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The Run-Time Implementation Language for Icon V8.7

1. Introduction

This report describes a language to aid in the implementation of a run-time system for the Icon language [1].
This language is called RTL. The design of RTL is motivated by the needs of the optimizing compiler for Icon,
iconc. The optimizing compiler needs a variety of information about run-time routines and needs to be able to use
both general and specialized versions of these routines to generate efficient code.

RTL is used to define the operators, built-in functions, and keywords of the Icon language. It consists of two
sub-languages: an interface and type-specification language, and a slightly extended version of C. The interface
language defines, in part, what an operation looks like within the Icon language (some operators have a non-
standard syntax that is determined by iconc’s parser, but the operators are specified in the interface language the
same way as operators with a standard syntax). The interface language also specifies the type checking and conver-
sions needed for arguments to the operation. Several conversions to C values are included for convenience and
efficiency. The interface language presents the overall structure of the operation’s implementation. The extended C
language is embedded within certain constructs of the interface language and provides the low-level details of the
implementation. The extensions include operations for manipulating, constructing, and returning Icon values.

RTL includes features designed to support optimizations that have not yet been implemented in iconc. This
report describes how the features should be used to provide support for those future optimizations.

When referring to files in the Icon implementation, this report gives path names relative to the Icon source direc-
tory, src. For example, if Icon is installed in /usr/icon/v8 then the file runtime/Makefile has a full path name of
/usr/icon/v8/src/runtime/Makefile.

2. Overview of the Icon Interpreter/Compiler System

The translator for RTL is called rtt. By default, it produces C code for use with iconc. This C code is compiled
and placed in an object code library. The translator also creates a data base of information about Icon operations:
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The Icon compiler produces an executable program from Icon source code by translating Icon procedures into C
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functions, supplying a C main function, and compiling and linking these functions with the library produced using
rtt. The compiler makes use of the data base when performing the translation:
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C compiler
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object
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rtt has an option to produce C code for building an Icon interpreter. Most of the input is identical to that used for
the compiler, but additionally it includes code for the interpreter proper. The resulting C code is compiled and linked
to produce the executable interpreter, iconx. No data base is created with this option:
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(interpreter option)

For the interpreter, Icon programs are translated into an intermediate form, which is then interpreted by iconx.
iconx’s interpreter loop calls the operations and support routines in the run-time system as needed.

RTL files have a suffix of .r. The names of the output files vary depending on whether an interpreter or compiler
library is created; this is described below. The output files are given the suffix expected by the C compiler; this is
typically .c.

2.1 Preprocessor

rtt has a built-in C preprocessor based on the ANSI C Standard [2], but with extensions to support multi-line
macros with embedded preprocessor directives [3]. rtt automatically defines the identifier StandardPP before pro-
cessing any files to indicate that it is an ANSI C Standard preprocessor; some parts of the Icon system, for example
header files, may also be used directly with non-ANSI C compilers and contain code conditional on this identifier.
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rtt processes a standard include file, grttin.h, before every RTL file it translates; grttin.h contains #include direc-
tives for several other files. rtt uses these files to establish macro definitions and to determine typedef names, but it
outputs nothing while processing these files.

Within its own preprocessor, rtt defines COMPILER to 0 or 1 depending on whether interpreter or compiler
code is being generated. It also places a #define directive for COMPILER at the beginning of every output file. It
produces an #include directive for rt.h after the #define directive. The preprocessor directives in rtt’s output are
used by the C compiler.

Arbitrary text may be passed through rtt using the #passthru directive. The contents of a #passthru directive
are written to the output after each sequence of white space within the contents is replaced by a single space charac-
ter. #passthru is useful in those rare circumstances where something needed by the C compiler must be hidden
from rtt. #passthru only works correctly at the global level; if it is used within functions or declarations, the result
is not put in the correct location in the output. For example

#passthru #define LIB_GET_EF LIB$GET_EF

in the input results in

#define LIB_GET_EF LIB$GET_EF

in the output.

Such code is used under VMS to allow calls to a function with a non-standard identifier for a name. RTL code
for VMS contains calls to LIB_GET_EF. rtt parses this name as an identifier (it produces an error message if it tries
to parse LIB$GET_EF) and copies it to the output. The preprocessor for the C compiler sees the #define directive
and changes instances of LIB_GET_EF to the real function name, LIB$GET_EF, which is what the VMS C com-
piler needs.

2.2 Support Routines

The primary run-time routines written in RTL can call support routines written in C. The support routines may
either be written in standard C, such as those in the file common/time.c, or they may use some of the features of
extended C. In the former case, they may be compiled directly with the C compiler. It does no harm to put standard
C code through rtt, but it is important to determine which header files are automatically included by rtt so they are
not explicitly included in the C code.

2.3 The Data Base

rtt uses the data base to pass various information about run-time routines to iconc, including the names of the
library routines that implement various operations. iconc’s compile-time analyses, including type inference, pro-
vide information that the code generator needs to produce good code. These analyses need information about Icon’s
operations. The control characteristics of an operation (that is whether it suspends, fails, etc) are explicitly stated in
the operation’s code. Type inference needs additional information; some of this is implicitly supplied through the
type-checking code and some is explicitly supplied through abstract type computations. This information is stored
in the data base.

iconc uses the data base to determine what built-in functions and keywords are available. Therefore new func-
tions and keywords can be added to the the compiler without rebuilding iconc. They need only be run through rtt,
updating the data base and the library. (See [4] for instructions on adding new built-in functions to the interpreter.)

Externally, the data base is implemented as a text file. It is organized to be read by programs, but can be read by
humans beings without great difficulty. See Appendix E for the data base format.

2.4 Versions of an Operation

There is one RTL source coding for an Icon operation. However, each operation has two implementations in the
compiler: an in-line version and a most general version (except keywords, which only have an in-line version). The
most general version is a C function in the library. This function conforms to a standard calling convention and
includes code to perform argument list adjustment and dereferencing, along with type checking and conversions.
iconc’s code generator uses this version of the operation when it is impossible or inappropriate to use the in-line
version.
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The in-line version of an operation is stored by rtt in the data base. The entire interface portion of an operation,
including type checking and conversions, is represented in the data base. However, the detailed code may either be
put in the data base or placed in the library as C functions. This choice is controlled by the programmer who writes
the run-time routine. One operation may produce several of these detail functions (typically different functions for
different argument types). They have calling conventions specific to their needs. The calling conventions are noted
in the data base at the point in the in-line code where the functions must be called.

The interpreter has one version of each operation. It is similar to the most general version for the compiler, but
the calling conventions differ.

2.5 Operation Documentation

RTL allows explicit documentation of an operation. In addition, many of the characteristics of an operation that
are used by the compiler can be automatically added to the description of the operation. Thus, the implementation
acts as a central location for operation documentation. This documentation can be extracted from the data base and
formatted for various purposes.

3. Language Definition

The grammar for RTL is presented in extended BNF notation. Terminal symbols are set in Helvetica. Non-
terminals and meta-symbols are set in Times-Italic. In addition to the usual meta-symbols, ::= for ‘‘is defined as’’
and | for ‘‘alternatives’’, brackets around a sequence of symbols indicate that the sequence is optional, braces
around a sequence of symbols followed by an asterisk indicate that the sequence may be repeated zero or more
times, and braces followed by a plus indicate that the enclosed sequence may be repeated one or more times.

An rtt input file may contain operation definitions written in RTL, along with C definitions and declarations.
This section describes the operation definitions. C language documentation should be consulted for ordinary C
grammar. The next section describes extensions to ordinary C grammar.

3.1 Operation Documentation

An operation definition can be preceded by an optional description in the form of a C string literal.

documented-definition ::= [ C-string-literal ] operation-definition

The use of a C string allows an implementation file to be processed by a C preprocessor without loosing the descrip-
tion, as happens with descriptions in the form of C comments. The preprocessor concatenates adjacent string
literals, allowing a multi-line description to be written using multiple strings. Alternatively, a multi-line description
can be written using ‘\’ for line continuation. This description is stored in the operation data base where it can be
extracted by documentation generation programs, that generators produce formatted documentation for Icon pro-
grammers and for C programmers maintaining the Icon implementation. The documentation generators are respon-
sible for inserting newline characters at reasonable points when printing the description.

3.2 Types of Operations

rtt can be used to define the built-in functions, operators, and keywords of the Icon language. (Note that there are
some Icon constructs that fall outside this implementation specification system. These include control structures
such as string scanning and limitation, along with record constructors and field references.)

operation-definition ::= function result-seq identifier ( [ param-list ] ) [ declare ] actions end |
operator result-seq op identifier ( [ param-list ] ) [ declare ] actions end |
keyword result-seq identifier actions end |
keyword result-seq identifier constant key-const end

result-seq ::= { length , length [ + ] } |
{ length [ + ] } |
{ }
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length ::= integer | ∗

result-seq indicates the minimum and maximum length of the result sequence of an operation (the operation is
treated as if it is used in a context where it produces all of its results). For example, addition always produces one
result so its result-seq is {1, 1}. If the minimum and maximum are the same, only one number need be given, so the
result-seq for addition can be coded as {1}. A conditional operation can produce either no results (that is, it can fail)
or it can produce one result, so its result-seq is {0, 1}. A length of ∗ indicates an unbounded number of results, so
the result-seq of ! is indicated by {0, ∗}. An ∗ in the lower bound means the same thing as 0, so {0, ∗} can be writ-
ten as {∗, ∗}, which simplifies to {∗}. A result-seq of {} indicates no result sequence. This is not the same as a zero-
length result sequence, {0}; an operation with no result sequence does not even fail. exit() is an example of such an
operation.

