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Abstract

The use of modularity in the design and implementation of complex software simplifies the development

process, as well as facilitating the construction of customized configurations. This paper describes our

experience using modularity in Consul, a communication substrate used for constructing fault-tolerant,

distributed programs. First, Consul is presented as an example of how modularity is feasible in both the

design and the implementation of such systems. Second, modularity issues that arose during development

are discussed. These include deciding how the system is divided into various modules,dealing with problems

that result when protocols are combined, and ensuring that the underlying object infrastructure provides

adequate support. The key observation is that dependencies between modules—both direct dependencies

caused by one module explicitly using another’s operation and indirect dependencies where one module is

affected by another without direct interaction—make modularization especially difficult in systems of this

type. While our observations are based on designing and implementing Consul, the lessons are applicable

to any fault-tolerant, distributed system.
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INTRODUCTION

A common way of simplifying the development of large software systems is through the use of

modularity. With this approach, the individual functions of a system are designed and implemented

independently of one another as fully-encapsulated modules, with interaction between modules taking

place only through well-defined interfaces. Dividing the software in this way and controlling its

interactions has a number of advantages. One is that it is easier to design, implement, debug, and

optimize individual modules than it is an entire monolithic system. Another is that it forces the builder

to develop a better understanding of the interactions and dependencies among modules, leading to a

more dependable system with better internal structure. A third is that it facilitates the development

of customized systems for specific applications, since only those modules implementing functions

essential to the specific needs of the application need be included.

Despite these advantages, the use of modularity has lagged in the development of software for

fault-tolerant, distributed systems, or at least has not been used to the point where it is emphasized

and acknowledged explicitly in the literature. As its name implies, a fault-tolerant, distributed system

has two fundamental characteristics. First, it is built on a distributed architecture in which multiple

machines are connected by a network without the benefit of shared memory. Second, the system must

be able to continue functioning despite failures such as machine crashes. These properties make the

software for such systems inherently complex, largely due to the need to deal with the asynchrony

associated with multiple machines and network transmission, as well as the uncertainty caused by

network and machine failures. Given that modularity is fundamentally a technique for controlling

complexity, its application to software of this type has the potential to reap large benefits.

This paper describe our experience using modularity in the design and implementation of a com-

munication substrate called Consul [Mis91, MPS91a] that supports the construction of fault-tolerant,

distributed software structured using the state machine approach [Sch90]. Consul provides various

fault-tolerant services such as group-oriented multicast, membership, and recovery, which simplify

the problems associated with consistently ordering events and dealing with failures. These services

are realized using protocols as the fundamental modules of the system. These protocols are, in turn,

implemented in an underlying object infrastructure, in our case, the x-kernel [HP91].

Our focus on modularity in Consul takes two forms. First, we present Consul as an example of

how modularity can actually be achieved in a system of this type. Unlike similar systems, in our

approach, each fault-tolerant service is designed and implemented independently of the others as one

or two protocols, with a system then being constructed from a library of such protocols. Second, we

outline some of the issues that arose as a result of our emphasis on modularity, and describe how these

were dealt with in the context of Consul. These include deciding how the system is divided into various

modules and designing their interfaces, dealing with correctness and efficiency problems that result

when protocols are combined, and ensuring that the underlying object infrastructure provides adequate

support.

A key theme that unifies many of the issues we discuss is the problem of dependencies between

modules. In systems such as Consul, a given fault-tolerant service relies on other services to realize its

functionality, and hence, depends on their correctness to ensure its own [Cri91]. These dependencies

are manifested in the implementation either directly, as when one protocol invokes an operation on

another, or indirectly, as when one protocol relies on another to establish a certain state. While both

types of dependencies complicate the process of developing a correct and efficient system, the latter are

most difficult to handle since they can be viewed as akin to side-effects. One of the main contributions

of this paper is to highlight these direct and indirect dependencies, many of which are inherent in
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fault-tolerant, distributed system and not specific to Consul.

The following two sections describe modularity in Consul at two different levels. The first defines

the set of abstract services supported by Consul and outlines how these services are mapped onto a

set of protocol modules; we refer to this as design modularity. The second describes how Consul’s

protocol modules are realized in a particular object infrastructure; we refer to this as implementation

modularity. Subsequently, issues and problems relating to these two levels of modularity are discussed.

The final section contains conclusions.

