
Window Interface Tools for X-Icon

Jon Lipp

TR 92-32

Abstract

This document describes the WIT library, a user interface tool kit available to Icon programmers
using the window interface available in Version 8.7 of Icon. The tool kit extends the basic X-
Icon window model by providing for layout of and event routing to virtual input/output devices
attached to windows.

November 29, 1992

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

Introduction

[Jeff91] describes X-Icon, an interface to X Window programming provided in the form of built-in functions
and extensions to Icon’s file data type. X-Icon is easy to use for simple windowing applications. However,
modern graphical user interface technology requires a more sophisticated approach. In particular, the
complexity of modern interfaces motivates more robust models of windows as I/O devices as well as a more
robust collection of implementation techniques.

This document describes a library of user input facilities built on top of X-Icon. The WIT library consists
of a collection of canonical user interface devices available to Icon programmers.

Vidgets

A vidget is defined as a “virtual input/output device gadget”, and is used as the basic descriptive label for
the tools described herein. At the very basic level, a vidget is a rectangular region of a window defined by
an (x, y) coordinate pair for the upper left corner, and a width and height for the dimensions. Most vidgets
handle events passed to them and are responsible for their own visual representation. Many vidgets “grab”
their own events to perform various actions.

At the Icon level, the data structure adopted for maintaining the internals of a vidget is a record. The
fields of these records is described below under The fields of a vidget record.

The root frame and composition of vidgets

There are basically two classes of vidgets, simple vidgets themselves, and vidget frames. A frame acts as an
organizational entity that contains a collection of vidgets within its rectangular region, and dispatches events
that fall within its domain to the appropriate vidget. Most varieties of frames are hidden from the user within
wrapper procedures provided by the library. A vidget is usually told to draw itself by its parent frame.

Since vidgets must then be placed within a vidget frame, at the top level of this hierarchy is the root
frame. This is a special frame that always encompasses the entire window area, and is able to handle events
such as a window resize.

User Interface Primitives

A number of garden-variety user interface devices have been written and are provided by the library as
finished products. This section describes some of these devices. Most devices except the very simplest
buttons and toggles are examples of vidget composition; that is, they are constructed by laying out a collection
of simpler vidgets within an enclosing frame.

Buttons are the simplest form of input devices, a portion of the screen used not to display information but
to implement user-driven control flow. They vary in size, shape, appearance, and operation. Buttons
are activated (pressed) by locating the mouse pointer in the portion of the screen in which the button
appears, and clicking the mouse.

- 1 -

Toggles are buttons that retain their state between mouse events; instead of each mouse click activating the
operation associated with the toggle, mouse clicks turn the toggle on and off .

Radio buttons are collections of toggles composed in such a way that at any time no more than one button is
selected. Toggles in radio buttons are related by an exclusive-or constraint. When a toggle is selected,
any other toggle in the radio button is deselected.

Menus are collections of buttons that appear temporarily on the screen and allow the user to select one or
more items from a list.

Menu bars are collections of buttons that typically appear across the top or bottom of a region of a window.
Menu bars usually are present on-screen most of the time, as visual reminders of the various menus
available. Clicking on a button in a menu bar pulls down an associated menu.

Sliders are combination input/output devices. They are long rectangular buttons that graphically display
one or more scalar values as positions in some range. When the slidebar is clicked or dragged by the
user, a scalar value is increased or decreased. The scalar value is then used by the program.

Scrollbars are examples of vidget composition: sliders with proportionally sized thumbs are capped on
either end by arrow buttons. The slidebar shows the current location of the window or associated
device within some display that is larger than available screen space and allows convenient random
access; the arrow buttons allow more precise motion (such as moving up or down a single line). The
size of the thumb is determined by the ratio of the window size to the total size of the region being
scrolled through. As this area may be variable in size (as in text editors), the thumb then changes size
in accordance with the varying ratio.

Dialog boxes are further examples of device composition. A dialog box is used to obtain several related
input values from the user. Each of the input values may be specified either by keyboard input,
by a slidebar, or by some other device appropriate to the value. These techniques can be used in
combination. For example, the approximate value can be given by a mouse click, and the value can
then be edited by keystrokes. Buttons are used to specify when the dialog box can be closed.

Couplers are objects that describe relationships between devices, application data sets, or both. Couplers
do not have an on-screen presence in and of themselves, but rather serve as “glue” that binds screen
objects to underlying data. Their primary purpose is to send the flow of control to any callback
procedure associated with a particular vidget.

How Vidgets Communicate

Different applications and different programmers have different ideas about the level at which communication
with the interface should take place. The levels supported in this library are event translation, procedure
callbacks, and couplers.

- 2 -

Event translation — VEvent(frame, e) is used to process individual events through a vidget frame. This
method of communication ususally is not useful for an individual vidget, as most grab events using
XEvent() in their internal event loops. Used on a procedure, this function attempts a lookup based
on (x, y), and returns the results of the event loop of the vidget found. If no vidget lies on the frame
under the coordinates provided, VEvent() fails.

The result of a vidget’s event loop is specific to the vidget. The result can be a device id, or failure
if the event loop does not produce a successful result. For example, failure occurs if the mouse is
released with the pointer outside the button. This is sufficient for simple applications that wish to
utilize standard flow of control.

Procedure callbacks — the vidget can be created with a callback procedure. The callback procedure is
passed two parameters: the Icon record that defines the vidget and a value corresponding to some
internal state or value associated with the vidget. For example, Vradio buttons passes to its procedure
callback the vidget record itself and the string label of the button selected. For a Vslider the callback
is passed the slider record and the scalar value of the slider position. A standard callback procedure
heading looks like

procedure callback(vidget, value)

Coupler Variables — A coupler is an object that holds one (or more) values and a list of clients. A vidget
utilizes a coupler by setting the coupler to a value, which in turn notifies any vidgets, procedures,
or other couplers on the coupler’s client list. If the client is another vidget, then the couplerset()
procedure associated with that client is called, and the parameters are the client, the caller (the vidget
who set the coupler) and the value of the coupler. If the client is a procedure, then the parameters
are as described above; the vidget record sent is the caller specified in the VAddClient() call used to
add the procedure to the client list of the coupler, and the value is simply the value of the coupler. If
the client is another coupler, then that coupler is set using the same parameters passed to the original
coupler.

