci�c year in the 400 year range, 1{401 A.D., by counting

year by year. Each year counted decrements the cumulative remaining seconds by the number of

seconds in that year (leap years contain more seconds than other years). The year by year count

is terminated when the remaining seconds are fewer than the number of seconds in a year. This

technique not only calculates a speci�c year in the 400 year range, it also isolates the number

of seconds from the start of that year to the date being translated. The latter value is used

to determine the day and month. For brevity, we omit the straightforward \special case" code

corresponding to the functions day to month, day to day , and leap year .

4.2 Trading Space for Time

The algorithm given above determines whether a year is a leap year for each year in the

1{401 A.D. range by calling the leap year function. Since there are only 400 possible inputs

to the leap year function, the function can be precomputed and stored in a table, avoiding some

on the
y computation. Similarly, the day to month and day to day functions can be precomputed

and stored in a table. These tables occupy 528 bytes.

Another optimization improves the e�ciency of pinpointing the year in the 1{401 A.D. range

and determining how many days into that year the reduced timestamp represents. The brute force

algorithm uses a loop, which is iterated a minimum of 0 times and a maximum of 400 times. The

optimized algorithm makes an initial, optimistic guess at the year and days into that year and then

corrects the guess. The initial guess ignores leap years and presumes that every year is exactly

365 days. The initial guess overestimates the actual year and day count. The correction to the

initial guess factors in leap days. The cumulative number of prior leap days for each year in the

1{401 A.D. year range are precomputed and stored in the leap days in years table. Since there are

97 leap days in a greg, the initial guess can overestimate the year count by at most 1 year, and the

day count by at most 97 days. The correction decrements the year and day count as needed.

5

procedure OUTPUT AN AD DATE(in seconds in : integer; out year , out month, out day : integer);

const

how many seconds in year : array [boolean] of 365..366;

seconds in day : integer = 86400;

seconds in 400 years : integer = 146097 � seconds in day ;

function leap year(integer): boolean;

function day to month(boolean, integer) : 1..12;

function day to day(boolean, integer) : 1..31;

var

years , days , seconds : integer;

begin

years ((seconds in div seconds in 400 years) � 400) +1;

seconds seconds in mod seconds in 400 years ;

while seconds > seconds in year do

years years + 1;

seconds seconds � how many seconds in year [leap year(years)];

days seconds div seconds in day ;

month day to month(leap year(years), days);

day day to day(leap year(years), days)

end; f OUTPUT AN AD DATE g

Figure 2: The brute force output algorithm

The improved algorithm using the optimized method of pinpointing the year and the technique

of caching function results is shown in Figure 3.

4.3 Further Optimizations

The problem with the second algorithm is that it is riddled with expensive division, multiplication,

and modulus operations. All of these operations can be optimized away.

We focus on the code to determine how many complete gregs and how many days into the

next greg a timestamp represents. In the second algorithm, the code that calculates these values

performs two 64 bit integer divisions and one 64 bit modulus. We can replace these operations

with a process of repeated additions. The trick is to examine the timestamp bit-by-bit. Since the

timestamp is a binary number, the i

th

timestamp bit represents 2

i�1

seconds. Each 2

i�1

quantity

of seconds corresponds to some number of gregs, leftover days, and leftover seconds. The leftover

days are a quantity of days that don't quite add up to one greg (less than 146097 days). The

leftover seconds are a quantity of seconds that are less than the number of seconds in a day (86400

seconds). For example, the fortieth bit in the timestamp represents 2

39

seconds which corresponds

to 43 gregs, 80743 leftover days, and 44288 leftover seconds. The gregs, leftover days, and leftover

seconds corresponding to each bit are precomputed and stored in three arrays. As each bit in the

timestamp is tested, a running sum of each quantity: gregs, leftover days, and leftover seconds, is

6

procedure OUTPUT AN AD DATE(in seconds in : integer; out year , out month, out day : integer);

const

seconds in day : integer = 86400;

seconds in year : integer = seconds in day � 365;

seconds in 400 years : integer = 146097 � seconds in day ;

leap year : array[0..399] of boolean;

how many days in year : array[boolean] of 365..366;

leap days in years : array[0..400] of 0..97;

day to month : array[boolean, 0..365] of 1..12;

day to day : array[boolean, 0..365] of 1..31;

var

years , days , gregs : integer;

begin

f calculate gregs g

gregs (seconds in div seconds in 400 years);

f calculate year in greg g

days (seconds in mod seconds in 400 years) div seconds in day ;

years days div 365; f make initial guess g

days (days mod 365) � leap days in years [years];

if (days < 0) then f apply correction to guess g

years years � 1;

days days + how many days in year [leap year [years]];

year (400 � gregs) + years + 1;

f calculate month and day in yearg

month day to month[leap year [years], days];

day day to day [leap year [years], days]

end; f OUTPUT AN AD DATE g

Figure 3: A greg counting output algorithm

maintained. We could maintain a sum of the number of years corresponding to each greg rather

than a sum of the gregs, but this would require using a 64 bit integer and 64 bit addition operations.

