
An Overview of TQuel

Richard Snodgrass

Chapter 6

An Overview of TQuel

Richard Snodgrass

6.1 Introduction

In this chapter we discuss the temporal query language TQuel. TQuel is a minimal

extension to Quel [Held et al. 1975], the query language for Ingres [Stonebraker

et al. 1976]. TQuel supports valid time and transaction time. Unlike many other

temporal query languages, it supports aggregates, valid-time indeterminacy (where

it is not known exactly when an event occurred), database modi�cation, and schema

evolution. We discuss all of these aspects, �rst informally through examples, then

formally by presenting their tuple calculus semantics.

It is impossible to comprehensively cover all the technical aspects of this lan-

guage in one chapter. Hence, we emphasize intuition, and escew details, replacing

them with pointers to the archival literature. Some important features, such as the

semantics of the TQuel update statements, the semantics of schema evolution in

the algebra, and performance modeling of temporal queries, will get especially short

shrift. All the details are available in the referenced papers.

We start with the language itself, building incrementally from the core constructs

to the more advanced features, in almost three dozen example TQuel statements.

We follow the same approach in presenting the formal semantics. We present tuple

calculus equivalents both for generic TQuel statements and for several examples.

TQuel is based on the predicate calculus. To execute a query, a procedural

equivalent is required. We de�ne a temporal algebra, again incrementally, and give

several important properties, such as closure, completeness, and reducibility to the

snapshot algebra. We also show how each TQuel statement can be mapped into

the algebra. Finally, we discuss two important topics in implementing the temporal

algebra: query optimization, speci�cally the applicability of existing optimization

strategies, and the physical structure of pages storing temporal tuples. The chapter

ends with a BNF syntax of TQuel that incorporates all of these features.

2 Chapter 6 TQuel Overview

6.2 The Language

6.2.1 Data Model

TQuel supports both valid time and transaction time [Snodgrass & Ahn 1985, Snod-

grass & Ahn 1986]. As with most conventional query languages, it also supports

user-de�ned time. Tuples are optionally timestamped with either a single valid

timestamp (if the relation models events) or a pair of valid timestamps (if the re-

lation models intervals), and optionally a pair of transaction timestamps, denoting

when the tuple was logically inserted into the relation and when it was logically

deleted. A transaction timestamp of \until changed" indicates that the tuple has

not yet been deleted.

Throughout this chapter we utilize a Stock Broker database. This database has

been simpli�ed and con�gured to illustrate many of the features of TQuel, and hence

is not entirely realistic. The database contains two relations, Stocks, specifying the

price of each stock, and Own, specifying the stocks owned at any point in time by

each client of the stock broker.

EXAMPLE 1 Define the two relations in the Stock Broker database.

create interval Stocks(Stock is char, Price is monetary)

create persistent interval Own(Client is char, Stock is char,

Shares is I4) 2

Stocks is a valid-time interval relation (indicated by the keyword interval),

with two valid-time timestamps. The Price is stepwise constant [Segev & Shoshani

1987] across the interval. The key is the Stock attribute, a time-invariant attribute

[Navathe & Ahmed 1989]. The Stocks relation is updated in real-time by a direct

feed from the New York Stock Exchange. Whenever the price of a stock changes,

the database is updated immediately. Using the extended taxonomy we previously

developed [Jensen & Snodgrass 1992A, Jensen & Snodgrass 1992B], this relation

may be classi�ed as a degenerate bitemporal relation, in which the valid and transac-

tion times are exactly correlated. In such relations, storing two pairs of timestamps

is redundant, so instead we store only one pair of timestamps, e�ectively repre-

senting both valid and transaction time. This aspect is not included in the create

statement as such; the user is responsible for considering this correspondence when

specifying queries.

Stocks: Stock Price From To

IBM 8 6-3-91 11:23AM 10-1-91 9:30AM

IBM 10 10-1-91 9:30AM 10-2-91 2:15PM

IBM 12 10-2-91 2:15PM 10-7-91 10:07AM

IBM 16 10-7-91 10:07AM 10-15-91 4:35PM

IBM 19 10-15-91 4:35PM 10-30-91 4:57PM

IBM 16 10-30-91 4:57PM 11-2-91 12:53PM

IBM 25 11-2-91 12:53PM 11-5-91 2:02PM

IBM 27 11-5-91 2:02PM 12-3-91 8:44AM

IBM 23 12-3-91 8:44AM 12-29-91 9:01AM

IBM 21 12-29-91 9:01AM 1-3-92 4:28PM

IBM 23 1-3-92 4:28PM forever

6.2 The Language 3

Own is a bitemporal interval relation. The valid timestamp states when the buy

and sell actions became e�ective, and the transaction timestamp (indicated by the

keyword persistent) states when the information was recorded in the database.

