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Abstract

Some recognition problems are either too complex or too ambiguous to be expressed as a simple

pattern matching problem using a sequence or regular expression pattern. In these cases, a richer
environment is needed to describe the “patterns” and recognition techniques used to perform the

recognition. Some researchers have turned to artificial intelligence techniques and multi-step match-
ing approaches for the problems of gene recognition [5, 7, 18], protein structure recognition [13]
and on-line character recognition [6]. This paper presents a class of problems which involve finding

matches to “patterns of patterns” or super-patterns, given solutions to the lower-level patterns. The
expressiveness of this problem class rivals that of traditional artifical intelligence characterizations,

and yet polynomial time algorithms are described for each problem in the class.
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Super-Pattern Matching

1 Introduction

Super-pattern matching forms a domain of discrete pattern matching, akin to that of approximate

pattern matching over sequences, where the input consists not of a sequence and a pattern of sym-
bols, but of (1) a finite number of types of features, (2) for each feature, a set of intervals identifying

the substrings of an underlying sequence having the feature, and (3) a super-pattern that is a pattern
of features types. The objective is to find a sequence of adjacent feature intervals over the underly-

ing sequence such that the corresponding sequence of feature types matches the super-pattern. The
string spanned by the sequence of feature intervals is then identified as a match to the super-pattern.
Such meta-pattern problems, i.e. a pattern of patterns, have traditionally been categorized in the

realm of artificial intelligence and been solved using AI techniques such as backtracking and branch-
and-bound search. Super-pattern matching’s characterization is such that the dynamic programming

techniques of discrete pattern matching can be used to derive practically efficient and worst-case
polynomial time algorithms.

The concepts behind super-pattern matching were originally motivated by the gene recognition
problem, now of great importance to molecular biologists because of the advent of rapid DNA se-

quencing methods. The problem is to find regions of newly sequenced DNA that code for protein or
RNA products, and is basically a pattern recognition problem over the four letter alphabet fa; c; g; tg.

Molecular biologists [14] have developed a basic picture of a gene encoding structure, illustrated in
Figure 1. Such a region consists of a collection of basic features or “signals”, constrained to be in
certain positional relationships with each other. An important aspect is that the features are not lin-

early ordered, but frequently coincide or overlap each other. Referring to the figure, a sequence of
exons and introns form the main components of a gene encoding. It is the sequence appearing in the

exons, between the start and stop codons, that actually encodes the relevant protein or RNA struc-
ture. The introns, whose function is not currently known, are interspersed regions which don’t con-

tribute directly to the gene product. Overlapping these major components are smaller signals which
(1) distinguish exon/intron boundaries (3’ and 5’ splice sites), (2) determine endpoints of the actual

gene sequence (the start and stop codons) or the encoding structure (the CAAT and TATA boxes and
POLY-A site), and (3) play significant roles in gene transcription (the lariat points). This view is by

no means a complete description, and is still developing as biologists learn more.
At the current time, much work has been done on building recognizers for individual features us-

ing, for example, regular expressions [2], consensus matrices [19], and neural nets [12]. Libraries of

these component recognizers are currently being used to recognize either pieces of gene encodings
or complete encodings. One gene recognition system, GM [5], uses eighteen “modules” in its gene

recognition procedure. Less work has been done on integrating these subrecognizers into an over-
all gene recognizer. The current methods involve hand coded search procedures [5], backtracking

tree-search algorithms [7], and context-sensitive, definite clause grammars [18]. These techniques
either lack sufficient expressiveness or contain potentially exponential computations. Super-pattern

matching attempts to provide the expressiveness needed to search for these patterns while keeping
within polynomial time bounds in the worst case and being efficient in practice.

This multi-step approach to pattern matching has also appeared for such problems as protein
structure prediction [13] and on-line character recognition [6]. In general terms, the matching proce-
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CAAT/TATA box:

intron exonexon exonintron
Exon/Intron Seq.:

CAP/Poly-a Sites:

Start/Stop Codon:

3’5’ 5’ 3’
5’/3’ Splice Sites:

Lariat Points:

CAAT  <0,300>  TATA  <0,30>   (Exon  &  (CAP  <0,*>  Start  <0,*>  5’ss))

[  (Intron  &  (5’ss  <0,*>  Lariat  <12,40>  3’ss))   (Exon  &  (3’ss  <0,*>  5’ss))  ]*

(Intron  &  (5’ss  <0,*>  Lariat  <12,40>  3’ss))     (Exon  &  (3’ss  <0,*>  Stop  <0,*>  Poly-A))

Pattern Expression:

Signals:

exon intron exon intron exon

0 or more times

Pictorial pattern:

DNA sequence

Figure 1 Basic gene encoding structure.

dure forms a recognition hierarchy, as depicted in Figure 2, where successively larger “patterns” are

matched at higher and higher levels in the hierarchy. Super-pattern matching characterizes an iso-
lated recognition problem in a general recognition hierarchy. The basic super-pattern matching prob-

lem definition (Section 2) presents an input and output interface facilitating such hierarchical recog-
nition constructions and defines the meaning of a “match” under this interface. Section 2 also de-

scribes several problem variations with different super-pattern expressions and output requirements.
Section 3 then expands this basic problem into a problem class through a series of extensions, rang-

ing from allowing flexible matches using spacing specifications to introducing scoring mechanisms
and the notion of an approximate match.

Sections 4 and 5 describe solutions for each problem in the class. These solutions are set in

a common matching-graph/dynamic-programming framework, similar to the edit-graph/dynamic-
programming framework underlying the algorithms for approximate pattern matching over sequences.

The worst-case time complexity of the algorithms considered here isO(N3

M), given in terms of the
sizes of the underlying sequence (N ) and the super-pattern (M ). However, tighter input-dependent

bounds of O((N + I)ML) to O((N + I)ML logN) are also derived, where I is the size of the
largest interval set andL is the length of the longest match to a prefix of the super-pattern. For practi-

cal recognition problems with reasonably accurate recognizers and with small or rare super-patterns,
the algorithms’ performance is significantly better than the cubic-time worst-case behavior.

2 Basic Problem

The input to a basic super-pattern matching problem consists of the following:

� A one-dimensional space, [0::N ].
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TEXT SEQUENCE

an SPM problem

Figure 2 Pictorial description of a recognition hierarchy.

� An alphabet � = fa; b; c; : : :g of interval types.

� An interval set I
a

for each interval type a 2 �. I
a

is some subset of f[i; j] j 0 � i � j � Ng.

� Super-patternP . A sequence, regular expression or extended regular expression defined over

�.

For a substring search solving a gene recognition problem, the one-dimensional space represents
the underlying DNA sequence A = a

1

a

2

: : :a

N

, and the interval types in � identify the recogniz-

ers of exons, introns, etc. providing input to the super-pattern search. Each of the recognizers con-
structs an interval set consisting of the intervals, [i; j], that correspond to the recognized substrings

a

i+1

a

i+2

: : : a

j

. Finally, the super-pattern describes the gene encoding structure using the interval
types identifying the recognizers.

The actual matching occurs between the sub-intervals of [0; N ]and sub-expressions of the super-

pattern. A set of recursive matching rules (similar to those of [3] for pattern matching over se-
quences) defines the intervals matching an expressionP in terms of matches toP ’s sub-expressions.

Formally, an interval [i; j] matches P if and only if

1. If P � a where a 2 �, then [i; j] 2 I

a

.

2. If P � " (the empty string), then i = j.

3. If P � R S (concatenation), then 9 i � k � j : [i; k] matches R & [k; j] matches S.

4. If P � R j S (alternation), then either [i; j] matches R or [i; j] matches S.

5. If P � R

� (Kleene closure), then either i = j or 9 i < k � j : [i; k] matches R &

[k; j] matches R�.

6. If P � R & S (intersection), then [i; j] matches R and [i; j] matches S.

7. If P � R� S (difference), then [i; j]matches R, but does not match S.



4The intervals matching an expression P are called the matching intervals of P . And the set of input
intervals used in the match between interval [i; j] and P is called the interval sequence matching

[i; j] and P .
Note that this recursive definition differs from a strict set-theoretic definition of a match, as is

used in approximate pattern matching over sequences. There, a match of sequence A and pattern P

consists of an alignment betweenA and a specific sequenceB 2 L(P ), whereL(P ) the language de-
fined by patternP . The corresponding set-theoretic definition of a super-pattern match between [i; j]

and P pairs a sequence of intervals <[i; i
1

]; [i

1

; i

2

]; : : : ; [i

k

; j]> with a sequence B = b

1

b

2

: : : b

k+1

in L(P ) using rule 1 above. The recursive rules for the intersection and difference operators (rules

6 and 7) fail to maintain this definition as the matches of [i; j]withR and S are not required to use a
commonB inL(R) andL(S). Thus, the “interval sequence” matching an interval and super-pattern

may not necessarily be a sequence of intervals, but could contain overlapping “interval sequences”
matching each intersection sub-expression of P .