When a vidget is created, it constructs its own internal coupler that resides in its callback field. Any
clients passed to the vidget through the callback field upon creation of the vidget are automatically
added as clients to the vidget’s internal coupler. This allows the implicit creation of links between
vidgets without manually creating couplers and using VAddClient(). See the examples at the end of
this document of how to use couplers and the callback field. There are different couplers, depending
on the way the value is manipulated: Vcoupler, Vrange coupler, and Vbool coupler.

Thus, when a vidget is created, the callback field may contain either a single callback client, which may
be a coupler, vidget, or procedure, or several clients in the form of an Icon list to be added to the vidget’s
internal coupler. The creation procedure for the vidget detects the list and read the clients from it.

The fields of a vidget record

Since a callback procedure receives as its first parameter the record associated with a vidget, it is necessary
to know the field names of the vidget to reference in order to access certain information. All vidgets (with

- 3 -

the exception of coupler variables and Vline) have the following field names:

win the window binding
ax, ay the absolute coordinates in relation to the binding in field win
aw, ah the width and height in pixels
callback an internal coupler
id a user-assigned id of any Icon data type
uid a unique integer assigned internally upon creation

A Vline has the following field names, corresponding to the absolute values of its endpoints: ax1, ay1,
ax2, and ay2.

All couplers share the fields:

value the value of the coupler
id an indentifier, set internally to the constant V COUPLER
uid a unique integer assigned internally upon creation

Using the Library

In order to access the WIT library, it is necessary to link certain files. All programs using the library must
link the file vidgets. To use the vidgets listed, the appropriate file must be linked:

link file vidgets
vbuttons Vbutton, Vtoggle, Vcheckbox, Vline, Vmessage
vdialog Vdialog
vgrid Vgrid
vmenu Vsub menu, Vmenu bar, Vpull down pick menu
vradio Vhoriz radio buttons, Vvert radio buttons
vscroll Vhoriz scrollbar, Vvert scrollbar
vslider Vhoriz slider, Vvert slider
vtools VNotice
vidgets Vpane, Vframe, Vroot frame

The file vidgets also contains links to the coupler vidgets, GetEvents(), and various other internal
procedures. For example, to use Vbutton, Vvert radio buttons, and Vvert slider in a program, use the
following link declaration:

link vidgets, vbuttons, vslider, vradio

- 4 -

Almost all functions and objects in the library are identified by a leading capital V. Creating a vidget
is as simple as invoking the creation procedure, which entails passing several parameters. For example, to
create a two-dimensional button with label Push Me, located within the root frame root at coordinates (10,
50), on window win, which calls the procedure CallBack(), with id 1, with default width and height, and
with no outline:

Vbutton(root, 10, 50, win, "Push Me", CallBack, 1, V 2D NO)

The library allows the capability to implicitly or explicitly insert the vidget into the root frame, and the
above code is equivalent to

button := Vbutton(win, "Push Me", CallBack, 1, V 2D NO)
VInsert(root, button, 10, 50)

This latter option may be useful if a vidget is created but is not immediately inserted into the root frame
at a specific location. An example is a dialog box, which may be positioned at a context-specific location.

In addition to creating vidgets, several actions may be performed on an individual vidget. These are
VDraw(), VErase(), VOutline(), VResize(), VRemove(), VInsert(), and VEvent(). In practice, vidgets
are created and then the root frame manages all these tasks. Descriptions of the functions are in the User’s
Reference.

Event Handling

An event handler is a continuous loop that reads events from the window and dispatches them in various
ways. The library provides an event handler called GetEvents() described in the User’s Reference. A
simple template for an event handler is:

repeat f
e := XEvent(win)
if e === "q" then stop()
return value := VEvent(root, e, &x, &y)
write(return value)
g

This loop sends events to the root frame, lets it route the events onto any vidgets, which then execute their
event loops and return a value. The VEvent call to root fails if (&x, &y) does not lie within the boundaries
of a vidget in root.

Coordinate Systems

The origin of any vidget’s coordinate system is based upon the window binding with which it was created .
The virtual origin of a window binding can be changed, via the dx, dy attributes for windows. Therefore,

- 5 -

any output via a vidget’s window binding specified in its w field is relative to this origin. For most vidgets
these dx, dy attributes are (0, 0), but for some vidgets, it may be useful to change them to the coordinates
given when inserted into the frame. This is the case for a Vpane, if the user wants to create a “virtual
sub-window” on the screen at a certain region. For example, to create a region at coordinates (50, 50) with
width and height of 200:

subwin := XBind(win)
XAttrib(subwin, "dx=50", "dy=50")
XClip(subwin, 0, 0, 200, 200)
region := Vpane(root, 50, 50, subwin, callback, id, 200, 200)

Any drawing operations to this vidget then have an origin of (0, 0) defined at (50, 50) on subwin and output
is clipped by a 200x200 region. For example,

XDrawRectangle(region.win, 10, 10, 300, 300)

draws a portion of a rectangle with the upper left corner at (60, 60) in the main window, but at translated
coordinates (10, 10) in the subwindow region. The output is clipped within the region, so only the top and
left sides of the rectangle are drawn.

The absolute (x, y) coordinates of a vidget in relation to the window are stored in the fields ax and ay of
the vidget.

A vidget is inserted into a frame by VInsert() using an (x, y) coordinate pair. If the coordinate is a
positive integer, or absolute coordinate, the vidget is positioned relative to the upper-left corner of the parent
frame. If the coordinate is a negative integer, or an offset coordinate, then the vidget’s lower-right corner is
placed relative to the lower-right corner of the frame. For example,

VButton(root, �20, �10, win, "On")

inserts a button whose right side is 20 pixels from the right side of the frame, and whose bottom edge is
10 pixels from the bottom of the frame. Offset and absolute coordinates can be mixed between the x and y
coordinates. Similarly,

VButton(root, �20, 10, win, "On")

places a button in the upper-right corner of the frame. Since the library requires a negative integer to detect
offset positioning, it is not possible to position a vidget at the extreme lower-right corner of a frame. It can
be positioned at 1 pixel off, however. For example,

VButton(root, �1, �1, win, "On").