Shares, a stepwise constant attribute, is the total number of that stock owned by

the client at any point in time. The key is the composite of the time-invariant

attributes Client and Stock.

The chain of events of a buy or sell transaction is somewhat more complicated

than updating the price of a stock. The client submits a buy or sell request to

the broker, who sends a message to the representative on the oor of the stock

exchange. When the transaction actually occurs, it is assigned a valid time. The

amount of the transaction is the price of the stock valid at that time, multiplied

by the number of shares changing hands. Due to processing that occurs within

the stock exchange computer, as well as batch processing of transactions that oc-

curs in the stock broker computer, there is a delay of up to 24 hours before the

transaction is actually recorded in the stock broker database. Using the extended

taxonomy previously mentioned, Own is a bounded retroactive bitemporal relation, with

the recording bounded to no more than 24 hours after the buy or sell occurred.

Own:

Client Stock Shares From To Start Stop

Melanie IBM 20 9-15-91 3:12PM forever 9-16-91 2:01AM 12-31-91 3:12AM

Melanie IBM 20 9-15-91 3:12PM 12-30-91 10:31AM 12-31-91 3:12AM until changed

Melanie IBM 30 12-30-91 10:31AM forever 12-31-91 3:12AM until changed

Melanie bought her �rst shares of IBM stock on September 15, 1991 (recorded some

eleven hours later in the stock broker database), then purchased an additional ten

shares on December 30 of that year, recorded almost 17 hours later.

6.2.2 Quel Retrieval Statements

EXAMPLE 2 What stocks does Melanie currently own?

range of O is Owner

retrieve (O.Client, O.Stock, O.Shares)

where O.Client = "Melanie"

The target list speci�es the attributes of the retrieved tuples, and the where clause

restricts the underlying tuples that participate in the query. This TQuel query

yields the same result as its Quel counterpart, in this case that Melanie owns 30

shares of IBM stock. 2

Multiple tuple variables can appear in a query.

EXAMPLE 3 What is the current worth of Melanie’s stocks?

range of S is Stocks

retrieve (O.Stock, Value = O.Shares * S.Price)

where O.Client = "Melanie" and O.Stock = S.Stock 2

The defaults for the TQuel constructs not present in Quel were chosen to ensure

4 Chapter 6 TQuel Overview

reducibility to Quel (Section 6.3.8), so that a user's intuitive understanding of the

semantics of Quel would transfer directly to TQuel.

6.2.3 Transaction Timeslice

The as of clause rolls back a transaction-time relation (consisting of a sequence

of snapshot relation states) or a bitemporal relation (consisting of a sequence of

valid-time relation states) to a particular state as it was stored in the past, as of a

speci�ed transaction time. It can be considered to be a transaction time analogue

of the where clause, restricting the underlying tuples that participate in the query.

EXAMPLE 4 What is the current worth of stocks presently owned by Melanie?

retrieve (O.Stock, Value = O.Shares * S.Price)

where O.Client = "Melanie" and O.Stock = S.Stock

as of present

Actually, this is the default as of clause, retrieving the best-known information. 2

TQuel allows temporal constants (events, intervals, and spans) to be used. These

constants can be speci�ed using a variety of calendars and natural languages [Soo

& Snodgrass 1992A, Soo & Snodgrass 1992B, Soo et al. 1992].

EXAMPLE 5 Specify the Gregorian calendar as used in the United States, with English as
the language.

set calendric system UnitedStates 2

The e�ect of the set statement, like that of the range statement, extends to the

next such statement that overrides it.

EXAMPLE 6 What stocks were shown on Melanie’s summary of all stocks currently owned,
printed at noon on December 30, 1991?

retrieve (O.all)

where O.Client = "Melanie"

as of |12PM Dec 30, 1991|

This query uses a temporal event constant, delimited with vertical bars, \|� � �|".

O.all is syntactic sugar denoting all of O's attributes. This query yields the follow-

ing result.