We use the recursive definition of a matching interval for two reasons, one practical and one
computational. First, extended regular expressions under the recursive definition provide a natu-
ral method for specifying overlapping signals, one not permitted under the set-theoretic definition.

Given a super-pattern ABA&AC and intervals [0; 10]; [40; 50] 2 I
A

, [10; 40] 2 I
B

and [10; 50] 2

I

C

, the interval [0; 50]matches bothABA andAC and so can be reported as a match toABA&AC

under the recursive definition. The set-theoretic definition of a match does not permit this, since the
language described by ABA&AC contains no common sequences. Figure 1 presents a more po-

tent use of this recursively-defined intersection operator. The second reason is that polynomial time
algorithms exist, under the recursive definition, for the problems of approximate extended regular

expression pattern matching over sequences and super-pattern matching with an extended regular
expression. The recursive definition, super-pattern matching algorithm is presented in Section 4.

The best known algorithms under the set-theoretic definition take time exponential in the size of the
extended regular expression.

The default type of output for the basic problem is the super-pattern’s set of matching intervals.

With this type of output, hierarchical recognition problems can be constructed by connecting the in-
puts and outputs of isolated super-pattern matching problems. Oftentimes however, different types

of output are desired for truly isolated problems, particularly when the output can affect the com-
plexity of the algorithms. We consider four levels of output, characterized by the following four

problems. The output to the decision problem consists of a yes or no answer as to whether any inter-
val in [0; N ]matches the super-pattern. In the optimization problem, the output reports the matching

interval which best fits some criteria, such as longest, shortest or best scoring interval. The scanning

problem requires the optimal matching intervals ending at each position j, for 0 � j � N . Finally,

the instantiation problem asks for the complete set of matching intervals.

3 Problem Domain

The domain of super-pattern matching problems extends from the basic problem in a number of di-
rections, two of which have already been discussed (varying the super-pattern and required output).

The other extensions introduce a positional flexibility in the interval matching and account for errors
occuring in the input. Specifically, the five extensions are 1) explicit spacing in the super-pattern to

model context free substrings occuring between recognized signals, 2) implicit spacing associated
with input intervals which corrects for errors in the reported endpoints, 3) interval scores to repre-

sent significance levels of the lower-level recognition, 4) repair intervals used to construct interval
sequences in the presence of incomplete input interval sets and 5) affine scoring schemes to more re-



5alistically model endpoint reporting errors and missing input intervals. The rest of this section details
the effect of each extension on the basic problem.

3.1 Explicit Spacing

Explicit spacing introduces spacer pattern elements, or simply spacers, into the super-pattern to model

unrecognizable substrings of a certain size occurring between recognized signals. The only interest-
ing property of these substrings is their size, and often their sole purpose is to separate the signals.

One interesting example of this is the “space” of size 12 to 40 occuring between the lariat point and
the 3’ splice site of each intron. After a copy of the DNA containing the gene has been made, each in-

tron is then edited out of that copy. This editing process involves RNA molecules which attach at the
5’ splice site, 3’ splice site and lariat point of the copy and which then splice the intron out, connect-

ing the ends of the surrounding exons. One requirement of this process is that the RNA molecules
attached to the lariat point and 3’ splice site must also attach to each other. Since these molecule are

of a certain size, the distance of the corresponding attachment points on the DNA (and thus on its
copy) must also be of a certain size. Hence, the 12 to 40 spacing distance between those elements in
the gene encoding structure.

The super-pattern in Figure 1 illustrates the two forms of the spacer considered here, bounded

(<12; 40>) and unbounded (<0; �>) spacers. Each spacer specifies a size range of intervals which

match the spacer. In terms of the recursive definition from Section 2, the following additional rules
capture this property:

8. If P � <l; h>, then l � j � i � h

9. If P � <l; �>, then l � j � i

This paper only considers spacers whose lower and upper bounds are non-negative, i.e. l � 0. Al-
lowing the use of negative spacers such as <�20;�5> involves the redefinition of an interval to

include intervals of negative length, such as [100; 97]. The algorithms for regular expression and
extended regular expression super-patterns depend heavily on the property that all intervals have a

non-negative length. The introduction of negative length intervals requires additional algorithmic
support beyond the scope of this paper.

3.2 Implicit Spacing

Implicit spacing defines neighborhoods around the reported endpoints of each input interval which
can be used in matches to the super-pattern. Some recognition algorithms can identify the presence or

absence of a feature, but have difficulty pinpointingthe exact endpoints of the feature. An example of
this occurs in gene recognition. Exonic DNA regions are identified by sliding a fixed-width window
along the DNA and feeding each window’s sequence to a trained neural net ([12]). The raw output

of this recognizer is a sequence of values, each between 0 and 1, giving a likelihood measure that
the sequence in each window is an exon:

0
N0

1

0.5



6This output can be transformed into a set of intervals by thresholding the raw values and treating
contiguous regions above the threshold as recognized intervals. In doing so, the general areas of

exons are accurately predicted, but the endpoints of those intervals typically do not match the true
ends of the exons. The use of implicit spacing, in combination with an accurate exon boundary rec-
ognizer, transforms this from an exonic region recognizer to an exon recognizer while still limiting

the number of reported intervals.
We consider three types of implicit spacing, a fixed or proportionalspace specified for an interval

type a and applied to the intervals in I

a

, or a per-interval space reported for each input interval.
Each type defines the neighborhoods of allowed matches around each input intervals’ left and right

endpoints, <i + lmin; i+ lmax> and <j + rmin; j + rmax> for interval [i; j]. The fixed and
per-interval spacing specify absolute lmin, lmax, rmin and rmax values for an interval type a or

a particular input interval [i; j], respectively. The proportional spacing defines two factors, lprop
a

and rprop
a

for interval type a, which are multiplied with the length of each interval in I
a

to get the

desired ranges.
In terms of the recursive matching rules, rule 1 (for P � a) now becomes the following for (1)

fixed, (2) proportional or (3) per-interval spacing:

1’. If P � a, then 9 [i0; j 0] 2 I
a

such that

(1) i0 + lmin

a

� i � i

0

+ lmax

a

& j

0

+ rmin

a

� j � j

0

+ rmax

a

(2) i0 � ldist � i � i

0

+ ldist& j

0

� rdist � j � j

0

+ rdist,

where ldist = (j

0

� i

0

) � lprop

a

and rdist = (j

0

� i

0

) � rprop

a

(3) i0 + lmin

[i

0

;j

0

]

� i � i

0

+ lmax

[i

0

;j

0

]

& j

0

+ rmin

[i

0

;j

0

]

� j � j

0

+ rmax

[i

0

;j

0

]

Negative values for lmin, lmax, rmin and rmax are permitted here with the restriction that the two
neighborhoods of any input interval cannot overlap, i.e. for all [i0; j 0] 2 I

a

, i0+ lmax � j

0

+ rmin.

The reasons for this are the same as given for negative-length explicit spacers.

3.3 Interval Scoring

Associating scores with input intervals provides a method for modeling errors and uncertainty at the

lower-level recognizers. The scores can give a significance or likelihood measure about the validity
of an interval, such as the mean neural net value occurring in each interval reported by the neural net

exonic recognizer. The use of these scores changes the matching problem from one of finding match-
ing intervals of a super-pattern to that of finding the best scoring matching intervals. The algorithms
presented in this paper assume that all scores are non-negative and that the best scoring matching

interval is the one with minimal score, except as described below for intersections and differences.
They could be altered to allow negative scores and to solve maximization problems.

The recursive rules defining a match between [i; j]andP now become rules in a functionscore([i; j]; P )
which computes the best score of a match between [i; j] and P . Specifically, score([i; j]; P ) is

1. If P � a, then score([i; j]; a) =

(

� if [i; j] 2 I
a

with score �

1 otherwise

2. If P � ", then score([i; j]; ") =

(

0 if i = j

1 if i 6= j

3. If P � R S, then score([i; j];R S) = min

i�k�j

fscore([i; k]; R)+ score([k; j]; S)g.

4. If P � R j S, then score([i; j];R j S) = minfscore([i; j];R); score([i; j]; S)g.

5. If P � R

�, then score([i; j];R�

) =

(

0 if i = j

min

i<k�j

fscore([i; k]; R)+ score([k; j];R

�

)g if i 6= j



76. If P � R & S, then score([i; j];R& S) = F

R&S

(score([i; j];R); score([i; j]; S))

where F
R&S

can be a general function (see below).

7. If P � R� S, then score([i; j]; R� S) = F

R�S

(score([i; j];R); score([i; j]; S))

where F
R�S

can be a general function (see below).