DESIGN MODULARITY

From the application’s perspective, Consul provides a collection of fault-tolerant services that col-

lectively support the state machine model of distributed computing [Sch90]. In this approach, the

application maintains state variables that are modified in response to commands received from other

state machines. Execution of a command is deterministic and atomic with respect to other commands.

The output of a state machine, that is, the sequence of commands to other state machines or the

environment, is completely determined by the sequence of input commands.

A fault-tolerant version of a state machine is implemented by replicating the state machine and

running each replica in parallel on a different processor in a distributed system. Key requirements

for implementing the state machine approach include maintaining replica consistency at all times and

integrating repaired replicas following failure. The fault-tolerant services found in Consul are designed

specifically to support these requirements. For example, the multicast service provides atomic (i.e., all

or nothing) message delivery and a consistent ordering among all recipients, which makes it ideal for

disseminating commands to state machine replicas.

Figure 1 illustrates the abstract fault-tolerant services found in Consul and the dependencies among

them. In this figure, the rectangles are services, with an arrow from service S
1

to service S
2

indicating

that the correctness of S
1

depends on the correctness of S
2

[Cri91]; the edge labels indicate the

property that induces the dependency. At the top is the state machine that represents the application

program; it depends directly on two services: multicast and recovery. As already mentioned, multicast

is a communication service that allows a message to be transmitted asynchronously to a group of

processes atomically and in a consistent order, while recovery deals with restoring the state of a failed

state-machine replica upon restart. Membership provides a consistent view of which processors are

functioning and which have failed at any given moment in time. Membership is used by the recovery

service when a replica recovers and the multicast service to implement a consistent total order; it

also depends on multicast to disseminate messages to instances of the membership service on other

machines. The time service provides the abstraction of a common time base on all the machines in

a distributed system despite the lack of a single physical clock. In Consul, this service is realized

using logical clocks [Lam78], and is used by multicast to consistently order messages. Finally, we note

that, while this division of functionality into abstract services is somewhat arbitrary, a large number

of systems use these services or variants thereof [BJ87, BSS91, CDD90, KM85, KDK+89, PSB+88].

Further discussion of these services, their interrelationships, and the systems that use them can be found

in [MS92].

We now turn our attention from the abstract services provided by Consul to the set of protocol

modules that realize these services in the substrate. A copy of these protocols resides on each machine

in a distributed system, and provides an interface between the application program in the form of the

state machine replicas and the underlying network. The communication network is assumed to be

asynchronous, with no bound on the transmission delay for a message between any two machines.

2



Multicast

TimeStable Storage

State Machine

Membership

{process
   join}

Recovery

{message dissemination}

{recoverability}

{replica coordination}

{recoverability}

{total order}
{order}

Figure 1: Fault-tolerant services and dependencies

Messages may be lost or delivered out-of-order, but it is assumed that they are never corrupted.

Furthermore, machines are assumed to suffer fail-silent semantics [PSB+88], i.e., they fail by crashing

without making any incorrect state transitions. Finally, Consul assumes that stable storage is available

to each machine, and that data written to stable storage survives crashes [Lam81].

In keeping with our emphasis on modularity, the mapping from fault-tolerant services to protocols

is primarily 1-to-1 or 1-to-few; that is, the services are implemented independently of one another as

individual protocols or a small set of protocols, rather than together in one monolithic system. Figure

2 illustrates the detailed architecture of a typical Consul protocol configuration. In this figure, the

rectangles are protocols, with an arrow from protocol P
1

to protocol P
2

indicating that P
1

invokes

operations on P
2

to implement its functionality. The mapping from fault-tolerant service to protocols

is as follows. The Recovery protocol implements the recovery service, the Membership and FailureDe-
tection protocols collectively implement the membership service, and a combination of the Psync and

Order protocols implement the multicast and time services. In this figure, the stable storage and network

protocols are shaded to indicate that they are provided externally, and hence, assumed by Consul.

Psync is the main communication mechanism in Consul [PBS89]. It provides a multicast facility

that maintains the partial order of messages exchanged in the system. Specifically, it supports a

conversation abstraction through which a collection of processes such as the state machine replicas

exchange messages. A conversation is explicitly opened by specifying a set of participating processes

called the membership list, ML. A message sent to the conversation is multicast to all processes in

ML. Fundamentally, each process sends a message in the context of those messages it has already

sent or received, a relation that defines a partial ordering on the messages exchanged through the
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Figure 2: Consul protocol configuration

conversation. Psync explicitly maintains the partial order, which has also been called causal order

[BSS91], in the form of a directed acyclic graph called a context graph. Psync provides operations for

sending and receiving messages, as well as for inspecting the context graph. The multicast message

delivery implemented by Psync is atomic, i.e., either all the processes in ML receive the message, or

none do.