A + following the length(s) in a result-seq indicates that the operation can be resumed to perform some side
effect after producing its last result. All existing examples of such operations produce at most one result, perform-
ing a side effect in the process. The side effect on resumption is simply an undoing of the original side effect. An
example of this is tab(), which changes &pos as the side effect.

For functions and keywords, identifier is the name by which the operation is known within the Icon language
(for keywords, identifier does not include the &). For operations, op is (usually) the symbol by which the operation
is known within the Icon language and identifier is a descriptive name. It is possible to have more than one opera-
tion with the same op as long as they have different identifiers and take a different number of operands. In all cases,
the identifier is used to construct the name(s) of the C function(s) which implement the operation.

A param-list is a comma-separated list of parameter declarations. Some operations, such as write(), take a vari-
able number of arguments. This is indicated by appending a pair of brackets enclosing an identifier to the last
parameter declaration. This last parameter is then an array containing the tail of the argument list, that is, those
arguments not taken up by the preceding parameters. The identifier in brackets represents the length of the tail and
has a type of C integer.

param-list ::= param { , param }∗ [ [ identifier ] ]

Most operations need their arguments dereferenced. However, some operations, such as assignment, need
undereferenced arguments and a few need both dereferenced and undereferenced versions of an argument. There
are forms of parameter declarations to match each of these needs.

param ::= identifier |
underef identifier |
underef identifier −> identifier

A simple identifier indicates a dereferenced parameter. underef indicates an undereferenced parameter. In the third
form of parameter declaration, the first identifier represents the undeferenced form of the argument and the second
identifier represents the dereferenced form. This third form of declaration may not be used with the variable part of
an argument list. These identifiers are of type descriptor. Descriptors are implemented as C structs. See [5] for a
detailed explanation of descriptors.

Examples of operation headers:

"detab(s,i,...) − replace tabs with spaces, with stops at columns indicated."
function{1} detab(s, i[n])

actions
end

"x <−> y − swap values of x and y."
" Reverses swap if resumed."
operator{0,1+} <−> rswap(underef x −> dx, underef y −> dy)

declare
actions

end
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"&fail − just fail"
keyword{0} fail

actions
end

3.3 Declare Clause

Some operations need C declarations that are common to several actions. These can be declared within the
declare clause.

declare ::= declare { C declarations }

These may include tended declarations, which are explained below in the section on extensions to C. If a declaration
can be made local to a block of embedded C code, it is usually better to put it there than in a declare clause. This is
explained below in the discussion of the body action.

3.4 Constant Keywords

Any keyword can be implemented using general actions. However, for constant keywords, iconc sometimes can
produce more efficient code if it treats the keyword as a literal constant. Therefore, a special declaration is available
for declaring keywords that can be represented as Icon literals. The constant is introduced with the word constant
and can be one of four literal types.

key-const ::= string-literal | cset-literal | integer-literal | real-literal

When using this mechanism, the programmer should be aware of the fact that rtt tokenizes these literals as C
literals, even though they are later interpreted as Icon literals. This has only a few effects on their use. See [3] for a
description of how the preprocessor interprets string literals during string concatenation; in some situations, escape
sequences are explicitly treated as C characters. C does not recognize control escapes, so ’\ˆ’’, which is a valid Icon
cset literal, is not recognized by rtt’s C tokenizer, because the second quote ends the literal, leaving the third quote
dangling. Only decimal integer literals are allowed.

3.5 Actions

All operations other than constant keywords are implemented with general actions.

Actions fall into four categories: type checking and conversions, detail code expressed in extended C, abstract
type computations, and error reporting.

actions ::= { action }+

action ::= checking-conversions |
detail-code |
abstract { type-computations } |
runerr( msg_number [ , descriptor ] ) [ ; ]
{ [ actions ] }

3.5.1 Type Checking and Conversions

The type checking and conversions are

checking-conversions ::= if type-check then action |
if type-check then action else action |
type_case descriptor of { { type-select }+ }
arith_case ( descriptor , descriptor ) of { arith-selections }
len_case identifier of { { integer : action }+ default : action }
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type-select ::= { type-name : }+ action |
default : action

arith-selections ::= C_integer: action integer: action C_double: action

These actions specify run-time computations. These computations could be performed in C, but specifying them in
the interface language gives the compiler information it can use to generate better code.

The if actions use the result of a type-check expression to select an action. The type_case action selects an
action based on the type of a descriptor. If a type_case action contains a default clause, it must be last. type-select
clauses must be mutually exclusive in their selection. The arith_case performs type conversion and type checking
needed for a binary arithmetic operator. The statement

arith_case (x,y) of {
C_integer:

action 1
integer:

action 2
C_double:

action 3
}

is functionally equivalent to

if cnv:(exact)C_integer(x) && cnv:(exact)C_integer(y) then
action 1

#ifdef LargeInts
else if cnv:(exact)integer(x) && cnv:(exact)integer(y) then

action 2
#endif /∗ LargeInts ∗/
else {

if !cnv:C_double(x) then
runerr(102, x)

if !cnv:C_double(y) then
runerr(102, y)

abstract {
return real
}

action 3
}

but can sometimes be more implemented more efficiently. Note that the integer selection can only be taken if large
integers are implemented. Otherwise, the C_integer selection is always taken for integer arithmetic.

The len_case action selects an action based on the length of the variable part of the argument list of the opera-
tion. The identifier in this action must be the one representing that length.

A type-check can succeed or fail. It is either an assertion of the type of a descriptor, a conversion of the type of a
descriptor, or a logical expression involving type-checks. Only limited forms of logical expressions are supported.

type-check ::= simple-check { && simple-check }∗ |
! simple-check

simple-check ::= is: type-name ( descriptor ) |
cnv: dest-type ( source [ , destination ] ) |
def: dest-type ( source , value [ , destination ] )
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dest-type ::= cset |
integer |
real |
string |
C_integer |
C_double |
C_string |
(exact)integer |
(exact)C_integer
tmp_string |
tmp_cset

The is check succeeds if the value of the descriptor is in the type indicated by type-name. Conversions indicated
by cnv are the conversions between the Icon types of cset, integer, real, and string. Conversions indicated by def are
the same conversions with a default value to be used if the original value is null.

dest-type is the type to which to a value is to be converted, if possible. cset, integer, real, and string constitute
a subset of icon-type which is in turn a subset of type-name (see below). C_integer, C_string, and C_double are
conversions to internal C types that are easier to manipulate than descriptors. Each of these types corresponds to an
Icon type. A conversion to an internal C type succeeds for the same values that a conversion to the corresponding
Icon type succeeds, except that a large integer cannot be converted to a C integer. C_integer represents the C
integer type used for integer values in the particular Icon implementation being compiled (typically, a 32-bit integer
type). C-double represents the C double type. C-string represents a pointer to a null-terminated C character array.
However, see below for a discussion of the destination for conversion to C_string. (exact) before integer or
C_integer disallows conversions from reals or strings representing reals, that is, the conversion fails if the value
being converted represents a real value.

Conversion to tmp_string is the same as conversion to string (the result is a descriptor), except that the string is
only guaranteed to exist for the lifetime of the operation (the lifetime of a suspended operation extends until it can
no longer be resumed). Conversion to tmp_string is generally less expensive than conversion to string and is never
more expensive, but the resulting string must not be exported from the operation. tmp_cset is analogous to
tmp_string.

The source of the conversion is the descriptor whose value is to be converted. The type of the destination of the
conversion depends on the type of conversion. The destinations for conversions to cset, integer, real, string,
(exact)integer, tmp_string, and tmp_cset must be descriptors. The destinations for conversions to C_integer,
C_double, and (exact)C_integer must be the corresponding C types. However, the destination for conversion to
C_string must be tended. If the destination is declared as tended char ∗, then the d-word (string length) of the
tended location will be set, but the operation will not have direct access to it. The variable will look like a char ∗.
Because the operation does not have access to the string length, it is not a good idea to change the pointer once it
has been set by the conversion. If the destination is declared as a descriptor, the operation has access to both the
pointer to the string and the string’s length (which includes the terminating null character).

If no destination is specified, the conversion is done in-place. However, conversions to C values require a desti-
nation with a different type from the source. For convenience, ‘‘in-place’’ conversions to C values are allowed for
simple parameters, though not for other variables. For parameters, rtt creates a destination of the correct type and
establishes a new meaning for the parameter name within the lexical scope of the conversion. Within this scope, the
parameter name refers to the destination; in effect, the type of the parameter has been converted along with its
value. In the case of conversion to C_string, the destination is a tended pointer.

The scope of an in-place conversion to a C value extends from the conversion along all execution paths that can
be taken if the conversion succeeds. Along execution paths that can be taken if the conversion fails, parameters
names retain their previous meanings. It is possible for two scopes for one parameter name to overlap. This is only a
problem if the parameter is referenced within the conflicting scope. rtt issues an error message if this occurs.