For sequence and regular expression super-patterns, this function simply sums the scores of the inter-
vals in the best scoring interval sequence. The extended regular expression scoring rules allow any

functionsF
R&S

andF
R�S

to determine the score of the extended regular expression. More complex
scoring methods are needed, because the concept of “minimal is optimal” is not expressive enough

to capture the meaning of intersection and difference in the realm of approximate matching. Scoring
schemes such as taking the minimal, maximal or average score can give a more realistic score of the

match toR&S, under the assumption that finite or thresholded scores for bothR and S exist. For an
expressionR�S, the scoring scheme which most preserves the essence of the difference operation
uses a decision function returning the score of the match to R if the score of S’s match is above a

threshold. Otherwise, it returns infinity. Note that these examples do not always compute the min-
imal score resulting from evaluating F over the whole range of possible scores for R and S. The

general functions allowed here permit a wide range of scoring schemes, and in particular include all
of the example schemes cited above.

The scoring of interval sequences changes the output requirements for the four problems of Sec-
tion 2 and the specification of explicit and implicit spacing. The decision problem becomes that

of reporting the best score of a matching interval, rather than the existence of a matching interval.
For the other three problems, the scores of matching intervals are reported along with the intervals

themselves, either the matching interval with the best score (the optimization problem) or the set of
matching intervals and their best scores (the instantiation problem). The use of explicit and implicit
spacing again require new rules 8 and 9 and the rewriting of rule 1, respectively. Some fixed cost

c � 0 is now incorporated into those rules and either reported as the score of an explicit spacer’s
match or added to the score for each input interval when computing score([i; j]; a).

3.4 Repair Intervals

Repair intervals are a mechanism for inserting intervals, not appearing in the input, into the construc-
tion of interval sequences. Few recognition algorithms for complex features can correctly identify

every “true” instance of that feature in a sequence. Even using interval scores to report possible
matches, many recognizers are designed to achieve a balance between sensitivity and specificity.

They allow a few true intervals to be missed (a sensitivity rate close to, but under, 100%) so that the
number of false intervals reported does not explode (thus keeping the specificity rate high). These
missed intervals, however, can disrupt the match to an entire interval sequence in the super-pattern

matching problems described so far. Repair intervals are used to complete the construction of inter-
val sequences in the face of small numbers of missing intervals.

A repair interval specification is given for an interval type. It consists of a non-negative size
range, l to h, and a fixed cost c for using a repair interval in an interval sequence. Given such a

specification for interval type a, each instance of a in the super-pattern can be matched with any
interval [i; j] where l � j � i � h. That match then contributes an additional cost c to the score of

the resulting interval sequence. In terms of the recursive definition, this results in the following new
rule for P � a:

1:If P � a, then score([i; j]; a) = min

8

>

<

>

:

� if [i; j] 2 I
a

with score �

c if l � j � i � h

1 otherwise



8assuming here that interval scores are being used and that no implicit spacing has been defined for
the intervals in I

a

.

3.5 Affine Scoring Schemes

The fixed range implicit spacing, explicit spacing and repair intervals often provide an unrealistic

measure of the size distribution of endpoint errors, missing intervals and context free spaces. For
some recognizers, a majority of the incorrectly reported endpoints may differ only slightly from the

true endpoints, while a small but significant number are off by greater distances. Other times, no
fixed bounds can be computed for either the endpoint errors or sizes of missing intervals. In these

cases, a fixed cost, bounded range scoring scheme does not correctly model the distributions of sizes
or error distances in the input. Affine scoring schemes for implicit spacing, explicit spacing and

repair intervals are distance-based models where a match’s score grows as the distance from a desired
range grows, whether the distance is from a reported endpoint’s position or an interval’s size.

In its most complex form, the affine specification for an interval type’s implicit spacing con-
sists of the five-tuples <lcl

a

; lmin

a

; lc

a

; lmax

a

; lcr

a

> and <rcl
a

; rmin

a

; rc

a

; rmax

a

; rcr

a

> for
the left and right endpoints of intervals in I

a

, plus a boundary proportion bprop
a

used to separate

the left and right endpoint neighborhoods. The graphical representation of the scoring scheme is
shown in Figure 3a. For the left endpoint, the values of lmin

a

and lmax
a

specify a fixed size range

in which the cost of implicit spacing within that neighborhood is lc
a

. The values of lcl
a

and lcr
a

give
the incremental cost for extending the implicit spacing to the left and right of the fixed space range.

The right endpoint scoring is similar. The boundary between the two neighborhoods is given as a
proportion on the length of each interval in I

a

, and is necessary to avoid introducing negative-length

intervals.
The score of a match between interval [i; j] and the expression P � a is the minimum, over all

intervals [i0; j 0] 2 I

a

, of the score associated with [i

0

; j

0

] (assuming interval scores are being used),
plus the cost of the implicit spacing at the two endpoints. In terms of the matching rules, this results
in the following for P � a:

score([i; j]; a) = minfleft
[i

0

;j

0

]

+ � + right
[i

0

;j

0

]

j [i

0

; j

0

] 2 I

a

scores �g

where

left
[i

0

;j

0

]

=

8

>

>

>

>

>

<

>

>

>

>

>

:

lc

a

+ lcl

a

� ((i

0

+ lmin

a

)� i) if i < i

0

+ lmin

a

lc

a

if i0 + lmin

a

� i < i

0

0 if i = i

0

lc

a

if i0 < i � i

0

+ lmax

a

lc

a

+ lcr

a

� (i� (i

0

+ lmax

a

)) if i0 + lmax

a

< i � i

0

+ (j

0

� i

0

) � bprop

a

right
[i

0

;j

0

]

=

8

>

>

>

>

>

<

>

>

>

>

>

:

rc

a

+ rcl

a

� ((j

0

+ rmin

a

)� j) if i0 + (j

0

� i

0

) � bprop

a

� j < j

0

+ rmin

a

rc

a

if j0 + rmin

a

� j < j

0

0 if j = j

0

rc

a

if j0 < j � j

0

+ rmax

a

rc

a

+ rcr

a

� (j � (j

0

+ rmax

a

)) if j > j

0

+ rmax

a

This assumes no repair interval specifications for a.

The affine specification for bounded spacers and repair intervals is a three part curve defined for
size values s � 0 and is shown in Figure 3b. The numerical information consists of a similar five-

tuple <cl
a

; min

a

; c

a

; max

a

; cr

a

> with a (now non-negative) size range min
a

to max
a

, fixed cost
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min max

cost

sizei j
distancej+rmaxj+rmini+lmin i+lmax

cost cost

bprop*(j-i)

(a) (b)

Figure 3 Affine scoring of a) implicit spacing for interval [i; j] and b) bounded spacers/repair intervals.

c

a

for that size range, and incremental costs cl
a

and cr
a

for extending to the left and right of the size

range. The cost of using a repair interval is computed from the size of that interval, as follows:

score([i; j]; a) = min

8

>

>

>

<

>

>

>

:

� if [i; j] 2 I
a

with score �
c

a

if min
a

� j � i � max

a

c

a

+ cl

a

� (min

a

� (j � i)) if j � i < min

a

c

a

+ cr

a

� ((j � i)�max

a

) if j � i > max

a

where no implicit spacing is defined here. Including both affine implicit spacing and affine repair

intervals simply requires combining the above two rules. The rule for computing an affine scored
spacer uses the bottommost three terms of the repair interval rule.

4 Solving the Basic Problem

The solutions to each of the super-pattern matching problems employ a framework similar to that de-

veloped for sequence-based approximate pattern matching of sequences [16, 17, 20] and regular ex-
pressions [15, 21]. The framework for super-pattern matching involves four major steps common for

all of the algorithmic solutions. The first step is to construct a state machine equivalent to the super-
pattern, i.e. a machine which accepts the same language as the super-pattern expression. Second, the

matching problem is recast as a graph traversal problem by constructing a matching graph from the
state machine. The construction is such that the graph edges correspond to input intervals and paths

through the graph correspond to interval sequences matching the super-pattern’s sub-expressions.
The third step is to derive dynamic programming recurrences which compute the paths (and hence

the interval/sub-expression matches) to each vertex in the graph. Finally, algorithms solving these
recurrences are given.

The sub-sections that follow present the four steps describing the algorithms for the scanning

and instantiation problems with interval scoring and with a 1) sequence, 2) regular expression and
3) extended regular expression super-pattern. The inclusion of interval scoring results in more inter-

esting algorithms, since the the graph traversal problem changes from one of finding the existence
of paths to one of finding the shortest paths through the matching graph. The solutions to problems

with no interval scoring or for the decision and optimization problems are simple variations of the
algorithms presented below.
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R
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F

Final Construction Step
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θ φ φ θ θ φ
a a R R S

ε
= == εθε

θ
RS

=φ
RSSφ

FFF
RSa ε

Figure 4 Inductive state machine construction rules for RE’s and ERE’s.