Consul’s Order protocol enforces consistency on the order in which replicas receive messages, a

property that is used to guarantee that replicas process commands in consistent way. This protocol is

chosen from a suite of different and independent protocols, each providing a different kind of consistent

message ordering using the partial ordering provided by Psync as a base. To date, we have designed

two Order protocols. One is a consistent total order; when combined with the atomic message delivery

guarantees of Psync, this gives the effect of an atomic broadcast [CASD85, KTHB89, MSM89, VRB89].

The other is a semantic dependent order; this takes advantage of the commutativity of the commands

encoded in messages to provide an ordering that is less restrictive than total ordering, yet still strong

enough to preserve the correctness of the application [MPS89].

The FailureDetection and Membership protocols deal with replica failures and recoveries [MPS91b].

The FailureDetection protocol monitors replicas for failures. It does this based on message traffic, i.e.,

if no message is received from some replica in a given interval of time, its failure is suspected and

announced to the other replicas. The Membership protocol maintains a consistent system-wide view of

which replicas are functioning and which have failed at any point in time. It does this by establishing

agreement among correct replicas on (a) whether a replica that is suspected down has actually failed

and (b) when that failure occurred relative to the stream of messages. Similarly, when a previously
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failed replica recovers, this protocol consistently incorporates it on all machines.

The Recovery protocol comes into play when a previously failed replica recovers. It restores the

state of the recovering replica to the current state of the other replicas, and incorporates it smoothly

back into the normal flow of the computation. This is done by first reading a checkpoint stored by the

replica during execution, and then using an automatic replay of messages stored in Psync’s context

graph to process missing commands. Further details on all of these protocols can be found in [Mis91].

One of the fundamental problems in designing a modular fault-tolerant system such as Consul

is dealing with interactions and dependencies between protocols. Some of these dependencies are

direct—one protocol invokes an operation on another protocol to realize its own functionality. The

edges in Figure 2 represent this type of interaction in Consul. For example, one of the tasks of the

Recovery protocol is to incorporate a recovering process in the membership list before it starts operating.

Recovery interacts directly with Membership to do this. Another example occurs between the Order
and Psync protocols. In this case, Order invokes a Psync operation to determine if a message has been

received by all functioning processes.

Unfortunately, such interactions do not capture all of the ways that protocols affect each other.

Often, a protocol implicitly relies on another protocol to establish a certain property or to reach a

given state within a certain amount of time. For example, by asking Psync whether a message has been

received by all replicas, the total Order protocol is indirectly relying on the Membership protocol, which

invokes a Psync operation that changes the membership list. Another example involves the timeout

value used by the FailureDetection protocol to limit the time in which a process must send a message

so as not to be suspected of having failed. While this timeout is confined to this one protocol, whether

or not it is set to an appropriate value changes based on the state of other protocols. In this case, if

the Membership protocol is actively processing the return of a previously failed process, the timeout

interval for that process should be lengthened since communication may be delayed while it restores

its state. The effect here is again indirect, this time on the performance of the system rather than its

correctness. We consider the ramifications of both types of dependencies in a later section.

IMPLEMENTATION MODULARITY

Whereas the previous section outlined the abstract services offered by Consul and described the protocol

suite that provides these services, this section presents a case study of how Consul’s protocols were

actually implemented in a particular object-oriented infrastructure—the x-kernel. The primary goal of

the section is to illustrate how the design modularity is preserved in the actual implementation, and to

highlight some of the aspects of the implementation that required special care due to the emphasis on

retaining modularity. The latter include the way in which the specific collection of protocols required

for an application is configured, how the substrate is initialized upon application startup, message flow,

and restoration of the substrate following failure.