The second argument to the def conversion is the default value. The default value can be any C expression that
evaluates to the correct type. These types are given in the following chart.
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cset: struct b_cset
integer: C_integer
real: double
string: struct descrip
C_integer: C_integer
C_double: double
C_string: char ∗
tmp_string: struct descrip
tmp_cset: struct b_cset
(exact)integer: C_integer
(exact)C_integer: C_integer

The numeric operators provide good examples of how conversions are used. (Note that the following version of
negation does not support large integers, because they cannot be converted to C integers.)

operator{1} − neg(x)
if cnv:(exact)C_integer(x) then {

actions
}

else {
if !cnv:C_double(x) then

runerr(102, x)
actions
}

end

Within the code indicated by actions, x refers to C values rather than to the Icon descriptors of the unconverted
parameter.

In the case of conversions combined with &&, the scopes are also tied together. This occurs in the code given
earlier as equivalent to the arith_case statement. Even though an else clause in that code may be taken after the
conversion of x succeeds, the clause is in the scope of the unconverted x. For a true in-place conversion (where the
result is a descriptor rather than a C value) there is no question of scope but there is a question of whether the value
of x has been converted or not in the else clause. This depends on whether the conversion of x or the conversion of
y caused the failure of the condition and may also depend on how rtt and iconc implement these expressions. rtt
issues warning messages when there might be confusion or ambiguity.

The subject of any type check or type conversion must be an unmodified parameter. For example, once an in-
place conversion has been applied to a parameter, another conversion may not be applied to the same parameter.
This simplifies the clerical work needed by type inference in iconc. This restriction does not apply to type checking
and conversions in C code.

3.5.2 Type Names

The type-names represent types of Icon intermediate values, including variable references. These are the values
that enter and leave an operation; ‘‘types’’ internal to data structures, such as list element blocks, are handled com-
pletely within the C code.

type-name ::= empty_type |
any_value |
icon-type |
variable-ref

− 9 −



icon-type ::= null |
string |
cset |
integer |
real |
file |
list |
set |
table |
record |
proc |
coexpr

variable-ref ::= variable |
tvsubs |
tvtbl |
kywdint |
kywdpos |
kywdsubj

The type-names are not limited to the first-class types of Icon’s language definition. The type-names that do not
follow directly from Icon types need further explanation. empty_type is the type containing no values and is
needed for conveying certain information to the type inference system, such as an unreachable state. For example,
the result type of stop is empty_type. It may also be used as the internal type of an empty structure. Contrast this
with null, which consists of the null value. any_value is the type containing all first-class types, that is, those in
icon-type.

Variable references are not first-class values in Icon; they cannot be assigned to variables. However, they do
appear in the definition of Icon as arguments to assignments and as the subject of dereferencing. For example, the
semantics of the expression

s[3] := s

can be described in terms of a substring trapped variable and a simple variable reference. For this reason, it is neces-
sary to include these references in the type system of RTL. variable consists of all variable references. It contains
five distinguished subtypes. tvsubs contains all substring trapped variables. tvtbl contains all table-element trapped
variables. kywdint contains &error, &random, and &trace. kywdpos contains &pos. kywdsubj contains &sub-
ject.

3.5.3 Including C Code

As noted above, C declarations can be included in a declare clause. Embedded C code may reference these
declarations as well as declarations global to the operation.

Executable C code can be included using one of two actions.

detail-code ::= body { extended-C } |
inline { extended-C }

For the interpreter, body and inline are treated the same. For the compiler, inline indicates code that is reason-
able for the compiler to put in-line when it can; that is, this code is part of the in-line version of the operation that is
put in the data base. body indicates that, for the in-line version of the operation, this piece of C code should be put
in a separate function in the link library and the body action should be replaced by a call to that function. Any
parameters of the operation or variables from the declare clause needed by the function must be passed as argu-
ments to the function. Therefore, it is more efficient to declare variables needed by a body action within that body
than within the declare clause. However, the scope of these local variables is limited to the body code.

Most Icon keywords provide examples of operations that should be generated in-line. In the following example,
nulldesc is a global variable of type descriptor. It is defined in the header files automatically included by rtt.
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"&null − the null value."
keyword{1} null

abstract {
return null
}

inline {
return nulldesc;
}

end

3.5.4 Error Reporting

runerr( msg_number [ , descriptor ] ) [ ; ]

runerr is translated into a call to the run-time error handling routine. Specifying this as a separate action rather
than a C expression within a body or inline action gives the compiler additional information about the behavior of
the operation. msg_number is the number used to look up the error message in a run-time error table (see the file
runtime/data.r). If a descriptor is given, it is taken to be the offending value.

3.5.5 Abstract Type Computations

abstract { type-computations }

The behavior of an operation with respect to types is a simplification of the full semantics of the operation. For
example, the semantics of the function image is to produce the string representing its operand; its behavior in the
type realm is described as simply returning some string. In general, a good simplification of an operation is too
complicated to be automatically produced from the operation’s implementation (of course, it is always possible to
conclude that an operation can produce any type and can have any side effect, but that is hardly useful). For this rea-
son, the programmer must use the abstract action to specify type-computations (for operations that appear only in
an interpreter version of Icon, abstract type computations are optional).

type-computations ::= { store [ type ] = type [ ; ] }∗ [ return type [ ; ] ]

type-computations consist of side effects and a statement of the result type of the operation. There must be
exactly one return type along any path from the start of the operation to C code containing a return, suspend, or
fail.

A side effect is represented as an assignment to the store. The store is analogous to program memory. Program
memory is made up of locations containing values. The store is made up of locations containing types. A type
represents a set of values, though only certain such sets correspond to types for the purpose of abstract type compu-
tations. Types may be basic types such as all Icon integers, or they may be composite types such as all Icon integers
combined with all Icon strings. The rules for specifying types are given below. A location in the store may
correspond to one location in program memory, or it may correspond to several or even an unbounded number of
locations in program memory. The contents of a location in the store can be thought of as a conservative (that is,
possibly overestimated) summary of values that might appear in the corresponding location(s) in program memory
at run time.

Program memory can be accessed through a pointer. Similarly, the store can be indexed by a pointer type, using
an expression of the form store[type], to get at a given location. An Icon global variable has a location in program
memory, and a reference to such a variable in an Icon program is treated as a pointer to that location. Similarly, an
Icon global variable has a location in the store and, during type inference, a reference to the variable is interpreted
as a pointer type indexing that location in the store. Because types can be composite, indexing into the store with a
pointer type may actually index several locations. Consider the following side effect

store[ type1 ] = type2

Suppose during type inference type1 evaluates to a composite pointer type consisting of the pointer types for several
global variables. Then all corresponding locations in the store will be updated. If the above side effect is coded in
the assignment operator, this situation might result from an Icon expression such as
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every (x | y) := &null

In this example, it is obvious that both variables are changed to the null type. However, type inference can only
deduce that at least one variable in the set is changed. Thus, it must assume that each could either be changed or left
as is. It is only when the left hand side of the side effect represents a unique program variable that type inference
knows that the variable cannot be left as is. In the current implementation of type inference, assignment to a single
named variable is the only side effect where type inference recognizes that the side effect will definitely occur.

Indexing into the store with a non-pointer type corresponds to assigning to a non-variable. Such an assignment
results in error termination. Type inference ignores any non-pointer types in the index type; they represent execu-
tion paths that don’t continue and thus contribute nothing to the types of expressions.

A type in an abstract type computation is of the form

type ::= type-name |
type ( variable ) |
component-ref |
new type-name ( type { , type }∗ ) |
store [ type ] |
type ++ type |
type ∗∗ type |
( type )

The type(variable) expression allows type computations to be expressed in terms of the type of an argument to an
operation. This must be an unmodified argument. That is, the abstract type computation involving this expression
must not be within the scope of a conversion. This restriction simplifies the computations needed to perform type
inference.

This expression is useful in several contexts, including operations that deal with aggregate types. The type sys-
tem for a program may have several sub-types for an aggregate type. The aggregate types are list, table, set, record,
substring trapped variable, and table-element trapped variable. Each of these Icon types is a composite type within
the type computations, rather than a basic type. Thus the type inferencing system may be able to determine a more
accurate type for an argument than can be expressed with a type-name. For example, it is more accurate to use

if is:list(x) then
abstract {

return type(x)
}

actions
else

runerr(108, x)

than it is to use

if is:list(x) then
abstract {

return list
}

actions
else

runerr(108, x)

Aggregate values have internal structure. Aggregate types also need an internal structure that summarizes the
structure of the values they contain. This structure is implemented with type components. These components are
referenced using dot notation:

component-ref ::= type . component-name
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component-name ::= lst_elem |
set_elem |
tbl_key |
tbl_val |
tbl_dflt |
all_fields |
str_var |
trpd_tbl

Just as values internal to aggregate values are stored in program memory, types internal to aggregate types are kept
in the store. A component is a pointer type referencing a location in the store.

A list is made up of (unnamed) variables. The lst_elem component of a list type is a type representing all the
variables contained in all the lists in the type. For example, part of the code for the bang operator is as follows,
where dx is the dereferenced operand.

type_case dx of {
list: {

abstract {
return type(dx).lst_elem
}

actions
}

...
}

This code fragment indicates that, if the argument to bang is in a list type, bang returns some variable from some list
in that type. In the type realm, bang returns a basic pointer type.

The set_elem component of a set type is similar. The locations of a set never ‘‘escape’’ as variables. That is, it
is not possible to assign to an element of a set. This is reflected in the fact that a set_elem is always used as the
index to the store and is never assigned to another location or returned from an operation. The case in the code from
bang for sets is

set: {
abstract {

return store[type(dx).set_elem]
}

actions
}

Tables types have three components. tbl_key references a location in the store containing the type of any possi-
ble key in any table in the table type. tbl_val references a location containing the type of any possible value in any
table in the table type. tbl_dflt references a location containing the type of any possible default value for any table in
the table type. Only tbl_val corresponds to a variable in Icon. The others must appear as indexes into the store.