We found that it is quicker to use a 32 bit counter and then multiply the number of gregs counted

by 400 (using 3 shifts and 3 additions).

To improve the e�ciency of the bit counting technique, four bits are counted each iteration

instead of just a single bit. The loop treats the �rst four bits as the �rst group, the next four bits

as the second group, etc. Since a timestamp has 59 signi�cant bits, there are at most 15 groups.

Each group corresponds to a value in the range 0{15. For each group, all 16 possibilities for the

number of gregs, leftover days, and leftover seconds are stored in separate tables, each table is

15� 16� 4 = 960 bytes in size.

After each group of four bits in the timestamp has been tested, the leftover seconds and days

7

must be reapportioned. The leftover seconds are reapportioned into days. To compute the number

of days represented by the leftover seconds, we could divide the leftover seconds by the number of

seconds in a day. But there can be a maximum of 1,700,000 leftover seconds (this is the sum of all

the leftover seconds). Hence, the leftover seconds constitute at most (1; 700; 000 div 86; 400) = 19

days. We can avoid a division by storing all 20 outcomes (zero days, one day, ..., nineteen days)

in a binary search tree of depth 5 with 20 leaves and 31 interior nodes. Each leaf represents a

number of days to add and a number of seconds to subtract from the leftover seconds (assuming

this value is needed later in the algorithm). The interior nodes direct the search to the appropriate

leaf using the leftover seconds as the key. The leftover days are reapportioned into gregs using a

binary search tree as well. There can be a maximum of 2,900,000 leftover days (which represents

at most 19 gregs).

The other expensive operations in the second algorithm are a division and modulus by a

constant (365) of a value in the range 0{146097. We can replace these operations using the binary

search technique discussed above. In this case, the binary search tree has 400 leaves. The rest of

the second algorithm remains unchanged in the new, optimized version. The complete algorithm

is shown in Figure 4. A key feature of this algorithm is that few 64-bit arithmetic and comparison

operations are needed as most of these operations have been \optimized" away. In the end, only

one addition, one multiplication, one exclusive-or, and one right shift remain.

4.4 Leap Seconds

Universal Coordinated Time (UTC) relates the atomic clock to the Earth's rotational clock. UTC

leap seconds are used to synchronize the atomic clock and the Earth's varying rate of rotation.

If the Earth's rotation slows with respect to the atomic clock, a second is added to UTC. If the

rotation quickens, a second is subtracted. Preference is given to July 1 and January 1 to add or

subtract seconds. A total of twenty-seven leap seconds changes (all additions) have been made

since the adoption of the leap second system in 1972. The most recent leap second added was just

prior to Midnight, July 1, 1992. In future, more leap seconds may be added (or removed).

The algorithms given in previous sections output timestamps that do not count leap seconds.

If leap seconds can be removed from a timestamp that counts them, these output algorithms still

su�ce. Towards this end, we use a table of three columns and twenty-seven rows (one row for each

leap second change). The �rst column of each row in the table is the timestamp value when the

leap second was added (or removed). The second column is the cumulative number of leap seconds

added and subtracted prior to the timestamp value in the �rst column (note that the values in this

column could di�er from the index). Finally, the third column contains the Gregorian array values

corresponding to the timestamp value given by the �rst column. We assume the table is sorted by

the �rst column.

To output a timestamp that counts leap seconds, the leap second table described above is

searched with the timestamp as the search key (using binary search). If an exact match is found,

the Gregorian array values corresponding to the timestamp are retrieved and outputted (since

the output algorithms cannot produce these values). If an exact match is not found, the closest

timestamp value greater than the timestamp to be output is selected. The cumulative leap second

