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Abstract

The design and implementation of FT-SR, a programming language oriented towards

constructing fault-tolerant distributed systems, is described. The language, which is based

on the existing SR language, is unique in that it has been designed to support equally

well any of the programming paradigms that have been developed for this type of system,

including the object/action model, the restartable action paradigm, and the state machine

approach. To do this, the language is designed to support the implementation of systems

modeled as collections of fail-stop atomic objects. Such objects execute operations as

atomic actions except when a failure or series of failures cause underlying implementation

assumptions to be violated; in this case, notification is provided. It is argued that this

model forms a common link among the various paradigms and hence, is a realistic basis

for a language designed to support the construction of systems that use any or all of

these approaches. An example program consisting of a data manager and its associated

stable storage is given; the manager is built using the restartable action paradigm, while

the stable storage is structured using the replicated state machine approach. Finally, an

implementation of the language that uses the x-kernel and runs standalone on a network of

Sun workstations is discussed.
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1 Introduction

Ensuring the dependability of computer systems—that is, that the system delivers services on which

people can rely [Lap91]—is an increasingly important issue. One key aspect of this problem is the

development of techniques and support systems for constructing fault-tolerant distributed programs

that can continue to execute despite the failure of one or more processors in a distributed system. Such

programs are intimately tied to the problem of increasing dependability, since many systems in a variety

of areas ranging from databases to process control are, in fact, fault-tolerant distributed programs of

one kind or another.

Constructing programs of this type is undeniably difficult, which has led to research in a variety

of areas aimed at systematizing and simplifying various aspects of the task. For instance, failure

models have been developed as a means for precisely specifying assumptions made about the possible

effect of failures. Examples of popular failure models include fail-stop [SS83], timing [Cri91], fail-

silent [PVB+88], and Byzantine [LSP82]. Another area has been the development of programming

paradigms, which simplify the development of certain types of fault-tolerant distributed programs

by providing canonical organization techniques and abstractions. Examples of popular programming

paradigms include the object/action model [Gra86], the restartable action paradigm [Lam81], and the

replicated state machine approach [Sch90].

In this paper, we focus on a third area related to simplifying the construction of fault-tolerant

distributed programs, that of providing adequate programming language support. Specifically, we

describe the design and implementation of FT-SR, a programming language based on SR [AOC+88,

AO93] that is oriented towards writing fault-tolerant distributed systems. FT-SR is unique in that it has

been designed to be a multi-paradigm language, that is, a language that can support equally well any

of the multiple programming paradigms that have been developed for this type of system. This is done

by providing support for constructing fail-stop atomic objects; such objects behave as atomic objects

unless their implementation assumptions are violated, in which case notification is provided. Here,

we concentrate on processors with fail-silent semantics—that is, where the only failures are assumed

to be a complete cessation of execution activity—although the approach generalizes to other failure

models as well. The language has been implemented using the x-kernel, an operating system designed

for experimenting with communication protocols [HP91], and runs standalone on a network of Sun

workstations.

The orientation towards supporting multiple paradigms distinguishes FT-SR from other languages

[Lis85, EFH82, LW85], language extensions [SCP91, CGR88, KU87] and language libraries [BSS91,

Coo85, PS88, HW87] related to fault-tolerance, which are typically oriented around a particular

paradigm. Support for a single paradigm has been shown to be constraining in many situations

[Bal91], and is particularly inappropriate for constructing systems, where different paradigms may be

used at different levels of abstraction. Moreover, the development of such a multi-paradigm language

for fault-tolerant programming can be viewed as analogous to the evolution of standard distributed

programming languages, which have progressed from languages such as CSP [Hoa78] and Concurrent

Pascal [BH75] that support only a single synchronizationparadigm to those such as SR, Dislang [LL81],

Pascal-FC [BD88], and StarMod [Coo80] that support multiple approaches.

This paper is organized as follows. In Section 2, we first describe fail-stop atomic objects and the

programming model that results from considering these as the primary abstraction. We also argue that

this model is a “lowest common denominator” for the various programming paradigms, and hence, a

realistic basis for the design of a language intended to support these approaches. Section 3 then outlines

the design of FT-SR and describes how its features facilitate the implementation of fail-stop atomic
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objects using commonly accepted techniques. The use of the language is illustrated in Section 4 with

the presentation of a data manager and associated stable storage. Section 5 provides an overview of the

implementation, focusing particularly on the language runtime where the inclusion of new features has

had the biggest impact. Section 6 returns to the issue of the appropriateness of FT-SR’s mechanisms,

and elaborates further on related work. Finally, Section 7 offers some conclusions.

2 Fail-Stop Atomic Objects

As mentioned, our programming model is based on the abstraction of a fail-stop (or FS) atomic object.

Such an object contains one or more threads of execution, which implement a collection of operations

that are exported and made available for invocation by other FS atomic objects. Higher-level FS atomic

objects may, in turn, be constructed by composition. When invoked, an operation exported by an

FS atomic object normally executes as an atomic action that is both unitary—all or nothing despite

failures—and serializable—executed relative to other atomic actions such that the result is equivalent

to some serial schedule [Lam81]. However, as is always the case with fault-tolerance, these properties

can only be approximated by an implementation; that is, they can be only guaranteed relative to some

set of assumptions concerning the number and type of failures. For example, algorithms to realize

the unitary property often rely on stable storage in such a way that the failure of this abstraction can

lead to unpredictable results. Or, a series of untimely failures might exhaust the redundancy of an

implementation built using replication.

To account for cases such as these, the semantics of FS atomic objects include the concept of

failure notification. Such a notification is generated for a particular object whenever a catastrophic

failure occurs, where such a failure is defined to occur when an object’s implementation assumptions

are violated, or should the object be explicitly destroyed from within the program. The status of an

operation being executed when such a failure notification occurs is indeterminate. Hence, the analogy

to fail-stop processors implied by the term “fail-stop atomic objects” is strong: in both cases, either the

abstraction is maintained (processor or atomic object) or notification is provided.

A fault-tolerant distributed system can be realized by a collection of FS atomic objects organized

along the lines of functional dependencies. For example, an FS atomic object implementing the services

of a transaction manager may use the operations exported by another FS atomic object implementing

the abstraction of stable storage [Lam81]. These dependencies can be defined more formally using the

depends relation given in [Cri91]. In particular, an FS atomic object u is said to depend on another

object v if the correctness of u’s behavior depends on the correctness of v’s behavior. Thus, the failure

of v may result in the failure of u, which in turn can lead to the failure of other objects that depend on

u.

Increasing the dependability of a distributed system organized in this way is done by decreasing the

probability of failure of its constituent FS atomic objects using fault-tolerance techniques based on the

exploitation of redundancy. For example, an object can be replicated to create a new FS atomic object

with greater resilience to failures. This replication can either be active, where the states of all replicas

remain consistent, or passive, where one replica is a primary and others remain quiescent until a failure

occurs. Or, an FS atomic object can contain a recovery protocol that would be executed upon restart

following a failure to complete the state transformation that was in effect when the failure occurred.

The applicability of each of these techniques depends on the details of the system or the application

being implemented.