If a vidget is inserted with a real-valued coordinate, or normalized coordinate, this must be a number
between 0.0 and 1.0, and specifies a position in the frame as a percentage of the dimension of the frame. For
example,

VButton(root, 0.25, 0.50, win, "On")

places a button at 25% from the left side, and 50% down from the top.

- 6 -

Button Styles

Buttons and toggles can be created with one of three predefined styles, specified in the style field of the
vidget: 2-d, check box, and circle box. These are denoted by the symbolic constants V 2D, V CHECK,
and V CIRCLE. These indicate the button has an outline. To specify a style without an outline, use the
constants V 2D NO, V CHECK NO, and V CIRCLE NO.

Dialog Boxes

A dialog box is a temporary vidget frame that is opened on the window via the procedure VOpenDialog().
A dialog contains a collection of vidgets that are either inserted or registered into the dialog using VInsert()
or VRegister() respectively. Registered vidgets contain a value that can be set and changed by the user. The
value is displayed when the dialog box is opened, and the updated value is returned when the dialog box
is closed. Inserted vidgets do not have a value associated with them; they merely serve as control vidgets.
Values are passed to and from registered vidgets via a list ordered by their id fields. The structure of a dialog
box is subject to several restrictions:

– To pass data values, a vidget must be registered using VRegister() instead of VInsert().

– The vidgets that can be registered with a dialog box are Vtoggle, Vvert slider, Vhoriz slider,
Vvert radio buttons, Vhoriz radio buttons, Vtext, Vvert scrollbar, and Vhoriz scrollbar.

– A Vbutton with id of V OK must be inserted into the dialog box using VInsert(). This enables the dialog
box to close itself and pass back the data values.

– Vidgets must be registered or inserted relative to the frame with absolute coordinates only.

Control buttons (such as "Ok" or "Cancel") are inserted (not registered) because they do not pass values
back through the return list. These buttons are assigned special constants for their id fields of V OK and
V CANCEL. Values of registered vidgets are set by passing a list of values into the call to VOpenDialog().
If the button with id field V OK is pressed, the dialog box is closed, and a list of altered values is returned.
Otherwise, if the button with id field V CANCEL is pressed, the dialog closes, and the original list is
returned. A string label can be passed to VOpenDialog() through the default string parameter. This sets a
control button to be the default button activated upon pressing the return key while the dialog box is open.
The tab key is used to move through any Vtext vidgets in the dialog box, and the order is determined by the
id fields of the vidgets. A sample dialog box is made as follows:

db:= Vdialog(win, 30, 30)

VRegister(db, Vtext(win, "Name : ", ,1), 0, 0)
VRegister(db, Vtext(win, "Address : ", ,2), 0, 50
VRegister(db, Vtext(win, "Phone : ", ,3, 3, &digits++’()�’), 0, 100)
VRegister(db, Vvert radio buttons(win, ["student", "faculty"] , ,4), 0, 150)

- 7 -

VInsert(db, Vbutton(win, " Ok ", ,V OK), 50, 300)
VInsert(db, Vbutton(win, "Cancel", ,V CANCEL), 150, 300)

VFormat(db)

This builds a dialog box db with three Vtext input fields, one set of Vvert radio buttons, and two control
buttons, Ok and Cancel. To open this dialog,

data list := ["Joe Isuzu", "Gould�Simpson Bldg", , "student"]

VOpenDialog(db, &x, &y, data list, " Ok ")

initializes the Name field with "Joe Isuzu", the Address field with "Gould�Simpson Bldg", and the
Vradio buttons initially set to "student". The default button to be pressed upon hitting the return key is
the " Ok " button.

Note that using a dialog box in this fashion does not require making a Vroot frame or doing a VResize().

Scrollbars

As described above, scrollbars are used to represent the position of a window region within some larger
space, and the thumb size is determined by the ratio of window size to the total region size being scrolled
through. To specify this relation to the scrollbar vidget, The window size field is given as a scalar value
lying within the range of [bottom bound, top bound]. The value of window size must be given in the
same units as the bounding variables. For example, to create a scrollbar that represents scrolling through a
20�line�document using a 5 line “view” window:

Vvert scrollbar(win, callback, id, length, width, 20, 0, 1, 5)

This makes a scrollbar with the value at the top of the scrollbar as 1, at the bottom, 20, with an increment
of 1, and a window size of 5.

A Simple Demonstration

This section contains an example of the basic steps required to utilize the vidget library.

link vidgets, vbuttons

procedure main()
local win, root, toggle

win := open("demo", "x")

- 8 -

The first vidget created in any user interface must be the root frame.

root := Vroot frame(win)

Upon creating the Vroot frame, other vidgets can be inserted into it using an explicit call to VInsert(), or
implicitly upon creation of the vidget (as explained above).

Vbutton(root, 10, 30, win, "Button One", cb, 1)
toggle := Vtoggle(win, "Toggle Two", cb, 2)
VInsert(root, toggle, �10, 30)

After the vidgets have been inserted into the frame,

VResize(root)

is called. This procedure sets the absolute sizes of all the vidgets, clears the window area, and signals all
vidgets to draw themselves. Alternatively, VResize() can be called immediately after creation of the root
frame, but any subsequent vidgets must be told explicitly to draw themselves. Either method requires the
root frame to be resized first before any vidgets contained within can be drawn, as the vidgets’ internal
absolute coordinate systems are not set until their root’s absolute coordinate are first set by VResize(). An
event loop can now be started.

GetEvents(root, quit)
end

procedure quit(e)
if e === "q" then stop()

end

procedure cb(vid, val)
write(vid.id, " ", val)

end

Since the user-assigned identifier is stored internally in the vidget’s record field id, it is necessary for the
callback procedure to reference the field to obtain the value.

This demonstration puts two buttons on the window, then lets the user press each one, which in turn calls
a callback procedure cb(), until a q is pressed outside either vidget.

- 9 -

Vidget Library User’s Reference

(Note: In parameter declarations, [frame, x, y,] indicates that these parameters are optional in the function
call. If included, the vidget is inserted into frame at x, y.)