Client Stock Shares From To

Melanie IBM 20 9-15-91 3:12PM forever

Note that this summary does not show all stocks purchased on that day, as the

purchase at 10:31 that morning was not recorded until early the next day. 2

6.2.4 Valid-time Selection

The when clause is the valid-time analogue of the where clause: it speci�es a pred-

icate on the event or interval timestamps of the underlying tuples that must be

6.2 The Language 5

satis�ed for those tuples to participate in the remainder of the processing of the

query.

EXAMPLE 7 What stocks were owned by Melanie at noon on December 30, 1991 (as best
known right now)?

retrieve (O.all)

where O.Client = "Melanie"

when O overlap |12PM Dec 30, 1991|

as of present

Client Stock Shares From To

Melanie IBM 30 12-30-91 10:31AM forever

A careful examination of the prose statement of this and the previous query illus-

trates the fundamental di�erence between valid time and transaction time. The as

of clause selects a particular transaction time, and thus rolls back the relation to

its state stored at the speci�ed time. Corrections stored after that time will not be

incorporated into the retrieved result. The particular when statement given here

selects the facts valid in reality at the speci�ed time. All corrections stored up to

the time the query was issued are incorporated into the result. In this case, we now

know that Melanie had purchased an additional 10 shares of IBM stock about an

hour and a half before noon on December 30. 2

EXAMPLE 8 What stocks were owned by Melanie at noon on December 30, 1991, as best
known at that time?

retrieve (O.all)

where O.Client = "Melanie"

when O overlap |12PM Dec 30, 1991|

as of |12PM Dec 30, 1991|

The result of this query, executed any time after noon on December 30, 1991, will be

identical to the result of the �rst query speci�ed, \What stocks does Melanie currently

own?", executed exactly on noon of that date, indicating 20 shares of IBM stock. 2

The predicate in the when clause can be de�ned over the events and intervals

associated with several tuple variables.

EXAMPLE 9 What was the worth of Melanie’s stocks over time?

retrieve (O.Stock, Value = O.Shares * S.Price)

where O.Client = "Melanie" and O.Stock = S.Stock

when O overlap S

Because as of present is assumed, this query returns the best known informa-

tion. 2

6 Chapter 6 TQuel Overview

EXAMPLE 10 What is the current worth of Melanie’s stocks?

retrieve (O.Stock, Value = O.Shares * S.Price)

where O.Client = "Melanie" and O.Stock = S.Stock

when O overlap S overlap present

This when clause selects only the currently valid tuples. This query is identical in

meaning to the Quel query presented in Example 3 in Section 6.2.2. 2

EXAMPLE 11 List all the stocks that doubled in price over a period of a month.

range of S2 is Stocks

retrieve (S2.Stock, S2.Price)

where S.Stock = S2.Stock and S2.Price >= 2 * S.Price

when (end of S + %1 month%) overlap S2

There is a lot going on in this query, so let's take it step by step. First, %1 month%

is a span, an unanchored length of time [Soo & Snodgrass 1992B]. Spans can be

created by taking the di�erence of two events; spans can also be added to an event

to obtain a new event. The tuple variable S represents the stock at its original price;

S2 represents the stock after it had doubled in price, which must be within a month

of S. The query evaluates to two tuples.

Stock Price From To

IBM 25 11-2-91 12:53PM 11-5-91 2:02PM

IBM 27 11-5-91 2:02PM 11-7-91 10:07AM

After November 7, 1991, the price had no longer doubled over the past month (it

jumped to $12 per share on October 7). 2

While the previous query does illustrate various aspects of the when clause, it is

nevertheless not very concise. We'll see a much simpler version shortly.

EXAMPLE 12 List all the stocks that doubled in price over a period of a month, when in
Melanie’s hands.

retrieve (S2.Stock, S2.Price)

where S.Stock = S2.Stock and S2.Price >= 2 * S.Price

and S.Stock = O.Stock and O.Client = "Melanie"

when (end of S + %1 month%) overlap S2

and O overlap end of S and O overlap begin of S2

The O tuple variable ensures that the stock was owned by Melanie while it was

doubling in price (we use a single tuple variable to ensure that Melanie didn't sell

and reacquire the stock during this exciting period). 2

6.2.5 Valid-time Projection

The valid clause serves the same purpose as the target list: specifying the value

of an attribute in the derived relation. In this case, the valid time of the derived

tuple is being speci�ed.