As an example of how a typical fault-tolerant system might be structured using FS atomic objects,

consider the simple distributed banking system shown in Figure 1. Each box represents an FS atomic
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Figure 1: Fault-tolerant system structured using FS atomic objects

object, with the dependencies between objects represented by arrows. User accounts are assumed to be

partitioned across two processors, with each data manager object managing the collection of accounts

on its machine. The user interacts with the transaction manager, which in turn uses the data managers

and a stable storage object to implement transactions. The transaction manager acts as the coordinator

of the system; it decides if and when a transaction is to be committed and coordinates the two-phase

commit protocol [Gra79] that is used to ensure that all data managers involved agree on the outcome of

the transaction. Associated with the transaction manager is a stable storage object, which it uses to log

the progress of transactions in the system. The data managers export operations that are used by the

transaction manager to read and write user accounts, and to implement the two-phase commit protocol.

The stable storage associated with each data manager is used to store the actual data corresponding

to user accounts, and to maintain key values that can be used to restore the state of the data manager

should a failure occur. The lock managers are used to control concurrent access.

To increase the overall dependability of the system, the constituent FS atomic objects would typically

be constructed using fault-tolerance techniques to increase their failure resilience. For example, the

transaction and data managers might use recovery protocols to ensure that data in the system is restored

to a consistent state following failure. Similarly, stable storage might be replicated to increase its failure

resilience. The failure notification aspect of FS atomic objects is used to allow objects to react to the

failures of objects upon which they depend. If such a failure cannot be tolerated, it may, in turn, cause

subsequent failures to be propagated up the dependency graph. At the top level, this would be viewed

by the user as the catastrophic failure of the transaction manager and hence, the system. Such a situation

might occur, for example, should the redundancy being used to implement stable storage be exhausted
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by an untimely series of failures. In Section 4, we illustrate how the data manager and stable storage

FS atomic objects from this example might be implemented using FT-SR.

Fail-stop atomic objects and the associated techniques for increasing failure resilience form, in

our view, a “lowest common denominator” that can be conveniently used to realize the seemingly

disparate programming paradigms proposed for fault-tolerant programming. For example, consider

the object/action model. As its name implies, there are two types of components, objects and actions.

Objects are passive entities that encapsulate a state and export certain operations to modify that state;

typically, this state involves long-lived data that is assumed to be stored on stable storage to survive

failures. Actions are active entities similar to threads that invoke operations on objects to carry out

some task. The objects comprising an application can potentially be located on multiple machines in

a network, which implies that actions may logically cross machine boundaries during their execution.

An action is both unitary and serializable, which guarantees the atomicity of its execution with respect

to both failures and the concurrent execution of other actions. These properties have also been called

totality and serializability [Wei89], and recoverability and indivisibility [Lis85]. In the database

literature, atomic actions are known as transactions [BHG87].

A system built using the object/action paradigm may be implemented using FS atomic objects.

Objects in the system correspond to FS atomic objects. An action corresponds to an abstract thread

realized by the combination of concrete threads in the FS atomic objects. This abstract thread may

span multiple FS atomic objects as a result of invocations made by concrete threads that are serviced by

concrete threads in other objects. Standard locking and commit protocols are used to ensure the unitary

and serializable nature of these actions across multiple objects. Viewed as a whole, this system appears

to the user as one FS atomic object exporting the set of operations required by the application.

As a second example, consider the replicated state machine paradigm. In this paradigm, a system is

implemented as a collection of interacting state machines. Each such machine consists of state variables,

which encode its state, and commands, which transform its state. Each command is implemented by

a deterministic program that modifies the state variables and/or produces some output. Command

executions are atomic and any outputs produced are determined solely by the sequence of commands

processed by the state machine. A fault-tolerant version of a state machine can be implemented by

replicating that state machine and running each replica on a different processor in a distributed system.

All available replicas must receive all commands sent to the replicated state machine (the agreement

property) and must process them in the same sequence (the order property).

State machines map directly to FS atomic objects. Commands to the state machine correspond to

invocations on an FS atomic object, with locking techniques being used to ensure that the operation

executions are atomic. A replicated state machine can be implemented by replicating FS atomic objects

and ensuring that all commands to the state machine result in invocations on all replicas in a consistent

order. Each ensemble of replicated FS atomic objects forms a higher-level FS atomic object representing

the fault-tolerant version of a given state machine. The entire collection of such FS atomic objects can

then be viewed as a single FS atomic object that implements the entire system.

The system shown in Figure 1 is an example of a system in which FS atomic objects are used

to implement different programming paradigms in different parts of the system. Specifically, the

transaction and data managers are built using the restartable action paradigm, while the stable storage

objects are built using the replicated state machine approach. The user of the banking system sees the

system as one implementing the atomic object/action paradigm and interacts with it accordingly.
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3 FT-SR Language Description

The goal of FT-SR is to support the building of systems based on the FS atomic object model, and thus,

by implication, the building of systems using any of the existing programming paradigms. Given the

need for flexibility, we do not provide these objects directly in the language, but rather include features

that allow them to be easily implemented. To this end, the language has provisions for encapsulation

based on SR resources, resource replication, recovery protocols, synchronous failure notification when

performing interprocess communication, and a mechanism for asynchronous failure notification based

on a previous scheme for SR [SCP91]. Since our extensions are based on existing SR mechanisms, a

short overview of the language is provided in Appendix A; for further details, see [AOC+88, AO93].

3.1 Simple FS Atomic Objects

Realizing much of the functionality of a simple FS atomic object—i.e., one not composed of other

objects or using any other fault-tolerance techniques—in SR is straightforward since a resource instance

is essentially an object in its own right. For example, it has the appropriate encapsulation properties,

and is populated by a varying number of processes that can function as threads in the FS atomic object

model. SR operations are also very similar to the operations defined by the model; they are implemented

by processes and can be exported for invocation by processes in other resource instances. Moreover,

the execution semantics of SR operations are already close to those desired for FS atomic objects; the

only additional property required is atomicity of operation execution in the absence of catastrophic

failures, which occur for simple objects when the resource instance is destroyed due to failure or

explicit termination. Ensuring atomicity therefore reduces to ensuring serializability, which can easily

be programmed in SR by, for example, implementing each exported operation as a separate alternative

in an input statement repeatedly executed by a single process. Standard locking-based solutions that

allow more concurrency are also easy to implement in SR.

Figure 2 shows the outline of a simple FS atomic object that implements atomicity by use of an SR

input statement. The object is a lock manager that controls access to a shared data structure implemented

by some other resource. It exports two operations: a get lock operation that is invoked by clients

wishing to access the shared data structure and a rel lock operation that clients invoke when they

are done. If a client invokes the get lock operation and the lock is available, a lock id is returned.

If the lock is unavailable, the client is blocked at the first guard of the input statement. The get lock
operation takes as its argument the capability of the invoking client. This capability is used as a means

of identifying the client.

The one aspect of simple FS atomic objects that SR does not support directly—and hence the focus

of our extensions in this area—is generation of a failure notification. As mentioned earlier, for simple

objects this occurs when the processor executing the resource instance fails, or when the resource

instance or its virtual machine is explicitly destroyed from within the program. In Section 5, we discuss

how this failure is detected by the language runtime system, so here we concentrate on describing the

mechanisms that are provided to field this notification in other resource instances. These facilities allow

an abstract object to react to the failure of other objects on which it depends.