8

procedure OUTPUT AN AD DATE(in seconds in : integer; out year , out month, out day : integer);

const

leap year : array[0..399] of boolean;

day to month : array[boolean, 0..365] of integer;

day to day : array[boolean, 0..365] of integer;

greg count : array[1..15,1..15] of integer;

leftovers days : array[1..15,1..15] of integer;

leftovers seconds : array[1..15,1..15] of integer;

seconds reapportionment : array[1..20] of integer;

greg modulus : array[1..20] of integer;

days reapportionment : array[1..20] of integer;

year reapportionment : array[1..400] of integer;

days within year : array[1..400] of integer;

var

gregs , years , seconds , days , year residue : integer;

begin

f calculate gregs g

gregs days seconds 0;

for i 1 to 15 do

j value of current group of 4 bits;

if j > 0 then

gregs gregs + greg count [i ,j];

seconds seconds + leftovers seconds [i ,j];

days days + leftovers days [i ,j];

days days + binary search(seconds reapportionment , seconds);

gregs gregs + binary search(days reapportionment , days);

f calculate year in greg and o�set within that year g

days days � binary search(greg modulus , days);

years binary search(year reapportionment , days);

year residue days � binary search(days within year , days);

f calculate year, month and day g

year years + (gregs � 400) + 1;

month day to month[leap year [years], year residue];

day day to day [leap year [years], year residue]

end; f OUTPUT AN AD DATE g

Figure 4: A greg counting output algorithm without expensive arithmetic operations

9

procedure SECONDS TO HOURS(in seconds in : integer; out hour , out minute, out second : integer);

var

seconds residue : integer;

begin

hour seconds in div 3600;

seconds residue seconds in mod 3600;

minute seconds residue div 60;

second seconds residue mod 60

end; f SECONDS TO HOURS g

Figure 5: A brute force algorithm to count temporal divisions of a day

value associated with the closest timestamp value greater than the output timestamp is subtracted

from the output timestamp. The subtraction removes the leap seconds from the timestamp, and

the output operation can proceed as before. For instance, given a timestamp value that corresponds

to Noon February 23, 1992 A.D., the table search does not �nd an exact match since this is not a

time when a leap second was added. The closest leap second change after this date was the addition

of the 27

th

leap second just before Midnight July 1, 1992 A.D. Twenty-six seconds are subtracted

from the timestamp value and the output operation proceeds as before. The search table technique

for leap seconds can be added to SECONDS TO GREG , making the interface routine marginally

more complex.

4.5 Hours, Minutes, and Seconds

Sometimes, the hour, minute, and second of a given timestamp value is output along with the year,

month, and day. These values can be easily computed from the number of seconds remaining after

counting o� the number of seconds in the year, month, and day. (In the �nal output algorithm, this

value is the number of seconds remaining after the leftover seconds are reapportioned into days.)

We present two methods of computing the hour, minute, and second. The �rst method,

shown in Figure 5 uses two divisions and two modulus operations. The second method, shown in

Figure 6 uses the binary search technique replacing each expensive division and modulus operation

with an e�cient table lookup. The second method is based on the observation that the expensive

arithmetic operations have a limited number of possible outcomes (e.g., there can be at most 24

hours).

4.6 Time and Space Analysis

We implemented the three output algorithms in the C programming language. We call the �rst

algorithm (Figure 2) the brute force algorithm. The second algorithm, with an improved count-

ing technique (Figure 3), is called the slender algorithm. The �nal algorithm, using the special

bit counting technique and several binary searches (Figure 4), is labeled the full algorithm. We

10

procedure SECONDS TO HOURS(in seconds in : integer; out hour , out minute, out second : integer);

const

hours reapportionment : array[1..24] of integer;

hour modulus : array[1..24] of integer;

minutes reapportionment : array[1..60] of integer;

minutes modulus : array[1..60] of integer;

var

seconds residue : integer;

begin

hour binary search(hours reapportionment , seconds in);

seconds residue seconds in � hour modulus [hour];

minute binary search(minutes reapportionment , seconds residue);

second seconds residue � minutes modulus [minute]

end; f SECONDS TO HOURS g

Figure 6: A table-based algorithm to count temporal divisions of a day

compiled the algorithms using the GNU C compiler, version 2.0, with compiler optimization fully

enabled. We chose this compiler in part because it supports a 64 bit integer type (long long). All

the tests were performed in a controlled environment on a dedicated Sun-4 IPC.

Each algorithm was tested on 400 di�erent output dates (Midnight January 1

st

of each year

from 1970{2370 A.D.). A single test consisted of 10 separate runs, where each run executed the

output algorithm 10000 times to avoid any internal clock sampling errors. Figure 7 plots the run

with the cost for each date. Both the slender and full algorithms are fairly stable throughout

this range. The speed of the slender algorithm varies somewhat due to small perturbations in the

speed of the division operation on a Sun-4 IPC architecture (division is microcoded as repeated

subtraction). The speed of the full algorithm also varies slightly, it does fewer additions in the main

loop depending upon which groups of four bits are \on" in the input timestamp. But the time cost

of both the slender and full algorithms is mostly independent of the date to output, each is stable

over the entire timestamp range (14 Billion B.C.E. to 18 Billion A.D.). The speed of the brute

force approach, however, depends on the output date; dates in years just after a greg boundary are

output much quicker than dates in years just prior to a greg boundary. This is caused by the loop

in the brute force algorithm that counts, year by year, from the greg boundary to the output year.