6.2 The Language 7

EXAMPLE 13 When was IBM stock purchased?

retrieve (S.Price)

valid at begin of S

where S.Stock = "IBM"

This query extracts relevant events from an interval relation. 2

EXAMPLE 14 What is the current worth of Melanie’s stocks?

retrieve (O.Stock, Value = O.Shares * S.Price)

valid during O overlap S

where O.Client = "Melanie" and O.Stock = S.Stock

when (O overlap S) overlap present

as of present

Stock Value From To

IBM 690 1-3-92 4:28PM forever

This query employs all the defaults implicit in the query of Example 3 in Section

6.2.2. We'll give the formal semantics for this query in Section 6.3.4 and its algebraic

equivalent in Section 6.4.8. 2

6.2.6 Aggregates

As TQuel is a superset of Quel, all Quel aggregates are still available [Snodgrass,

et al. 1992].

EXAMPLE 15 How many shares of stock does Melanie own?

retrieve (sum(O.Shares where O.Client = "Melanie"))

An algebraic version of this query appears in Section 6.4.4. 2

EXAMPLE 16 What is Melanie’s current worth on Wall Street?

retrieve (sum(O.Shares * S.Price

where O.Client = "Melanie" and O.Stock = S.Stock)) 2

These queries applied to bitemporal relations yield the same result as their

conventional analogues, that is, a single value. With just a little more work, we can

extract their time-varying behavior.

EXAMPLE 17 How has Melanie’s current worth flucuated over time?

retrieve (sum(O.Shares * S.Price

where O.Client = "Melanie" and O.Stock = S.Stock))

when true 2

New, temporally-oriented aggregates are also available in TQuel. One of the

most useful computes the rate of increase (or decrease) over a speci�ed unit of time.

8 Chapter 6 TQuel Overview

EXAMPLE 18 What is Melanie’s quarterly return on investment?

retrieve (S.Stock, Return=rate(O.Shares * S.Price by S.Stock

where O.Client = "Melanie" and O.Stock = S.Stock

per %quarter%))

Such aggregates may appear wherever a oating point expression is allowed. The

by clause is from Quel; it partitions the Stocks relation into sets with identical

values for the Stock attribute, then applies the aggregate to each. The per clause

is speci�c to the rate aggregate. This query is somewhat simplistic, in that it

assumes no new investments were made during the quarter. 2

The rate aggregate allows us to succinctly specify that fairly torturous query

in Example 12 in Section 6.2.4.

EXAMPLE 19 What stocks have doubled in price over the last month?

retrieve (S.Stock, S.Price)

where rate(S.Price by S.Stock for each %month%) >= 2

The for each clause speci�es a moving window aggregate [Navathe & Ahmed 1989].

Conceptually, the aggregate is evaluated for each point in time, taking into consid-

eration the values over the month-long interval terminating at that point in time.

We'll give the formal semantics for this query in Section 6.3.5 and its algebraic

equivalent in Section 6.4.8. 2

The rising aggregate returns an interval when the argument was rising in value.

This aggregate may be used wherever an interval expression is expected.

EXAMPLE 20 For each stock currently rising in price, when did it start rising?

retrieve (S.Stock)

valid at begin of rising(S.Price by S.Stock)

Stock At

IBM 12-29-91 9:01AM

The adverb \currently" is taken care of with the default when clause, in this case,

\when S overlap present". 2

To get the history of the rising stocks, we simply substitute another when clause.

EXAMPLE 21 When was each stock’s price rising?

retrieve (S.Stock)

valid during rising(S.Price by S.Stock)

when true

Stock From To

IBM 6-3-91 11:23AM 10-30-91 4:57PM

IBM 10-30-91 4:57PM 12-3-91 8:44AM

IBM 12-29-91 9:01AM forever

The price is rising until the moment it decreases in value. 2

6.2 The Language 9

6.2.7 Valid-time Indeterminacy

Often facts are not known to within the accuracy of the time granularity of the

DBMS, which might be a second or even a microsecond [Dyreson & Snodgrass

1992A].

EXAMPLE 22 The times for buy and sell orders are known only withina three hour interval.

modify Owns to indeterminate span = %3 hours%

A buy order received at 7:30AM is recorded at 6AM with a 3 hour indeterminacy

span (from 6AM to 9AM). We specify this at the schema level; indeterminacy spans

can also be indicated at the per-tuple, extensional level. While we can also associate

a probability distribution function with that indeterminate span, we assume the

default, the uniform distribution. 2

EXAMPLE 23 What stocks did Melanie definitely own at 1AM this morning?

retrieve (O.all)

valid at |1AM|

where O.Client = "Melanie"

when O overlap |1AM|

The default is only to retrieve tuples that fully satisfy the predicate. This is con-

sistent with the Quel semantics. 2

Valid-time indeterminacy enters queries at two places, specifying the range cred-

ibility of the underlying information to be utilized in the query, and specifying

the ordering plausibility of temporal relationships expressed in the when and valid

clauses. We illustrate only ordering plausibility here.