4.1 Sequences and Regular Expressions

The state machines constructed from sequence and regular expression super-patterns are determin-
istic or non-deterministic finite automata, hereafter referred to as NFA’s. The finite automata used

in this paper are the state-labeled automata used by Myers and Miller [15] for approximate regular
expression pattern matching over sequences. Formally, an NFA F =<V;E; �; �; �> consists of: (1)
a set V of vertices, called states; (2) a setE of directed edges between states; (3) a function � assign-

ing a “label”, �
s

2 � [ f"g, to each state s; (4) a designated “source” state �; and (5) a designated
“sink” state �. Intuitively, F is a vertex-labeled directed graph with distinguished source and sink

vertices. A directed path through F spells the sequence obtained by concatenating the non-" state
labels along the path. L

F

(s), the language accepted at s 2 V , is the set of sequences spelled on all

paths from � to s. The language accepted by F is L
F

(�).
Any sequence or regular expression R can be converted into an equivalent NFA F using the

inductive construction depicted in Figure 4, ignoring for the moment F
R&S

andF
R�S

. For example,
the figure shows that F

RS

is obtained by constructing F
R

and F
S

, adding an edge from �

R

to �
S

,

and designating �
R

and �
S

as its source and sink states. After inductively constructing F
R

, an "-
labeled start state is added as shown in the figure to arrive at F . This last step guarantees that the
word spelled by a path is the sequence of symbols at the head of each edge, and is essential for the

proper construction of the forthcoming matching graphs.
Note that for a sequence super-pattern P = p

1

p

2

: : :p

M

, the construction of F uses only the

construction rules F
a

and F
RS

, resulting in a deterministic NFA containing a row of M + 1 states.
Successive states in F are labeled with successive symbols of P . This is illustrated in Figure 5 for

P = aba. For the full regular expressions, a straightforward induction (given in [15]) shows that
automata constructed by the above process have the following properties: (1) the in-degree of � is 0;

(2) the out-degree of � is 0; (3) every state has an in-degree and an out-degree of 2 or less; and (4)
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I   = { [0,2], [1,2], [2,5], [3,3], [5,6] }

I   = { [0,1], [1,1], [2,3], [3,5], [4,6] }b

a
aba

F

a

ε

a

b

0 1 2 3 4 5 6

b

a

a

Figure 5 The NFA and matching graph for super-pattern P = aba and 1-d space [0; 6].

jV j � 2 jP j, i.e. the number of states in F is less than twice P ’s length. In addition, the structure of

cycles in the graph <V;E> of F has a special property. Term those edges introduced from �

R

to
�

R

in the diagram of F
R

� as back edges, and term the rest DAG edges. Note that the graph restricted

to the set of DAG edges is acyclic. Moreover, it can be shown that any cycle-free path in F has at
most one back edge. Graphs with this property are commonly referred to as being reducible [1] or
as having a loop connectedness parameter of 1 [8]. In summary, the key observations are that 1) for

any sequence P of size M there is an acyclic NFA containing M + 1 states and 2) for any regular
expressionP of sizeM there is an NFA whose graph is reducible and whose size, measured in either

vertices or edges, is O(M).
The matching graphs for these super-patterns consist ofN+1 copies of the NFA for P , where N

is the size of the one-dimensional space defined in the matching problem. Examples for a sequence
and regular expression are shown in Figures 5 and 6. In this matrix-structured graph, the vertices are

denoted using pairs (s; j)where s 2 V and j 2 [0; N ]. Weighted edges are added in a row-dependent
manner, considering the vertices (s; 0); (s; 1); : : : ; (s;N) as a “row.” For a vertex (s; j), if the label

of state s, �
s

, is some symbol a 2 �, incoming edges are added from each vertex (t; i) where t! s

is an edge in F and [i; j] 2 I

�

s

. The weights on those edges equal the scores associated with the
corresponding intervals in I

�

s

. This models the matches of symbol �
s

to the intervals in I
�

s

. When

�

s

is ", vertex (s; j) has incoming edges with weight 0 from each vertex (t; j) where t! s. These
edges model the match between the " symbol and the zero-length interval [j; j]. A straightforward

induction, using the recursive matching rules from Section 2, shows the correspondence between
paths and matching intervals.

For the scanning problem with interval scoring, the dynamic programming recurrences compute
the shortest paths from row � to row � in the graph, where the shortest path is the one whose sum of

edge weights is minimal. The recurrence for sequences and regular expressions is

C

�;j

= h0; ji

C

s;j

=

(

minfhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

minfC

t;j

j t! sg if �
s

= "
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I   = { [0,0], [1,3], [3,4] }a

I   = { [0,2], [2,3], [2,4] }b

0 1 2 3 4

F

a

ε

ε

ε

ε

ε

b

(a | b) a*

b a b a b a b

aaaa

a b a

a

a

Figure 6 The state machine and matching graph for P = (a j b) a

� and N = 4.

This recurrence finds the position pairs hc; ki for each vertex (s; j), such that c is the best score of a

match between interval [k; j] and the path in F from � to s. The “min” operation returns the position
pair with the minimal score c, breaking ties by taking either the smallest or largest k. Thus, theC

�;j

values give the score and left endpoint position for the best scoring matching interval whose right
endpoint is j.

The recurrence for the instantiation problem is very similar, except that each C
s;j

value is a set
of these position pairs, as follows:

C

�;j

= fh0; jig

C

s;j

=

(

S

min

fhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

S

min

fC

t;j

j t! sg if �
s

= "

The “
S

min

” operation computes the best scoring matches to each interval [k; j] by unioning the min-
imum scoring position pairs for each position k from 0 to j, i.e.

S

min

(S) = fhc; ki j hc; ki 2 S & 6

9 hc

0

; k

0

i 2 S : k = k

0

& c > c

0

g. The set of matching intervals output for the instantiation problem
is f[k; j] scoring c j 0 � j � N & hc; ki 2 C

�;j

g.

A naive dynamic programming algorithm can solve the recurrences for sequence super-patterns,
since the matching graph is acyclic. The decision, scanning and optimizationsolutions run inO((N+

I)M) time where I is the size of the largest I
a

, because there are O(NM) vertices and O(IM)

edges. The following solves the instantiation problem, using 0::M to reference states in F and [ ] to

denote ordered lists:

for j  0 to N do

f C

0;j

 [h0; ji]

for m 1 to M do

f C

m;j

 [ ]

for i; � [i; j] 2 I

�

m

scores � do

C

m;j

 Merge(C
m;j

;Add(C
m�1;i

; �))
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g

g

Operation Merge implements the
S

min

operation for two ordered lists by merging the lists according
to left endpoint positionk and by removing any non-optimal positionpairs. Add(L,v) produces a new

ordered list in which v is added to each position pair in L. The time complexity for this algorithm is
O((N + I)ML), where L is the length of the longest matching interval to any prefix of P . A more

practical, and stricter, bound forL is the number of differently sized matching intervals to any prefix
of P (which more closely reflects the C

m;j

sizes). But the longest matching interval bound gives a
cleaner definition to the complexity measure. In the worst case where I is O(N2

) and L is O(N),

this time complexity is O(N3

M).
The regular expression algorithm is more complex as cyclic dependencies can occur in the dy-

namic programming recurrences, mirroring cycles in the matching graph. However, these cycles
occur when the edges corresponding to zero-length input intervals and "-labeled states link the ver-

tices of Kleene closure sub-automata in a column’s copy of F . Since no negative length intervals
(or extensions resulting in negative length intervals) are permitted, these cycles can occur only down

columns of the graph. Furthermore, the matching graph is acyclic except for the cycles along partic-
ular columns of the graph. Those cycles are reducible because of the structure of cycles in F (which

forms the sub-graph along each column). This is useful because the recurrences above involve com-
puting the shortest paths to a particular graph vertex, so only acyclic paths need to be considered.
By the reducibility of F and as proved in [15] for a similar graph, it follows that any acyclic path

through the matching graph contains at most one back edge from each column’s copy of F .
These observations led Myers and Miller [15] to a column-based, two “sweeps” per column,

dynamic programming algorithm for the approximate regular expression pattern matching problem
over sequences. Their algorithm, applied here to the matching graph, sweeps the jth column twice

in topological order, computing the relevant terms of the recurrence in each sweep. That suffices to
correctly compute the recurrence values for the jth column, because any acyclic path to a vertex in

the jth column involves at most one back edge in column j. So, any path to a vertex (s; j) which
enters column j at some other state, say t, consists of DAG edges to some vertex (v; j), a back edge

to (w; j)and DAG edges to (s; j). The algorithm’s first sweep correctly computes the value at (v; j),
and the second sweep correctly computes the value at (w; j) and consequently at (s; j).

The algorithm below implements this approach for the instantiation problem:

for j  0 to N do

f C

�;j

 [h0; ji]

for s 6= � do

C

s;j

 [ ]

for sweep 1 to 2 do

f for s in topological order of DAG edges do

if �
s

6= " then

for t; i; � where t! s and [i; j] 2 I

�

s

scores � do

C

s;j

 Merge(C
s;j

;Add(C
t;i

; �))

else

for t where t! s do

C

s;j

 Merge(C
s;j

; C

t;j

)

g

g

Since F restricted to the DAG edges is acyclic, a topological order of the states exists. The com-
plexity of the algorithm is O((N + I) M L), since the recurrence is computed twice for each graph



14vertex and there are at most 2 I M edges in the graph.

