XIB: X-lcon Interface Builder

Mary Cameron

TR 92-34

Abstract

This document describes X1B, a user interface builder used to specify and generate graphical
user interfaces for X-Icon. XIB alows quick prototyping of user interface designs: Designs
can easily be created, tested, and modified in a “what you see is what you get” environment.
To provide maximum flexibility with respect to tool and interface creation, interfaces can be
generated with or without an underlying tool. XIB is essentialy a front-end for the Icon WIT
library.

December 9, 1992

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

I ntroduction

XIB isauser interface builder that enablesrapid prototyping of tool interfacesfor X-lcon [Jef92]. It provides
awork areaand a palette of user interface objects, instances of which can be created and customized within
thework area. Interfaces can be prototyped and/or saved, generating code that is either stand-aloneor to be
included with the underlying tool. Building interfaces then becomes a question of taste and style as opposed
to patience.

When an interface is prototyped or saved, X1B generates an Icon source program containing calls into
the Icon WIT library [Lip92]. If the interface is to be prototyped, then a complete program is generated
such that it can be executed. If the interfaceis only to be saved, then a procedure is generated which can
then be included with the underlying tool. In thisway, interfaces can be created stand-alone and then later
incorporated into the tool; the transition from prototype-modeto tool-modeisreatively painless.

The functionality provided by the Icon WIT library is more extensive than what is presented by XIB.
Thus advanced or complex interfaces may need to use the library directly, using XIB only as a stepping
stone. It istherefore advantageousto be familiar with the WIT library as well as X-lcon.

XIB Overview

Upon startup, X1B opens a large window containing a menu bar, a palette of user interface objects, and a
work area or canvas.

File Edit

L 2 0n

- Reg o orr | | MES529e |_: Menu * |gp g

= [y

==

The pal ette contains the following objects:
Lines are provided to decorate the interface; they do not receive events.

Regions are rectangular areas turned over to the application for both input and output purposes.
The application can safely draw in these areas and receive uninterpreted events. While there
is nothing to prevent an application from drawing anywhere within the window, it is not
recommended: The application might distort the display by drawing over WIT objects, and the
application will not be informed of end user activities.

Buttons are control devices that are activated by pressing the mouse while over the button. Buttons
may appear in many different styles: regular, check box, check box without an outline, circle,
and circle without an outline. The default styleis regular; this can be changed by selecting a
different style from the pop-up menu that appears when the right mouse buttonis pressed on the
button palette image. Selecting a new default updates the palette image to the selected button
style and creates button instances thereafter in this new style.

Check Boxes are switch buttons that are marked when on and blank when off. They differ from
check-style buttons in that the size of the check box can be arbitrarily large, and there is no
accompanying text.

Radio Buttons are collections of buttons such that exactly one button within the radio button is set
a any given time.

Messages are read-only text; they do not receive events.

Text Input Fields provide a means to gather textual input from the user. They consist of alabel and
an editable value.

Menus are lists of buttonsthat appear temporarily on the screen and allow the user to select an item.

Sliders arelong rectangular buttonsthat graphically display one or more scalar values as positionsin
some range. When the slidebar is clicked or dragged by the user, a scalar value isincreased or
decreased. Sliders can be either vertical or horizontal.

Scrollbars are dliderswith a proportionally sized thumb capped on top and bottom by arrow buttons.
The slidebar shows the current location of the window or associated device within some virtua
area that islarger than available screen space and alows convenient random access; the arrow
buttons allow more precise motion. Scrollbars can appear either vertically or horizontaly.

Instances of the above objects can be created by pressing the left mouse button upon the desired palette
object; this creates an object within the canvas area that then can be dragged into position. Clicking theleft
mouse button upon an object selects the object. Selected objects are drawn with accentuated corners and
can be manipulated as follows:

move drag left mouse button from object to new destination.
resize drag left mouse button upon acorner of the object. The oppositecorner isanchored.
copy press ¢ within the canvas or select copy from the edit menu.

-2-

delete press d within the canvas or select delete from the edit menu.

front press f within the canvas or select front from the edit menu.
back press b within the canvas or select back from the edit menu.
align pressv or h withinthe canvas or select align vert or align horzfrom the edit menu.

This causes the mouse cursor to change to a crosshair; pressing the left mouse
button on objectswhen the cursor isa crosshair alignsthem with the sel ected object
(either verticaly or horizontally). Pressing the left mouse button on the window
background restores the original cursor.

attributes pressright mouse button to display (and modify) the attributes of the object.