FT-SR provides the programmer with two different kinds of failure notification and consequently,

two different ways of fielding a notification. The first is synchronous with respect to a call; it is fielded

by an optional backup operation specified in the calling statement. The second kind of notification is

asynchronous; the programmer specifies a resource to be monitored and an operation to be invoked

should the monitored resource fail. To understand the need for these two kinds of failure notification,

consider what might happen if the lock manager shown in Figure 2 or any of its clients fail. If the lock
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resource lock manager
op get lock(cap client) returns int

op rel lock(int)
body lock manager

var : : :variable declarations: : :

process lock server
do true ->

in get lock(client cap) and lock available() ->
: : : mark lock id as being held by client cap: : :

return lock id

[] rel lock(client cap, lock id) ->
: : : release lock: : :

return

ni

od

end lock server
end lock manager

Figure 2: Simple FS atomic object

manager fails, all clients that are blocked on its input statement will remain blocked forever. Clients

can use the FT-SR synchronous failure notification facility to unblock themselves from the call and take

some recovery action in the event of such a failure. Figure 3 shows the outline of a client structured in

this way. The statement of interest is where the client makes a call invocation using a capability to the

lock manager’s get lock operation lock mgr cap.get lock. Bracketed with this capability is

the capability to a backup operation mgr failed. This backup operation is invoked should the call

to lock mgr cap.get lock fail, where the call is defined to have failed if the lock manager fails

before it can reply to the call. In this example, the backup operation mgr failed is implemented

locally by the client, which we expect will be the most common usage; in general, however, the backup

operation can be implemented by any resource. Note that the backup operation is called with the same

arguments as the original operation and, hence, must be type compatible with the original operation.

Backup operations can only be specified with call invocations; send invocationsare non-blockingand no

guarantees can be made about the success or failure of such an invocation if the resource implementing

the operation fails. Both call and send invocations are guaranteed to succeed in the absence of failures.

Execution is blocked if a call fails and there is no associated backup operation.

Consider now the inverse situation where a client of the lock manager fails. If the client fails

while it holds a lock, all other clients will be prevented from accessing the shared data structure.

The server can use the FT-SR asynchronous failure notification facility to detect such a failure and

release the lock, as shown in Figure 4. This figure is identical to Figure 2 except for the monitor

statement in the get lock operation and the monitorend statement in the rel lock operation.

The server uses the monitor statement to enable monitoring of the client instance specified by the

resource capability client cap. If the client is down when the statement is executed or should it

subsequently fail, the operation rel lock will be implicitly invoked by the language runtime system

with the client cap and lock id as arguments. Arguments to the operation specified in the

monitor statement are evaluated at the time the monitor statement is executed and not when the

failure occurs. Monitoring is terminated by the monitorend statement, which also takes a resource

capability as its argument (as shown in Figure 4) or by another monitor statement that specifies the

same resource. The ability to request asynchronous notification has proven to be convenient in a variety
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resource client
op : : :

op : : :

body client()
var lock id: int

op mgr failed(cap client) returns int

...
lock id := call flock mgr cap.get lock, mgr failedg (myresource())
...

proc mgr failed(client cap) returns lock err
return LOCK ERR

end mgr failed
end client

Figure 3: Outline of Lock Manager client

resource lock manager
op get lock(cap client) returns int

op rel lock(int)
body lock manager

var : : : variable declarations: : :

process lock server
do true ->

in get lock(client cap) and lock available() ->
: : :mark lock id as being held by client cap: : :

monitor client cap send rel lock(client cap, lock id)
return lock id

[] rel lock(client cap, lock id) ->
: : :release lock if held by client cap: : :

monitorend client cap
return

ni

od

end lock server
end lock manager

Figure 4: Lock Manager with client monitoring
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of contexts [CGR88, SCP91, BMZ92] and is in keeping with the inherently asynchronous nature of

failures themselves.

3.2 Higher-Level FS Atomic Objects

FT-SR provides mechanisms for supporting the construction of more fault-tolerant, higher-level FS

atomic objects using replication, and for increasing the resilience of objects to failures using recovery

techniques. The replication facilities allow multiple copies of an FT-SR resource to be created, with the

language and runtime providing the illusion that the collection is a single resource instance exporting

the same set of operations. The SR create statement has been generalized to allow for the creation of

such replicated resources, which we call a resource group. For example, the statement

lock mgr cap := create (i := 1 to N) lock manager() on vm caps[i]

creates a resource group with N identical instances of the resource lock manager on the virtual

machines specified by the array of virtual machine capabilities vm caps. Both the quantifier (i :=
1 to N) and on clauses are optional. If they are omitted the statement reverts to the semantics of the

normal SR statement, which creates one instance of the named resource on the current virtual machine.

The value returned from executing the create statement is a resource capability that provides

access to the operations implemented by the new resource(s). If a single resource instance is created,

the capability allows the holder to invoke any of the exported operations in that instance as provided for

in normal SR. If, on the other hand, multiple identical instances are created, the capability is a resource

group capability that allows multicast invocation of any of the group’s exported operations. In other

words, using this capability in a call or a send statement causes the invocation to be multicast to

each of the individual resource instances that make up the group. All such invocations are guaranteed to

be delivered to the runtime of each instance in a consistent total order, although the program may vary

this if desired. This means, for example, that if two operations implemented by alternatives of an input

statement are enabled simultaneously, the order in which they will be executed is consistent across

all functioning replicas unless a scheduling expression by the programmer overrides this explicitly.

Moreover, the multicast is also done atomically, so that either all replicas receive the invocation or none

do. This property is guaranteed by the runtime given no greater than max sf simultaneous failures,

where max sf is a parameter set by the user at compile time. The combination of the atomicity and

consistent ordering properties means that an invocation using a resource group capability is equivalent

to an atomic broadcast [CAS85, MSMA90]. The results of a multicast call invocation are collected

by the runtime system, with only a single result being returned to the caller; since FT-SR assumes

processors with fail-silent semantics, returning the first result is sufficient in this case.

In addition to this facility for dealing with invocations coming into a resource group, provisions

are also made for coordinating outgoing invocations generated within the group. There are two kinds

of invocations that can be generated by a group member. In some cases, a group member may wish

to communicate with a resource instance as an individual even though it happens to be in a group.

For example, this would be the situation if each replica has its own set of private resources with

which it communicates. At other times, the group members might want to cooperate to generate a

single outgoing invocation on behalf of the entire group. To distinguish between these two kinds of

communication, FT-SR allows a capability variable to be declared as being of type private cap.

Invocations made using a private capability variable are considered private communication of the group

member and not co-ordinated with other invocations from group members. Invocations using regular

capability variables are, however, considered to be invocations from the entire group, so exactly one
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invocation is generated in this case. The invocation is actually transmitted when one of the group

members reaches the statement, with later instances of the same invocation being suppressed by the

language runtime system. This invocation could, in fact, be a multicast-type invocation as described

above if the operation being invoked is within another resource group (i.e., if the capability used in the

statement is a resource group capability). It should be noted that a private capability variable can be

assigned to a regular capability of the same type and vice versa; whether an invocation is private or not

is determined solely by the type of the variable used in making the invocation.

A resource group can also be configured to work according to a primary-backup scheme [AD76].

In this scenario, invocations to the group are delivered only to a replica designated as the primary by

the language runtime, with the other replicas being passive. This type of configuration is achieved by

placing the op restrictor fprimaryg on the declaration of operations in the group members that are to

be invoked only if the replica is the primary.