Figure 8 gives a space and time comparison of the three algorithms. The space cost (in bytes)

of each algorithm is shown �rst. Although there is a dramatic di�erence is space between the

three algorithms, even the full algorithm has modest space costs (22KB). The time cost (accurate

to less than a �sec) shows average execution speed over the 400 year test period. It also shows

the minimum and maximum speeds as well as the dates that caused the minimum and maximum.

Note that cost of the slender and full algorithms do not vary much. These tables illustrate the

space vs. time tradeo� that we exploited in the design of these algorithms. The user can choose

the algorithm that best meets their needs.

We independently tested the algorithms to output the hour, minute, and second of a particular

11

0

100

200

300

400

500

600

700

800

1970 2000 2100 2200 2300 2370

Mi
cr

os
ec

on
ds

Years A.D.

brute
slender

full

Figure 7: A plot of output execution speed over the �rst 400 years after the origin

Space (in bytes)

Algorithm Code Size Data Size Total Size

Brute 752 96 848

Slender 504 7856 8360

Full 11072 11040 22112

Time (in �sec)

Algorithm Avg. Time Min. Time Min. Date Max. Time Max. Date

Brute 400 54 2000 A.D. 740 1999 A.D.

Slender 51 51 | 51 |

Full 22 22 | 22 |

Figure 8: A comparison of costs for the three algorithms

12

Space (in bytes)

Algorithm Code Size Data Size Total Size

Brute 72 0 72

Full 1424 336 1760

Time (in �sec)

Algorithm Avg. Time Min. Time Min. Date Max. Time Max. Date

Brute 8.3 4.8 Midnight 9.8 11:59:59 P.M.

Full 3.4 3.4 | 3.4 |

Figure 9: A comparison of costs for the hour, minute, and second output algorithms

date using the same tests described above, except that the range of tested input times was the

start of each minute during a day (3600 tests in total). We term the �rst algorithm, with expensive

arithmetic operations, the brute force algorithm, and the second algorithm, with the expensive

arithmetic operations replaced by binary searches and table-lookups, the full algorithm. A time

and space comparison of the algorithms is given in Figure 9.

5 Gregorian Input

The second operation that is di�cult to perform e�ciently is input. Input converts a calendar

speci�c representation, an array of pertinent Calendar values, into a timestamp. We make the same

assumptions for input as we did for output concerning both the calendar speci�c representation

and the timestamp format (e.g., a timestamp is a 64 bit signed integer recording the number of

seconds from Midnight January 1, 1970). We focus on Gregorian calendar input since we anticipate

that it will be the most common kind of input. We describe a simple, \brute force" input algorithm

that is space e�cient but time ine�cient, and follow with algorithms that trade time for space. As

we did for output, we give algorithms that input only A.D. dates, omitting algorithms that input

B.C.E. dates. The B.C.E. input algorithms are essentially the same as the A.D. algorithms, except

that di�erent tables are used. When calculating space costs we only include the size of the tables

needed for translating all A.D. dates; to input B.C.E. dates simply double the space costs. The

interface to the input routine is given in Figure 10. The interface determines which input algorithm

is needed and aligns the Gregorian calendar origin with the timestamp origin. Note that a di�erent

timestamp origin may be chosen with no loss of e�ciency by rede�ning the seconds between origins

constant.

5.1 Brute Force Approach

An input Gregorian date is three values: a year, a month, and a day. The task of input is to

calculate the number of seconds between the origin and the input date. The brute force input

algorithm, shown in Figure 11, uses a counting technique. The algorithm counts year by year

adding the number of seconds in each year to a running total, starting with 1 A.D. and �nishing

13

function GREG TO SECONDS(in year , month, day : integer) : integer;

const

seconds between origins : integer = 62167132800; f Origin is 1970 g

var

begin

if year > 0 then

return INPUT AN AD DATE(year , month, day) � seconds between origins

else

return INPUT A BC DATE(year , month, day) � seconds between origins

end; f GREG TO SECONDS g

Figure 10: Interface to input algorithm

with the input year. Not every year has the same number of seconds; leap years have 86400 more

seconds than other years. Once the years have been counted, the number of seconds from the start

of the year to the start of the month and to the start of the day within that month are counted

and added to the year count. A table of precomputed values stores the number of seconds from

the start of a year to a particular month. The table has entries for both leap years and nonleap

years since the number of seconds from the start of the year di�ers for the months past February

depending on the type of year. All table entries are 32-bit values; the value returned is a 64-bit

integer.