GetEvents(frame, MissedEvents, AllEvents, ResizeEvents)

GetEvents(...) handles events from the window associated with frame using XEvent(). The
functionality of the procedure is thus: If a lookup on &x, &y in frame fails, then the event is passed
to an optional procedure passed through the parameter MissedEvents. If the lookup succeeds,
the event is sent to the vidget and processed accordingly. In either case, the event is passed to the
procedure indicated by AllEvents. If a resize event occurs, ResizeEvents will be called before
any other procedure.

Parameters:
frame a vidget of type Vframe or Vroot frame
MissedEvents an optional procedure to handle events from XEvent() in the event

the lookup fails; passed the parameters e, &x, &y, where
e is the value returned by XEvent()

AllEvents an optional procedure to handle all events; params are the same
as for MissedEvents

ResizeEvents an optional procedure to handle resize events; the parameter
passed is the root frame passed to GetEvents()

VAddClient(coupler, client, caller)

VAddClient(...) adds client to the callback list of coupler. If client is a procedure, then the
procedure is passed the record associated with caller and the value of the coupler.

Parameters:
coupler a coupler vidget
client a vidget or a procedure
caller see above

- 10 -

VDraw(vidget)

VDraw(...) instructs vidget to draw itself.

VErase(vidget)

VErase(...) instructs vidget to erase itself (the rectangular region on its window binding defined
by its width and height).

VEvent(vidget, e, x, y)

VEvent(...) executes the event loop of vidget.

Parameters:
vidget the vidget
e the event code
x, y absolute coordinates of the event relative to the window

VFormat(frame)

VFormat(...) computes the minimum width and height for frame that would encompass all vidgets
inserted into it. This routine requires that all vidgets have been inserted into frame using absolute
coordinates. Upon computing the bounds, VFormat() assigns these values to the aw and ah fields
of frame, thus bypassing a need for the user to compute the bounds manually. This routine is useful
when frame is of type Vdialog. This procedure must be called before frame is inserted into its
parent frame, otherwise the bounds are not recorded by the parent frame, and further resizings of
the window do not maintain the settings by VFormat().

- 11 -

VInsert(frame, vidget, x, y)

VInsert(...) inserts vidget into frame.

Parameters:
frame a frame to insert into
vidget the vidget to insert
x, y the coordinates in frame to insert the vidget

VNotice(w, s1, s2, ...)

VNotice(...) pops up a dialog box in the middle of the window, displays the strings passed in, then
prompts the user to hit the Dismiss button. This vidget does not require a Vroot frame to be built
and is “stand-alone”; that is, a call to this procedure may be included by itself anywhere within a
program linked to the WIT library.

Parameters:
w a window file
s1, s2, ... strings to be displayed

VOpenDialog(dialog, x, y, data, default string)

VOpenDialog(...) opens the dialog box dialog at x, y. The dialog box is “smart” in that it does not
open up with any part of it off the edge of the window. Thus, no coordinate checking is required
beforehand. However, if the window is too small for the dialog box, then it gets pushed off the top.

Parameters:
dialog a vidget of type Vdialog
x, y the position of the upper left corner of the dialog box relative to the window
data a list of data values corresponding to the vidgets registered with dialog
default string a string label of the control button to press upon hitting return

Defaults:
data [] (an empty list); all data fields reset to default
default string no default button is specified

- 12 -

VReformat(vidget, length, width)

VReformat(...) changes the size of a scrollbar vidget. This is used on resize events. (See the demo
xscroll.icn at the end of this document for an example of how VReformat() is used.)

Parameters:
vidget a vidget of type Vvert scrollbar or Vhoriz scrollbar
length the new length of the scrollbar
width the new width of the scrollbar

VRegister(dialog, vidget, x, y)

VRegister(...) registers vidget with the dialog box dialog as an editable vidget at position (x, y).
This means that this vidget holds a value editable by the user, as opposed to control buttons like OK
or CANCEL, which have no value associated with them. A requirement by dialog boxes is that all
insertions must be made with absolute coordinates.

Parameters:
dialog a vidget of type Vdialog()
vidget a vidget of a type listed above in section Dialog Boxes (page 7)
x, y the absolute coordinates in the dialog to insert the vidget

VRemove(frame, vidget, no erase)

VRemove(...) removes vidget from frame. vidget is automatically erased. If this is not desired,
set the no erase field to a non-null value.

Parameters:
frame a frame to remove from
vidget a vidget to remove
no erase non-null to not erase the vidget after removal

- 13 -

VResize(vidget, x, y, w, h)

VResize(...) sets the absolute coordinates of vidget. If vidget is a frame, this sets the absolute
coordinates of all vidgets inserted in the frame based on the coordinates provided. If vidget is the
root frame, this draws all vidgets. For all other vidgets, this procedure is called automatically by
the frame it is contained in to set the absolute position and size based on the virtual size passed to
the vidget in creation. This procedure must be called on the root frame prior to invoking any event
handler or performing a VDraw().

Parameters:
vidget the vidget to resize
x, y the absolute coordinates in frame to insert the vidget
w, h the absolute pixel width and height of the vidget

VSet(vidget, val)

VSet(...) sets the vidget to val. For example, Vradio buttons has a string label value associated
with it, and Vtoggle has a null or non-null value. If vidget is a coupler, then the value associated
with the coupler is set accordingly. If the coupler is a Vbool coupler, then val is ignored, and the
boolean coupler value is set to non-null.

Parameters:
vidget a vidget or coupler
val a value to set the coupler to

VToggle(coupler)

VToggle(...) toggles the value associated with the boolean coupler coupler. This function only
works on a Vbool coupler.

Parameters:
coupler a coupler variable of type Vbool coupler

- 14 -

VUnregister(dialog, vidget)

VUnregister(...) takes a vidget off the registered list of editable vidgets for dialog. This does not
erase the vidget, as it can only be called after a dialog has been closed. Thus, the vidget being
removed is not visible.

Parameters:
dialog a vidget of type Vdialog()
vidget a vidget of a type listed above in section Dialog Boxes (page 7)

VUnSet(coupler)

VUnSet(...) sets the value associated with the boolean coupler coupler to &null. This function
only works on a Vbool coupler.

Parameters:
coupler a coupler variable of type Vbool coupler

- 15 -

The following entries are vidget creation procedures.