A few notesare in order. Not all objects can beresized. For example, the size of aradio button object is
solely determined by the items that make up the radio button. All sizable objects have limits on how small
they can be, and thus are not drawn smaller than their limits. The size of a scrollbar is constrained such that
a any given time the length must be twice the width.

XIB follows the standard X convention in which the upper-left corner of the window is at (0, 0), with
the x coordinate increasing to the right and the y coordinate increasing in the downward direction. Front
and back functions are provided to control z-axis ordering of objects. Although it is possible to specify
overlapping objects within X1B, it is not recommended.

The size of the generated interface window can be controlled by the resize icon that initialy appearsin
lower-right corner of the canvas. This object can be dragged anywhere within the canvas via the left mouse
button. Pressing the right mouse button over the object pops-up an attribute sheet describing its current
dimensions. If the XIB window is resized such that it is smaller than the interface window, the interface
window is automatically made smaller. If an object instance does not fall entirely within the bounds of the
interface window, it will appear clipped in the generated program as well. That is, there is no automatic
repositioning of objects to fit within the interface window.

In addition to the tool paette, there are two menus provided that are displayed in response to mouse
activities. Thefirst isthe file menu which providesthe following functionality:

open asaved XIB file.

save XIB interfaceto afile, which generates a file containing a procedure named ui that
creates WIT objects according to their XIB specifications. Appended to the end
of the fileis XIB code which alows thefile to be re-edited in XIB viaopen. It is
important not to delete or alter this code asit may inhibit the re-editing of an
XIB interface!

saveas similar to the save option except that a new file nameis requested.

prototype similar to the save option except that callback templates and amain procedure are
generated such that theprogram is compl ete; the compl ete programisthen compiled
and executed.

quit terminate the X1B session.

Thus after an interface editing session takes place, the interface can be saved (viathe save option) and
later re-edited (viathe open option). Aninterface can be loaded from the command line upon XI1B start-up.
Thesyntax is

xib <file name>

where file name is afile previously generated by XIB. If the given file name does not end in .ich, XIB
appends the suffix before attempting to access thefile. If the file does not exist or cannot be read, an error
window appears describing the problem.

The other menu isthe edit menu, which provides the following functionality:

copy makes a copy of the selected object.

delete deletes the selected object.

front brings the selected object to the front of the canvas.

back pushes the sel ected object to the back of the canvas.
redraw redraws the screen.

clear deletes al objects.

align vert aligns objectswith the x-coordinate of the selected object.

align horz aigns objects with the y-coordinate of the selected object.

X1B Attribute Sheets and Dialogues

XI1B displays dialogue boxes to specify attributes, gather information and/or warn the user. The text fields
of these pop-up windows can be edited; the tab key is used to move among them.

Attribute Sheets

Asvariousobjectsare created, it usually is necessary to set attributesto customize the object to suit the needs
of the application. The attribute sheet for an object is displayed by pressing the right mouse button upon the
object. The editablefeatures of an object are object-specific, but these usually include the x-y location of the
object, the variable name of the object, a procedure to call when the object receives an event, and so forth.
The Reference Section, appearing later in this document, describes the editable attributes of each object in
particular.

Attribute sheets also contain Okay and Cancel buttons. Pressing either of these buttons makes the
attribute sheet disappear: The Okay button applies changes to the object while the Cancel button does not.
Thereisadoubleline drawn around the Okay buttonto indicatethat thisis the default button of the attribute
sheet; the Okay button can be selected by pressing the return key (as an aternative to using the mouse).

File Edit

L 2 0n

_— . Menu >
Reg O oFF Message |_. ==
s 1
Button Tewxt: [Fush Me |
L 4

=i=1
g
<]

Yar: [push_button | [olebal
Callback @ [pushed |

i Hidth

o He ights

@ regular

heck
[J Switch Button| |© =her

O checkno

0 circle

O circleno

Okcaw Carnce |

If the Okay button is selected XIB does error checking to ensure that entered values are valid. For
example, if there is no value entered into the x-coordinate field, an error window appears describing this
error. The error window disappears if either the Dismiss button is selected or the return key istyped. This
in turn redisplays the attribute sheet until the error is corrected or the Cancel button is selected.

Dialogues

To open, save, or prototype an XIB interface, X1B displays a dialogue box requesting (or verifying) afile
name for reading or writing, depending upon the nature of the request. If the Okay buttonis selected and the
file name entered does not end in .icn, then X1B appends the suffix to the value before attempting to access
thefile. If the file cannot be accessed (for example, the file does not exist for reading or the file cannot be
written to), an error window appears describing the problem. The request can be canceled at any time by
selecting the Cancel button.