4.2 Extended Regular Expressions

For extended regular expression super-patterns, we introduce a new machine, called an extended

NFA or ENFA, which accepts languages denoted by extended regular expressions. There have been

two previous solutions to this problem of recognizing ERE’s, one by Hopcroft and Ullman [10] and
one by Hirst [9]. The Hopcroft and Ullman algorithm is a naive dynamic programming solution

taking 
(N

3

) time for any expression containing a Kleene closure operator. Hirst’s algorithm, on
the other hand, is essentially equivalent to the algorithm below in both complexity and algorithmic

structure. However, the algorithm’s details differ greatly from the framework of pattern matching
over sequences, using the expression’s parse tree instead of a state machine simulation, and it solves

only the language acceptance problem, i.e. is a given stringw inL(P ). The extended NFA provides
a solution which can be explained as an extension to the NFA simulation and can be easily recast

as a super-pattern matching algorithm. In fact, the ENFA state simulation is reminiscent of Earley’s
algorithm [4] for context-free grammar parsing, and it is a sparse, scanning version of the Hopcroft
and Ullman’s naive dynamic programming algorithm analogously to the way Earley’s algorithm is

a sparse, scanning version of the CYK algorithm [11, 22]. This section first presents the ENFA con-
struction and its state simulation, and then develops the super-pattern matching algorithm from the

state simulation.
For any extended regular expression R, an ENFA F formally consists of the same five-tuple

<V;E; �; �; �> as an NFA, and it uses the inductive construction rules depicted in Figure 4 (now
including F

R&S

and F
R�S

). In addition, the language accepted at s 2 V , L
F

(s) is the set of se-

quences spelled on all “paths” from � to s, andL
F

(�) defines the language accepted byF . However,
a new definition of a “path” is required, more than simply a sequence of edges through F , to main-

tain the equivalence between L
F

(�) and the language specified by R, L(R). This new definition is
recursive, using the following cases (where the quoted “path” refers to the new definition):

1. Any sequence of edges in F which does not pass through both the start and final state of an
F

R&S

orF
R�S

sub-automaton is considered a “path”. Thus, when no such sub-automata occur

inF , the new “paths” throughF are simply the old paths throughF as defined for NFA’s. Note
that this case includes sequence of edges which pass through F

R&S

and F
R�S

start states but

do not pass through the corresponding final states.

2. For a sub-graph F
R&S

, a “path” from �

R&S

to �
R&S

consists of a pair of “paths,” �
R&S

!

�

R

�

!�

R

!�

R&S

and �
R&S

!�

S

�

!�

S

!�

R&S

, which spell the same sequence. L
F

R&S

(�

R&S

)

is simply the set of sequences for which these “path” pairs exist. This is equivalent to the lan-

guage restriction that a sequence in L(R&S) must occur in both L(R) and L(S).

3. For a sub-graph F
R�S

, the “paths” through F
R�S

are the “paths” �
R�S

!�

R

�

!�

R

!�

R�S

for which no “path” spelling the same sequence exists throughF
S

. This satisfies the language

restriction that a sequence in L(R� S) must be in L(R) but not in L(S).

4. Finally, in general, the “paths” from � to a state s consist of the sequence of edges outside any

nested F
R&S

or F
R�S

sub-automaton combined with the “paths” through those nested F
R&S

and F
R�S

sub-automata.

L

F

(s), then, is the set of sequences spelled on “paths” from � to s, and L
F

(�) is the language ac-

cepted by F . From this point on, we drop the quotes from the term path, and so path now refers



15to this new recursive definition. Also, let the phrase sub-machines in F denote the set of F
R&S

and
F

R�S

sub-automata occurring in F .

Additional computation, beyond the NFA state simulation, is required to support this new def-
inition of a path. Given an input string w = w

1

w

2

: : :w

N

, the recurrences below define the state
simulation computation at position i and state s. They satisfy the new path definition by maintain-

ing partial path information for the sub-machines in F . A partial path for a sub-machine is a path
which passes through the sub-machine’s start state and ends at a state “inside” the sub-machine. This

information takes the form of the first position, in w, of the substrings of w being spelled on the par-
tial paths from each �

R&S

and �
R�S

to s. Thus, as the simulation progresses and partial paths are

extended to include a �
R&S

[�
R�S

] state, only those pairs of paths which spell the same sequence
from �

R&S

[�
R�S

] through F
R

and [not] through F
S

are extended. Because the state simulation is

solving the language acceptance problem, the sequence being spelled on all paths in the simulation
isw. Thus, it suffices to extend those pairs of paths whose first position values for the corresponding

�

R&S

[�
R�S

] state are equal.
Different recurrences are defined for different states, based on a five-part partition ofV . The first

subset of V contains only the start state of F , �. Its computation is as follows:

(1) s = �:

S

i;s

=

(

f0g if i = 0

; otherwise

The second subset, denoted V
re

, contains all states except � and the start and final states of the sub-
machines in F . These are the states introduced into F by the regular expression construction rules

from Figure 4.

(2) s 2 V
re

:

S

i;s

=

8

>

<

>

:

S

fS

i;t

j t! sg if �
s

= "

S

fS

i�1;t

j t! sg if �
s

6= ", i > 0 and �
s

= w

i

; if �
s

6= " and either i = 0 or �
s

6= w

i

The values contained in these S
i;s

sets consist of the beginning positions k inw of matches between
w

k+1

w

k+2

: : :w

i

and the partial path through the innermost enclosing sub-machine of s. The inner-

most enclosing sub-machine of a state s is the most deeply nestedF
R&S

or F
R�S

sub-automaton for
which s 2 V

R&S

(or s 2 V
R�S

).

The partial path information for the other enclosing sub-machines are kept in a series of mapping

tables associated with each �
R&S

and �
R�S

state. These tables are used to perform the mapping be-
tween the valid paths in �

R&S

’s or �
R�S

’s sub-machine and their innermost enclosing sub-machine.

The third state set, denoted V
�

, contains the start states of each sub-machine, and its recurrences are
the following:

(3) s 2 V
�

:

T

i;s

=

8

>

<

>

:

S

fS

i;t

j t! sg if �
s

= "

S

fS

i�1;t

j t! sg if �
s

6= ", i > 0 and �
s

= w

i

; if �
s

6= " and either i = 0 or �
s

6= w

i

S

i;s

=

(

fig if T
i;s

6= ;

; if T
i;s

= ;

The T
i;s

values, the mapping table for state s, collects and stores the first positions k of the matches
betweenw

k+1

w

k+2

: : :w

i

and the partial path from the innermost enclosing sub-machine’s start state



16to s. These tables are retained throughout the computation and are used at the corresponding sub-
machine final states when matches between the nested sub-machine and a string w

i+1

w

i+2

: : :w

j

is

found. The value of S
i;s

here is either empty or contains the single position i, depending on whether
a match between a prefix of w

i+1

w

i+2

: : :w

N

and the nested sub-machine could result in an overall
match between w and F .

The fourth and fifth subsets of V , V
&

and V
�

, contain the final states of the F
R&S

and F
R�S

sub-
automata, respectively. At one of these final states, s 2 V

&

[V

�

], the simulation determines those

first positions k in the nested sub-machine, F
R&S

[F
R�S

], for which paths exist through F
R

and
[not] through F

S

spelling w
k+1

w

k+2

: : :w

i

. It then unions the T
k;t

sets, where t = �

R&S

[�

R�S

]

corresponding to s, to extend the partial path information for the enclosing sub-machine. Thus, the
partial path information for �

R&S

[�
R�S

] is extended to �
R&S

[�
R�S

] using the valid paths through

F

R&S

[F
R�S

].

(4) s 2 V
&

:

S

i;s

=

S

fT

k;t

j k 2 S

i;t1

& k 2 S

i;t2

g

for t1! s, t2! s and t = �

R&S

corresponding to s = �

R&S

.

(5) s 2 V
�

:
S

i;s

=

S

fT

k;t

j k 2 S

i;t1

& k 62 S

i;t2

g

for t1! s, t2! s and t = �

R�S

corresponding to s = �

R�S

.

The simulation accepts if S
N;�

= f0g and rejects if S
N;�

= ;.

The actual algorithmperforming the state simulation uses the two-sweep technique over the states
of F . Since F is reducible, the same arguments given for the regular expression matching hold here.

For an input stringw of sizeN and an extended regular expressionP of sizeM , the time complexity
isO(N3

M) in the worst case. However, this complexity depends on the structure of P , and a tighter

bound ofO((N+I)ML) time can also be derived. In this case, I denotes the largest number of sub-
strings of w which match an intersection or difference sub-expression of P . L, as in super-pattern

matching, refers to the longest substring of w which matches a prefix of a string in the language de-
noted by P . This complexity bounds the running time, because the size of the S

i;s

and T
i;s

sets is

bounded by L, and O(IL) bounds the time needed to union the T
i;�

R&S

sets at each �
R&S

state (or
similarly at each �

R�S

state). Note that for an extended regular expression containing no Kleene
closure operations, the values of I and L are limited to O(NM) and O(M) respectively, giving a

complexity bound of O(NM

3

).