Vbutton([frame, x, y,] w, s, callback, id, style, aw, ah)

Vbutton(...) creates a button vidget. VEvent() returns the id field of the button on a successful
press.

Parameters:
w a window file
s a string label for the button
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
style a symbolic constant indicating the style of the button
aw the width in pixels of the button
ah the height in pixels of the button

Defaults:
style V 2D
aw 8 + the pixel width of s
ah 8 + the font height of w

Vcheckbox([frame, x, y,] w, callback, id, size)

Vcheckbox(...) creates a check-box vidget. The functionality of this vidget is identical to a
Vtoggle().

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
size the width and height in pixels of the vidget

Defaults:
size 15

- 16 -

Vdialog(w, padx, pady)

Vdialog(...) creates a frame for a popup dialog box. Vidgets such as Vtext in and Vradio buttons
are inserted using VRegister(). An example of creating a dialog box is shown in the program
listings at the end of this document. When vidgets are inserted into the dialog, the point (0, 0) is
considered to be the upper-left corner of the vidget plus any padding in the x or y dimension. For
example,

dialog := Vdialog(win, 30, 30)
VRegister(dialog, Vtext(win), 0, 0)

places a Vtext vidget at (30, 30) in dialog.

Parameters:
w a window file
padx number of pixels for vertical border padding between vidgets and dialog outline
pady number of pixels for horizontal border padding between vidgets and dialog outline

Defaults:
padx 20
pady 20

Vframe([frame, x, y,] w, aw, ah)

Vframe(...) creates a vidget frame into which other vidget objects may be “inserted” using VInsert().
aw and ah are commonly set after vidgets have been placed within, and the bounds can be figured.

- 17 -

Vgrid([frame, x, y,] win, callback, id, aw, ah, rows, cols)

Vgrid(...) creates a grid vidget with pixel width of aw and pixel height of ah. The number of grid
divisions is determined by rows and cols. Events are passed to the callbacks associated with the
Vgrid in the manner described above, with the exception that the value passed to the callback is
a three element list consisting of [row, col, e], where row and col are the grid element the event
occurred in, (the upper left corner grid element numbered as (0, 0)), and e is the event that occurred.

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
aw the width in pixels of the grid
ah the height in pixels of the grid
rows the number of vertical rows in the grid
cols the number of horizontal columns in the grid

Defaults:
aw, ah 100, 100
rows, cols 10, 10

- 18 -

Vhoriz radio buttons([frame, x, y,] w, s, callback, id, style)

Vhoriz radio buttons(...) creates a frame containing radio buttons positioned horizontally with
labels corresponding to each entry in the list passed as s. VEvent() returns the string label of the
button selected. If a callback is specified, the value passed is the string label of the radio button
pressed.

Parameters:
w a window file
s a list of string labels
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
style a button style

Defaults:
callback &null (no clients called)
id &null (no identifier is sent to the procedure)
style V 2D

- 19 -

Vhoriz scrollbar([frame, x, y,] w, callback, id, length, width,
left bound, right bound, increment, window size, discontinuous)

Vhoriz scrollbar(...) creates a horizontal scrollbar. VEvent() returns the value of the internal
coupler variable associated with the scrollbar upon release of the mouse.

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
length the length (width) of the scrollbar
width the pixel width (height) of the scrollbar
left bound the value limit at the left of the scrollbar
right bound the value limit at the right of the scrollbar
increment the increment value used by the arrow buttons
window size the size of the view window, in the same units as the range
discontinuous if non-null, callbacks are invoked only upon release

of the thumb

Defaults:
width 15 pixels
left bound 0.0
right bound 1.0
increment 10% of the range

- 20 -

Vhoriz slider([frame, x, y,] w, callback, id, length, width,
left bound, right bound, init, discontinuous)

Vhoriz slider(...) creates a horizontal slider. VEvent() returns the value of the internal coupler
variable associated with the slider upon release of the mouse.

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
length the length (width) of the slider
width the pixel width (height) of the slider
left bound the value limit at the left of the slider
right bound the value limit at the right of the slider
init initial value of the slider
discontinuous if non-null, callbacks are invoked only upon release

of the slider

Defaults:
width 15 pixels
left bound 0.0
right bound 1.0
init bottom bound

- 21 -

Vline(w, x1, y1, x2, y2)

Vline(...) creates a line. This line vidget can be inserted into the root frame, and is automatically
drawn along with other vidgets upon invocation of VResize(root). This vidget does not grab
events. The two coordinate pairs can be specified with absolute, normalized, and/or offset positions
as described above. The (x, y) coordinate pair is not specified in the VInsert(). For example, to
insert a line into the root frame from (100,100) to (200, 200):

VInsert(root, Vline(win, 100, 100, 200, 200))

To insert a line from the middle of the screen to the lower right corner (to support resize events):

VInsert(root, Vline(win, 0.50, 0.50))

Parameters:
w a window file
x1, y1 coordinates of first point
x2, y2 coordinates of second point

Defaults:
x1, y1 0
x2 window width
y2 window height

- 22 -

Vmenu bar([frame, x, y,] w, s, menu, s, menu, ...)

Vmenu bar(...) creates a menu bar consisting of the strings passed as the 2nd, 4th, etc. arguments,
which call the menus defined beforehand by Vsub menu() in the following argument. An example
of buildinga hierarchial menu system is contained in the program listingsat the end of this document.
VEvent() returns the result of the callback associated with the menu choice made; if there is no
callback specified, the list of string labels of the path to the menu choice is returned (See Vsub menu
below). If the mouse is not released on a menu selection, VEvent() fails.

Parameters:
w a window file
s a string label
menu a submenu defined by Vsub menu()

Defaults:
menu &null (no menu is called)

Vmessage([frame, x, y,] w, s)

Vmessage(...) creates a simple text message vidget. This does not handle events, and is only
implemented to provide convenience in placing text on the screen.

Parameters:
w a window file
s a string label for the message

- 23 -

Vpane([frame, x, y,] w, callback, id, linewidth, aw, ah)

Vpane(...) creates a vidget that consists of a region on the screen. It grabs events and processes
them normally via its callback, but it has no visual representation aside of an outline, specified by
the value of linewidth. VEvent() returns the id field of the vidget.