Record types are implemented with a location in the store for each field, but these locations cannot be accessed
separately in the type computations of RTL. These are only needed separately during record creation and field refer-
ence, which are handled as special cases in the compiler. There is an RTL component name, all_fields, which is a
composite type and includes the pointer types for each of the fields of a record type.

Substring trapped variables are implemented as aggregate values. For this reason, they need aggregate types to
describe them. The part of the aggregate of interest in type inference is the reference to the underlying variable.
This is reflected in the one component of these types, str_var. It is a reference to a location in the store containing
the pointer types of the underlying the variables that are ‘‘trapped’’. str_var is only used as an index into the store;
it is never exported from an operation.

Similarly table-element trapped variables need aggregate types to implement them. They have one component,
trpd_tbl, referencing a location in the store containing the type of the underlying table. The key type is not kept
separately in the trapped variable type; it must be immediately added to the table when a table-element trapped
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variable type is created. This pessimistically assumes that the key type will eventually be put in the table, but saves a
component in the trapped variable for the key. trpd_tbl is only used as an index into the store; it is never exported
from an operation.

The type computation, new, indicates that an invocation of the operation being implemented creates a new
instance of a value in the specified aggregate type. For example, the implementation of the list function is

function{1} list(size, initial)
abstract {

return new list(type(initial))
}

actions
end

The type arguments to the new computation specify the initial values for the components of the aggregate. The table
type is the only one that contains multiple components. (Note that record constructors are created during translation
and are not specified via RTL.) Table components must be given in the order: tbl_key, tbl_val, and tbl_dflt.

In the type system for a given program, a aggregate type is partitioned into several sub-types (these sub-types
are only distinguished during type inference, not at run time). One of these sub-types is allocated for every easily
recognized use of an operation that creates a new value for the aggregate type. Thus, the following Icon program
has two list sub-types: one for each invocation of list.

procedure main()
local x

x := list(1, list(100))
end

Two operations are available for combining types. Union is denoted by the operator ‘++’ and intersection is
denoted by the operator ‘∗∗’. Intersection has the higher precedence. These operations interpret types as sets of
values. However, because types may be infinite, these sets are treated symbolically.

4. C Extensions

The C code included using the declare, body, and inline actions may contain several constructs beyond those of
standard C. There are five categories of C extensions: access to interface variables, declarations, type
conversions/type checks, signaling run-time errors, and return statements.

In addition to their use in the body of an operation, the conversions and type checks, and declaration extensions
may be used in ordinary C functions that are put through rtt.

4.1 Interface Variables

Interface variables include parameters, the identifier for length of the variable part of an argument list, and the
special variable result. Unconverted parameters, converted parameters with Icon types, and converted parameters
with the internal types tmp_string and tmp_cset are descriptors and within the C code have the type struct
descrip. Converted parameters with the internal type of C_integer have some signed integer type within the C
code, but exactly which C integer type varies between systems. This type has been set up using a typedef in one of
the header files automatically included by rtt, so it is available for use in declarations in C code. Converted parame-
ters with the internal type of C_double have the type double within the C code. Converted parameters of the type
C_string have the type char ∗. The length of the variable part of a argument list has the type int within the C code.

result is a special descriptor variable. Under some circumstances it is more efficient to construct a return value
in this descriptor than to use other methods. See Section 5 for details.
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4.2 Declarations

The extension to declarations consists of a new storage class specifier, tended (register is an example of an
existing storage class specifier). Understanding its use requires some knowledge of Icon storage management. Only
a brief description of storage management is given here; see [5] for details.

Icon values are represented by descriptors. A descriptor contains both type information and value information.
For large values (everything other than integers and the null value) the descriptor only contains a pointer to the
value, which resides elsewhere. When such a value is dynamically created, memory for it is allocated from one of
several memory regions. Strings are allocated from the string region. All other relocatable values are allocated from
the block region. The only non-relocatable values are co-expression stacks and co-expression activation blocks. On
some systems non-relocatable values are allocated in the static region. On other systems there is no static region and
these values are allocated using the C malloc() function.

When a storage request is made to a region and there is not enough room in that region, a garbage collection
occurs. All reachable values for each region are located. Values in the string and block regions are moved into a
contiguous area at the bottom of the region, creating (hopefully) free space at the end of the region. Unreachable
co-expression stacks and activator blocks are ‘‘freed’’. The garbage collector must be able to recognize and save all
values that might be referenced after the garbage collection and it must be able to find and update all pointers to the
relocated values. Operation arguments that contain pointers into one of these regions can always be found by gar-
bage collection. The implementations of many operations need other descriptors or pointers into memory regions.
The tended storage class identifies those descriptors and pointers that may have live values when a garbage collec-
tion could occur (that is, when a memory allocation is performed).

A descriptor is implemented as a C struct named descrip, so an example of a tended descriptor declaration is

tended struct descrip d;

Blocks are also implemented as C structs. The following list illustrates the types of block pointers that may be
tended.

tended struct b_real ∗bp;
tended struct b_cset ∗bp;
tended struct b_file ∗bp;
tended struct b_proc ∗bp;
tended struct b_list ∗bp;
tended struct b_lelem ∗bp;
tended struct b_table ∗bp;
tended struct b_telem ∗bp;
tended struct b_set ∗bp;
tended struct b_selem ∗bp;
tended struct b_slots ∗bp;
tended struct b_record ∗bp;
tended struct b_tvkywd ∗bp;
tended struct b_tvsubs ∗bp;
tended struct b_tvtbl ∗bp;
tended struct b_refresh ∗bp;
tended struct b_coexpr ∗cp;

Alternatively, a union pointer can be used to tend a pointer to any kind of block.

tended union block ∗bp;

Character pointers may also be tended. However, garbage collection needs a length associated with a pointer
into the string region. Unlike values in the block region, the strings themselves do not have a length stored with
them. Garbage collection treats a tended character pointer as a zero-length string (see cnv:C_string for an excep-
tion). These character pointers are almost always pointers into some string, so garbage collection effectively treats
them as zero-length substrings of the strings. The string as a whole must be tended by some descriptor so that it is
preserved. The purpose of tending a character pointer is to insure that the pointer is relocated with the string it points
into. An example is
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tended char ∗s1, ∗s2;

Tended arrays are not supported. tended may only be used with variables of local scope. tended and register
are mutually exclusive. If no initial value is given, one is supplied that is consistent with garbage collection.

4.3 Type Conversions/Type Checks

Some conditional expressions have been added to C. These are based on type checks in the type specification
part of interface portion of RTL.

is: type-name ( source )
cnv: dest-type ( source , destination )
def: dest-type ( source , value , destination )

source must be an Icon value, that is, a descriptor. destination must be a variable whose type is consistent with the
conversion. These type checks may appear anywhere a conditional expression is valid in a C program. Note that is,
cvn, and def are reserved words to distinguish them from labels.

The type_case statement may be used in extended C. This statement has the same form as the corresponding
action, but in this context, C code replaces the actions in the type-select clauses.

4.4 Signaling Run-time Errors

runerr() is used for signaling run-time errors. It acts like a function but may take either 1 or 2 arguments. The
first argument is the error number. If the error has an associated value, the second argument is a descriptor contain-
ing that value. runerr() automatically implements error conversion when it is enabled.

4.5 Return Statements

There are four statements for leaving the execution of an operation:

ret-statments ::= return ret-value ; |
suspend ret-value ; |
fail ; |
errorfail ;

The first three are analogous to the corresponding expressions in the Icon language. errorfail acts like fail, but the
compiler assumes it is unreachable when error conversion is disabled. It is used following error functions, such as
irunerr(), that do not automatically implement error conversion. Note that it is not needed after the special construct
runerr().

Return values can be specified in several ways:

ret-value ::= descriptor |
C_integer expression |
C_double expression |
C_string expression |
descript-constructor

descriptor is an expression of type struct descrip. For example

{
tended struct descrip dp;
...
suspend dp;
...

}

Use of C_integer, C_double, or C_string to prefix an expression indicates that the expression evaluates to the
indicated C type and not to a descriptor. When necessary, a descriptor is constructed from the result of the expres-
sion, but when possible the Icon compiler produces code that can use the raw C value (See Section 5). As an exam-
ple, the integer case in the divide operation is simply:
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inline {
return C_integer x / y;
}

Note that a returned C string must not be in a local (dynamic) character array; it must have a global lifetime.