FT-SR also provides the programmer with the ability to restart a failed resource instance on a

functioning virtual machine. The recovery code to be executed upon restart is denoted by placing

it between the keywords recovery and end in the resource text. This syntax is analogous to the

provisions for initialization and finalization code in the standard version of SR. A resource instance

may be restarted either explicitly or implicitly. Explicitly, it is done by the following statement:

restart lock mgr cap() on vm cap

This restarts the resource indicated by the capability lock mgr cap and executes any recovery code

that may be specified by the programmer. To restart an entire resource group,

restart (i:=1 to N) lock mgr cap() on vm caps[i]

is used. The size of the reconstituted group can be different from the original. In both cases, it is

important to note that the restarted resource instance is, in fact, a re-creation of the failed instance and

not a new instance. This means, for example, that other resource instances can invoke its operations

using any capability values obtained prior to the failure.

Implicit restart is indicated by the presence of the keywordpersistent in the resource declaration

and the inclusion of more virtual machines in the vm caps array specified in the original create

statement than the number of replicas actually created. Then, should a virtual machine executing one of

the instances of the resource group fail, the system will select one of these backup virtual machines and

recreate the failed instance automatically. The arguments supplied during the recreation are the same as

those used for the original creation. This facility is designed to allow a resource group to automatically

regain its original level of redundancy following a failure.

Another issue concerning restart is determining when the runtime of the recovering resource instance

begins accepting invocations from other instances. In general, the resource is in an indeterminate state

while performing recovery, so we choose to begin accepting messages only after the recovery code

has completed. The one exception to this is if the recovering instance itself initiates an invocation

during recovery; in this case, invocations are accepted starting at the point that particular invocation

terminates. This is to facilitate a system organization in which the recovering instance retrieves state

variables from other resources during recovery.

Finally, we note that the failure notification facilities described in the previous section work with

resource groups as one would expect. For such higher-level FS atomic objects, a catastrophic failure

occurs when all of the replicas have been destroyed by failure or explicit termination request(s), and

there is no system guarantee of recreation. Thus, if a resource is not persistent, a notification is generated
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once all replicas have been destroyed, while for a persistent resource, a notification is generated once

all replicas have been destroyed and the list of backup virtual machines exhausted. In either case, the

way in which the notification is fielded is specified using backup operations or the monitor statement

in the same way as before.

4 Programming with FT-SR

In this section, we present an example program that illustrates how FT-SR can be used to construct a

simple system that uses multiple fault-tolerance paradigms. The example consists of the data manager

and stable storage objects from the banking system described in Section 2. As outlined there, the data

manager implements a collection of operations that provide transactional access to data items located

on a stable storage. The organization of the manager itself is based on the restartable action paradigm,

with key items in the internal state being saved on stable storage for later recovery in the event of

failure. The state machine approach is used to build stable storage. A prototype version of this banking

system has been implemented and is currently being tested.

The data manager controls concurrency and provides atomic access to data items on stable storage.

For simplicity, we assume that all data items are of the same type and are referred to by a logical

address. Stable storage is read by invoking its read operation, which takes as arguments the address

of the block to be read, the number of bytes to be read, and a buffer in which the values read are to be

returned. Data is written to stable storage by invoking an analogous write operation, which takes as

arguments the starting address of the block being written, the number of bytes in the block, and a buffer

containing the values to be written.

Figures 5 shows the specification and an outline of the body of such a data manager. As can be seen

in its specification, the data manager imports stable storage and lock manager resources, and exports

six operations: startTransaction, read, write, prepareToCommit, commit, andabort.

The operation startTransaction is invoked by the transaction manager to access data held by the

data manager; its arguments are a transaction identifiertid and a list of addresses of the data items used

during the transaction. read and write are used to access and modify objects. The two operations

prepareToCommit and commit are invoked in succession upon completion to, first, commit any

modifications made to the data items by the transaction, and, second, terminate the transaction. abort
is used to abandon any modifications and terminate the transaction; it can be invoked at any time

up to the time commit is first invoked. All of these operations exported by the data manager are

implemented as procs; thus, invocations result in the creation of a thread that executes concurrently

with other threads. Finally, the data manager contains initial and recovery code, as well as a failure

handler proc that deals with the failure of the lockManager and stableStore resources.

To implement the atomic update of the data items, the data manager uses the standard technique

of maintaining two versions of each data item on stable storage together with an indicator of which is

current [BHG87]. To simplify our implementation, we maintain this indicator and the two versions in

contiguous stable storage locations, with the indicator being an offset and the address of the indicator

used as the logical address of the item. Thus, the actual address of the current copy of the item is

calculated by taking the address of the item and adding to it the indicator offset.

The data manager keeps track of all in-progress transactions in a status table. This table contains for

each active transaction the transaction identifier (tid), the status (transStatus), the stable storage

addresses of the data items being accessed by the transaction (dataAddrs), the value of the indicator

offset of each item (currentPointers), a pointer to an array in volatile memory containing a copy

of the data items (memCopy), and the number of data items being used in the transaction (numItems).
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resource dataManager
imports globalDefs, lockManager, stableStore
op startTransaction(tid: int; dataAddrs: addrList; numDataItems: int)
op read(tid: int; dataAddrs: addrList; data: dataList; numDataItems: int)
op write(tid: int; dataAddrs: addressList; data: dataList; numDataItems: int)
op prepareToCommit(tid: int), commit(tid: int), abort(tid: int)

body dataManager(dmId: int; lmcap: cap lockManager; ss: cap stableStore)
type transInfoRec = rec(tid: int;

transStatus: int;
dataAddrs: addressList;
currentPointers: intArray;
memCopy: ptr dataArray;
numItems: int)

var statusTable[1:MAX TRANS]: transInfoRec; statusTableMutex: semaphore

initial

# initialize statusTable
: : :

monitor(ss)send failHandler()
monitor(lmcap)send failHandler()

end initial

: : :code for startTransaction, prepareToCommit, commit, abort, read/write: : :

proc failHandler()
destroy myresource()

end failHandler

recovery

ss.read(statusTable, sizeof(statusTable), statusTable);
transManager.dmUp(dmId);

end recovery
end dataManager

Figure 5: Outline of dataManager resource

This table can be accessed concurrently by threads executing the procs in the body of the data

manager, so the semaphore statusTableMutex is used to achieve mutual exclusion. New entries

in this table also get saved on stable storage for recovery purposes. Reads and writes during execution

of the transaction are actually performed by the data manager on versions of the items that it has cached

in its local (volatile) storage.

The data manager depends on the stable storage and lock manager resources to implement its

operations correctly. As a result, it needs to be informed when they fail catastrophically. The data

manager does this by establishing an asynchronous failure handler failHandler for both of these

events in the initial code using the monitor statement. When invoked, failHandler terminates

the data manager resource, thereby causing the failure to be propagated to the transaction manager.

The failure of the data manager itself is handled by recovery code that retrieves the current contents

of the status table from stable storage. It is the responsibility of the transaction manager to deal with

transactions that were in progress at the time of the failure; those for which commit had not yet been

invoked are aborted, while commit is reissued for the others. To handle this, the recovery code sends

a message to the transaction manager notifying it of the recovery.

The procs implementing the other data manager operations do not use any of the FT-SR prim-

itives specifically designed for fault-tolerant programming and are therefore not shown here. For

completeness, they can be found in Appendix B.