EXAMPLE 24 What stocks did Melanie probably own?

retrieve (O.all)

valid at |1AM|

where O.Client = "Melanie"

when O overlap |1AM| with plausibility 70

Here, \probably" is speci�ed as a plausibility of 70%. We'll give the formal seman-

tics for this query in Section 6.3.6, and an algebraic version in Section 6.4.6. 2

EXAMPLE 25 What stocks did Melanie perhaps own?

retrieve (O.all)

valid at |1AM|

where O.Client = "Melanie"

when O overlap |1AM| with plausibility 30

We associate \perhaps" with a plausibility of 30%. 2

10 Chapter 6 TQuel Overview

EXAMPLE 26 What stocks might Melanie possibly have owned at 1AM?

set default plausibility = 1

retrieve (O.all)

valid at |1AM|

where O.Client = "Melanie"

when O overlap |1AM|

A plausibility of 1% allows any overlap that was even remotely possible to satisfy

the when clause. 2

6.2.8 Update Statements

Quel has three update statements, append, delete, and replace.

EXAMPLE 27 On July 15, 1992, at 3PM, Melanie bought 20 shares of DEC stock.

append to Own(Client="Melanie", Stock="DEC", Shares=20)

valid during [3PM July 15, 1992, forever]

The \[: : :]" is an interval constant [Soo & Snodgrass 1992B]. Here we assume that

Melanie doesn't yet have any DEC stock. This buy order was executed, probably

by a batch program driven by stock exchange information, at 11PM. A query of

Melanie's stocks executed before 11PM would not include this stock. The algebraic

equivalent of this update is given in Section 6.4.5. 2

There is no as of clause in any of the update statements, and no speci�cation

of a new transaction time. The transaction time is when the append statement was

executed, and is supplied by the system.

EXAMPLE 28 Actually, an error was made: the request came in at noon.

replace O("Melanie", "DEC", O.Shares)

valid during [12PM July 15, 1992, 3PM July 15, 1992]

where O.Client = "Melanie" and O.Stock = "DEC"

when O overlap |3PM July 15, 1992|

In this modi�cation statement, we update the number of stocks owned between

noon and 3PM to the value valid at 3PM. 2

EXAMPLE 29 At 9AM on August 20, 1992, an order is received to sell all shares of DEC
stock.

delete Own(O.all)

valid during [9AM Aug 20, 1992, forever]

where O.Client = "Melanie" and O.Stock = "DEC"

This transaction was executed at 1PM, and the change was recorded in the database

at that time. 2

6.2 The Language 11

6.2.9 Schema Evolution

Often the database schema needs to be modi�ed to accommodate new applications.

The modify statement has several variants, allowing any previous decision to be

later changed or undone.

One use of the modify statement is to specify primary storage structures and

secondary indexes. There are a variety of possible storage structures available.

One promising approach, the temporally partitioned store, divides the data into the

current store, containing the current data and possibly some history data, and the

history store, holding the rest of the data [Ahn & Snodgrass 1988]. The two stores

can utilize di�erent storage formats, and even di�erent storage media, depending

on the individual data characteristics. We have cataloged several formats for the

history store, including reverse chaining, accession lists, clustering, stacking, and

cellular chaining. The last, cellular chaining, can be regarded as a combination of

reverse chaining and stacking, in that it links together tuples with identical values

of one or more domains, forming a history of some object or relationship. It also

has the bene�t of physical clustering.

EXAMPLE 30 Use cellular clustering as the primary storage structure for the Stocks

relation.

modify Stocks to cellular on Stock where cellsize = 15

Here, the cellsize is the number of tuples to cluster on a page. 2

We can also specify secondary indexes, which can optionally incorporate valid

and transaction timestamps (making them more useful in processing when clauses,

but also increasing their size).

EXAMPLE 31 Add a secondary index on the Stock attribute of the Own relation.

modify Own to index on Stock as persistent historical

The index just speci�ed will include both the valid and transaction timestamps.