For the record, the Consul implementation consists of approximately 10,000 lines of C code, of

which 3,500 is Psync. As already mentioned, the implementation vehicle is the x-kernel, an operating

system kernel designed explicitly for experimenting with communication protocols. Consul currently

uses a version of the x-kernel that runs standalone on Sun-3 workstations; a port to a version running

on the Mach microkernel is in progress. Two small prototype applications have been constructed, a

replicated directory server and a replicated word search game; following the completion of the Mach

port, Consul will also be used to implement a replicated tuple space for a fault-tolerant version of the

Linda coordination language [ACG86].
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Figure 3: Consul protocol configuration

Configuration

The x-kernel provides an object-oriented framework designed to support the rapid implementation of

efficient network protocols. It does this by providing a uniform protocol interface and support library

that allows the programmer to configure individual protocol objects into a protocol graph that realizes

the required functionality. Each node in this graph corresponds to a protocol object, and the edges

represent a “uses” relationship. That is, an edge from protocolP
1

to protocolP
2

indicates that P
1

opens

P

2

to send and receive messages on its behalf. Note, however, that in the case of Consul, the actual

message flow has been optimized and hence, does not always follow these edges. This is discussed in

more detail below.

Figure 3 illustrates the protocol graph that implements Consul, where each protocol described in

the preceding section is implemented as an x-kernel protocol object. Accordingly, there are single

protocol objects implementing Psync, Membership, FailureDetection, and Recovery; there is a set of

objects implementing each Order protocol. In addition, the Dispatcher protocol maps messages onto

commands—it tags each outgoing message with a command tag and calls the application-level command
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corresponding to the tag on each incoming message. Two final protocols—Divider and (Re)Start—are

required for configuration purposes. Divider demultiplexes incoming messages to the appropriate high-

level protocols; its specific role is described in more detail below. (Re)Start establishes a connection

among various protocols needed by an application for proper communication, and reestablishes them

after a failure; this protocol remains quiescent at other times. Neither protocol object is a real protocol

in the sense that it exchanges messages with a peer on another machine; they only exist to “manage”

the protocol graph. As before, the stable storage and network protocols represent facilities that are

provided externally.

Opening Connections

The modular construction of Consul means that connections among the various protocols, as well

as between the application and Consul, must be explicitly created at initialization time. From the

perspective of the application, this occurs when the state machine replicas, each identified by a well-

known port, decide to open connections among themselves in order to exchange messages. To do this,

each replica process opens the top-most object in its protocol graph, specifying the well-known port

and host addresses of the other replicas. This protocol then opens lower-level protocols, and so on.

When a high-level protocol object opens a low-level protocol object, the low-level protocol returns an

x-kernel session object. This session object represents the end-point of a connection and can be used

by the high-level protocol object to send and receive messages.

Consider now the process of opening connections through the protocol graph in more detail.

First, the replica process opens the (Re)Start protocol object multiple times—once for each command

supported by the replica. The (Re)Startprotocol then opens the Dividerprotocol which, in turn, opens the

Psync protocol. Because there is a one-to-one relationship between the replica and the corresponding

Psync session, the session identifier returned by Psync serves as an internal replica id; it is passed

as an argument when each subsequent protocol is opened to ensure that the appropriate sessions are

properly connected. (Re)Start then opens the Recovery, FailureDetection, and Membership protocols

exactly once, and the Dispatch protocol once for every application open invocation (i.e., once for

each replica-level command) and the Dispatch protocol in turn opens Order exactly once. Finally, the

Recovery, Membership, FailureDetection, and Order protocols each open the Divider protocol. Divider
knows which Psync session to associate these protocols with because of the unique id mentioned above.

Sending and Receiving Messages

Now consider how messages flow through the session objects that represent the dynamic configuration

of Consul. Outbound messages generated by the replica process—which are the commands issued by

the replica—are first sent to the Dispatch session that corresponds to the command being issued. The

Dispatch session tags the message with a command id, and sends it out through the Order session.

Finally, Order sends the message to the Psync session, which multicasts it over the network. Notice

that the Divider never processes outgoing messages. For inbound messages that correspond to incoming

commands issued by other replicas, the Psync session hands the message to the Divider protocol, which

passes it up to Order. Order then delivers it to Dispatch, which finally invokes the appropriate command

in the replica process. Notice that in both cases, the (Re)Start protocol does not process messages; it

only exists to manage the process of opening protocols.

The flow of messages just described corresponds to commands that are issued and received by

the replica process. In addition, the other protocols in Consul exchange messages with their peers on

other machines. For example, the Membership protocol exchanges messages to reach agreement that
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a replica has failed. Also, FailureDetection receives a copy of all incoming messages. This is how it

learns that remote replicas are still functioning. In short, each incoming message is potentially received

by multiple protocols.