We now turn to implementing stable storage. One way of realizing this abstraction is by using
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persistent resource stableStore
import globalDefs
op read(address: int; numBytes: int; buffer: charArray)
op write(address: int; numBytes: int; buffer: charArray)
op sendState(sscap: cap stableStore)
op recvState(objectStore: objList)

body stableStore
var store[MEMSIZE]: char

process ss
do true ->

in read(address, numBytes, buffer) ->
buffer[1:numBytes] := store[address:address+numBytes-1]

2 write(address, numBytes, buffer) ->
store[address, address+numBytes-1] := buffer[1:numBytes]

2 sendState(rescap) -> send rescap.recvState(store)
ni

od

end ss

recovery

send mygroup().sendState(myresource())
receive recvState(store); send ss

end recovery
end stableStore

Figure 6: stableStore resource

the state machine approach, that is, by creating a storage resource and replicating it to increase failure

resilience. Figure 6 shows such a resource; for simplicity, we assume that storage is managed as an

array of bytes.

Replica failures are dealt with by restarting the resource on another machine; this is done auto-

matically since stableStore is declared to be a persistent resource. The recovery code that gets

executed in this scenario starts by requesting the current state of the store from the other group mem-

bers. All replicas respond to this request by sending a copy of their storage state; the first response

is received, while the other responses remain queued at the recvState operation until the replica is

either destroyed or fails. The newly restarted replica begins processing queued messages when it is

finished with recovery. Since messages are queued from the point that its sendState message was

sent to the group, the replica can apply these subsequent messages to the state it receives to reestablish

consistency with the state of the other replicas.

Stable storage could also be implemented as a primary-backup group by adding a fprimaryg

restriction to the read and write operations. The process ss would then send the updated state to

the rest of the group at the end of each operation by invoking a recvState operation on the group.

This operation would be implemented by extending the input statement in ss to include this operation

as an additional alternative.

The main resource that starts up the entire system is shown in Figure 7. Resource main creates a

virtual machine on each of the three physical machines available in the system. Three stable storage

objects are then created, where each such object has two replicas and uses the virtual machine on “host3”

as a backup machine. The two data managers are then created followed by the transaction manager.

Notice how the system is created “bottom up,” with the objects at the bottom of the dependency graph

being created before the objects on which they depend. This way, each object can be given capabilities

to the objects on which it depends upon creation.
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resource main
imports transManager, dataManager, stableStore, lockManager

body main
var virtMachines[3] : cap vm # array of virtual machine capabilities
dataSS[2], tmSS: cap stableStore # capabilities to stable stores
lm: cap lockManager; dm[2]: cap dataManager # capabilities to lock and data managers

virtMachines[1] := create vm() on ‘‘host1’’
virtMachines[2] := create vm() on ‘‘host2’’
virtMachines[3] := create vm() on ‘‘host3’’ # backup machine

# create stable storage for use by the data managers and the transaction manager
dataSS[1] := create (i := 1 to 2) stableStore() on virtMachines
dataSS[2] := create(i := 1 to 2) stableStore() on virtMachines
tmSS := create (i := 1 to 2) stableStore() on virtMachines

# create lock manager, data managers, and transaction manager
lm := create lockManager() on virtMachines[2]
fa i := 1 to 2 ->

dm[i] = create dataManager(i, lm, dataSS[i]) on virtMachines[i]
af

tm = create transManager(dm[1], dm[2], tmSS) on virtMachines[1]
end main

Figure 7: System startup in resource main

5 Implementation

Overview. The implementation of FT-SR consistsof two major components: a compiler and a runtime

system. Both the compiler and the runtime system are written in C and borrow heavily from the existing

implementation of SR. In fact, the FT-SR compiler is almost identical to the SR compiler, which is

to be expected since FT-SR is syntactically close to SR. The compiler is based on lex and yacc, and

consists of about 16,000 lines of code. It generates C code, which is in turn compiled by a C compiler

and linked with the FT-SR runtime system.

The FT-SR runtime system provides primitives for creating, destroying and monitoring resources

and resource groups, handling failures, restarting failed resources, invoking and servicing operations,

and a variety of other miscellaneous functions. It consists of 9600 lines of code and is implemented

using version 3.1 of the x-kernel, a stand-alone operating system kernel that runs on Sun 3s [HP91].

The major advantage of such a bare machine implementation is that it gives us the ability to use FT-SR

to build realistic fault-tolerant systems and experiment with these systems by actually crashing and

restarting processors. This is in contrast to experimental systems built, for example, on top of Unix. In

addition, the x-kernel provides a flexible infrastructure for composing communication protocols; this

has proven to be extremely useful in building the many protocols that went into the FT-SR runtime

system.

Figure 8 shows the organization of the FT-SR runtime system on a single processor. As shown in

the figure, each FT-SR virtual machine exists in a separate x-kernel user address space. In addition

to the user program, a virtual machine contains those parts of the runtime system that create and

destroy resources, route invocations to operations on resources, and manage intra-virtual machine

communication. This user resident part accounts for about 85 percent of the runtime system. The

remaining 15 percent resides inside the kernel and is responsible for the creation and destruction of

virtual machines and inter-virtual machine communication. Figure 8 also shows some of the important

modules in both the kernel and user resident parts of the runtime system, and the communication
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Figure 8: Organization of FT-SR runtime system

paths between them. The kernel resident modules shown are the Communication Manager, the Virtual

Machine (VM) Manager, and the Processor Failure Detector (PFD). The communication manager

consists of multiple communication protocols that provide point-to-point and broadcast communication

services between processors. The VM Manager is responsible for creating and destroying virtual

machines, and for providing communication services between virtual machines. The PFD is a failure

detector protocol; it monitors processors and notifies the VM manager when a failure occurs. The

user space resident modules shown in Figure 8 are the Resource Manager, the Group Manager, the

Invocation Manager, and the Resource Failure Detector (RFD). The Resource Manager is responsible

for the creation, destruction and restart of failed resources. The Group Manager is responsible for the

creation, destruction and restart of groups, restart of failed group members, and all communication to

and from groups. The RFD detects the failure of resources and group members.

The FT-SR runtime system, while similar in structure to that of standard SR, differs significantly

in terms of how its different constituent modules implement their functionality. The reasons for this

difference are threefold. First, unlike SR, which implements its own threads package within a Unix

process, FT-SR uses threads provided by the x-kernel. Therefore, while SR has complete control over its

threads and can schedule them when it deems safe, the FT-SR runtime has no control over when a thread

is preempted and another thread scheduled. This gives rise to numerous concurrency problems that

had to be dealt within the FT-SR implementation. Second, the need to deal with failures required large

modifications to the SR runtime system, since it uses centralized control in places and is written under

the assumption that all parts of the distributed program will always be available. The FT-SR runtime

system cannot make such an assumption, and this need to anticipate and deal with failures affected the
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design of almost every runtime system module. Finally, in addition to the standard language features,

the FT-SR runtime system had to, of course, provide support for the fault-tolerance extensions. The

implementation of some of these extensions required new modules within the runtime system and at

times the redesign of other modules.

From the programmer’s viewpoint, there are two major aspects in which FT-SR differs from SR: the

support for using resources as FS atomic objects, and the support for various fault-tolerance techniques.

Accordingly, we focus in the remainder of this section on describing those parts of the FT-SR language

runtime system that provide this support. It is worth keeping in mind that, since FT-SR is designed to

support construction of fault-tolerant systems, every effort has been made to keep the implementation

as efficient as possible. For example, whenever possible, the implementation takes advantage of the

fact that the processors can only suffer from fail-silent failures and that the maximum number of

simultaneous failures max sf is known a priori.

Failure Detection and Notification. Failure detection and notification is the single most important

difference between FS atomic objects and SR resources. Failure detection is initiated in one of two

ways: when a resource explicitly asks to be notified of a failure using the monitor statement, or

when the communication module of the runtime system cannot complete an invocation and suspects a

failure. Depending on how the failure detection was initiated, the runtime system either notifies the user

program of the failure by generating an implicit invocation of the operation specified by the monitor

statement, or, if a backup operation has been supplied with an invocation, the invocation is forwarded

to the backup operation.