5.2 Trading Space for Time

The brute force algorithm counts each year between the Gregorian origin and the input year. But

since there are the same number of seconds in every 400 year period from the origin (in every

greg), it is more e�cient to count in gregs, 400 years at a time. The optimized algorithm, shown

in Figure 12, counts the number of gregs between the Gregorian origin and the input year. For

time e�ciency, the cumulative number of seconds to the start of the year for each year in the range

1{401 A.D. is precomputed and stored in an table. A table lookup retrieves the number of seconds

between the nearest earlier 400 year boundary and the input year.

As was done in the output algorithm, the leap year function is replaced in the optimized input

algorithm by a table of precomputed results avoiding some on the
y computation.

5.3 Further Optimizations

The problem with the algorithm in Figure 12 is that it must perform two multiplications, one

division, and one modulus. We can replace these expensive operations using the bit counting

technique described in Section 4.3.

The input year is a binary number. Each bit in the input year represents a number of gregs

14

function INPUT AN AD DATE(in year , month, day : integer) : integer;

const

seconds in day : integer = 86400;

how many seconds in year : array [boolean] of integer;

month to seconds : array [boolean, 1..12] of integer;

function leap year(integer): boolean;

var

seconds : integer;

begin

f Convert year to seconds g

seconds 0;

for j 1 to (year � 1) do

seconds seconds + how many seconds in year [leap year(j)];

f Convert month and day to seconds g

return seconds +

month to seconds [leap year(year), month] +

(day � 1) � seconds in day

end; f INPUT AN AD DATE g

Figure 11: The \brute force" input algorithm

function INPUT AN AD DATE(in year , month, day : integer) : integer;

const

seconds in day : integer = 86400;

seconds in 400 years : integer = 146097 � seconds in day ;

leap year : array [1..400] of boolean;

year to seconds : array [1..400] of integer;

month to seconds : array [boolean, 1..12] of integer;

var

years : integer;

begin

years (year mod 400) + 1;

return (year div 400) � seconds in 400 years +

year to seconds [years] +

month to seconds [leap year [years], month] +

(day � 1) � seconds in day

end; f INPUT AN AD DATE g

Figure 12: An optimized input algorithm

15

and a number of leftover years. More speci�cally, the i

th

bit represents (2

i�1

div 400) gregs and

(2

i�1

mod 400) leftover years. For example, the tenth bit represents (2

9

div 400) = 1 greg and

(2

9

mod 400) = 112 leftover years. The input year is examined bit-by-bit and a running sum

of the gregs (actually, the number of seconds corresponding to those gregs) and leftover years is

maintained. Again, instead of counting a single bit-by-bit, groups of four bits are counted. Once

the bit examination is complete, the leftover years are reapportioned into gregs using the binary

search technique discussed previously.

The bit counting technique eliminates all the expensive operations save one, the multiplication

to determine the number of seconds corresponding to the input day. However, since there can be

at most 31 days in a month, it it possible to precompute the results and store them in a table.

The multiplication is replaced by a table lookup. The new algorithm, incorporating both of the

optimizations described in this section, is shown is Figure 13.

5.4 Leap Seconds

The input algorithms given in previous sections input timestamps without leap seconds. We rec-

ommend leaving these algorithms unchanged and modifying only GREG TO SECONDS to accom-

modate leap seconds. Leap seconds can easily be added to a timestamp that has been already been

converted by an input algorithm.

Towards this end, the user should create a two column table of timestamp changes. The �rst

column lists the timestamp value (counting leap seconds) when a leap second is added or removed.

The second column is the cumulative leap seconds to the value in the �rst column. The table

should be searched using the timestamp value produced by the input algorithm (a standard binary

search technique su�ces). The cumulative leap seconds associated with the latest prior timestamp

is added to the input timestamp. For instance, given a timestamp value that corresponds to Noon

August 23, 1992, the latest prior leap second change was the addition of the 27th leap second just

before Midnight July 1, 1992. To obtain the timestamp value corrected for leap seconds, 27 seconds

must be added to the value produced by the input algorithm.

5.5 Hours, Minutes, and Seconds

Sometimes, the hour, minute, and second of a given Gregorian calendar value is input along with

the year, month, and day. We describe a method of computing the number of seconds corresponding

to a given hour, minute, and second. Multiply the hour by the number of seconds in an hour, and

the minute by the number of seconds in a minute. Add the results of the multiplications to the

input second. Since the multiplications are by a constant they can be replaced by two left shifts

and a subtraction, i.e., 60� h = (h << 6) � (h << 2).