The fact that a set of protocols on the same machine have to cooperate so closely means that they

need to have common knowledge about what messages look like, i.e., they share message represen-

tation information. Specifically, all protocols except for Psync recognize two types of messages: OT

(operation type) message and MT (monitoring type) messages. Each OT message is a replica-generated

message that invokes a specific command on each replica. MT messages, on the other hand, are used

internally by Consul’s protocols to exchange information. In other words, OT and MT messages roughly

correspond to data and control messages in a traditional monolithic protocol, the only difference being

that they are shared by a set of protocols.

Each protocol object receives one or both message types. For example, the Order protocol object

receives both the OT and MT messages, while the Membership protocol object receives only MT

messages. The protocol objects specify which messages they expect to receive to the Divider protocol

object upon initialization, and the Divider protocol object, in turn, delivers the appropriate messages as

they are received. As already noted, this means that the Divider may deliver a single incoming message

to multiple high-level protocols.

Restoring Connections

Another consequence of Consul’s modular construction is that machine failures cause the connections

among various protocol and session objects to be lost in addition to their states. As a result, when a replica

recovers, all of these objects and interconnections must be recreated. To restore these connections,

every protocol and session object stores information in the stable store at a well-known logical address.

Typically, a protocol object stores the number of its associated session objects, and for every one of its

sessions, the logical addresses in the stable store where that session’s state is checkpointed, while each

session object stores its state. This is performed during the periodic checkpointing that every session

performs while the system is operating. After this checkpoint is read, connections among protocol and

session objects are restored by the (Re)Start protocol.

There is, however, an additional complexity that must be dealt with: the session states cannot be

fully restored given only the information stored by the previous incarnation of the session object since

these states also depend on the checkpoints taken by the other protocols. This problem is solved as

follows. First, the (Re)Start protocol gathers the relevant checkpoints from all the protocols; these

checkpoints include the internal replica id. The (Re)Start protocol then instructs the Divider protocol to

restore the sessions corresponding to each unique id. The Divider protocol, in turn, invokes the Psync
protocol object to reconstruct the session state corresponding to the session identifier retrieved from

stable storage. The Psync protocol object creates a Psync session, reconstructs the context graph from

the stable storage and returns the new unique id to the Divider protocol, which returns it to the (Re)Start
protocol. (Re)Start then invokes the FailureDetection, Membership, Dispatch, and Recovery protocol

objects to recover their appropriate session states, while the Dispatch protocol in turn invokes the Order
protocol to recover the state of each of its sessions.

This completes restoration of the connections among various protocol and session objects of the

communication substrate. The connection between the application process and the substrate is restored

when the application invokes the (Re)Start protocol with the appropriate port.
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DISCUSSION

In this section, we turn from describing how modularity has been used in the design and implementation

of Consul, to discussing three specific issues that arose with respect to modularity in the course of our

efforts. The first is simply defining the modules and their interfaces. This can be viewed as two steps:

(a) identifying dependencies between fundamental functions and deciding whether the interactions are

clean enough to allow implementation as separate modules, and (b) deciding which interactions can (or

should) be implemented explicitly as part of the interface. The second is dealing with problems that

arise when protocols that are correct and efficient in isolation are configured into a system that turns out

to be neither. This can be viewed as dealing with the indirect interactions—mostly unexpected—that

arise when dealing with the asynchrony and uncertainty of networks and failures. The third concerns

our experiences with the underlying object infrastructure.

Defining Modules and Interfaces

A crucial first step in building a modular system is determining how to divide the required functionality

into separate modules, and then defining the appropriate interfaces. Ideally, the goal of this process

is to isolate each fundamental function in a module, where a fundamental function may be defined

informally as one that is needed by multiple other modules. Unfortunately, identifying such functions

can be non-trivial in a fault-tolerant distributed system, mainly because it requires identifying and

understanding the nature of the direct and indirect interactions between modules. Until recently, even

the interactions among the abstract fault-tolerant services have been poorly understood, to say nothing

of finer grain pieces.

To illustrate the difficulty in doing this, consider the membership service in Consul. As already

noted, we have identified two individual functions that can be combined to realize membership:

detecting process failures and establishing agreement on the order of failures and joins of various

processes. The first is implemented in Consul by the FailureDetection protocol and the second by the

Membership protocol. One dependency here is that the FailureDetection protocol needs to initiate the

Membership protocol upon suspecting the failure. This one is relatively easy to implement as a direct

interaction: FailureDetection invokes an “I suspect replica R has failed” operation on the Membership
protocol.