Failure detection in FT-SR is done at two levels: at the virtual machine level by the VM Manager

and at the resource level by the RFD. The PFD at each processor monitors the other processors in the

system and notifies the local VM manager of any failures. The VM manager then maps these processor

failures to failures of virtual machines and notifies the RFD of these failures. The RFD in turn maps

virtual machine failures to resource failures and passes this information on to any of the other runtime

system modules that might have asked to be notified of the failure. To detect the termination of a

resource that is explicitly destroyed, the RFD sends a message to its peer on the appropriate virtual

machine asking to be notified when the resource is destroyed. Similarly, a VM Manager can ask another

VM Manager to send a failure notification when a virtual machine is explicitly destroyed.

Replication and Recovery. FT-SR provides two mechanisms for increasing failure resilience: repli-

cation and recovery. For replication, the most interesting aspect of the implementation is managing

group communication, since messages sent to a resource group as a result of invocations have to be

multicast and delivered to all replicas in a consistent total order. The technique we use is similar to

[CM84, KTHB89, GMS89], where one of the replicas is a primary through which all messages are

funneled. Another max sf replicas are designated as primary-group members, with the remaining being

considered ordinary members. Upon receiving a message, the primary adds a sequence number and

multicasts it to all replicas of the group. Only the replicas that belong to the primary-group acknowl-

edge receipt of the message. As soon as the primary gets these max sf acknowledgements, it sends an

acknowledgement to the original sender of the message; this action is appropriate since the receipt of

max sf acknowledgements guarantees that at least one replica will have the message even with max sf

failures. The primary is also involved when messages are sent by the group as a whole, that is, when

group members use a capability that is not a private capability when making a invocation. The runtime

system suppresses such an invocation from all group members except the primary. When the primary

receives an acknowledgement that its invocation has been received, it multicasts that acknowledgement
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to the other group members.

The Group Managers at each site are responsible for determining the primary and the members of

the primary-group set. Specifically, they maintain a list of all the group members and keep track of

which member is the primary, which belong the primary-group set, and which are ordinary members.

This list is ordered consistently at all sites based on the order in which the replicas were specified in the

group create statement. The first replica of the list is then designated the primary and the next max sf as

members of the primary-group; the remaining replicas are ordinary members. The consistent ordering

of replicas ensures that all Group Managers will independently pick the same primary and assign the

same set of replicas to the primary-group set.

The Group Managers are also responsible for dealing with the failure of group members. The action

taken when a failure occurs varies, depending on whether the failed member was the primary, a primary-

group member, or an ordinary member. If the primary fails, the first member of the primary-group is

designated as the new primary. The designation of a new primary or the failure of a primary-group

member will cause the size of the primary-group to fall below max sf. When this happens, ordinary

members are added to the primary-group to bring it up to max sf members. No special action is needed

when an ordinary member fails. If the resource from which the failed member was created is declared

as being persistent and backup virtual machines were specified in the create statement, failed replicas

are restarted on these backups. Restarted replicas join the group as ordinary members.

Supporting recovery involves: (1) restarting the resource instance, either as a result of an explicit

request or due to its declaration as persistent, (2) ensuring that the recovery code is executed, and (3)

correctly starting the delivery of new invocations. Actually implementing (1) and (2) are fairly easy

since the requirements for restarting a resource instance are very similar to creating one initially. For a

persistent resource, this is preceded by the selection of a backup virtual machine from the list supplied

during initial creation to act as the new host. The policy used to ensure (3) has already been described

in Section 3.2.

6 Discussion

6.1 FT-SR and Fault-Tolerance Abstractions

The various programming paradigms that have been developed for fault-tolerant distributed systems

provide the programmer with structuring techniques and abstractions for the problem being solved.

The relationship between the abstractions used for a particular paradigm and the mechanisms provided

by FT-SR can be illustrated by arranging them in a hierarchy based on the dependency relationship

[MS92]. Figure 9 shows such a hierarchy for the object/action model. In this figure, the circles

represent abstractions, the rectangles represent mechanisms provided by FT-SR, and the labeled boxes

at the bottom represent the portions of the FT-SR runtime system that implement these language

mechanisms. At the top of the hierarchy are objects and atomic actions. These depend directly on

restartable actions, which are needed to implement protocols like the two-phase commit protocol in

which failed processes must recover to successfully complete. These restartable actions, in turn, depend

on two other abstractions: idempotent actions and stable storage. Idempotent actions are actions that

can be restarted if interrupted by failure without the need to restore the initial state; for example, writing

to stable storage can be implemented in this way using an intentions list [Lam81]. Stable storage itself

is, of course, used to maintain the intermediate states of atomic actions and other key values; in most

cases, stable storage is realized in hardware (e.g., a disk), but, as shown in Section 4, it is possible

to build such an abstraction in software using replicated state machines or primary/backup schemes.
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Figure 9: Abstraction hierarchy for object/action model

Finally, the mechanisms and runtime modules in FT-SR are at the base of the hierarchy,

Similar hierarchies can be defined for programming paradigms such as restartable actions and the

state machine approach, and in each, FT-SR is the foundation. As a result, we argue that FT-SR provides

the fundamental abstractions that underlie fault-tolerant programming. In particular, FT-SR provides

the abstraction of a simple FS atomic object and two categories of language mechanisms: those that

deal with failure recovery and those that deal with group management. A simple FS atomic object may

be combined with these language mechanisms in a variety of ways to realize the abstractions needed to

implement the different programming paradigms. For example, as illustrated in our banking example,

an object with a recovery section can be used to implement a restartable action. Similarly, the FT-SR

create statement can be used to replicate objects to construct stable storage. In addition, FT-SR gives

the programmer the ability to create groups where the degree of replication is automatically maintained

and the ability to restart entire groups after a catastrophic failure.

We also feel that FT-SR provides an appropriate level of abstraction for a systems programming

language. Its mechanisms are primitive enough to give the programmer the ability to build all other

abstractions, yet powerful enough to be able to do so with relative ease. Such flexibility allows FT-SR

to be used for a variety of different applications and system architectures. The primitive nature of the

mechanisms also allows them to be efficiently implemented, an important consideration for a systems

programming language.
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6.2 Related Work

Other programming languages that have been proposed for fault-tolerant programming differ from FT-

SR in that they provide support for only a single paradigm, making it difficult to construct applications

using other approaches. For example, languages like Argus [Lis85], Avalon [HW87], Plits [EFH82],

TABS [SDD+85] and Hops [Mad86] support the object/action model, languages like Fault-Tolerant

Concurrent C [CGR88] support the replicated state machine approach, and numerous operating systems

like UNICOS [KK89] support the restartable action paradigm. To illustrate how the different program-

ming paradigms are typically supported, we describe a representative example from each category:

Fault-Tolerant Concurrent C, UNICOS and Argus.