A descript-constructor is an expression that explicitly converts a pointer into a descriptor. It looks like a func-
tion call, but is only valid in a return statement.

descript-constructor ::= string ( length , char-ptr ) |
cset ( block-ptr ) |
real ( block-ptr ) |
file ( block-ptr ) |
procedure ( block-ptr ) |
list ( block-ptr ) |
set ( block-ptr ) |
record ( block-ptr ) |
table ( block-ptr ) |
co_expression ( stack-ptr ) |
tvtbl ( block-ptr ) |
named_var ( descr-ptr ) |
struct_var ( descr-ptr , block-ptr ) |
tvsubs ( descr-ptr , start , len ) |
kywdint ( descr-ptr ) |
kywdpos ( descr-ptr ) |
kywdsubj ( descr-ptr )

The arguments to string are the length of the string and the pointer to the start of the string. block-ptrs are pointers
to blocks of the corresponding types. stack-ptr is a pointer to a co-expression stack. descr-ptr is a pointer to a
descriptor. named_var is used to create a reference to a variable (descriptor) that is not in a block. struct_var is
used to create a reference to a variable that is in a block. The Icon garbage collector works in terms of whole blocks.
It cannot preserve just a single variable in the block, so the descriptor referencing a variable must contain enough
information for the garbage collector to find the start of the block. That is what the block-ptr is for. tvsubs creates a
substring trapped variable for the given descriptor, starting point within the string, and length. kywdint, kywdpos,
and kywdsubj create references to keyword variables.

Note that returning either C_double expression or tvsubs(descr-ptr, start, len) may trigger a garbage collec-
tion.

5. Programming Considerations

In general, an operation can be coded in many ways using RTL. Some codings are obviously better than others,
but details of how the rtt and iconc interact to produce efficient generated code can produce subtle effects.

5.1 The Use of ‘‘Result’’

A person coding an operation for the run-time system can always treat result as if it exists. However, the Icon
compiler tries to minimize the number of locations needed for intermediate results. If the programmer does not
reference result, the compiler knows that the result location of the operation is only written to after all references to
parameters are completed (in the absence of backtracking and resumption), so it may overlap the result location with
a parameter location. Thus not referencing result may result in more space efficient code. On the other hand, it is a
bad idea to explicitly declare a tended descriptor, compute the result value into it, and then return the declared
descriptor. The reason is that returning an ordinary descriptor requires that the value be copied from one descriptor
to another. If result is returned, the translator knows that the value is already where it needs to be and generates no
instructions to do a copy. In addition, there is overhead for having explicitly declared tended descriptors within a
library routine (although the extra overhead is minimal for in-line code). The rule is: if a named location really is
needed in which to compute the result, use result. An example of this occurs in the code for copy when a utility
routine written in standard C is used to make a copy of a list.
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type_case x of {

list:
inline {

if (cplist(&x, &result, (word)1, BlkLoc(x)−>list.size + 1) == Error)
runerr(0);

return result;
}

...

Note that BlkLoc is a macro which accesses the block pointer in a descriptor. It is defined in Icon’s standard header
files.

5.2 Returning C Values Vs. Icon Values

For operations that produce integers or reals, the programmer has a choice of coding the return statement using a
C value or an Icon value. For a returned string, the choice only exists when the string can be represented as a null
terminated string.

In general, a returned C value will have to be converted to a descriptor. However, when the value is immedi-
ately used as an argument to an operation which converts it back to the C value, it is a waste of time and resources
to convert it the descriptor. This frequently happens in arithmetic. If the conversion of the result is explicit, for
example in:

return C_double n + m;

iconc can recognize the conversion and cancel it with the conversion in the operation using the value. This makes
the explicit conversion the better choice. (This optimization is not currently implemented in iconc, but operations
should be coded to take advantage of it when it is implemented.)

5.3 Warnings

rtt does not do type checking on general C expressions. It passes these on to the C compiler. By default, rtt pro-
duces #line directives in its output relating that code back to the source from which it came, but this process is not
perfect. Thus errors in type compatibility detected by the C compiler may appear somewhat removed from the posi-
tion in the original source.

In the presence of tended variables, rtt must produce untending code at function return sites. If a return occurs
in a macro, that macro must be expanded by rtt’s preprocessor. It must not be in a header file that is only expanded
when the C compiler is run. Failure to follow this rule may result in run-time failures that are difficult to diagnose.

When generating code for the compiler run-time system, rtt splits operation code into separate files C files.
These operations do not have access to static declarations in the original source file. Such static declarations must be
avoided.

rtt supports ANSI standard C. On some systems, system header files make use of extensions to C. For portabil-
ity, system header files should be included by the C compiler, not rtt.
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Appendix A: RTL Grammar

documented-definition ::= [ C-string-literal ] operation-definition

operation-definition ::= function result-seq identifier ( [ param-list ] ) [ declare ] actions end |
operator result-seq op identifier ( [ param-list ] ) [ declare ] actions end |
keyword result-seq identifier actions end |
keyword result-seq identifier constant key-const end

result-seq ::= { length , length [ + ] } |
{ length [ + ] } |
{ }

length ::= integer | ∗

param-list ::= param { , param }∗ [ [ identifier ] ]

param ::= identifier |
underef identifier |
underef identifier −> identifier

declare ::= declare { C declarations }

key-const ::= string-literal | cset-literal | integer-literal | real-literal

actions ::= { action }+

action ::= checking-conversions |
detail-code |
abstract { type-computations } |
runerr( msg_number [ , descriptor ] ) [ ; ]
{ [ actions ] }

checking-conversions ::= if type-check then action |
if type-check then action else action |
type_case descriptor of { { type-select }+ }
arith_case ( descriptor , descriptor ) of { arith-selections }
len_case identifier of { { integer : action }+ default : action }

type-select ::= { type-name : }+ action |
default : action

arith-selections ::= C_integer: action integer: action C_double: action

type-check ::= simple-check { && simple-check }∗ |
! simple-check

simple-check ::= is: type-name ( descriptor ) |
cnv: dest-type ( source [ , destination ] ) |
def: dest-type ( source , value [ , destination ] )
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dest-type ::= cset |
integer |
real |
string |
C_integer |
C_double |
C_string |
(exact)integer |
(exact)C_integer
tmp_string |
tmp_cset

type-name ::= empty_type |
icon-type |
variable-ref

icon-type ::= null |
string |
cset |
integer |
real |
file |
list |
set |
table |
record |
procedure |
co_expression

variable-ref ::= variable |
tvsubs |
tvtbl |
kywdint |
kywdpos |
kywdsubj

detail-code ::= body { extended-C } |
inline { extended-C }

type-computations ::= { store [ type ] = type [ ; ] }∗ [ return type [ ; ] ]

type ::= type-name |
type ( variable ) |
component-ref |
new type-name ( type { , type }∗ ) |
store[ type ] |
type ++ type |
type ∗∗ type |
( type )

component-ref ::= type . component-name
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component-name ::= lst_elem |
set_elem |
tbl_key |
tbl_val |
tbl_dflt |
all_fields |
str_var |
trpd_tbl
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Appendix B: Extensions to C

Declarations:

tended struct descrip d;
tended struct b_real ∗bp;
tended struct b_cset ∗bp;
tended struct b_file ∗bp;
tended struct b_proc ∗bp;
tended struct b_list ∗bp;
tended struct b_lelem ∗bp;
tended struct b_table ∗bp;
tended struct b_telem ∗bp;
tended struct b_set ∗bp;
tended struct b_selem ∗bp;
tended struct b_slots ∗bp;
tended struct b_record ∗bp;
tended struct b_tvkywd ∗bp;
tended struct b_tvsubs ∗bp;
tended struct b_tvtbl ∗bp;
tended struct b_refresh ∗bp;
tended struct b_coexpr ∗cp;
tended union block ∗bp;
tended char ∗s;

Conditional expressions:

is: type-name ( source )
cnv: dest-type ( source , destination )
def: dest-type ( source , value , destination )

Statements:

type_case descriptor of {
{ { type-name : }+ C-statment }+
[ default: C-statment ]
}

runerr( errnum );
runerr( errnum , descriptor );
return ret-value ;
suspend ret-value ;
fail ;
errorfail ;

Where ret-value is one of:

descriptor
C_integer expression
C_double expression
C_string expression
string ( length , char-ptr )
cset ( block-ptr )
real ( block-ptr )
file ( block-ptr )
procedure ( block-ptr )
list ( block-ptr )
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set ( block-ptr )
record ( block-ptr )
table ( block-ptr )
co_expression ( stack-ptr )
tvtbl ( block-ptr )
named_var ( descr-ptr )
struct_var ( descr-ptr , block-ptr )
tvsub ( descr-ptr , start , len )
kywdint ( descr-ptr )
kywdpos ( descr-ptr )
kywdsubj ( descr-ptr )
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Appendix C: Reserved Words beyond those of ANSI Standard C

C_integer is not ‘‘fully’’ reserved because it needs to be defined with a typedef to the C integer type used to
implement Icon integers. This ability is needed to be able to write system independent code. C_double and
C_string are treated the same for consistency, but typedefs are not actually needed for them.

C_double (may be defined with a typedef)
C_integer (may be defined with a typedef)
C_string (may be defined with a typedef)
cnv
def
deref
errorfail
fail
function
is
keyword
operator
runerr
suspend
tended
type_case

In addition, identifiers starting with r_ are reserved for variables generated by the translator and should not be used
in RTL code.
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Appendix D: Using rtt

rtt is invoked with the command

rtt { option }∗ { file }+

One or more file names must be specified. If a name lacks the .r suffix, it is appended. A file name of − indicates
standard input; when needed, the name stdin is used for constructing an output file name.

The rtt options are

−C − Retain comments and all white space; only effective with −E

−D identifier [ = [ text ] ] − Predefine an identifier for the preprocessor.

−E − Run only the preprocessor, sending the result to standard output.

−I path − Use path as one of the standard locations when searching for header files.
Because rtt does not usually processes system header files, this preprocessor
option is not generally used; see the −r option.

−P − Suppress #line directives in the output. The default, both with and without
−E, is to place #line directives in the output. These directives relate the code
back to its source location in the input file.