A more subtle dependency, however, comes from the fact that the agreement algorithm in the

Membership protocol is affected by subsequent process failures during its execution. As a result,

these functions have been coalesced into a single protocol in many systems [CM84, BJ87]. For some

applications, however, the functionality provided by the FailureDetection protocol alone is sufficient to

maintain correctness in the presence of failures. Separating the two functions, as was done in Consul,

therefore allows the user to choose between two types of membership services: a weak membership

service based only on the FailureDetection protocol, and a strong membership service based on failure

detection and agreement. Moreover, our experience is that this division also makes it easier to implement

the individual pieces since they become smaller and more self-contained.

Psync provides another example—in this case, a negative one—of how dependencies between

functions complicate the process of defining modules. This protocol involves several different functions:

it maintains the context graph, supports a consistent causal ordering, implements atomic delivery of

messages, and provides various graph inspection operations. Moreover, there are many applications

that would benefit from separating these functions into individual protocols since they require only a

subset of the complete set; for example, certain read-only databases require atomic delivery but not

consistent causal ordering [GMS91]. Unfortunately, at the time Psync was designed and implemented,
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we were only beginning to explore the nature of the dependencies between these functions and the

benefits of modularity, so it ended up as a single, rather monolithic, protocol. Our understanding has

progressed to the point where we are currently considering reimplementing Psync in a more modular

fashion.

Going hand-in-hand with dividing system functionality into modules is the problem of actually

defining module interfaces, that is, determining what the direct interactions should be and how they

should be realized. The primary problem is that the nature of these direct interactions evolve and change

as the system is constructed and as the modules are used in new ways. We experienced this many times

during the design and implementation of Consul. For example, Psync was originally designed for an

environment in which machines did not fail, meaning that there was no support for managing process

failures or recoveries. When we started to consider such scenarios, it became necessary to return to the

design and add new primitives to Psync’s interface to, for example, allow the Membership protocol to

modify the membership list, which is actually maintained by Psync.

Another aspect of the Psync interface that we are currently reevaluating is how a high-level protocol

receives a message from Psync. We have considered two possibilities: Psync provides an operation

that can be invoked to receive a message, and the high-level protocol provides a callback procedure

that Psync invokes when a new message arrives. The former has the advantage that the application has

the control of when a message is received and processed. In particular, since the high-level protocol

decides when to receive a message, it does not need to worry about synchronization problems that

occur when multiple messages arrive at the same time. The latter possibility, however, is more efficient

because a message (thread) hand-off need not occur. Currently, the interface includes both styles and

the high-level protocol chooses the desired one at initialization time.

A final interface example deals with Membership. Currently, this protocol removes failed processes

from the membership list and reincorporates recovered processes, but it does not generate a failure

notification event to inform the application about the membership change. This type of membership

has been called a monitor service elsewhere [VM90]. However, like other researchers investigating

membership protocols [BJ87, CM84, Cri88, KGR91], we now recognize that certain applications may

desire such a notification to make certain application-leveldecisions. We are in the process of modifying

the interface of the Membership protocol to provide this type of user-level notification.

Combining Modules

As noted in the Introduction, one of the advantages of modularization is that it makes it easier to develop

and test the individual system functions in isolation. Unfortunately, our experience has been that even

protocols that are correct and efficient by themselves sometimes become incorrect or inefficient when

combined with other protocols. Unforeseen indirect dependencies are most often the cause for these

problems, many of which can be traced to either the asynchronous nature of the network or the effects of

failures. Said another way, having to accommodate asynchrony and failure is what makes fault-tolerant,

distributed systems difficult to modularize.

One example of this occurred in Consul as a result of checkpointing requirements. In order to

correctly recover from failure, every protocol must periodically write a checkpoint to stable storage.

This requirement is, of course, easy to realize when working on a module in isolation, but a problem

arises when multiple modules are configured into a system. In particular, some of the checkpoints

need to be coordinated, leading to subtle indirect dependencies between protocols. For example,

the Membership protocol checkpoints the set of live processes, while the Order protocol checkpoints

the messages that have been processed by the application. Since any change in the membership list

depends of the set of messages that have been processed—in this case Membership messages—some
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coordination is needed between these two protocols to do checkpointingcorrectly, causing a dependency

between them. Another checkpointing dependency is between the state machine replica and the Order
protocol. The checkpoint taken by the replica represents the state derived from the set of messages

it has processed, while the checkpoint taken by the Order protocol contains the messages themselves.