Fault-Tolerant Concurrent C. Fault-Tolerant Concurrent C (FTCC) is a collection of extensions to

Concurrent C [GR89] that allows the programmer to build replicated state machines using multiple

processes. This is done by extending the Concurrent C process creation statement to create multiple

copies of a process on one or more processors. The entire replicated process ensemble is identified by

a single process identifier and calls using this identifier are delivered by the FTCC runtime system to

all members of the ensemble. A distributed consensus protocol in the runtime system ensures that all

replicas process messages in the same total order. While FTCC does not provide the programmer with

any mechanism to restart failed replicas on functioning processors, it does provide the ability to detect

process failures, where a process is defined to have failed if all of its replicas are lost due to failures or

are destroyed by the program. The programmer can ask to be synchronously or asynchronously notified

of such failures. Synchronous failure notification is provided by means of a fault-expression associated

with the call statement that is executed if the call fails. Asynchronous failure notification is provided

by the built-in function c request death notice, which takes two arguments: the identifier of a

process to be monitored and a function to be called by the runtime system when the process fails. This

monitoring can be terminated using the built-in function c cancel death notice, which takes a

process identifier as its argument.

FTCC’s support for the replicated state machine approach is suitable for building a large class of

fault-tolerant applications. However, there is an equally large class for which some other paradigm is

most convenient, and for these, FTCC provides no explicit support. FT-SR, on the other hand, provides

an integrated collection of mechanisms that supports a variety of paradigms equally well.

UNICOS. UNICOS is an operating system for Cray machines derived from AT&T Unix System V.

It supports the restartable action paradigm by providing the programmer with primitives to checkpoint

and restart processes. These primitives are provided in the form of two new system calls: chkpnt and

restart. chkpnt is used to checkpoint a process; it creates a restart file containing the information

needed to restore the process to execution at a later time. restart accepts a restart file and restores

the process to the stored state. In addition to providing these new system calls, UNICOS defines a new

Unix signal called SIGRECOVERY that is sent to a restarted process. This signal may be fielded by the

process and recovery code executed by the signal handler.

Although an important building block, the restartable action paradigm is directly applicable to only

a small class of mainly sequential applications. Moreover, even for these applications, coarse-grained

checkpointing facilities such as those provided by UNICOS are sometimes less than optimal since they

force the programmer to save an entire process state even if only a portion is needed. In FT-SR, the

granularity of access to stable storage is controlled by the programmer, thereby allowing the facility to

be tuned to the needs of the particular application. Of course, coarse-grained checkpointing can still be
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provided in the form of library routines if desired.

Argus. Argus is an integrated programming language and system that supports the object/action

programming paradigm. Objects in Argus are called guardians and export operations called handlers.

The state of a guardian is encoded by its variables, which may be stable or volatile. As the name implies,

stable variables are stored in stable storage and survive failures, while volatile variables are lost when

failures occur. A call to a handler results in the creation of a process to handle the call. This process

may modify the variables of the guardian and invoke handlers on other guardians. Since the guardians

may be on different machines, handler invocations may cross machine boundaries. An action in Argus

can be thought of as a process that attempts to transform the state of one or more guardians from an

initial state to a final state, with any number of intermediate state changes. All actions are atomic and

complete by either committing or aborting. An action may also be aborted if a failure occurs while it is

in progress. When an action aborts, a failure is signaled that can be fielded by a programmer-supplied

signal handler associated with the action. When a failed processor recovers, the Argus runtime first

recreates the guardians that were executing when the failure occurred. The system then restores the

values of the stable variables from stable storage and executes the specified recovery code, if any. The

guardian is ready to accept new invocations as soon as the recovery code completes.

As shown in Figure 9, languages like Argus that realize the object/action model often end up

implementing an entire range of abstractions as part of the runtime support. From the perspective of

the user, however, these intermediate abstractions are hidden and therefore not available to construct

applications for which the object/action model is not directly suited. In contrast, the philosophy behind

FT-SR is to build in only the common foundation, thereby allowing the user to construct whatever higher-

level abstractions are most appropriate for a given application. Of course, as with checkpointing, those

that are most commonly used can be provided as library routines if desired.

7 Concluding Remarks

A distributed programming language designed to support the construction of fault-tolerant systems

must be flexible enough to allow a variety of structuring and redundancy techniques. FT-SR has been

designed to be such a language by incorporating facilities targeted at supporting the various programming

paradigms that have been proposed for such systems. These include support for encapsulation based on

SR resources, synchronous and asynchronous failure notification, resource replication with consistent

invocation ordering, and recovery. The logical basis of the language design is a programming model

centered around the notion of fail-stop atomic objects.

Future work will concentrate on using FT-SR to construct a number of different prototype systems.

This process will be used to gain experience with the language that can be used to refine and expand

the design of the language. This will also help us identify and implement the library support necessary

to simply the task of constructing such systems. Among the additional issues that we expect to

address are the expansion of our failure-handling mechanisms into a general exception handling scheme

oriented towards the specific nature and requirements of distributed programming languages, and the

incorporation of provisions for real-time computing.
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Appendix A: The SR Distributed Programming Language

An SR program consists of one or more resources. These resources can be thought of as patterns from

which resource instances are created dynamically. Each resource is composed of two parts: an interface

portion which specifies the interface of the resource and a body, which contains the code to implement

the abstract object. The specification portion contains descriptions of objects that are to be exported

from this resource—made available for use within other resources—as well as the names of resources

whose objects are to be imported. Of primary importance are the declaration of operations—actions

implemented by sequences of statements that can be invoked. These declarations specify the interface

of those operations that are available for invocation from other resources. For example,

op example1(var x: int; val y: bool)

declares an operation, example1, that takes as arguments an integer x that is passed with copy-

in/copy-out (var) semantics and a boolean y that is copy-in only (val). Result parameters (res) are

also supported, as are operations with return values.

The declaration section in the resource body together with its specification define the objects that

are global to the resource, i.e., accessible to any process within the resource. All of the usual types and

constructors are provided. In addition, there are capability variables. Such a variable functions either

as a pointer to all operations in a resource instance (a resource capability), or as a pointer to a specific

operation within an instance (an operation capability). A variable declared as a resource capability is

given a value when a resource instance is created, while an operation capability is given a value by

assigning it the name of an operation or from another capability variable. Once it has a value, such

variables can be used to invoke referenced operation(s), as described later.

The resource instances comprising a given program may be distributed over multiple virtual ma-

chines, which are abstract processors that are mapped to physical machines in the network. A resource

instance is created and placed on a virtual machine using the following:

res cap := create res name(arguments) on virtual machine cap

Execution of this statement creates an instance of the resource res name on the virtual machine

specified by the virtual machine capability virtual machine cap and assigns a capability to the

newly created resource to the capability variable res cap.

An operation is an entry into a resource. An SR operation has a name, and can have parameters and

return a result. There are two different ways to implement an operation: as a proc or as an alternative

in an input statement. A proc is a section of code whose format resembles that of a conventional

procedure:

proc opname(parameters) returns result
op body

end

The operation bodyop body consists of declarations and statements. Like a procedure, the declarations

define objects that are local to the operation opname. Unlike a procedure, though, a new process is

created, at least conceptually, each time opname is invoked. It is possible to get standard procedure-

like semantics, however, depending on how the proc is invoked (see below). The process terminates

when (if) either its statement list terminates or a return is executed.

An operation can also be implemented as an alternative of an input statement. An input statement

implementing a collection of operations opname

1

, opname

2

, : : :, opname

n

has the following form:
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in opname
1

(parameters) -> op body
1

2 opname
2

(parameters) -> op body
2

: : :

2 opname
n

(parameters) -> op body
n

ni

A process executing an input statement is delayed until there is at least one alternative opname

i

for which

there is a pending invocation. When this occurs, one such alternative is selected non-deterministically,

the oldest pending invocation for the chosen alternative is selected, and the corresponding statement

list is executed. The input statement terminates when the chosen alternative terminates.