The keyword \historical" was assigned before this term was re�ned to the more

precise \valid-time". 2

The query evaluation performance can be greatly improved through the use of

appropriate storage structures and indexes. In fact, without them, performance is

uniformly discouraging [Ahn & Snodgrass 1986]. To analyze the performance of

temporal queries on databases using various access methods, we have developed an

analytical model that takes a temporal query and a database schema as input, and

outputs the estimated I/O cost for that query on that database [Ahn 1986, Ahn &

Snodgrass 1989]. This model has been validated with measurements obtained from

a prototype implementation.

The modify statement can also be used to change the attributes associated with

a relation.

EXAMPLE 32 Add an attribute to Stocks that records the number of shares traded.

modify Stocks (Stock=S.Stock, Price=S.Price, NumTraded:Integer=0)

We need to specify a value for a new column, in this case 0. 2

12 Chapter 6 TQuel Overview

Schema evolution involves transaction time, as it concerns how the data is stored

in the database [McKenzie 1988, McKenzie & Snodgrass 1990]. As an example,

changing the type of a relation from a valid-time relation to a bitemporal relation

will cause future intermediate states to be recorded; states stored when the relation

was a valid-time relation are not available.

EXAMPLE 33 The Stocks relation should also record all errors.

modify Stocks to persistent

This schema modi�cation was executed on September 3, 1992. We can now rollback

to states after that date. 2

Still later, we no longer require the Stocks relation.

EXAMPLE 34 Remove the Stocks relation.

destroy Stocks

This schema modi�cation was executed on October 17, 1992. We can still rollback

to states between September 3, 1992, when transaction time was supported for this

relation, and October 17, 1992; we cannot access the relation at all after that later

date. 2

6.3 Formal Semantics

A formal tuple calculus semantics exists for the entire language. In this section we

introduce the tuple calculus, discuss the semantics of the basic retrieve statement,

then consider the more involved aspects of aggregation, valid-time indeterminacy,

and update. We end this section by discussing reducibility to the Quel semantics.

6.3.1 The Tuple Calculus

Tuple relational calculus statements are of the form

�

u

i

j (u)

	

(6.1)

where the variable t denotes a tuple of arity i, and (t) is a �rst order predicate

calculus expression containing only one free tuple variable t. (t) de�nes the tu-

ples contained in the relation speci�ed by the Quel statement. The tuple calculus

statement for the skeletal Quel statement

range of t

1

is R

1

: : :

range of t

k

is R

k

retrieve (t

i

1

:D

j

1

; : : : ; t

i

r

:D

j

r

)

where

is

6.3 Formal Semantics 13

fu

r

j (9t

1

) : : : (9t

k

)(R

1

(t

1

) ^ : : :^R

k

(t

k

) (6.2)

^u[1] = t

i

1

[j

1

] ^ : : :^ u[r] = t

i

r

[j

r

]

^

0

)g,

which states that each t

i

is in R

i

, that each result tuple u is composed of r compo-

nents, that the m

th

attribute of u is equal to the j

m

th

attribute (having an attribute

name of D

m

) of the tuple variable t

i

m

, and that the condition

0

(trivially mod-

i�ed for attribute names and Quel syntax conventions) holds for u [Ullman 1988].

The �rst line corresponds to the relevant range statements, the second to the target

list, and the third to the where clause. The skeletal Quel statement is not com-

pletely general, since attribute names for the derived relation must be provided in

the target list, and attribute values may be expressions. We ignore such details for

the remainder of the chapter.

The semantics of a query on a temporal database will be speci�ed by providing a

tuple calculus statement that denotes a snapshot relation embedding a bitemporal

relation which is the result of the query. This snapshot relation has as its schema

four additional explict attributes, all timestamps: valid from, valid to, transaction

start, and transaction stop. The tuple calculus statement for a TQuel retrieve state-

ment is very similar to that of a Quel retrieve statement: additional components

corresponding to the valid, when, and as-of clauses are also present. Although the

expressions appearing in all three clauses are similar syntactically, their semantics

are rather di�erent.

6.3.2 Temporal Constructors

The valid clause speci�es the time during which the derived tuple is valid. A

temporal constructor is used to specify a time value. The time value returned by

this expression will in fact be one of the time values contained in one of the tuples

associated with the variables involved in that expression. Hence, the expression

is not actually deriving a new time value from the given time values; rather, it is

selecting one of the given time values. Of course, the selection criterion can, and

indeed usually does, depend on the relative temporal ordering of the original events.