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
linewidth the linewidth of the outline; if null, no outline
aw width in pixels of the pane
ah height in pixels of the pane

Defaults:
linewidth null (no outline)

Vpull down pick menu([frame, x, y,] w, s, callback, id, size, centered)

Vpull down pick menu(...) creates a vidget that displays the results of a pick made from a pull
down list of string entries from the list s. VEvent() returns the string label of the choice selected.

Parameters:
w a window file
s a list of string labels for the choices
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
size number of characters in the display field
centered non-null if the items in the pull down are to be centered

Defaults:
size 24

- 24 -

Vroot frame(w)

Vroot frame(w) creates a frame that encompasses the whole window. It is necessary for the
operation of the vidget library.

Parameters:
w a window file

Vsub menu(w, s, callback, ...)

Vsub menu(...) creates a menu that lies underneath the top level of menus created using
Vmenu bar() above. When an entry in a Vsub menu is selected, the callback is passed two
parameters: the record data structure of the menu bar entry the sub menu lies under, and a one-item
list containing the string label of the sub menu entry. For multiple level sub menus, the list passed as
the value to the callback is a “path” of string labels from the top submenu to the menu choice. Note:
the callback field may not contain another vidget or a coupler variable; only a callback procedure.

Parameters:
w a window file
s a string label corresponding to the first entry in the menu
callback a procedure to be called by the menu item associated with s

(The last two parameters are repeated for each menu entry in the sub menu.)

Defaults:
callback &null (no procedure is called)

- 25 -

Vtext([frame, x, y,] w, s, callback, id, sz, mask)

Vtext(...) creates a textual input line. VEvent() returns &null if the operation on the vidget
succeeds, the symbolic constant V NEXT if tab, down arrow, or return key is pressed, or the
constant V PREVIOUS if the up arrow key is pressed. In addition, when the return key is pressed,
the callback associated with the vidget is called. If the linefeed key is pressed, this calls the callback
of the Vtext and returns the result. This is used in dialog boxes, when a Vtext vidget needs to notify
its callback but does not want to indicate that the return key was pressed. (See vidgets.icn at the
end of this document for an example of how the callback is utilized with a Vtext vidget.)
The cursor may be positioned by clicking the pointer within the data field. Text can be blocked out
by dragging the mouse over the text field. The blocked-out text is then considered to be under the
cursor, and is subject to be edited as one character. For example, blocking out all of the text and
hitting backspace deletes all characters. If a is pressed, the letter a replaces all the blocked text. To
block out all of the data, position the cursor at the end of the data and press the mouse button. To
initialize the Vtext with data upon creation, use the code "nn="within the prompt field s to indicate
the rest of the string is data. For example, if s = "pages=nn= 10", the resulting prompt is "pages="
and the initial data is "10". To set the data after the Vtext vidget has been inserted into a frame, use
VSet(vidget, string).
Full line editing capabilities are via the following commands:

left arrow move left
right arrow move right
backspace delete to the left of the cursor

For several Vtext vidgets linked together via a dialog box:
up arrow move to previous line
tab, return, or down arrow move to next line

Parameters:
w a window file
s a string prompt
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
sz maximum number of characters in text field
mask a cset of allowable characters to be inputted

Defaults:
s ""
sz 18
mask &cset (all characters are allowed)

- 26 -

Vtoggle([frame, x, y,] w, s, callback, id, style, aw, ah)

Vtoggle(...) creates a toggle vidget. VEvent() returns the id field of the toggle button on a successful
press.

Parameters:
w a window file
s a string label for the toggle
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
style a symbolic constant indicating the style of the toggle
aw the width in pixels of the button
ah the height in pixels of the button

Defaults:
style V 2D
aw 8 + the pixel width of s
ah 8 + the font height of w

Vvert radio buttons([frame, x, y,] w, s, callback, id, style)

Vvert radio buttons(...) creates a frame containing radio buttons positioned vertically with labels
corresponding to each entry in the list passed as s. VEvent() returns the string label of the button
selected. If a callback is specified, the value passed is the string label of the radio button pressed.
This vidget may also be created using Vradio buttons(...).

Parameters:
w a window file
s a list of string labels
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
style a button style

Defaults:
callback &null (no clients called)
id &null (no identifier is sent to the procedure)
style V 2D

- 27 -

Vvert scrollbar([frame, x, y,] w, callback, id, length, width,
bottom bound, top bound, increment, window size, discontinuous)

Vvert scrollbar(...) creates a vertical scrollbar. VEvent() returns the value of the internal coupler
variable associated with the scrollbar upon release of the mouse.

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
length the length (height) of the scrollbar
width the pixel width of the scrollbar
bottom bound the value limit at the bottom of the scrollbar
top bound the value limit at the top of the scrollbar
increment the increment value used by the arrow buttons
window size the size of the view window, in the same units as the range
discontinuous if non-null, callbacks are invoked only upon release

of the thumb

Defaults:
width 15 pixels
bottom bound 0.0
top bound 1.0
increment 10% of the range

- 28 -

Vvert slider([frame, x, y,] w, callback, id, length, width,
bottom bound, top bound, init, discontinuous)

Vvert slider(...) creates a vertical slider. VEvent() returns the value of the internal coupler variable
associated with the slider upon release of the mouse.

Parameters:
w a window file
callback a single callback or list of callbacks as described above
id a user assigned id of any Icon data type
length the length (height) of the slider
width the pixel width of the slider
bottom bound the value limit at the bottom of the slider
top bound the value limit at the top of the slider
init initial value of the slider
discontinuous if non-null, callbacks are invoked only upon release

of the slider

Defaults:
width 15 pixels
bottom bound 0.0
top bound 1.0
init bottom bound

- 29 -

The following entries are coupler vidgets.

Vbool coupler (value)

Vbool coupler(...) creates a boolean coupler variable with an initial value of value. The value can
be null to indicate the coupler is unset, or non-null to indicate it is set. Client vidgets or callback
procedures are registered with the coupler via VAddClient(), and the value of the coupler is altered
via VToggle(), VSet(), VUnSet(), or by the vidgets themselves.

Parameters:
value a value to initialize the coupler to

Default:
value &null

Vcoupler (value)

Vcoupler(...) creates a coupler variable with an initial value of value. Client vidgets or callback
procedures are registered with the coupler via VAddClient(), and the value of the coupler is altered
via VSet() or by the vidgets themselves.