16

function INPUT AN AD DATE(in year , month, day : integer) : integer;

const

greg count : array [1..9,1..15] of integer;

leftovers years : array [1..9,1..15] of integer;

year reapportionment : array [1..14] of integer;

year modulus : array [1..14] of integer;

leap year : array [1..400] of boolean;

year to seconds : array [1..400] of integer;

month to seconds : array [boolean, 1..12] of integer;

day to seconds : array [1..31] of integer;

var

seconds , years , i , j : integer;

begin

f Convert years to seconds g

seconds years 0;

for i 1 to 9 do f at most 36 signi�cant bits in year g

j value of current group of 4 bits;

if j > 0 then

seconds seconds + greg count [i ,j];

years years + leftovers years [i ,j];

f Reapportion leftovers g

seconds seconds + binary search(year reapportionment , years);

years years + binary search(year modulus , years);

f Convert months and days to seconds g

return seconds +

year to seconds [years] +

month to seconds [leap year [years], month] +

day to seconds [day]

end; f INPUT AN AD DATE g

Figure 13: An input algorithm that avoids expensive arithmetic operations

17

0

100

200

300

400

500

600

700

800

900

1 100 200 300 400

Mi
cr

os
ec

on
ds

Years A.D.

brute
slender

full

Figure 14: A plot of the input execution speed over the �rst 400 years

5.6 Time and Space Analysis

We implemented the three input algorithms in the C programming language. We call the �rst

algorithm the brute force algorithm, the second algorithm, with an improved counting technique,

the slender algorithm, and the �nal algorithm, using the bit counting technique, the full algorithm.

We performed the same tests described in Section 4.6. All the tests were performed in a controlled

environment on a dedicated Sun-4.

Each algorithm was tested on 400 di�erent input dates (Midnight January 1

st

of each year

from 1{401 A.D.). Figure 14 plots the run with the cost for each date. Both the slender and

full algorithms are relatively stable throughout this range. The speed of the slender algorithm

does vary somewhat due to perturbations in the speed of the division operation on a Sun-4 IPC

architecture. The speed of the full algorithm also varies slightly, it does fewer additions in the main

loop depending upon which groups of four bits are \on" in the input year. But the time cost of

both the slender and full algorithms is mostly independent of the input date, each is stable over

the entire timestamp range (14 Billion B.C.E. to 18 Billion A.D.). The speed of the brute force

approach, however, depends on the input date; the time taken increases linearly from 1 A.D. This

is caused by the loop in the brute force algorithm that counts, year by year, from the 1 A.D. to

the input year. Hence the speed of the brute force algorithm is proportional to the distance of the

input date from 1 A.D.

Figure 15 gives a space and time comparison of the three algorithms. The tables illustrate

the space-time tradeo� we exploited in the design of the three algorithms: as space costs increase,

time costs decrease.

18

Space (in bytes)

Algorithm Code Size Data Size Total Size

Brute 424 104 528

Slender 272 3704 3976

Full 1048 5728 6776

Time (in �sec)

Algorithm Avg. Time Min. Time Min. Date Max. Time Max. Date

Brute 420 5 1 A.D. 870 400 A.D.

Slender 31 31 | 31 |

Full 8 7 1 A.D. 9 400 A.D.

Figure 15: A comparison of costs for the three algorithms

6 Existing Input and Output Packages

There are three widely-available public domain or commercial packages that perform Gregorian

calendar input and output. All of these packages use a 32-bit timestamp that records the number

of seconds from Midnight January 1, 1970 (since the sign bit is not used, this yields a range

of approximately 68 years). In the UNIX operating system, the timegm() function performs input,

converting a Gregorian speci�c representation (a tm struct) into a timestamp value, while gmtime()

handles output. The Localtime public domain package o�ers a replacement for many UNIX time

functions including timegm() and gmtime(). The Free Software Foundation also o�ers a public

domain version of both gmtime() and timegm() (called mktime()) as part of the GNU project.

We will call these three packages, UNIX , LOCALTIME , and GNU , respectively.

We note that all three packages are from operating systems environments. While database

management systems also need to perform Gregorian calendar input and output, database times-

tamp typically store the Gregorian calendar values directly (e.g., SQL2's datetime timestamp

stores the year, month, day, hour, minute, and second of a Gregorian date). Hence, databases typ-

ically do not perform input and output as we have de�ned them. However, typical database-style

timestamps are space-ine�cient and their formats make arithmetic and comparison operations as

well as input and output in non-Gregorian calendars di�cult and costly [Dyreson & Snodgrass

1993].

Although timegm() performs Gregorian calendar input as we have de�ned it, the function

also checks the input parameters and allocates a tm struct in memory. Similarly gmtime() does

more than the output algorithms described in Section 4, such as determining the day of the week.