The approach taken here associates each temporal constructor with a function

on one or two intervals, returning an interval (events are represented as intervals

with identical begin and end timestamps). Tuple variables are replaced with their

associated valid time values. The result of an expression of an event type will hence

be one of these time values. Individual time values are denoted with a chronon

number, represented in the database as a 8- to 12-byte structure [Dyreson & Snod-

grass 1992B]. The granularity of time (e.g., nanosecond, month, year) is �xed by

the DBMS. Note that when we speak of a \point in time," we actually refer to a

chronon, which is an interval whose duration is determined by the granularity of

the measure of time being used to specify that point in time [Anderson 1982].

We de�ne the temporal constructors after �rst de�ning a few auxiliary functions

14 Chapter 6 TQuel Overview

on timestamps (First, Last) or tuple variables (event, interval).

First(�; �)
�

=

�

� if Before(�; �)

� otherwise

(6.3)

Last(�; �)

�

=

�

� if Before(�; �)

� otherwise

(6.4)

event(t)

�

= ht[at]; t[at]i (6.5)

interval(t)
�

= ht[from]; t[to]i (6.6)

beginof(h�; �i)
�

= h�; �i (6.7)

endof(h�; �i)
�

= h�; �i (6.8)

overlap(h�; �i; h; �i)
�

= hLast(�;);First(�; �)i (6.9)

extend(h�; �i; h; �i)

�

= hFirst(�;); Last(�; �)i (6.10)

A few comments are in order. First, these functions all apply to one or more

pairs of timestamps, denoted \h i", and return a timestamp pair. If the expression

is of type event, then the denotation of the expression will be de�ned to be the

time value appearing as the �rst element of the ordered pair resulting from the

application of these functions on the underlying tuples. The de�nitions ensure that

the �rst element will be identical to the second element. Secondly, while the Before

predicate is simply \�" on timestamps, we retain this predicate because it will be

generalized when valid-time indeterminacy is considered. Third, the translation is

syntax-directed: the semantic functions are in correspondence with the productions

of the grammar (given in the Appendix) for e-expressions [Ceri & Gottlob 1985].

And �nally, the de�nition of the overlap function assumes that the intervals do

indeed overlap; if this constraint is satis�ed, then the ordered pairs h�; �i generated

by these functions will always represent intervals, i.e., the ordered pairs will satisfy

Before(�; �). Invalid temporal constructors will be handled with an additional clause

in the tuple calculus statement to be presented shortly.

The temporal constructors appearing in the as-of clause can be replaced with

their functions on ordered pairs of timestamps and the temporal constants (strings)

can be replaced by their corresponding ordered pairs of timestamps. The resulting

expression can be evaluated at compile-time, resulting in a single event or interval.

6.3.3 Temporal Predicates

The when clause is the temporal analogue of the where clause. The temporal

predicate in the when clause determines whether the tuples may participate in the

computation by examining their timestamp attributes. Expressing this formally

involves generating a conventional predicate on the timestamp attributes of the

argument relations. Such predicates are generated in three steps. First, the tuple

variables and the temporal constructors are replaced by the functions de�ned in

the previous subsection. Second, the and, or, and not operators are replaced by

6.3 Formal Semantics 15

the logical predicates. Finally, the temporal predicate operators (precede, overlap

and equal) are replaced by the following predicates on ordered pairs of timestamps.

precede(h�; �i; h; �i)

�

= Before(�;) (6.11)

overlap(h�; �i; h; �i)
�

= Before(�; �) ^ Before(; �) (6.12)

equal(h�; �i; h; �i)

�

= Before(�;) ^ Before(; �)

^Before(�; �) ^ Before(�; �) (6.13)

The result is a conventional predicate on the valid times of the tuple variables

appearing in the when clause.

EXAMPLE 35 Applying the �rst step to the following temporal predicate, used in a

query in Example 12 in Section 6.2.4,

(end of S + %1 month%) overlap S2

and O overlap end of S and O overlap begin of S2,

is translated into the following steps.