Parameters:
value a value to initialize the coupler to

Default:
value &null

- 30 -

Vrange coupler(min, max, value, inc)

Vrange coupler(...) creates a coupler that stores numeric values within a range specified by min
and max. The field inc is used by tools that increment the value by a certain value, for example,
the arrows in a scrollbar composition. If both min and max are specified as integer values, then the
value of the coupler is truncated to an integer. Otherwise the value is real.

Parameters:
min minimum bound of the coupler
max maximum bound of the coupler
value the initial value
inc an increment

Defaults:
min 0.0
max 1.0
value min
inc 10% of the range

Acknowledgements

The design and implementation of the Window Interface Tools library is the result of many helpful com-
ments, recommendations, and discussions by members of the Icon Project, including Mary Cameron, Ralph
Griswold, Clint Jeffery, Gregg Townsend, and Ken Walker.

- 31 -

Sample Programs

Xscroll

#
Name: xscroll.icn
Title: Scrollable Bit�Map browser
Author: Jon Lipp
Date: July 13, 1992
#

link options
link vidgets, vscroll

global win, im win, view width, view height
global scv, sch

procedure main(args)
local opts, file, scrollbar width, picw, pich, root

opts := options(args, "f:w+h+")
file := nopts["f"] j

stop("Usage: xscroll �f file [�w window size/width] [�h window height]")
view width := nopts["w"] j 300
view height := nopts["h"] j view width
scrollbar width := 15

#
Load in the bitmap; get the dimensions.
#

im win := XBind("image=" jj file) j stop("Couldn’t make temporary bitmap.")
picw := XAttrib(im win,"width")
pich := XAttrib(im win,"height")

win := open(file, "x", "geometry=" jj (view width + scrollbar width + 1) jj
"x" jj (view height + scrollbar width + 1))

root := Vroot frame(win)
#
Create two scrollbars.
#

scv := Vvert scrollbar(root, �1, 0,
win, sl cb, 1, view height,scrollbar width, pich, 0,, view height)

- 32 -

sch := Vhoriz scrollbar(root, 0, �1,
win, sl cb, 2, view width, scrollbar width, 0, picw,, view width)

VResize(root)
#
Draw the initial view of the pixmap, based on the scrollbar’s values.
#

sl cb(scv, scv.callback.value)
sl cb(sch, sch.callback.value)

#
Now get events, pass control to the procedure quit() if an event is not
captured by a vidget.
#

GetEvents(root, quit, , resize)
end
#
Terminate the program on a keypress of "q".
#
procedure quit(e)

if e === "q" then stop("End xscroll.")
end
#
Reformat the scrollbars according to the new window size.
#
procedure resize()

VReformat(scv, XAttrib(scv.win, "height") � 15)
VReformat(sch, XAttrib(sch.win, "width") � 15)

end
#
Copy a portion of the bitmap to the main
window based on the values of the scrollbars.
#
procedure sl cb(caller, val)

static vpos, hpos
initial vpos := hpos := 0

(caller.id = 1, vpos := val) j hpos := val
XCopyArea(im win, win, hpos, vpos, view width, view height, 0, 0)

end

- 33 -

Splat

#
Name: splat.icn
Title: Splats circles in a determined region.
Author: Jon Lipp
Date: July 20, 1992
#

link vidgets, vradio
link xshade
global COLORS, state, region, Go, Stop, Quit, Redraw

procedure main ()
local win, root, rb

Go := "GO"; Stop := "STOP"; Quit := "QUIT"; Redraw := "CLEAR"
COLORS := ["yellow", "blue", "red", "brown", "green"]

win := open("splat", "x", "geometry=500x500", "font=" jj ("10x20" j ""))
root := Vroot frame(win)
rb := Vradio buttons(root, 10, 10,

win, ["GO", "STOP", "CLEAR", "QUIT"], state change)
region := Vpane(win, , , 2)
VInsert(root, region, 80, 10, 400, 400)

VSet(rb, "STOP")
VResize(root)

state := Stop
repeat f

while *XPending(win) > 0 j state == Stop j state == Redraw do
VEvent(root, XEvent(root.win), &x, &y)

Splat(region)
g

end

procedure state change(vid, val)
state := val

- 34 -

if state == Quit then stop("that’s all folks")
if state == Redraw then

XEraseArea(region.win, region.ax + 1, region.ay + 1,
region.aw � 2, region.ah � 2)

end

procedure Splat(box)
local x, y, w, h, c

h := w := ?((box.aw > box.ah j box.aw) � 1)
x := ?(box.aw � w)
y := ?(box.ah � h)
y3 := box.ay + ?(box.ah)
c := ?5
XShade(box.win, COLORS[c])
XFillArc(box.win, box.ax + x, box.ay + y, w, h)

end

- 35 -

Vidgets

#
Name: vidgets.icn
Title: Menus, Dialog boxes, Pull�downs, Notices, Radio buttons.
Author: Jon Lipp
Date: July 29, 1992
#

link options
link vidgets, vdialog, vmenu, vradio, vtools, vbuttons, vtext, vscroll
global dialog

procedure main(args)
local opts, font, win, ht, title, wid, row, pad, root, cv, i, ti, scb
local tm, s, max, rb1, rb2, rb3
local FontTypeSubMenu, FontSubMenu, CompMemSubMenu, ExecMemSubMenu
local FileMenu, OptionsMenu

opts := options(args, "f:wh")
font := nopts["f"]
wid := nopts["w"]
ht := nopts["h"]
title := "popup dialogs demo"
win:= open(title, "x", "geometry=" jj (nwid j 550) jj "x" jj (nht j 550),

"font=" jj (nfont j "10x20")) j
stop("Couldn’t open window.")

pad := XAttrib(win, "fheight") + 10
row := []
every i := 0 to 9 do put(row, i*pad)

root := Vroot frame(win)

#
Vdialog
#

dialog:= Vdialog(win)

VRegister(dialog, Vtext(win, "Button Text: ", ,1), 0, row[1])
VRegister(dialog, Vtext(win, "Button Id : ", ,2), 0, row[2])