Event Handling

XI1B supports the development of event driven applications. Event driven applicationstypically provide a
graphical interface to the end user and then respond to user interactions. In XIB this amounts to creating
user interface objects and associating callback procedures with them. For example, if an application creates
a button, then whenever that button is pressed the button’s callback is notified, allowing the application to
respond in the appropriate manner. Callback procedures are, in fact, the sole means of connecting a tool
with itsinterface.

Some user interface objects provided by XIB do not receive events (and therefore are not realy user
interface objectsin the traditional sense). Theseinclude lines and messages, which are provided for display

-5-

purposes only. Thuslines and messages do not have callbacks associated with them.
The majority of XIB’s supported objects do receive events; these events trigger callback procedures
which are defined as follows:

procedure callback(wit, value)

where wit isthe WIT object that XIB created and value isthe current value of the object. For example, if a
text field is created and the end user typesin a value followed by return, the callback procedure associated
with the text field is called. The wit isthen the WIT text field object and the value is the text entered into
thefield.

Thereis one exception to the above protocol, and that involves regions. Regions are areas in which the
application has complete control over what is displayed as well as the semantics of end user activities. The
application might need to know when and where mouse clicks occur, whether or not keys are pressed, and
so forth. Regions effectively allow the application to work at the X-Icon level. The signature of region
callbacksisasfollows:

procedure callback(wit, e, X, y)

where wit is the WIT object that XIB created, e is the X-lcon event code, and x and y are the mouse
coordinates (relative to the upper-left corner of the region) at the time of the event.

I nter face Gener ation

Once an interface has been created by XIB, it can be either saved or prototyped. Both generate a file
containing the procedure ui followed by XIB code. The procedure takes an X-Icon window as a parameter
(supplyingoneif necessary), createsa WIT root frame with WIT objectsinserted intoit, and returns the root
frame. The ui procedure effectively creates the visua image as specified within XIB. The XIB code allows
the editing session to be reconstructed. It consists of Icon comments that must remain undisturbed.

Prototyping an interface, in addition to generating the ui procedure and XIB code, generates a main
procedure and callback templates such that the file is a complete Icon program. Selecting the prototype
option thus generates, compiles, and executes the interface from within XIB. To quit the prototype, simply
type g on the prototype window (the mouse must not be positioned over a WIT object). The advantage
of prototyping is obvious: it allows one to see the results quickly and with minimal effort. However, it
is important to note that prototyping an interface completely rewrites the file; thus if semantics are added
to callback procedures and the interface is re-prototyped to the same file, those enhancements will be
overwritten.

Saving an interface simply generates the ui procedure and the XIB code. The idea is that the main
procedure and callback procedures are supplied by the application in separate files. Thus an interface can
be edited and re-saved such that callback procedures are not overwritten. Saving an interface does require
that the compl ete program be compiled, linked, and executed outside of XIB.

The recommended approach to interface development is to first prototype the interface. This provides
aquick fed for the appearance of WIT objects as well as their behavior. The generated callback templates
print out event information each time the routine is called, so event triggering can be monitored. It aso
might be worthwhileto view the generated program.

Once the prototype is satisfactory, the main procedure and callback procedures should be moved into a
separate file, and the interface should be saved from here on out, affecting only the ui procedure and XIB
code.

Reference Guide
Lines

Lines are provided to decorate the interface. They consist of two coordinates and can be drawn arbitrarily
thick. Additionally, they may appear solid or dashed. Linesdo not receive events and therefore do not make
use of callback procedures. The attribute sheet of a line, which appears by clicking the right mouse button
upon the line object, containsthe following editabl e features:

var isthe variable name of the WIT object that XIB generates.
global defines the var to be global, if marked.

line width specifies the width of theline.

x1 specifies the x-coordinate of endpoint one.
yl specifies the y-coordinate of endpoint one.
X2 specifies the x-coordinate of endpoint two.
y2 specifies the y-coordinate of endpoint two.
style specifies whether the lineis solid or dashed.

Regions

Regions are rectangular areas. The application can safely draw in these areas and receive uninterpreted
events. Using regions does require a knowledge of X-lcon, as X-lcon provides the necessary drawing
primitives as well as event code semantics. The attribute sheet of a region contains the following editable
features:

var isthe variable name of the WIT object that XIB generates.
global defines the var to be global, if marked.

callback specifies the procedure to call when the region receives an event. If no procedure
is specified the event is essentially ignored.