Returning to the super-pattern matching problem, the matching graphs consists of N + 1 copies
of ENFAF . The graph edges are added as described for regular expressions, as if the intersection and

difference sub-automata were alternation sub-automata. The dynamic programming recurrences in-
corporate the more complex state machine simulation. The recurrences for the instantiation problem

use the same five subsets of V , starting with the set containing just � and the set V
re

:

C

�;j

= fh0; jig

C

s;j

=

(

S

min

fhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

S

min

fC

t;j

j t! sg if �
s

= "

The computation at the sub-machine start states, s 2 V

�

, use similar mapping tables T to hold the

partial path information for the enclosing sub-machine:

T

s;j

=

(

S

min

fhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

S

min

fC

t;j

j t! sg if �
s

= "
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C

s;j

=

(

fjg if T
s;j

6= ;

; if T
s;j

= ;

And finally, the sub-machine final states in V
&

and V
�

use those mapping tables to extend matches
across the nested sub-machine:

C

s;j

=

S

min

fhc+ F

R&S

(c1; c2); ki j hc; ki 2 T

t;i

& hc1; ii 2 C

t1;j

& hc2; ii 2 C

t2;j

g

where t1! s, t2! s and t = �

R&S

corres. to s = �

R&S

C

s;j

=

S

min

fhc+ F

R�S

(c1; c2); ki j hc; ki 2 T

t;i

& hc1; ii 2 C

t1;j

&

c2 =

(

c2

0 if hc20; ii 2 C
t2;j

1 if hc20; ii 62 C
t2;j

g

where t1! s, t2! s and t = �

R�S

corres. to s = �

R�S

As with the instantiation problems for sequences and regular expressions, the values in C
�;j

for 0 �

j � N give the left endpoints of the matching intervals of P .
The algorithm computing these recurrences is another column-based, two-sweeps per column

algorithm, since the matching graph is again reducible. The time complexity is O((N + I)ML),
where I is defined here as the size of either the largest input interval set or the largest number of

different intervals matching an intersection or difference sub-expression of P .

5 Extension Algorithms

The four extensions described in Section 3, 1) explicit spacing, 2) implicit spacing, 3) repair inter-
vals and 4) affine scoring, can be solved using extensions to the algorithms presented in the previous

section. In addition, these algorithmic extensions require no major changes to the previous section’s
algorithms and are independent of the super-pattern language, i.e. whether the super-pattern is a se-

quence, regular expression or extended regular expression. This occurs because the effects on the
matching graphs from the extensions below can be thought of as “horizontal” changes to along par-

ticular graph rows. Whereas the algorithms of the previous section affect only the “vertical” structure
along each column of the graph. Because of this fact, the extensions can be individually presented

for a representative row of the matching graph. The overall algorithm for any combination of super-
pattern and set of extensions is developed by starting with one of the base algorithms given in the

previous section, and then applying the appropriate algorithmic extension to the relevant rows of the
matching graph.

The descriptions that follow concentrate on the three additional algorithms used to solve these

extensions. The first sub-section gives the application of a sliding window algorithm to bounded
spacers, fixed range implicit spacing and fixed range repair intervals. The next sub-section describes

a range query tree/inverted skyline solution for the proportional and per-interval implicit spacing. Fi-
nally, the third subsection presents a solution to the affine scoring schemes which employs minimum

envelopes to efficiently model the contributions of the affine curves along a row. The unbounded
spacer solution is not given as it can be solved using a running minimum as the overall algorithm

progresses along row s where �
s

= <l; �>.
The description in each of the sub-sections isolates a particular row s of the matching graph,

appropriately labeled, and solves the decision problem with interval scoring for that row. Also, it
assumes that state s is labeled �

s

= a, unless otherwise noted, and has only one predecessor state
t in F . The solutions to the other problems, and states with two predecessors, are straightforward

variations of the algorithms below.



185.1 Sliding Windows

The bounded spacers, implicit spacing and repair intervals all involve the computation of values in
fixed width windows, whether along the predecessor row of vertices or associated with the input

intervals. Treating the bounded spacers <l; h> first, the spacer is considered as an alphabet symbol
in the construction of the state machine, resulting in one state s 2 V where �

s

=<l; h>. The edges
from row t to row s in the graph connect each vertex (t; i), where 0 � i � N � l, to the vertices

(s; i+ l); (s; i+ l + 1); : : : ; (s;maxfN; i+ hg). These edges model the match between intervals
whose size is between l and h and the spacer. Looking at the incoming edges to a vertex (s; j) results

in the following recurrence:

C

s;j

= minfC

t;i

j t! s & maxf0; j � hg � i � maxf0; j � lgg

where “min” here is the traditional minimum operation. From this point on, the “maxf0; : : :g” bound-
ary conditions are omitted and assumed in the equations and algorithms below.

Similar edges are added for fixed range repair intervals, but these edges are included in addition
to the normal edges corresponding to input intervals. These new edges give the following recurrence,

where the second term in the minimum reflects the repair intervals:

C

s;j

= minfminfC

t;i

+ � j [i; j] 2 I

a

scores �g; minfC

t;k

+ c

a

j j � h

a

� k � j � l

a

g g

In each of the two cases above, the value of C
s;j

is the minimum over a window of h� l C
t;i

values.

The fixed implicit spacing is more complex, because the fixed width windows are the neighbor-
hoods occuring at both ends of each input interval. Along row s of the matching graph, the edges cor-

responding to each input interval [i; j] 2 I
a

are replaced with (1) a new vertex (s; [i; j]) representing
the interval, (2) edges connecting vertices (t; i+lmin

a

), (t; i+lmin
a

+1), : : :, (t; i+lmax
a

) to ver-

tex (s; [i; j])and (3) edges connecting vertex (s; [i; j]) to vertices (s; j+rmin
a

), (s; j+rmin
a

+1),
: : :, (s; j + rmax

a

). The edges model the implicit spacing defined for each endpoint of [i; j], and

the additional vertex is needed to keep the number of edges proportional to the size of the implicit
spacing. These changes result in the following two recurrences for the C

s;j

values:

C

s;[i;j]

= minfC

t;k

+ � j [i; j] 2 I

a

scores � & i+ lmin

a

� k � i+ lmax

a

gg

C

s;j

= minfC

s;[i

0

;j

0

]

j [i

0

; j

0

] 2 I

a

& j

0

+ rmin

a

� j � j

0

+ rmax

a

g

assuming no repair intervals have been specified for interval type a. These recurrences present two
different algorithmic problems, the “front end” problem of computing each C

s;[i;j]

from the array of

scores along row t, and the “back end” problem of computing the row ofC
s;j

values as the minimum
of the applicable C

s;[i

0

;j

0

]

values.

Naive dynamic programming algorithms computing these recurrences along a graph row s have a
complexity ofO(NW ) for explicit spacers or repair intervals, whereW = h�l, and a complexity of

((N+I)W ) for implicit spacing, whereW = maxflmax

a

�lmin

a

+1; rmax

a

�rmin

a

+1g. More
efficient algorithms use a “sliding window” technique for computing the sequence of minimums in

O(N) andO(N+I) time. This technique computes a recurrence such asD
j

= min

j�w�i�j

fE

i

g by
incrementally constructing a list of indices [i

1

; i

2

; : : : ; i

k

] for each j. Index i
1

denotes the minimum
value in the current window, index i

2

denotes the minimum value to the right of i
1

, index i
3

gives

the minimum to the right of i
2

, and so on until i
k

which always denotes the rightmost value in the
window. The formal algorithm is as follows:

L [ ]

for j  0 to N do

f if L
1

< j � w then
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L DeleteHead(L)

while Size(L) > 0 and E
LSize(L)

> E

j

do

L DeleteTail(L)
L Append(L; [j])

D

j

 E

L

1

g

using basic list operations DeleteHead, DeleteTail, Size and Append. The list is updated as the win-

dow advances by 1) removing the head of the list if the window has slid past its value, 2) removing
successive values from the tail of the list if the new value in the window is smaller and 3) inserting

the new value at the tail of the list. The complexity of this isO(N), since the value for each position
j is inserted and deleted once from the list.

This algorithm directly applies to the explicit spacing and repair interval recurrences above, since

the recurrence computing C

s;j

is simply a shifted version of the recurrence for D. The implicit
spacing’s front end problem can be solved by using the sliding window algorithm to precompute

minfC

t;k

j i + lmin

a

� k � i + lmax

a

g for each position 0 � i � N . Then, C
s;[i;j]

equals the
precomputed value at i plus the score associated with [i; j]. Note that the precomputed value needed

by C
s;[i;j]

generally is not available when the overall algorithm is at position i, since the window for
i cannot be computed untilC

t;i+lmax

a

is available. But, since the implicit spacing ranges for the left

and right endpoints cannot overlap, C
s;[i;j]

can be safely computed anytime between i+ lmax

a

and
j + rmin

a

.