An operation is invoked explicitly using a call or send statement, or is implicitly called by its

appearance in an expression. The explicit invocation statements are written as

call op denotation(arguments)
send op denotation(arguments)

where the operation is denoted by a capability variable or by the operation name if the statement is

in the operation’s scope. An operation can be restricted to being invoked only by a call or a send by

appending a fcallg or fsendg operation restrictor to the declaration of the operation.

Execution of a call terminates once the operation has been executed and a result, if any, returned.

Its execution is thus synchronous with respect to the operation execution. Execution of a send

statement is, on the other hand, asynchronous: a send terminates when the target process has been

created (if a proc), or when the arguments have been queued for the process implementing the operation

(if an input statement). Thus, the effects of executing the various combinations of send/call and

proc/in are described by the following table.

Invocation Implementation Effect

call proc procedure call

send proc process creation

call in rendezvous

send in asynchronous message passing

To illustrate how the individual pieces of the language fit together, consider the implementation of

a bounded buffer shown in Figure 10. Two operations are exported from this resource: deposit and

fetch; deposit places a value in the next available slot if one exists, whilefetch returns the oldest

value from the buffer. A depositing process is delayed should the buffer be full. Similarly, a fetching

process is delayed whenever the buffer is empty. Note also that the resource has a parameter size; its

value determines the number of slots in the buffer. The use of resource parameters in this way allows

instances to be created from the same pattern, yet still vary to a certain degree. Finally, note the single

input statement to implement both the deposit and fetch operations, and the use of a send statement in

the initialization code to initiate the main (parameterless) proc buff loop. Creating a process in this

manner is so common that the keyword process can be used instead of proc as an abbreviation for

the send in the resource initialization code and corresponding op declaration.

24



resource buffer
op fetch() returns value: int

op deposit(val newvalue: int)
body buffer(size: int)

var first, last: int := 0, 0
var slot[0:size - 1]: int

initial

send buff loop()
end

proc buff loop()
do true ->

in deposit(newvalue) and first != (last + 1) % size ->
slot[last] := newvalue
last := (last + 1) % size

2 fetch() returns value and first != last ->
value := slot[first]
first := (first + 1) % size

ni

od

end

end

Figure 10: Bounded buffer resource
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Appendix B: Data Manager Implementation

Here, we present the rest of theprocs exported by the data manager described in Section 4. As outlined

there, the data manager keeps track of all in-progress transactions in a status table transStatus.

proc startTransaction(tid, dataAddrs, numDataItems)
var t: int # index into the status table

P(statusTableMutex);
# find an empty slot t in the statusTable

: : :

statusTable[t].transStatus := ’A’ # mark transaction as active

V(statusTableMutex);
statusTable[t].tid := tid

# acquire locks on data items
lockManager.lock(tid, dataAddrs)

statusTable[t].memCopy := new(dataArray)
statusTable[t].numItems := numDataItems
fa i := 1 to numDataItems ->

statusTable[t].dataAddrs[i] := dataAddrs[i]
ss.read(dataAddrs[i], sizeof(int), currentPointer)
statusTable[t].currentPointers[i] := currentPointer
ss.read(dataAddrs[i]+currentPointer, sizeof(data), statusTable[t].memCopy[i])

af

# write status table entry onto stable storage
ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])

end startTransaction

Figure 11: startTransaction operation

Figure 11 showsstartTransaction. Theprocfirst finds an empty slot in thestatusTable,

i.e. a slot with a transStatus of ‘E’, and marks it as being actively used (‘A’) by transaction tid.

The lock manager is then invoked to acquire locks on the data items. The status table entry is

updated next; specifically, the address of the data array is assigned to memCopy and the numItems
field is initialized. Information concerning each data item is then stored after being retrieved from

stable storage if necessary; this information includes the address of the data item, its value, and its

currentPointer. Finally, the appropriate status table entry on stable storage is updated. Once a

transaction is started, the data items it uses may be accessed and modified using the read and write
operations shown in Figure 12. These operations use the copy of the data items in volatile memory.

TheprepareToCommit and commit operations are shown in Figure 13. prepareToCommit
is invoked when the transaction manager decides to commit the transaction; it writes all the data

items from the copy in volatile storage to the “non-current” copy in stable storage, and then discards

the copies in volatile memory. The commit operation commits the modifications by changing the

offset indicators of the appropriate data items in stable storage to point to the new version written by

prepareToCommit. Following this, the status of the transaction is changed to done (‘D’) in both

the volatile and stable storage versions. The data items are then unlocked. Finally, the transaction

status is changed to empty (‘E’), with the change being reflected onto stable storage as well. Since the

transaction manager that co-ordinates the various data managers may re-issue commits when recovering

from a failure, the commit operation may be re-executed in part or in total an arbitrary number of times

given inopportune failures. Our implementation takes this into account by constructing this operation
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proc read(tid, dataAddrs, data, numDataItems);
# search transaction table for entry for tid. let t be index of entry

: : :

fa i := 1 to numDataItems ->
j = 1;
do (statusTable[t].dataAddrs[j] != dataAddrs[i]) ->

j++
od

data[i] = statusTable[t].memCopy[j]
af

end read

proc write(tid, dataAddrs, data, numDataItems);
# search transaction table for entry for tid. let t be index of entry

: : :

fa i := 1 to numDataItems ->
j = 1;
do (statusTable[t].dataAddrs[j] != dataAddrs[i]) ->

j++
od

statusTable[t].memCopy[j] = data[i]
af

end write

Figure 12: read and write operations

as a restartable action.

Figure 14 shows the abort operation, which is invoked when the transaction manager decides

to abort the transaction. abort simply discards the copies of the data items in volatile memory and

changes the status of the transaction to empty (’E’) in both the volatile and stable storage versions.
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proc prepareToCommit(tid)
var t: int # index into the status table

# search transaction table for entry for tid. let t be index of entry
: : :

# write modified objects to the "non-current" copy
fa i := 1 to statusTable[t].numDataItems ->

ss.write(statusTable[t].dataAddrs[i] + (statusTable[t].currentPointers[i] mod 2 + 1),
sizeof(data), statusTable[t].memCopy[i])

af

free(statusTable[t].memCopy)
end prepareToCommit

proc commit(tid)
var t: int # index into the status table

# search transaction table for entry for tid, let t be index of entry
: : :

# if entry cannot be found, return---transaction has committed already
: : :

if statusTable[t].transStatus = ’A’ -> # transaction hasn’t committed yet
# replace current pointers of data items by new current pointers
fa i := 1 to statusTable[t].numDataItems ->

ss.write(statusTable[t].dataAddrs[i], sizeof(int),
(currentPointers mod (sizeof(data)+1) + 1))

af

statusTable[t].transStatus := ’D’ # mark transaction as done
fi

if statusTable[t].transStatus = ’D’ -> # cleanup
ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])
lockManager.unlock(tid, statusTable[t].dataAddrs)
statusTable[t].transStatus := ’E’ # mark table slot as being empty
ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])

fi

end commit

Figure 13: prepareTocommit and commit operations

proc abort(tid)
var t: int # index into the status table

# search transaction table for entry for tid. let t be index of entry
: : :

# free volatile copy of data items
free(statusTable[t].memCopy)

# change transaction status to empty
statusTable[t].transStatus := ’E’
ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])

end abort

Figure 14: abort operation
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