X specifies the x-coordinate of the upper-left corner of the region.
y specifies the y-coordinate of the upper-left corner of the region.
width specifies the width of the region.
height specifies the height of the region.

line width specifies the thickness of theregion outline. If null, the region is not outlined.

Regionsdiffer from other user interface objectsin that the events sent to the region’s callback procedure
are uninterpreted. This provides the application with flexibility. The signature of the callback is asfollows:

-7-

procedure region_cb(wit, e, x, y)

where wit is the WIT object that XIB created, e is the X-Icon event code, and x and y are the mouse
coordinates (relative to the upper-left corner of the region) at the time of the event. The coordinate (0, 0),
then, refers to the upper-left corner of the region.

Regions aso differ from other objectsin that they receive an initial callback after all objects have been
created but before any user-generated events occur. This alows the application to, for example, display an
image within the region that the end user can then manipulate. The event code passed to the callback isthe
&resize event as defined within X-Icon.

Buttons

Buttonsare control devicesthat are activated by pressing the mouse while over the button. They may appear
in many different styles: regular, check box, check box without an outline, circle, and circle without an
outline. They can also be created as a switch or toggle in which the button maintains a state of either on or
off. The attribute sheet of a button contains the following editable features:

text isthelabel of the button. This may be an empty string.
var isthe variable name of the WIT object that X1B generates.
global defines the var to be global, if marked.

callback specifies the procedure to call when the button receives an event. If no procedure
is specified the event is essentially ignored.

X specifies the x-coordinate of the upper-left corner of the button.
y specifies the y-coordinate of the upper-left corner of the button.
width specifies the width of the button.
height specifies the height of the button.

switch specifies whether the buttonis a switch button. Switch (or toggle) buttonsmaintain
a state of on or off, as opposed to regular buttons.

style specifiesthelook of the button. Currently, fivevarying stylesare supported: regular,
check box, check box-no outline, circle, and circle-no outline.

The callback procedure associated with a button is called when the mouse is pressed and released while
over the button. If the mouse is released while off of the button, no event is sent to the application. The
signature of button callbacksis as follows:

procedure button_cb(wit, value)

where wit is the actual WIT button object created by XIB and value is the current value of the button. A
regular button does not maintain a state and therefore its value is insignificant. However, if the buttonisa
switch, the button does maintain a state. A non-null value indicates that the button is set or on, whileanull
value indicates that the button is off.

XIB creates WIT button objects such that the id field of the WIT object isthe label of the button. Thus
the same callback procedure can be used for various buttons: it can determine which button was pressed by
accessing the wit.id value.

Check Boxes

Check boxes are switch buttonsthat are marked when on and blank when off. They differ from check-style
buttons in that the size of the check box can be arbitrarily large, and there is no accompanying text. The
attribute sheet of a check box contains the following editable features:

var isthe variable name of the WIT object that X1B generates.
global defines the var to be global, if marked.

callback specifiestheprocedureto call when thecheck box receivesan event. If no procedure
is specified the event is essentially ignored.

X specifies the x-coordinate of the upper-left corner of the check box.
y specifies the y-coordinate of the upper-left corner of the check box.
size specifies the length and width of the check box.

The callback procedure associated with a check box is called when the mouse is pressed and released
while over the box. If the mouse is released while off of the box, no event is sent to the application. The
signature of check box callbacksisas follows:

procedure check_box_cb(wit, value)

where wit is the actual WIT check box object created by XI1B and value is the current value of the check
box. A non-null valueindicatesthat the check box is set or on, while anull valueindicatesthat it is off.

Radio Buttons

Radio Buttonsare collectionsof buttonsin which exactly one buttonis set at any given time; an exceptionis
theinitial configurationinwhich no buttonsare set. Selecting one button automatically unsetsthe previously
highlighted buttonin thegroup. The attribute sheet of aradio button containsthe following editabl e features:

var isthe variable name of the WIT object that X1B generates.
global defines the var to be global, if marked.

callback specifies the procedure to cal when the radio button receives an event. If no
procedure is specified the event is essentially ignored.

X specifies the x-coordinate of the upper-left corner of the radio button.
y specifies the y-coordinate of the upper-left corner of the radio button.

The attribute sheet also contains insert and delete buttons. These are used to dynamically alter the
number of entriesin theradio button. Pressing on theinsert button pops open awindow querying the number
of itemsto insert and where theinsertion should take place. The default isto insert oneitem at theend of the
list. Pressing on the del ete button pops open awindow querying the range of itemsto delete. The default is
to delete the last item of thelist.