The application to the implicit spacing’s back end problem is not as direct. In this case, there are
possibly overlapping windows of size rmax

a

�rmin

a

+1 where particular values hold, and the ob-
ject is to find the minimum of the values holding at each position j. This can be solved using the data

structure employed by the sliding window technique. As the overall algorithm progresses to each
vertex (s; j), the values of each C

s;[i

0

;j

0

]

where j 0+ rmin

a

= j are inserted into the sliding window

data structure. They are deleted either when dominated by another value or when j0 + rmax

a

= j.
The neighborhood for each C

s;[i

0

;j

0

]

is the same size, so a dominated value can be safely removed

from the list since it can never again contribute to a future C
s;j

value. With this algorithm, the value
needed for each C

s;j

always appears at the head of the sliding window’s list at j.

The use of this sliding window technique results in bounded spacer and repair interval computa-
tions taking O(N) time per graph row and in implicit spacing computations taking O(N + I) time

per graph row.

5.2 Range Query Trees and Inverted Skylines

The sliding window algorithms cannot be applied to proportional and per-interval implicit spacing
because neighborhood widths vary between the input intervals in I

a

. The matching graph changes

and recurrences are similar to that of fixed width spacing:

C

s;[i;j]

= minfC

t;k

+ � j [i; j] scores � & i+ lmin � k � i+ lmaxg

C

s;j

= minfC

s;[i

0

;j

0

]

j [i

0

; j

0

] 2 I

a

& j

0

+ rmin � j � j

0

+ rmaxg

where lmin, lmax, rmin and rmax henceforth generically denote the neighborhoods for the rele-

vant input interval. Again, there are the “front end” and “back end” problems of computing C
s;[i;j]

from the values along row t and computing each C
s;j

as the minimum of the applicable C
s;[i

0

;j

0

]

.

For the front end problem, the algorithm computing the C
s;[i;j]

values must be able to satisfy
general range queries over the values along row t. These range queries ask for the minimum score

over an arbitrary range x to y, or minfC

t;x

; C

t;x+1

; : : : ; C

t;y

g. The solution is to build a range query
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Ct,0 C C C C C Ct,1 t,2 t,3 t,4 t,5 t,6

0 1 2 3 4 5 6

0,1 2,3 4,5

4,7

6,7

0,3

0,7

stack of unfinished
sub-trees

Level 0:

Level 1:

Level 2:

Level 3:

Figure 7 View of a partially constructed range query tree (dashed and dotted lines are lp and rp pointers).

tree from the values along row t and use it to answer the queries. A range query tree is a binary tree
with N leaves, corresponding to the C

t;i

values, and with additional pointers pointing up the tree,

illustrated in Figure 7. Each node X in the tree contains seven values, denoted X.l, X.h, X.value,

X.left, X.right, X.lp and X.rp. The first three values specify X’s range and the minimum value over

that range, i.e. X.value = minfC

t;X:l

; C

t;X:l+1

; : : : ; C

t;X:h

g. X.left and X.right point to the left and
right children of X in the binary tree. X.lp and X.rp point to ancestors in the tree. Specifically, Y.rp

= X and Y.lp = X.lp for a left child Y of X , and Z.lp = X and Z.rp = X.rp for a right child Z of X .

The lp and rp pointers are used to answer the range queries x; y, as follows:

X  Leaf
x

X  Leaf
y

v

l

 X:value v

r

 X.value

while X.rp 6= nil and X.rp.h < y do while X.lp 6= nil and X.lp.l > x do

f X  X.rp f X  X.lp

v

l

 minfv

l

;X.right.valueg v

r

 minfv

r

;X.left.valueg

g g

“minfv

l

; v

r

g is the minimal value of C
t;x

; C

t;x+1

; : : : ; C

t;y

”

where Leaf
x

is the leaf of the tree containingC
t;x

. The two traversals begin at Leaf
x

and Leaf
y

and
move up the tree, using successive rp and lp pointers, to the node which is the least common ancestor

of the two leaves. The first traversal computes the minimum of the C
t;i

’s from x to the midpoint
of the LCA’s range. The second traversal computes the minimum from the LCA’s midpoint to y.
This can be shown in a simple inductive proof, not given here, whose core argument uses the lemma

below to show that each move up an lp or rp pointer extends the range of the minimum computation
contiguously to the left or right, resp., of the current range.

The time taken by the query is O(logW ), where W = y � x, since the range of X.lp and X.rp

is at least twice as large as the range of each node X in the traversal and the range of the LCA is

� 2W . Thus, arbitrary range queries can be satisfied in time logarithmic to the width of the range.

LEMMA 1. For a node X in a range query tree, 1) if X.lp 6= nil, then X.lp.left.h = X.l �1 and 2)
if X.rp 6= nil, then X.rp.right.l = X.h +1.

Proof. We give only the proof for X.lp. There are two cases. First, if X.lp.right = X (X is the
right child of X.lp), then X.lp.left andX must be the two children of X.lp. Then, X.lp.left.h must equal

X:l� 1, since the two children of a node divide that node’s range in half. Second, if X.lp.right 6= X

(implying that X.rp.left = X), then applying this proof inductively to X.rp yields that X.rp.lp.left.h =



21X.rp.l�1. But X.lp = X.rp.lp by the range query tree definition. And X.l = X.rp.l, sinceX is the left
child of X.rp and so the leftmost leaf in both their subtrees must be the same node. Thus, X.lp.left.h

= X.l �1.

The construction of the range query tree occurs incrementally as the overall matching algorithm
produces values of C

t;i

. It uses a stack of hnode,level i pairs to hold the roots of unfinished trees and

their levels in the tree. Figure 7 shows the state of the construction for i = 6. The construction step
for i > 0 is

Z  New () ; Z.value C

t;i

hA;Li  Pop (Stack)
if L > 1 then # The new leaf is a left child, so create and push its parent
f X  New () ; X.left Z ; X.lp Top (Stack).node

Z.rp X ; Z.lp X.lp

Push (Stack, hA;Li) ; Push (Stack, hX; 1i)

g

else # L = 1 and the new leaf is a right child, so find the root of the largest

# now finished sub-tree, create and push its parent, and then set the
# rp pointers for the rightmost nodes of the finished sub-tree

f A.right Z ; Z.lp A

Z  A # In the loop, Z points to the finished sub-trees’ roots

while Size (Stack)> 0 and Top (Stack).level = L+ 1 do

f hA;L

0

i  Pop (Stack)

A.value minfA.left.value, A.right.valueg

A.l A.left.l ; A.h A.right.h

A.right Z ; Z.lp A

Z  A ; L L0

g

X  New () # The new unfinished sub-tree root
Z.rp X ; X.left Z

if Size (Stack)> 0 then X.lp Top (Stack).node

Push (Stack, hX;L+ 1i)

for i L� 1 down to 1 do

f Z  Z.right ; Z.rp Z.lp.rp g

g

Operations Push, Pop, Top and Size are the basic stack operations and New creates a new tree node.

The construction at i = 0 is equivalent to the case above where the new leaf is a left child.
When the new leaf storingC

t;i

is a left child in the tree, it suffices to construct its parent and push

the unfinished parent on the stack. When the new leaf is a right child, the construction is finished
for the roots R

1

; R

2

; : : : ; R

k

of each sub-tree whose rightmost leaf is the new leaf. The completion

involves first an upwards pass through these roots, setting the pointers and minimum values for each
R

l

. After the root of the new sub-tree whose left child is R
k

has been created, an downward pass is
made setting each of the rp pointers to that new root. This construction takesO(N) time for matching

graph row t, since the size of the tree is 2N � 1.
The back end problem for proportional and per-interval spacing takes the form of an inverted

skyline problem and can be solved using a binary search tree. If the possible C
s;[i

0

;j

0

]

values which
can contribute to various C

s;j

are plotted graphically, the picture takes the form of Figure 8. Each

horizontal line represents the contribution of one C
s;[i

0

;j

0

]

to the C
s;j

values (the values of j form
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0

0 N

Figure 8 An inverted skyline.

the x-axis of the figure). The actual values of the C
s;j

are those found on the lowest line at each
position j in 0::N . The solution is to keep a balanced binary search tree, ordered by score, holding

theC
s;[i

0

;j

0

]

values applicable at each position j. Thus at j,C
s;j

is the minimal value in the tree. The
value of eachC

s;[i

0

;j

0

]

is inserted and deleted from the tree at j 0+rmin and j 0+rmax, respectively.

By applying one efficiency “trick,” the time taken by this algorithm can be bounded by O((N +

I) logW ), where W is the width of the widest neighborhood. The trick is that when a valueC
s;[j

0

;j

0

]

is being inserted into the tree, a query is made for any value in the tree which is to be removed at
j

0

+ rmax. If no such value exists, the new value is inserted into the tree. If such a value exists,

only the lower scoring value is kept in the tree, since the higher score cannot contribute to a future
C

s;j

. The use of this trick bounds the size of the tree at W nodes. Thus, all queries, insertions and

deletions take O(logW ) time.
The result of the algorithms described in this section is that proportional and per-interval implicit

spacing can be computedO((N+I) logW ) time, where W is the size of the widest input interval’s

neighborhood.