−U identifier − Undefine an identifier that is predefined in the preprocessor.

−d file − Use file as the data base. A suffix of .db is added if it is missing. The standard
data base is rt.db.

−r path − Use path to locate the C header files for the Icon system. rtt locates header
files by appending ../src/h/header-file to path; path must end with /. The
default path is established when rtt is compiled; see [6]. −r is useful for cross
compiling the run-time system for another machine.

−t name − Treat name as a typedef name while parsing the .r files (alternately a dummy
typedef can be put in h/grttin.h). This is useful when the actual typedef
is in a system include file that is only included by the C compiler and not rtt.

−x − Produce code for iconx and don’t update a data base; the default is to produce
code for iconc.

Input files are translated into standard C. When translating a file for the interpreter, the C code is put in a file
whose name is constructed by prepending x to the input file name and replacing the .r suffix by .c. No other files are
created or updated for the interpreter.

When translating a file for the compiler, the C code is placed in several files (this allows more selective linking
of run-time operations with compiled programs). Each operation is placed in a separate file whose name is generated
by rtt. Any non-operation code is placed in a file whose name is constructed by replacing the .r suffix of the input
file name by .c (note that this does not conflict with the output file created for the interpreter; it has an x prepended).
For the compiler, rtt also places information about operations the data base. In addition, dependency information
relating generated files names to the corresponding sources files is also stored in the data base (see Appendix E).

If the data base is non-existent, it is created. If an operation that already exists in the data base is retranslated, its
entry in the data base is updated. rtt generates a unique prefix for every operation. The name of a C function
implementing an operation is created by prepending a one-character operation code (this indicates whether the
operation is a function, keyword or operator) and the unique prefix to the operation name. For example, the Icon
function write() might be implemented by the C function F1d_write. Every body function for an operation is
assigned a third prefix character to distinguish it. These generated names help prevent conflicts with the names of
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existing C library functions. The prefixes are also used in creating the C file names; the C function for write() is put
in the file f_1d.c. If an operation is retranslated, the original prefix is re-used.

When translating RTL for the compiler, rtt produces two files containing lists of file names. rttcur.lst is a list of
output files created in the current execution. rttfull.lst is a list of all output files listed in the data base; that is, all files
produced since the data base was created. rttfull.lst excludes files that contain no storage definitions; that is, those
that only contain prototypes, typedefs, and externs. Both lists consists names without suffixes. See
runtime/Makefile for an example of how these lists are used to create and maintain an Icon compiler run-time
library.

− 27 −



Appendix E: Data Base Format

The data base is stored externally as a text file. This data base is designed to be easily processed by programs.
The format of the data base is not designed for human interpretation, but a human being can read it with only
minimal difficulty. The data base contains some redundant information where the information is more convenient to
store than recompute.

The data base begins with some brief version information and contains six sections: types, components,
functions, operators, keywords, and dependencies. Each section starts with a header consisting of the corresponding
name and ends with $endsect. The type section relates data base type codes to type names. The codes consist of T
followed by an integer. The entries in this section consist of the code and type name separated by a colon. The
component section is similar; it relates type component codes to component names. These codes begin with C.

The next three sections contain implementation information for operations. The entries in these sections have the
same format, except that each entry in the operators section has the operator symbol prepended. The implementation
entries are stored in alphabetical order within each section.

Operation Entries

The following grammar describes the format of an implementation entry (without the prepended operator
symbol for entries in the operator section). Most of this grammar closely reflects the grammar for RTL, except that
much of the information is in prefix format. C-style comments are used in the grammar to explain non-terminals for
otherwise obscure codes. Productions marked with † do not contain embedded white space.

implementation ::= header description tended-vars nontended-vars action $end

In addition to information obtained from the implementation of the operation, the header contains an assigned
prefix that is unique within the type of operation (i.e. within functions, operators, or keywords).

header ::= name prefix params result-seq return-stms explicit-result

params includes the number of parameters to the operation followed by a list of codes indicating whether each
parameter is dereferenced and/or undereferenced and indicating, by the presence or absence of a trailing v, whether
the last parameter represents the tail of a variable length argument list.

params ::= †num-params ( [ param-ind { , param-ind }∗ [ v ] ] )

num-params ::= integer

param-ind ::= u | /∗ undereferenced ∗/
d | /∗ dereferenced ∗/
du /∗ both dereferenced and undereferenced ∗/

result-seq is the same as the production in RTL, except that there is never just one bound (though there may be zero)
and ∗ is never used in the lower bound.

result-seq ::= †{ [ integer , length [ + ] ] }

length ::= integer | ∗

The operation description is taken directly from the description in the RTL code. If no description is given, the
empty string is used.

description ::= string-literal

return-stms is a sequence of four codes indicating whether the operation contains fail, return, suspend, or
errorfail (possibly an implicit errorfail for a runerr) statements. An underscore in a position indicates that the
corresponding statement is not used in the operation.

return-stms ::= †fail return suspend errorfail
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fail ::= f | _

return ::= r | _

suspend ::= s | _

errorfail ::= e | _

explicit-result indicates whether the operation explicitly references the result location. It is either true, t, or false, f.

explicit-result ::= t | f

tended-vars is the number of tended variables from the declare clause followed by a list of types and initial
values for those variables. A ptr-type of ∗ indicates the union block type. tend-init of nil indicates no explicit initial
value.

tended-vars ::= num-tended { tended-var }∗

num-tended ::= integer

tended-var ::= tend-type tend-init

tend-type ::= desc | str | blkptr ptr-type

ptr-type ::= ∗ |
b_real |
b_cset |
b_file |
b_proc |
b_list |
b_lelem |
b_table |
b_telem |
b_set |
b_selem |
b_slots |
b_record |
b_tvkywd |
b_tvsubs |
b_tvtbl |
b_refresh |
b_coexpr

tend-init ::= C-code | nil

nontended-vars is the number of non-tended variables from the declare clause followed by a list of the variable
names and their declarations.

nontended-vars ::= num-vars { nontended-var }∗

num-vars ::= integer

nontended-var ::= identifier C-declaration

C-declaration ::= C-code
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action is very similar to that nonterminal in the RTL syntax. nil indicates no code. const indicates a keyword
constant. if1 indicates an if-then action. if2 indicates and if-then-else action. case1 indicates a type_case action
with no default clause. case2 indicates a type_case action with a default clause. acase indicates and arith_case
action. lcase indicates a len_case action. abstr indicates a abstract action. block indicates in-line C code. It
includes an indication of the tended locals needed by the code.

call indicates a call to a run-time library function implementing a body action. A third prefix character is
assigned to each block to distinguish its function from that of other blocks and from the most general function for
the operation. Other nonterminals in the production are described below.

err1 indicates a runerr with no value. err2 indicates a runerr with a value. lst indicates a sequence of actions.

action ::= nil |
const type-code literal |
if1 type-check action |
if2 type-check action action |
tcase1 variable num_cases { typ-case }∗ |
tcase2 variable num_cases { typ-case }∗ default |
acase variable variable action action action |
lcase num-cases { length-selection action }∗ default |
abstr [ side-effects ] [return-type ]
block num-local-tended { local-tend-type }∗ C-code
call third-prefix return-value exit-codes use-result num-string-bufs num-cset-bufs num-args

{ arg-decl arg }∗
err1 integer |
err2 integer variable |
lst action action

literal ::= string-literal | cset-literal | integer-literal | real-literal

num-cases ::= integer

typ-case ::= num-types { type-code }+ action

num-types ::= integer

length-selection ::= integer

default ::= action

type-check corresponds to that nonterminal in the RTL syntax. A suffix of 1 on the conversions indicates no
explicit destination and a suffix of 2 indicates the presence of an explicit destination.

type-check ::= cnv1 type-code source |
cnv2 type-code source destination |
def1 type-code source default-val |
def2 type-code source default-val destination |
is type-code variable |
! type-check |
&& type-check type-check

source ::= variable

destination ::= C-code

default-val ::= C-code

The symbol table for an operation consists of the parameters, and both the tended and non-tended variables from the
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declare clause of the operation. The symbol table is ordered by the order of appearance of the variables in the
operation’s entry in the data base. This ordering is used to determine the symbol table indexes. The variables are
identified in the body of the operation entry by these indexes, with a special index of r indicating the special variable
result. Subscripting is introduced by the prefix operator [.

variable ::= symbol-table-index |
[ symbol-table-index subscripting-index

symbol-table-index ::= integer | r

subscripting-index ::= integer

A block of in-line C code is prepended with a list of the types of tended variables that must be allocated for the
code. Any initializations are in the C code. These variables are referenced in the C code by positional index.

local-tend-type ::= desc | str | blkptr

A call to a body function contains information describing the interface to the function. In the standard calling
convention, the function returns a signal and the result is return through a pointer to a descriptor. However, if only
one signal is possible, a body function returns no signal. If, in addition, the result is either a C integer or a C double,
the result is returned directly as the result of the function.

return-value ::= i | /∗ integer ∗/
d | /∗ double ∗/
n | /∗ no value ∗/
s /∗ signal ∗/

It is possible to fall through the end of a body function without ever encountering a return, suspend, or fail. This is
reflected in the exit-codes for the body function.

exit-codes ::= †fail return suspend errorfail fall-through

fall-through ::= t | _

use-result indicates whether a pointer to a result descriptor must be passed to the function. It is either true, t, or
false, f.