The callback procedure associated with a radio button is called whenever one of its buttonsis pressed
(and the rel ease takes place while over the button). If the mouseis released while off of the button, no event
is sent to the application. The signature of radio button callbacksis as follows:

-9-

procedure radio_button_cb(wit, value)

where wit is the actual WIT radio button object created by X1B and value is the current value of the radio
button. The value of the radio buttonis the label of the currently highlighted button.

M essages

Messages consist of read-only text. They do not receive events and therefore do not have call backs associ ated
with them. The attribute sheet of a message contains the following editable features:

text isthe text to display on the screen.

var isthe variable name of the WIT object that X1B generates.

global defines the var to be global, if marked.

X specifies the x-coordinate of the upper-left corner of the message.

y specifies the y-coordinate of the upper-left corner of the message.

Text Input Fields

Text input fields are used to gather textual input from the user of the application. They consist of alabel and
avalue; the value s editable and can accept a limited number of characters, as specified by the max value
length attribute. The attribute sheet of atext input field contains the following editabl e features:

label isthelabel of thetext input field.

value isthe default value of the text input field.

var isthe variable name of the WIT object that XIB generates.

global defines the var to be global, if marked.

callback specifies the procedure to call when the text input field receives an event (which

happens when the return key is pressed and the text input field has the focus). If no
procedure is specified the event is essentially ignored.

X specifies the x-coordinate of the upper-left corner of the text input field.
y specifies the y-coordinate of the upper-left corner of the text input field.

max value length specifies the maximum number of characters that the value can contain.

The callback procedure associated with a text input field is called whenever the return key is pressed.
The signature of text input field callbacksis as follows:

procedure text_cb(wit, value)

where wit isthe actual WIT text object created by X1B and value isthe current value of the text input field.
The value of the object is the entered text string.

-10-

Menus

Menus are lists of buttonsthat appear temporarily on the screen and allow the user to select oneitem from
alist; they can contain an arbitrary nesting of submenus. A menu appears when its menu button is pressed.
A menu button is simply the visual representation of the menu that is visible when the menu is not active.
Defining amenu therefore involvestwo parts: defining the text and position of the menu button, and defining
themenuthat isdisplayed astheresult of pressing onthe menu button. Theattributesheet of amenu provides
the means to define the menu with submenus and choices. The editable features of a menu are as follows:

title isthelabel that appears on the menu button.
var isthe variable name of the WIT object that XIB generates.
global defines the var to be global, if marked.

callback specifies the procedure to call when a menu item is selected. If no procedure is
specified the event is essentially ignored.

X specifies the x-coordinate of the upper-left corner of the menu button.
y specifies the y-coordinate of the upper-left corner of the menu button.

The attribute sheet also contains insert and delete buttons. These are used to dynamically alter the
number of entriesin the menu. Pressing on the insert button pops open a window querying the number of
items to insert and where the insertion should take place. The default isto insert one item at the end of the
list. Pressing on the del ete button pops open awindow querying the range of itemsto delete. The default is
to delete the last item of thelist.

When an item is added to a menu, ablank text field along with two buttons appear on the attribute sheet.
Thetext field is used to define the label of the menu item, and the two buttons are used to define whether the
menu item isa menu choice or asubmenu. If the new item isto be amenu choice, all that needs to be done
isto give the choice alabel. If the new item isto be a submenu, mark the submenu box and click on the
submenu button which will pop open a new window in which to define the submenu. XIB alows arbitrary
nesting of submenus.

If amenu item i s defined asasubmenu, and then later theitem ismarked asamenu choice, thisessentially
deletes the predefined submenu (and all of its choices and submenus).

Once amenu has been defined, it can be viewed within XIB by pressing the middle mouse button on the
menu button. Thisalowsthe appearance and behavior of the menu to be simulated without fully prototyping
the interface. Pressing the right mouse button on the menu button again displays the attribute sheet of the
menu object, providing a quick edit/simulation cycle.

The callback procedure associated with a menu is called when the menu has been displayed and the
mouse is rel eased while over one of its choices. The signature of menu callbacksis as follows:

procedure menu_ch(wit, value)

where wit isthe actual WIT menu object created by X1B and value isalist of |abels defining the menu path
of the selected choice. For example, if the menu has open and close as its choices and open is selected,
['open'] will bethe value passed to the callback. 1f the menu has font as a submenu label and helvetica asa
choice within the submenu, then ["font", "helvetica"] will be thevalue if helveticais selected. Thuschoice
names need not be unique across the entire menu, they can be distinguished by their path strings.