- 36 -

VRegister(dialog, Vtext(win, "Callback : ", ,3), 0, row[3])
VRegister(dialog, Vtext(win, "X: ", , 4, 3, &digits), 10, row[5])
VRegister(dialog, Vtext(win, "Y: ", , 5, 3, &digits), 10, row[6])
VRegister(dialog, Vtext(win, "W: ", , 6, 3, &digits), 100, row[5])
VRegister(dialog, Vtext(win, "H: ", , 7, 3, &digits), 100, row[6])
VRegister(dialog, Vradio buttons(win, ["solid", "onoff"] , ,8), 200, row[5])

#
Attach a slider to a textual input device.
#

cv := Vcoupler()
VAddClient(cv, ti := Vtext(win, , cv, 9, 3, &digits))
VAddClient(cv, scb := Vvert scrollbar(win, cv, 10, 75, , 0, 100, 1))
VInsert(dialog, scb, 275, row[5])
VRegister(dialog, ti, 300, row[5])

#
Control buttons.
#

Vbutton(dialog, 100, row[8], win, " Ok ", ,V OK)
Vbutton(dialog, 200, row[8], win, "Cancel", ,V CANCEL)

VFormat(dialog)

Vmessage(root, 10, 0.5, win, "Press mouse button to open a dialog.")

#
Vsub menu, Vmenu bar
#
Have to create the menu system bottom�up, so... start at the deepest leaves.
#
Use Vsub menu to build sub�menus.
#
Once the sub�menus have been built, use Vmain menu to make the menu bar.
#

FileMenu := Vsub menu(win,
"New", m cb,
"Open", m cb,
"Close", m cb,
"Save", m cb,
"Save As", m cb,
"Print", m cb,
"��������", ,

- 37 -

"Quit", my stop
)

FontTypeSubMenu := Vsub menu(win,
"Normal", m cb,
"Bold", m cb,
"Italic", m cb,
"Underline", m cb,
)

FontSubMenu := Vsub menu(win,
"Times", FontTypeSubMenu,
"Courier", FontTypeSubMenu,
"Palatino", FontTypeSubMenu,
"Schoolbook", FontTypeSubMenu,
"Helvetica", FontTypeSubMenu,
"Symbol", m cb,
"Arial", FontTypeSubMenu,
"Sans Serif", FontTypeSubMenu,
)

CompMemSubMenu := Vsub menu(win,
"Constant Table Size", m cb,
"Field Table Size", m cb,
"Global Symbol Table Size", m cb,
"Identifier Table Size", m cb,
"Local Symbol Table Size", m cb,
"Line Number Space", m cb,
"String Space", m cb,
"File Name Table Size", m cb,
)

ExecMemSubMenu := Vsub menu(win,
"Block Region", m cb,
"String Region", m cb,
"Evaluation Stack", m cb,
"Co�expression Blocks", m cb,
"Qualifier Pointer Region", m cb,
)

OptionsMenu := Vsub menu(win,

- 38 -

"Font", FontSubMenu,
"Font Size", m cb,
"��������", ,
"Parameter String", m cb,
"Library Folders", m cb,
"Compiler Memory", CompMemSubMenu,
"Execution Memory", ExecMemSubMenu
)

tm := Vmenu bar(root, 0, 0, win,
"File", FileMenu,
"Options", OptionsMenu
)

Vline
VInsert(root, Vline(win, , tm.ah, , tm.ah))

Vbutton(root, 10, 40, win, "Push Me", Popup, "This is a notice button.")

Vpull down pick menu
s := ["Times", "Helvetica", "NewCentury", "Symbol", "Palatino",

"Zapf Chancery"]
max := 0
every i := !s do max <:= *ni
Vpull down pick menu(root, 200, 40, win, s, pd cb, "pull�down", max+1)

Vradio buttons
rb1:= Vhoriz radio buttons(root, 10, 0.70, win,

["Here", "is", "a", "list", "of", "radio", "buttons"],
rb cb, 1)

rb3:= Vvert radio buttons(root, �10, �10, win,
["Here", "is", "a", "list", "of", "radio", "buttons"],
rb cb, 2, V CIRCLE)

VSet(rb1, "list")

VResize(root)
GetEvents(root, PopUpDialog)

end

procedure PopUpDialog(e)

- 39 -

local i, nl
static data
initial data := ["one", "", "nothing", 23, 67, 12, 23, "solid", 17]

if e === "q" then stop()
if e === (�1j�2j�3) then f

nl := VOpenDialog(dialog, &x, &y, data, " Ok ")
every i := !nl do write(i)
data := nl
g

end

procedure pd cb(vid, val)
VNotice(vid.win, "Chose: " jj val)

end

procedure rb cb(vid, val)
write(vid.id, ": ", val)

end

procedure m cb(vid, val)
write("nnmenu bar: ", vid.s)
writes("choice : ")
every writes(!val, " ")

end

procedure Popup(vid)
VNotice(vid.win, vid.id)

end

procedure my stop()
stop()

end

References

[Jeff91] Jeffery, C. L. X-Icon: An experimental Icon Windows Interface. Technical Report 91-1,Department
of Computer Science, University of Arizona, January 1991.

- 40 -

Vidget Library Index

procedure page
GetEvents() 10
VAddClient() 10
VDraw() 11
VErase() 11
VEvent() 11
VFormat() 11
VInsert() 12
VNotice() 12
VOpenDialog() 12
VReformat() 13
VRegister() 13
VRemove() 13
VResize() 14
VSet() 14
VToggle() 14
VUnregister() 15
VUnSet() 15

vidget page
Vbutton() 16
Vcheckbox() 16
Vdialog() 17
Vframe() 17
Vgrid() 18
Vhoriz radio buttons() 19
Vhoriz scrollbar() 20
Vhoriz slider() 21
Vline() 22
Vmenu bar() 23
Vmessage() 23
Vpane() 24
Vpull down pick menu() 24
Vroot frame() 25
Vsub menu() 25

- 41 -

vidget page
Vtext() 26
Vtoggle() 27
Vvert radio buttons() 27
Vvert scrollbar() 28
Vvert slider() 29

coupler page
Vbool coupler() 30
Vcoupler() 30
Vrange coupler() 31

- 42 -