5.3 Minimum Envelopes and Affine Curves

In this section, we consider only the linear extension sections of the affine implicit spacing, bounded

spacers and repair intervals. The fixed range sections of these affine scoring schemes can be handled
separately by the algorithms of Sections 5.1 and 5.2. For explicit spacers and repair intervals, extra

incoming edges must be added to vertex (s; j) from vertices (t; 0), (t; 1), : : :, (t; j �max� 1) and
from (t; j�min+ 1), (t; j�min+ 2), : : :, (t; j). The following two recurrences capture the new

computations required for those edges.

L

s;j

= minfC

t;k

+ cl � (k� (j �min)) j j �min < k � jg

R

s;j

= minfC

t;k

+ cr � ((j �max)� k) j 0 � k < j �maxg

With these recurrences for an explicit spacer, C
s;j

= minfL

s;j

+ c; R

s;j

+ c; : : :the fixed range
recurrence: : :g where c is the fixed range spacer cost. The repair interval case is similar, except the

recurrences dealing with the input intervals must also be included.
The extra edges for affine scored implicit spacing correspond to the the four affine curves given

in the specification and can be derived from the following four recurrences:

LL

s;[i;j]

= minfC

t;k

+ lcl

a

� ((i+ lmin)� k) j 0 � k < i+ lming
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LR

s;[i;j]

= minfC

t;k

+ lcr

a

� (k � (i+ lmax)) j i+ lmax < k � bg

RL

s;j

= minfC

s;[i

0

;j

0

]

+ rcl

a

� ((j

0

+ rmin)� j) j [i

0

; j

0

] 2 I

a

& b � j < j

0

+ rming

RR

s;j

= minfC

s;[i

0

;j

0

]

+ rcr

a

� (j � (j

0

+ rmax)) j [i

0

; j

0

] 2 I

a

& j

0

+ rmax < j � Ng

where lmin, lmax, rmin, rmax and b generically denote the neighborhoods and boundary point

for an interval. With these recurrences, the computations for implicit spacing become

C

s;[i;j]

= minfLL

s;[i;j]

+ lc

a

+ �; LR

s;[i;j]

+ lc

a

+ �; : : : the fixed range computation : : :g

C

s;j

= minfRL

s;j

+ rc

a

; RR

s;j

+ rc

a

; : : : the fixed range computation : : :g

where lc
a

and rc
a

are the base implicit spacing costs and � is the score associated for input interval
[i; j].

The rest of this section presents the algorithms for the six recurrences above by grouping them
into three sets, 1) R, LL andRR, 2) L and LR and 3)RL, based on the algorithms used to compute

the recurrences. For each group, abstract forms of the recurrences are constructed which simplifies
the recurrences and better illustrates their commonality. Then, the solution for one representative
abstract form (per group) is presented, along with the complexity for the resulting algorithm. The

mapping back to the original recurrences is straightforward, and so not explicitly described.
The R, LL and RR recurrences can be abstracted as D1

i

= min

0�k<i

fE

k

+ c � (i� k)g for R

andLL andD2

i

= minfE

[i

0

;j

0

]

+c�(i�k) j k = j

0

+rmax < ig forRR. In this abstract form, each
D

i

is the minimum of the candidates, f(m) = e

k

+ c � (m� k) from each position k < i, that are

evaluated at i. The difference between the two forms is that multiple candidates can occur with the
same k value in the second form. All of the candidates involved in the D1

i

(or D2

i

) equations have

the same slope c. Because lines with different origins and the same slope must intersect either zero
or an infinite number of times, the minimum candidate at a position imust remain minimum over the

candidates from k < i at every i0 > i. Therefore, only the current minimum at i is needed to compute
futureD

i

0 values, and the recurrence for each D can be rewritten as D1

i

= minfD

i�1

+c; E

i

g and
D2

i

= minfD

i�1

+ c; minfE

[i

0

;j

0

]

j j

0

+ rmax = igg. These recurrences can be computed in

O(N) and O(N + I) time for 0 � i � N .
The L and LR recurrences take the abstract forms D

i

= min

l�k�i

fE

k

+ c � (k � l)g and

D

[i;j]

= min

l�k�b

fE

[i;j]

+c�(k�l) j l = i+lmin& b = (j�i)�bprop

a

g. TheD
i

form is a special
case ofD

[i;j]

, where only one value is needed for any position i (rather than values for each [i; j]) and

where all of the widths i� l are of equal size (instead of the varying b� l). Only the solution to the
more complicated D

[i;j]

is presented here. Each D
[i;j]

is the minimum, at position l, of candidates,

f(m) = y + c � (x � m), whose origin on the x-axis is somewhere between l and b. Considering
the D

[i;j]

recurrence from the viewpoint of a particular position b, multiple D
[i;j]

values might be

required at b, each with (j � i) � bprop = b and with differing l values. The solution is to construct
a data structure at each position b which stores 8 0 � m � b : min

m�k�b

fE

k

+ c � (k � m)g.

Graphically, this is illustrated in Figure 9 as the minimum envelope of the candidate lines for 0 �
m � b. The value of D

[i;j]

is then computed by searching the data structure at b = (j � i) � bprop

for the minimal value at m = i+ lmin.

The data structure constructed at each position b is an ordered list of the candidates in the mini-
mum envelope and the sub-ranges of 0::b in which each candidate is minimal. Since the candidates

ordered by their minimal sub-ranges are also ordered by their origin positions k and since each can-
didate is minimal over a contiguous region of 0::b by the zero or infinite intersection property, con-

structing the list at b+1 from the list at b involves 1) removing candidates at the tail of the list which
are eliminated by the new candidate with origin position at b + 1 and 2) inserting the new candi-

date at the tail of the list. Implementing the list with a balanced search tree yields an O(N logN)

construction algorithm and O(logN) searches for the I D
[i;j]

values.
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dotted line indicates
minimum envelope

0

0 b

Figure 9 Five candidate lines and their minimum envelope.

The solution to the RL recurrence is essentially the inverse of the LR algorithm. The abstract

RL recurrence takes the form of D
j

= minfE

[i

0

;j

0

]

+ c � (h � j) j [i

0

; j

0

] 2 I

a

where b � j < h =

j

0

+rming. Graphically, the picture looks like that of Figure 9 except that the range is j::N , not 0::b,

and the intervals are not evenly distributed at each position, but occur according to the individual j0+
rmin values. The algorithm is the inverse of the previous algorithm for the following two reasons.
First, only the value at imust be retrieved from the data structure constructed at i, unlike the previous

algorithm in which queries could vary over the range 0::b. Second, new candidates at j, i.e. the
candidates from each interval [i0; j 0]where (j 0�i0)�bprop = j, can have origin positions,j 0+rmin,

anywhere from j to N . So, those candidates can be inserted anywhere into the minimum envelope
of j. The construction of the list at j+1 from the list at j in this case involves 1) removing the head

of the list if that candidate’s origin position j 0 + rmin = j, 2) inserting the new candidates (where
(j

0

� i

0

)� bprop = j+1) which will now appear in the minimum envelope at j+1 and 3) removing

the candidates from the list at j which are eliminated from the minimum envelope by the insertion
of the new candidates at j + 1. Steps 2 and 3 are equivalent to the procedure described in the last

paragraph for inserting new candidates into the LR data structure, except that the insertion uses only
the sub-list of the current envelope which is minimal from j + 1 to j0+ rmin, instead of the whole
list, and the candidate currently minimal at j0 + rmin is not necessarily removed from the list, as

it may still be minimal to the right of j0 + rmin. Implementing this using a balanced binary search
tree gives an O((N + I) logN) time complexity to the algorithm, since the three construction steps

use a constant number of list operations.
Taken together, these four algorithms compute the linear extensions to the affine scored explicit

spacers, implicit spacers and repair intervals in O((N + I) logN) time per matching graph row.

6 Conclusions

The domain of discrete pattern matching over sequences has matured to the point where an outline
for the problems in that domain has been developed and a unifying framework, using edit graphs and

dynamic programming, for the solutions to the problem domain has appeared. This paper presents a
problem class forming the core of a discrete pattern matching domain over something more than just

sequences, namely intervals and interval sets. The characterization is such that 1) practical applica-
tions can be solved under this problem class, 2) a similar framework can be constructed for these

problems, and 3) theoretical differences from the edit-graph/dynamic-programming framework and
interesting algorithms appear at the edges of this domain.

Despite the range of problems presented in this paper, some limits were imposed on the problem
class. The effects of introducing negative length intervals are not considered. Distance-based scor-



25ing schemes with concave or convex curves have been proposed as a realistic model for representing
errors, yet this extension is not explored. Finally, this paper concentrates on the algorithms and com-

plexity for isolated super-pattern matching problems, and does not consider the overall algorithms
or overall complexities of recognition hierarchies.
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