We performed tests on these input and output functions similar to those reported in Sec-

tions 4.6 and 5.6. Because of the limited timestamp range, we only tested over a range of 68

years. A plot of the execution of each input function is given in Figure 16 while the execution of

each output function is plotted in Figure 17. The �gures show that the GNU package consistently

outperformed the other packages. The �gures also show, for every function, a linear dependence

between the speed of execution and the distance of the tested date from the origin. This is the

19

0

1000

2000

3000

4000

5000

6000

7000

8000

1970 1993 2010 2038

Mi
cr

os
ec

on
ds

Years A.D.

UNIX
LOCALTIME

GNU

Figure 16: A plot of input execution times over the range of a UNIX timestamp

signature of the brute-force algorithms. Recall that the brute-force algorithms are space e�cient.

It is certainly unsurprising to �nd, in an operating systems environment, that space is conserved

in noncritical system services.

A more direct comparison can be made between our algorithms and the commercially available

packages by replacing the relevant code with our input and output routines, but leaving the extra

functionality of the commercial routines untouched. We chose the GNU routines for this experiment

because the code is available (the UNIX code is proprietary) and the GNU routines outperform those

in the other two packages. We replaced only the date translation code in the GNU routines with

the full versions of the input and output algorithms, making our routines comparable to the GNU

de�nition of input and output. Since the GNU routines use a 32-bit timestamp, we changed both the

code and tables for the full input and output algorithms to use only 32-bit instructions. We then

tested the GNU mktime() against the modi�ed mktime() (incorporating the full input algorithm)

and the GNU gmtime() against the modi�ed gmtime() (incorporating the full output algorithm).

Figures 18 and 19 show the results for input and output, respectively. The �gures show that the

modi�ed algorithms outperform their GNU counterparts considering time e�ciency. However, the

GNU routines are smaller; gmtime() is 792 bytes in size compared to 22K bytes for the modi�ed

gmtime() while mktime() is 4K bytes in size compared to 26K for the modi�ed routine. If this

space penalty is too severe, the slender algorithm could be used instead of the full algorithm,

reducing the space costs by at least a factor of two, while retaining constant time performance.

20

0

50

100

150

200

250

300

350

1970 1993 2010 2038

Mi
cr

os
ec

on
ds

Years A.D.

UNIX
LOCALTIME

GNU

Figure 17: A plot of output speed over the range of a UNIX timestamp

0

50

100

150

200

250

300

350

400

450

500

1970 1993 2010 2038

Mi
cr

os
ec

on
ds

Years A.D.

GNU
modified GNU

Figure 18: A direct input comparison

21

0

20

40

60

80

100

120

140

160

1970 1993 2010 2038

Mi
cr

os
ec

on
ds

Years A.D.

GNU
modified GNU

Figure 19: A direct output comparison

7 Non-Gregorian Input and Output

In general, the techniques developed in the previous sections for e�cient input and output in the

Gregorian Calendar apply to input and output in other calendar systems. Calendars typically

relate a count of short-term celestial cycles, such as mean solar days (revolutions of the Earth

about its axis), to long-term celestial cycles, such as years (orbits of the Earth about the Sun).

For example, the Gregorian calendar counts tropical years (the year with respect to the seasons)

in terms of days while the traditional Chinese calendar counts lunar months (from new moon to

new moon) and 19-year periods known in the West as Metonic cycles [Fraser 1987], in terms of

days. Since there are not (currently) an integral number of days in either a lunar month, a tropical

year, or a Metonic cycle, rule-based adjustments, called intercalations , are made to keep the count

accurate. In the Gregorian calendar, the intercalary rules add a leap day in some years. In the

Chinese calendar, a leap month is added to certain years and month lengths are adjusted so that

the new moon occurs on the �rst of every month (there are currently 29

1

2

days in a lunar month).

The intercalations are what make input and output di�cult.

The key to applying the techniques discussed in previous chapters is to identify a long-term

�xed period in a calendar and reduce the intercalations to table-lookups. The particular �xed

period depends on the calendar. For the Gregorian calendar, we used the greg, a 146097 day

period, but other periods exist for di�erent calendars. For instance, the Julian calendar, which

adds a leap day every four years, has a �xed period of four years (365� 3 + 366 days) while the

Chinese calendar has a 60-year cycle [Fraser 1987].

22

8 Summary

Temporal databases require timestamps with much greater range than that available in the 32-bit

integer representation commonly used in operating systems. Previously we proposed using a 60-bit

signed integer representation, which covers all past time. However, this representation renders

existing input and output algorithms, which exhibit linear complexity, unacceptable ine�cient.