use-result ::= t | f

If the body function performs conversions to temporary strings or csets and the converted values must outlive the
body function (they cannot outlive the operation, though) buffers must be allocated and passed to the body function.
num-string-bufs and num-cset-bufs indicate the number of buffers needed.

num-string-bufs ::= integer

num-cset-bufs ::= integer

Other arguments to the body function are given explicitly. Declarations are given for the parameters for use in
generating a prototype for the function.

arg-decl ::= C-code

arg ::= C-code

In RTL, side effects in the abstract clause are specified by expressions of the form store[type] = type. In the data
base, they are represented using = as a prefix operator followed by the two types. The return type from an abstract
clause is stored in the data base without the return.

side-effects ::= side-effect | lst side-effects side-effect

side-effect ::= = variable-type value-type
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variable-type ::= type

value-type ::= type

return-type ::= type

The type nonterminal corresponds to the same one in the RTL syntax. typ indicates a type-name from RTL. The
production vartyp variable comes from the type(variable) production of the RTL syntax. The new production
differs in that the number of arguments is given explicitly rather than being indicated by parentheses. Other
productions are simple prefix forms of the ones from RTL.

type ::= typ type-code |
vartyp variable |
. type component-code |
new type-code num-args { type }+ |
store type |
++ type type |
∗∗ type type

component-code ::= †Cinteger | /∗ see component section of data base ∗/
f /∗ all_fields ∗/

type-code is used in many productions. It is clear from the corresponding RTL constructs which codes are valid in
which contexts.

type-code ::= †Tinteger | /∗ see type section of data base ∗/
e | /∗ empty type ∗/
v | /∗ variable ∗/
ci | /∗ C integer ∗/
cd | /∗ C double ∗/
cs | /∗ C string ∗/
ei | /∗ exact integer ∗/
eci | /∗ exact C integer ∗/
ts | /∗ temp string ∗/
tc | /∗ temp cset ∗/
d | /∗ return descriptor ∗/
nv | /∗ return named variable ∗/
sv | /∗ return structure variable ∗/
rn /∗ return nothing explicitly ∗/

C-code consists of text between the delimiters $c and $e. This text contains some special constructs all of
which are introduced with $. Other text is assumed to be ordinary C code. Note that some special constructs contain
sub-fields that are themselves C code. Therefore, $c-$e pairs may be properly nested.

$r indicates a non-modifying reference to a variable in the symbol table for the operation. $m indicates a
modifying reference. $t indicates a reference to a tended variable local to the in-line block of code. $r and $m can
be modified by an optional d. This is used with tended pointers to indicate that the entire descriptor must be
referenced rather than just the pointer in the vword. $sb and $cb refer to string buffers and cset buffers
respectively; each occurrence indicates a different buffer that needs to be allocated. $ret, $susp, and $fail represent
return, suspend, and fail statements respectively. $efail represents the errorfail statement.

Several constructs are distinguished by special syntax so the peephole optimizer can locate them. $goto
represents a C goto statement. $cgoto represents a conditional goto; the condition is presented as a piece of C
code. $lbl introduces a label. ${ and $} are brackets. They are distinguished so the peephole optimizer does not
eliminate a right bracket but leaves the left bracket when the end of a block is unreachable.
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special-constructs ::= †$r [ d ] symbol-table-index |
†$m [ d ] symbol-table-index |
†$t symbol-table-index |
$sb |
$cb |
$ret ret-value |
$susp ret-value |
$fail |
$efail |
$goto label |
$cgoto C-code label |
$lbl label |
${ |
$}

ret-value corresponds to the same non-terminal in the RTL syntax. A uniform representation is used in the data base
with the number of subexpressions explicitly given.

ret-value ::= type-code num-subexpr { C-code }+

Labels are represented as integers; C identifiers must be allocated for those that are not optimized away.

label ::= integer

Dependencies

The final section in the data base is the dependencies section. It has an entry for each RTL source file. Each
entry starts with the source file name and is followed by a list of C files that depend on the RTL source file. The
elements of the list are separated by white space. Each list ends with $end.
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Appendix F: Adding Types to Icon

This Appendix describes how to add new types to Icon. It deals with simple types, aggregate types whose values
contain other Icon values, and keywords that are variables. These are the kinds of types that are most likely to be
added to the language. Executable types such as procedures and co-expressions are beyond the scope of this
appendix as are types that require special representations and variable types that have special dereferencing
semantics.

The Implementation of Icon Types

An Icon value is implemented as a two-word descriptor containing type information and value information [5].
The first word of a descriptor is the dword. For the types discussed here, the dword contains a unique code that
identifies the type (see [5] for types that have additional information in the dword). The second word of the
descriptor is the vword; it contains the actual value or a reference to the value.

Actual values that are too large to fit in one word are usually put in the block region. This region is controlled by
a storage management system that includes a garbage collector. The garbage collector is driven by information in
arrays indexed using the type codes associated with the blocks. The block region contains values for both simple
and aggregate types.

There are several other parts of the run-time system besides the garbage collector that need information about
Icon types. Some are Icon operations such as the type() function, while others are automaticly invoked features
such as error trace back. These are described in more detail below. Types, of course, typically have operations
associated with them that create and use values of the type.

The Type Specification System

Icon types are used in several places in RTL and new types must be added to this language. These uses include
type checking constructs, return/suspend statements, and abstract type computations. In addition, the Icon
compiler needs information about types in order to perform type inferencing. These requirements are satisfied with a
type specification system.

This system is a simple declarative language for naming types and describing some of their properties.
Information from the type specification system is incorporated in rtt and in iconc when they are built.

All types specified by the system may be used in the RTL is and type_case constructs. They may also be used
in abstract type computations. Aggregate types may be used in a new type expression in an abstract type
computation. A type specification may optionally indicate that RTL supports a special form of return/suspend
statement that constructs a return value, in the form of a full descriptor, from a C value for the vword of the
descriptor.

Type specifications are in the file common/typespec.txt. Comments in the file start with # and continue to the
end of the line. This file is translated into a C header file by the program typespec. This is not part of the normal
Icon build process; entries at the end of common/Makefile must be uncommented if typespec.txt is updated.

A type definition in the specification system has the form:

type-def ::= identifier opt-abrv : kind opt-return

where identifier is the name of the type and opt-abrv is an optional abbreviation for the type name. The abbreviation
has the form

opt-abrv ::= nil |
{ identifier }

The abbreviation is used in tracing type inferencing and other places where a compact notation is desired. If no
abbreviation is given, the full type name is used.

There are three kinds of types: simple, aggregate, and variable. Their syntax and usage are described in
separate sections below. opt-return indicates optional RTL return/suspend support for the type. The four types of
vwords supported by this construct are introduced below as needed. A complete grammar for the specification
language is given near the end of this appendix.
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Simple Value Types

Types with a kind clause of simple are simple in the sense that values of the type do not have components that
contain other Icon values. These types may otherwise have sophisticated semantics.

There are three ways to implement the values of a type: encode them as C integers (these are guaranteed to be at
least 32 bits long), implement them as blocks in the block region, or implement them in storage allocated using
malloc() (in theory values can also be put in the string region, but it is only well suited for Icon strings; descriptors
pointing into this region must have a special form). The choice of implementation determines the type of C value
stored in the vword of the descriptor representing the Icon value.

The dword of a descriptor for one of these types contains a fixed code. It consists of a small integer type code
along with flags describing characteristics of the descriptor. The small integer is represented by a preprocessor
constant defined in h/rmacros.h. Its name is created by capitalizing the first character of the type name and
prepending T_. For example, the definition of the type code for the cset type is

#define T_Cset 4

These definitions must be manually added to h/rmacros.h and the constant MaxType must be updated if the integer
exceeds the current value of MaxType.

There are corresponding constants with names beginning with D_ that include both the T_ type code and the
flags required for the type. For the types dealt with here, the flags in the constant D_Typecode must always be
included, and if the vword points to storage under control of the garbage collector, the flag F_Ptr must be included.
The definition of the D_ constant for the cset type is

#define D_Cset (T_Cset | D_Typecode | F_Ptr)

These must also be manually added to h/rmacros.h.

Three of the opt-return type specification clauses are useful for implementing value types (the fourth is used for
variable types; see below). These clauses add return/suspend statements to RTL of the form

return type−name(expr)
suspend type−name(expr)

type-name is the identifier naming the type. It determines the D_ constant used for the dword of the operation’s
result descriptor. expr is a C expression whose value is placed in the vword of the result. The particular opt-return
clause chosen determines how the C value is stored in the vword. The clauses are

return C_integer
return block_pointer
return char_pointer

C_integer indicates that the value is cast to a C integer; see the definition of word in h/typedefs.h for the exact C
type used. block_pointer indicates that the value is cast to (union block ∗); this is usually used for pointers to
blocks in the block region. char_pointer indicates that the value is cast to (char ∗). Note, only descriptors of a
special form may point into the string region; the storage used with return char_pointer must reside elsewhere.

As an example, the type specification for the cset type is

cset{c}: simple
return block_pointer

Suppose a variable cp within an Icon operation written in RTL points to a cset block. Then the statement

return cset(cp);

constructs a result descriptor for the cset and returns it.