Clearly these two checkpoints must be coordinated to preserve correct semantics.

The way checkpoint coordination is actually realized in Consul differs from what might be expected.

Ideally, the modules involved in the coordinated action would communicate among themselves before

every checkpoint. However, in the absence of any direct support for such communication in the

underlying object infrastructure, the protocols in Consul actually perform their checkpointing based on

the state of the Psync context graph. For example, the Membership protocol and the Order protocol

take their checkpoint every time it is known that the order of messages in a portion of the context

graph—specifically, a wave—cannot be altered by future message arrivals. Since any change in the

membership is reflected when the wave containing the membership initiation message is in this state,

this scheme is sufficient. However, there is a price to be paid here in that the criteria for checkpointing

depends on the functionality of the modules, and the frequency of the checkpointing has to be fixed in

advance and cannot be varied arbitrarily.

A similar class of indirect dependencies that were only discovered when modules were combined

relates to timer management. The specific problem here is that the optimality of the various timer values

used by protocols is affected by the execution of others. One example concerns the FailureDetection
protocol, which uses a timer to put a limit on the length of time that can pass before a process on

another machine is suspected to have failed. The value of this timer has great effect on the performance

of the entire system. A large value implies that a process failure may not be detected until long after

it occurs, potentially causing lengthy delays in the the application; a small value, on the other hand,

increases the possibility of false failure suspicions. Unfortunately, choosing an optimal value depends

on factors outside of the FailureDetection protocol itself, such as whether the Membership protocol is

being executed, whether recovery of some process is in progress, whether Psync is doing a message

retransmission, or how fast the application is executing. Hence, the protocols managing these factors

indirectly affect the correctness and performance of the FailureDetection protocol. A similar situation

occurs with the timer used by Psync to signal when messages should be logged onto stable storage.

A smaller value of this timer increases the logging overheads while a larger timer value implies that a

large number of messages may have to be retransmitted during recovery, thus increasing the recovery

cost. The optimal value of this timer depends, in general, on the rate at which messages are exchanged

in the system, which in turn depends on how fast the replicas are executing.

Active coordination between modules to set timer values in Consul is limited, so optimal delay

intervals are not always realized. Nevertheless, an attempt is made to keep values close to optimal

by modifying them according to what modules learn about the system state by monitoring the mes-

sages exchanged. For example, the FailureDetection protocol receives all messages in the course of

implementing its failure detection duties, thereby allowing it to infer when a process is recovering and

increase the appropriate timer value. Note that this strategy does not work in all cases. For example,

another situation where an increase in timer value is warranted occurs when Psync is in the midst of

retransmitting a message. This cannot be detected by the FailureDetection protocol, however, and so

it cannot adjust its timer accordingly. The net result is an increased danger of false failure detections

until normal processing is resumed.
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Underlying Object Support

The underlying object infrastructure used to implement a modular fault-tolerant distributed system such

as Consul has great effects on its feasibility and performance. This section identifies the successes

and failures we experienced in implementing the Consul protocols in the x-kernel. In particular, since

the x-kernel was originally designed to support traditional network protocols—generally one-to-one

protocols that do not attempt to recover from processor failures—the interesting question is how well

the x-kernel served as a platform for implementing fault-tolerant group/multicast protocols.

Common Support Routines. One of the main contributions of the x-kernel is a set of library support

routines that protocol and session objects call to do the work necessary to implement their functionality.

That is, the x-kernel recognizes a set of operations common to all protocols, and provides them as

library routines rather than forcing protocol implementors to implement their own. We recognized

three important functions common to a majority of the Consul protocol suite.

First, Consul protocols use messages to communicate with each other. For example, the FailureDe-
tection protocol, upon suspecting a process failure, sends a message to the Membership protocol. These

two protocols share knowledge about the structure of such a message, and as a result, they can decode

each other’s messages. In general, typical message operations include creating and destroying a mes-

sage, reading and copying a message, breaking and reassembling messages, and appending and deleting

message headers. These operations tend to be quite complex and hinder the modular development.

Hence, system support in the form of message library providing these operations greatly simplifies

module implementation. Because the x-kernel was designed to support protocol implementations, and

all protocols manipulate messages, the x-kernel provides adequate message support for Consul.

Second, timers are fundamental to fault-tolerant computing systems. In Consul, timers are used

by Psync, FailureDetection, and the Order protocols—Psync uses a timer to manage the logging of

messages onto the stable storage, FailureDetection uses timers to monitor other processes, and the

various Order protocols use timers to checkpoint messages delivered to the application. As with the

message library, the x-kernel provides sophisticated timer support that proved useful in implementing

Consul.