-11-

Sliders

Sliders are long rectangular buttons that graphically display one or more scalar values as positionswithin a
range. When the slidebar is clicked or dragged by the user, a scalar valueisincreased or decreased. Sliders
can appear either vertically or horizontally. The attribute sheet of a slider contains the following editable
features:

var isthe variable name of the WIT object that X1B generates.
global defines the var to be global, if marked.

callback specifies the procedure to call when the slider receives an event. If no procedureis
specified the event is essentially ignored.

filter filters out some of the events sent to the dlider, if set. This corresponds to the
non-continuous mode as described below.

|eft/top specifies the left value of the range for horizontal sliders or the top value of the
range for vertical dliders. This can be a positive or negative value of type integer
or redl.

right/bottom specifies the right value of the range for horizonta sliders or the bottom value of
therangefor vertical sliders. Thiscan beapositiveor negativevalue of typeinteger

or real.
X specifies the x-coordinate of the upper-left corner of the slider.
y specifies the y-coordinate of the upper-left corner of the slider.
length specifies the length of the dlider.
width specifies the width of the dlider.

The application can control the number of events passed to the slider. In continuous mode, the dlider
receives events asthe slidebar is pressed, dragged, and released. In non-continuousmode, the slider receives
a single event indicating the resulting value of the press-drag-release sequence. The slidebar can also be
moved to a new location by clicking anywhere within the slider region. In both modes, thisresultsin the
generation of asingle event. The signature of slider callbacksis asfollows:

procedure slider_cb(wit, value)

wherewit isthe actual WIT slider object created by XIB and value isthe current numeric value of the slider.

Scrollbars

Scrollbars are sliders with a proportionally sized thumb capped on top and bottom by arrow buttons. The
dlidebar shows the current location of the window or associated device within some domain that is larger
than available screen space and allows convenient random access; the arrow buttons allow more precise
motion. Scrollbars can appear either vertically or horizontally. The attribute sheet of a scrollbar contains
the following editable features:

-12 -

var isthe variable name of the WIT object that XIB generates.
global defines the var to be global, if marked.

callback specifiesthe procedureto call when the scrollbar receives an event. |f no procedure
is specified the event is essentially ignored.

filter filters out some of the events sent to the scrollbar, if set. This corresponds to the
non-continuous mode as described below.

left/top specifies the | eft value of the range for horizontal scrollbars or the top vaue of the
rangefor vertical scrollbars. Thiscan beapositiveor negativevalue of typeinteger
or redl.

right/bottom specifies the right value of the range for horizontal scrollbars or the bottom value
of therange for vertical scrollbars. This can be a positive or negative value of type

integer or real.
X specifies the x-coordinate of the upper-left corner of the scrollbar.
y specifies the y-coordinate of the upper-left corner of the scrollbar.
length specifies the length of the scrollbar.
width specifies the width of the scrollbar.

Theapplication can control the number of events passed to thescrollbar. In continuousmode, the scrollbar
receives events as the dlidebar is pressed, dragged, and released. 1n non-continuous mode, the scrollbar
receives a single event indicating the resulting value of the press-drag-release sequence. The slidebar can
a so be moved to anew location by clicking anywhere within the scrollbar region. In both modesthisresults
in the generation of a single event. Additionally, the scrollbar is called when the increment/decrement
buttons are pressed. The signature of scrollbar callbacksis as follows:

procedure scrollbar_cb(wit, value)
where wit is the actual WIT scrollbar object created by XIB and value is the current numeric value of the
scrollbar.
Acknowledgements

The design and functionality of XIB evolved from numerous group discussionswith Icon Project members,
including Ralph Griswold, Clinton Jeffery, Jon Lipp, Gregg Townsend, and Ken Walker. XIB has tremen-
dously benefited from their knowledge and insights on user interface designs and aesthetics, postul ations of
the “It would be niceif ...” variety, and their black and white approach to features versus bugs.

Thiswork was supported in part by the National Science Foundation under Grant CCR-8901573.

-13-

References

[Jef92] Clinton L. Jeffery. X-Icon: An Icon Windows Interface. Technical Report 91-1d, Department of
Computer Science, University of Arizona, July 1992.

[Lip92] Jon Lipp. Window Interface Toolsfor X-lcon. Technical Report 92-32, Department of Computer
Science, University of Arizona, December 1992.

-14 -