For a type with an associated block, a declaration for the block structure must be added to h/rstructs.h. By
convention, the structure name is created by prepending b_ to the type name. The first word of a block must contain
its T_ type code. If different instances of the block may vary in size, the second word of the block must contain this
size in bytes. The structure name of the new block must be added to the union block declaration in h/rstructs.h.
An allocation routine for the block must be added to runtime/ralc.r. The macros AlcFixBlk() and AlcVarBlk() are
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useful in such routines; see other allocation routines for guidelines.

There are five arrays in runtime/rmemmgt.r that must be updated for all types. These are used by garbage
collection and diagnostic routines. The array bsizes contains the sizes of the blocks for corresponding T_ type
codes. An entry of −1 indicates a type for which there is no block. An entry of 0 indicates a block whose second
word contains the size.

This section assumes that values of simple types implemented in the block region consist of single blocks
containing no descriptors and no pointers to other blocks. Therefore for simple types, the arrays firstd, firstp, and
ptrno, contain 0 for types with blocks and −1 for types with no blocks. More complicated implementations are
discussed in the next section.

The array blkname contains strings used to identify types for use by debugging routines.

Storage for the values of a type usually should be allocated in the block region. However, for interfaces to
packages written in C, it may be necessary to use storage that is not relocated by garbage collection. While it is
possible to place types allocated with malloc() under control of garbage collection, this is complicated and beyond
the scope of this appendix. See the implementation of co-expressions for an example of how this can be done.
Alternatives are to ignore the storage leakage caused by unfreed storage or provide an Icon function, along the lines
of close(), that explicitly frees storage associated with a value.

Three built-in functions must be updated to handle any new type. copy() and type() are in the file
runtime/fmisc.r. image() is updated by changing the support routine getimage() in the file runtime/rmisc.r. If a
type has a logical notion of size, then the size operator in runtime/omisc.r must be updated.

Several other support routines must also be updated. outimage() in the file runtime/rmisc.r produces the
images of values for diagnostics and tracing. order() determines the collating sequence between types, anycmp()
determines the collating sequence between any two values, and equiv() determines whether two values are
equivalent (it is only updated for types, such as cset, for which a simple descriptor comparison is not adequate to
determine equivalence). These routines are in the file runtime/rcomp.r.

At the end of this appendix is a check list of files that must be updated when a type is added to Icon.

Aggregate Types

Aggregate types have values with components that are other Icon values. The aggregate type specification
provides more sophisticated RTL abstract type computations for the type. These in turn allow iconc to produce code
that is better optimized.

For interpreter-only implementations, abstract type computations are not used and are optional in RTL code; the
simple type specification may be used in that case. However, the discussion later in this section on block layout and
on the storage management arrays still applies.

The kind clause of an aggregate type specification establishes and names abstract components for the type. The
clause is of the form

kind ::= aggregate(component, ... )

component ::= identifier |
var identifier opt−abrv

Note, the opt-return clauses discussed in the previous section may be also used with aggregate types.

The aggregate specification can be thought of as establishing a sort of ‘‘abstract type record’’ whose fields, the
abstract components, summarize the type information of the actual components of values in the type. Most types are
give one abstract component. For example, the set type has the specification

set{S}: aggregate(set_elem)
return block_pointer

where set_elem represents all the elements of a set.

Abstract components can be accessed using dot notation, and the new abstract type computation can be used to
establish a new subtype of the type (subtypes only exist internally in the compiler and have no existence at the Icon
language level). A subtype can be returned by the operation and has its own component types independent of
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subtypes created elsewhere. The abstract type computation for Icon set intersection, the ∗∗ operator, uses both dot
notation and a new expression. It performs intersection in the abstract type realm. x and y are the parameters of the
operation and may contain different subtypes of the set type:

return new set(store[type(x).set_elem] ∗∗ store[type(y).set_elem])

(Note that the components can be thought of as references to information contained in a type store − thus the
indexing notation.)

Components that represent Icon variables are preceded by var and may be given abbreviations for use in tracing
type inferencing. For example, the list type has the specification

list{L}: aggregate(var lst_elem{LE})
return block_pointer

These components may be returned from operations and represent the component as a variable. For example, the
abstract type computation for element generation operator when applied to a list is

return type(dx).lst_elem

where dx is the parameter of the operation. When a value rather than a variable is returned, the component must be
‘‘dereferenced’’ by indexing into the store, as in the abstract type computations of get():

return store[type(x).lst_elem]

Non-variable components must always be dereferenced.

For types, such as tables, that contain Icon values serving different purposes, it may be effective to establish
several abstract components.

Aggregate types are implemented using blocks that contain descriptors, and they may be implemented using
several kinds of blocks, with some blocks having pointers to others. When there are multiple blocks, there is always
a header block that uses the T_ code of the type. Other blocks are given internal type codes; these codes must be
added to h/rmacros.h and entries must be made in the storage management arrays.

Any descriptors in a block must be at the end. The type’s entry in the firstd array is the location of the first
descriptor. Any block pointers in the block must be contiguous. The type’s entry in the firstp array is the location of
the first pointer and its entry in the ptrno array is the number of pointers.

Keyword Variable Types

Keyword variable types have a type specification with a kind clause of the form

kind ::= variable var−type−spec

var−type−spec ::= initially type |
always type

type ::= type−name |
type ++ type−name

type−name ::= identifier

The compiler must be able to infer the types of values stored in a keyword variable. The initially option causes
the keyword variable type to be treated as a set of global variables, each initialized to the given type specified by the
type clause. The always option indicates that the keyword always contains values of the given type and the
compiler does no actual inference on it. type may be the union of several types; this indicates that the type is
uncertain and may be any of the ones specified. A special type-name, any_value, indicates complete uncertainty.
The clause

always any_value

is a correct, although entirely imprecise, description of any keyword variable.
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This appendix assumes that keyword variables are implemented by global descriptors (though other techniques
are possible). The opt-return clause of the form

return descriptor_pointer

is useful for implementing keyword variables. The vword of a result descriptor from a corresponding
return/suspend expression is of type struct descrip ∗.

Some of the same files must be updated for variable types as for value types. Type codes must be added to
h/rmacros.h. The D_ code must have the F_Var flag set, for example:

#define D_Kywdint (T_Kywdint | D_Typecode | F_Ptr | F_Var)

The storage management tables and the outimage() routine also must be updated.

Other updates are unique to variable types. The global descriptor must be established. runtime/data.r contains
its declaration, icon_init() in runtime/init.r initializes the descriptor, and h/rexterns.h contains an extern for it.
Dereferencing must be updated; it is performed by deref() in runtime/cnv.r. Assignment must be updated; it is
handled by the macro GeneralAsgn() in runtime/oasgn.r. The name() function is updated by changing the
support routine get_name() in runtime/rdebug.r. The variable() function is updated by changing the support
routine getvar() in runtime/rmisc.r.

The keyword itself goes in runtime/keyword.r. For example, &random is of type kywdint and is implemented
by the descriptor kywd_ran; its definition is

keyword{1} random
abstract {

return kywdint
}

inline {
return kywdint(&kywd_ran);
}

end

For the interpreter, the keyword name must be added to icont/key_text.c. These names are in alphabetical order.

If the descriptor may contain a value under control of garbage collection, the support routine collect() in
runtime/rmemmgt.r must be updated. postqual() preserves references to the string region; the macro Qual() is
used to check for such references. markblock() preserves references to blocks; the macro Pointer() is used to check
for such references.

The Complete Grammar for the Type Specification System

type−def ::= identifier opt−abrv : kind opt−return

kind ::= simple |
aggregate(component, ... ) |
variable var−type−spec

component ::= identifier |
var identifier opt−abrv

var−type−spec ::= initially type |
always type

type ::= type−name |
type ++ type−name

type−name ::= identifier

opt−abrv ::= nil |
{ identifier }
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opt−return ::= nil |
return block_pointer |
return descriptor_pointer |
return char_pointer |
return C_integer

A Check List for Adding Types to Icon

The following check list shows the files that must be updated when adding types to Icon. It is on a separate page
for easy photocoping.
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All Types

` common/typespec.txt − add type specification
` common/Makefile − uncomment entries near the end of the file
` h/rmacros.h − add T_Type macro
` h/rmacros.h − add D_Type macro
` runtime/rmemmgt.r − bsizes table
` runtime/rmemmgt.r − firstd table
` runtime/rmemmgt.r − firstp table
` runtime/rmemmgt.r − ptrno table
` runtime/rmemmgt.r − blkname table
` runtime/rmisc.r − update outimage()

All Value Types

` runtime/fmisc.r − update copy()
` runtime/fmisc.r − update type()
` runtime/rcomp.r − update anycmp()
` runtime/rcomp.r − update order()
` runtime/rcomp.r − update equiv()
` runtime/rmisc.r − update getimage()

Types Implemented In The Block Region

` h/rstructs.h − add declaration for the block structure
` h/rstructs.h − update the union block declaration
` runtime/ralc.r − add an allocation routine

Types With Sizes

` runtime/omisc.r − update size operator

All Keyword Variable Types

` h/rexterns.h − extern for keyword descriptor
` runtime/cnv.r − update deref()
` runtime/data.r − declaration for keyword descriptor
` runtime/init.r − initialize keyword descriptor
` runtime/keyword.r − add keyword declaration
` runtime/oasgn.r − update GeneralAsgn() macro
` runtime/rdebug.r − update get_name()
` runtime/rmisc.r − update getvar()
` icont/key_text.c − add keyword name

Keyword Variables That Must Be Garbage Collected

` runtime/rmemmgt.r − update collect()
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