We presented a series of algorithms for two tasks, input and output of Gregorian dates. The

most important optimization was to identify a constant cycle for which there are a �xed number of

all relevant intervals. The 400-year greg for the Gregorian calendar is used for this purpose (input

and output in the Chinese calendar might use a 60-year cycle). The duration of the constant cycle

is e�ectively the greatest common multiple of the duration of the underlying variable cycles. For

example, while the length of months and years vary in the Gregorian calendar, each greg has the

same number of days, months, and years. Using constant cycles reduces the complexity from linear

in the input time to constant. Fortunately, calendars, which exist to relate short term cycles such

as hours or days to longer term cycles such as seasons, generally incorporate constant cycles in

their de�nition, if only to make calculations, which until recently were done by hand, tractable.

It is satisfying to see how such cycles can dramatically speed up computer algorithms that make

similar calculations.

We applied the following additional techniques in designing these algorithms.

� Make allowance for leap seconds, which are counter to the notion of a constant cycle, after

doing the input conversion and before doing the output conversion.

� Cache the results of functions with small domains or ranges. For example, the number of

leap days preceding each year in a greg can be stored in a 400-byte table. Another example is

a division and modulus by a constant (365) of a value in the range 0{149067, where a binary

search tree of 400 leaves su�ces.

� Instead of doing a brute-force calculation, make an initial, optimistic guess and then correct

it. The correction will often require less work. An example is determining the year within a

greg.

� Perform a series of expensive multiplication, division, and modulus operations on 59-bit

timestamps, as well as 36-bit year values, in parallel, accumulating the result by examining

the value bit-by-bit (actually, in groups of 4 bits).

The cumulative e�ect of these optimizations reduced the time for Gregorian input to about

8 �sec and Gregorian output down to about 22 �sec. For comparison, the best available algorithms,

found in the GNU C library, would take about 11.5 msec and 3 msec, respectively, to output a date

in 1993, assuming an origin of 1 A.D. As several of the optimizations traded space for time, our

implementations were bigger by a factor of 10.

Given the e�ciency of the �nal algorithms, it is doubtful that a further substantial decreases

in execution time are possible. Focusing on reducing the size of the tables will perhaps be more

pro�table.

23

Acknowledgements

This work was supported in part by NSF grant ISI-8902707 and IBM contract #1124.

References

[Allen 1981] Allen, J.F. \An Interval-Based Representation of Temporal Knowledge," in Proceedings

of the International Joint Conference on Arti�cial Intelligence. Vancouver: 1981, pp. 221{

226.

[Ariav 1986] Ariav, G. \A Temporally Oriented Data Model." ACM Transactions on Database

Systems, 11, No. 4, Dec. 1986, pp. 499{527.

[Aveni 1989] Aveni, A. F. \Empires of Time: Calendars, Clocks, and Cultures." New York: Basic

Books, Inc., 1989.

[Cli�ord & Tansel 1985] Cli�ord, J. and A.U. Tansel. \On an Algebra for Historical Relational

Databases: Two Views," in Proceedings of ACM SIGMOD International Conference on

Management of Data. Ed. S. Navathe. Association for Computing Machinery. Austin,

TX: May 1985, pp. 247{265.

[Cli�ord & Rao 1987] Cli�ord, J. and A. Rao. \A Simple, General Structure for Temporal Do-

mains," in Proceedings of the Conference on Temporal Aspects in Information Systems.

AFCET. France: May 1987, pp. 23{30.

[Dyreson & Snodgrass 1993] Dyreson, C. E. and R. T. Snodgrass. \Timestamp Semantics and

Representation." Information Systems, 18, No. 3, Sep. 1993.

[Fraser 1987] Fraser, J. \Time the Familiar Stranger." Redmond, WA: Tempus Books, 1987.

[Hawking 1988] Hawking, S. \A Brief History of Time." New York: Bantam Books, 1988.

[Liskov & Guttag 1986] Liskov, B. and J. Guttag. \Abstraction and Speci�cation in Program

Development." New York: McGraw-Hill, 1986.

[Soo & Snodgrass 1992] Soo, M. and R. Snodgrass. \Mixed Calendar Query Language Support

for Temporal Constants." TempIS Technical Report 29. Computer Science Department,

University of Arizona. Revised May 1992.

[Soo et al. 1992] Soo, M., R. Snodgrass, C. Dyreson, C. S. Jensen and N. Kline. \Architectural

Extensions to Support Multiple Calendars." TempIS Technical Report 32. Computer

Science Department, University of Arizona. Revised May 1992.

24

[Tansel, A. et al. 1993] Tansel, A., J. Cli�ord, S. Gadia, S. Jajodia, A. Segev and R. Snodgrass

(eds.). \Temporal Databases: Theory, Design, and Implementation." Database Systems

and Applications Series. Redwood City, CA: Benjamin/Cummings, 1993.

25