Third, fault-tolerant protocols depend on a stable storage facility to recover after a processor failure.

In Consul, for example, Psync stores the context graph and the Order protocols store the set of messages

that have been delivered to the application in stable storage. In addition, every protocol checkpoints

the state of its active sessions in the stable storage. Upon recovery, this information is retrieved by

these protocols to reconstruct their sessions. The x-kernel, because it was designed to support network

protocols that typically do not attempt to maintain connections across host failures, does not provide

a stable storage facility. As a result, we had to construct such a facility from scratch. Extending the

x-kernel to provide a stable storage facility analogous to its message and timer facilities would make

the x-kernel better suited for implementing fault-tolerant protocols.

Object Interaction. Clearly, it is important for an object infrastructure to provide a mechanism for

instantiating objects and for establishing links between objects so that they can invoke operations on each

other. The x-kernel, because it supports both static protocol objects that are defined at configuration time,

and dynamic session objects that are created at connection establishment time, provides a reasonable

base for implementing Consul. On the other hand, the x-kernel provides a somewhat limited model

for protocols to interact (communicate) with each other, and this limitation greatly affected how we

implemented Consul. Consider the following two problems, and how we worked around them.
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First, the x-kernel defines a simple interface between protocols that includes operations for opening

and closing connections, and sending and receiving messages. Any additional operations that one

protocol might want to export to another are encapsulated in a control operation, not unlike the Unix

ioctl system call. Traditional network protocols use control operations to ask each other a limited

number of well-defined questions, for example, about optimal packet sizes and peer addresses. The

Consul protocols, however, require a much richer interface. For example, high-level protocols can

invoke a large collection of operations on Psync to query the state of the context graph. All of these

operations had to be folded into the control operation. An ideal object infrastructure would give all

such operations first class status.

Second, the x-kernel was designed to support a mostly linear composition of protocols, i.e., a protocol

stack where one high-level protocol depends on one low-level protocol. In Consul, however, there exist

several protocols “at the same level” that are all cooperating to implement a set of services. For example,

Membership, Order, and FailureDetection all cooperate with each other, but without being stacked one

on top of the other. This expectation that protocols are composed in a linear fashion is, in fact, the most

fundamental limitation of the x-kernel. We were able to work around this problem in Consul because

all the cooperating protocols shared a single Psync session, and since Psync is a multicast protocol, it

reflected all outgoing messages back up the protocol graph, in addition to out over the network. In this

way, any message sent by FailureDetection is seen by the local Membership protocol, in addition to all

the copies of the Membership protocol running on remote machines. Similarly, as mentioned above,

multiple protocols coordinate their checkpoints based on the state of the Psync context graph they all

share. In other words, the Consul protocols needed to be linked together with a “broadcast channel” so

they can all see each other’s messages; Psync, rather than the x-kernel, had to provide this functionality

in Consul.

CONCLUSIONS

In attempting to “push the envelope” with respect to modularity in the design and implementation of

Consul, we have learned a number of lessons. Perhaps first and foremost is that, despite the difficulties

described in the previous section, our experience reinforced the idea that modularity is a powerful tool

for simplifying the construction of complex software systems. The design, implementation, and testing

were all easier given that each function was isolated from the rest of the system rather than being a

small piece of a larger whole. The ability to configure the functions into a customized platform for a

particular application is also a significant advantage.

The second general lesson concerns dependencies between modules. Specifically, we believe that

understanding the precise nature of the dependencies between modules and accounting for their effects is

crucial to producing a correct and efficient system. Dependencies resulting from direct interactions are in

general easier to deal with, implying that every effort should be made to program interactions explicitly

whenever possible. Unfortunately, one of the fundamental difficulties in modularizing systems of this

type is that it is often impossible or impractical to do away with indirect dependencies completely due

to the asynchronous nature of distributed systems and the effect of failures. Indeed, even anticipating

all of the situations that can lead to indirect dependencies is a significant problem.

Finally, our experience provided valuable feedback on the properties required of an object infras-

tructure designed to support modularity in the implementation. For example, the infrastructure needs

to provide for a rich “interconnect” over which the modules share information. Based on this experi-

ence, work is underway to develop a new framework for fault-tolerant protocols that better facilitates

modularization [HS92].
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