(sum(endof(interval(S)); %1 month%)) overlap interval(S2)

and interval(O) overlap endof(interval(S))

and interval(O) overlap beginof(interval(S2))

! (sum(endof(hS [from]; S [to]i); %1 month%)) overlap hS2 [from]; S2 [to]i

and hO [from]; O [to]i overlap endof(hS [from]; S [to]i)

and hO [from]; O [to]i overlap beginof(hS2 [from]; S2 [to]i)

! (sum(S [to]; %1 month%)) overlap hS2 [from]; S2 [to]i

and hO [from]; O [to]i overlap hS [to]; S [to]i

and hO [from]; O [to]i overlap hS2 [from]; S2 [from]i

The second step results in

! sum(S [to]; %1 month%) overlap hS2 [from]; S2 [to]i

^hO [from]; O [to]i overlap hS [to]; S [to]i

^hO [from]; O [to]i overlap hS2 [from]; S2 [from]i

and the third step results in

! Before(sum(S [to]; %1 month%); S2 [to])

^Before(S2 [from]; sum(S [to]; %1 month%))

^Before(O [from]; S [to]) ^ Before(S [from]; O [to])

^Before(O [from]; S2 [to]) ^ Before(S2 [from]; O [to]): 2

16 Chapter 6 TQuel Overview

This transformation process always results in a predicate that mentions only the

functions First, Last, and Before.

6.3.4 The Retrieve Statement

A formal semantics for the TQuel retrieve statement can now be speci�ed. Let

�

�

be the function corresponding to the e-expression � with the operators replaced

with logical predicates. Let �

�

be the predicate corresponding to the temporal

predicate � as generated by the process discussed in Section 6.3.3. Note that �

�

and �

r

will contain only the functions First and Last and the predicates Before, ^,

_, :; the rest of the functions, and �

�

entirely (where � appears in an as-of clause),

can be evaluated at compile-time. Of course, the defaults provide the appropriate

expressions when a clause is not present in the query. Given the query

range of t

1

is R

1

: : :

range of t

k

is R

k

retrieve (t

i

1

:D

j

1

; : : : ; t

i

r

:D

j

r

) (6.14)

valid during �

where

when �

as of �

the tuple calculus statement has the following form.

�

u

(r+2)

j (9t

1

) : : : (9t

k

)(R

1

(t

1

) ^ : : :^R

k

(t

k

)

^u[1] = t

i

1

[j

1

]^ : : :^ u[r] = t

i

r

[j

r

]

^u[r+ 1] = beginof(�
�

) ^ u[r + 2] = endof(�
�

)

^Before(u[r+ 1]; u[r+ 2])

^

0

(6.15)

^�

�

^(8l)(1 � l � k:(overlap(�
�

; ht

l

[start]; t

l

[stop]i)))

)g

The �rst line states that each tuple variable ranges over the correct relation, and

is from the Quel semantics. The resulting tuple is of arity r + 2, and consists of r

explicit attributes and two implicit attributes (from and to). The second line, also

from the Quel semantics, states the origin of the values in the explicit attributes

of the derived relation. The third line originates in the valid clause, and speci�es

the values of the from and to valid times. Notice that these times must obey the

speci�ed ordering. The fourth line ensures that a legitimate interval results. The

next line originates in the where clause, and is from the Quel semantics. The sixth

line is the predicate from the when clause. The last line originates in the as-of

clause, and states that the tuple associated with each tuple variable must have a

transaction interval that overlaps the interval speci�ed in the as-of clause (�

�

will

be a constant time value, i.e., a speci�c timestamp or pair of timestamps).

6.3 Formal Semantics 17

Note that �

�

and �

�

are functions over the from and to attributes of a subset of

the tuple variables. If t is a tuple variable associated with an interval relation and

appears in a temporal constructor or predicate, then the from and to time values

are passed to the relevant function; if t is associated with an event relation, then

only the at time value is used.

EXAMPLE 36 The query in Example 14 in Section 6.2.5, printing the current worth

of Melanie's stocks, has the following semantics.

�

u

4

j (9O)(9S)(Stocks(S) ^ Own(O)

^u[1] = O[Stock] ^ u[2] = O[Shares] � S[Price]

^u[3] = Last(O[from; S[from]) ^ u[4] = First(O[to]; S[to])

^Before(u[3]; u[4])

^O[Client] = "Melanie"^O[Stock] = S[Stock]

^Before(Last(O[from]; S[from]); now) ^ Before(now;First(O[to]; S[to]))

^overlap(now; hO[start]; O[stop]i) ^ overlap(now; hS[start]; S[stop]i)

)g 2

Note that the semantics of the TQuel speci�c constructs is quite similar to that

of their Quel counterparts.

6.3.5 Aggregates

Our approach to the semantics is based on Klug's method, which was used in a

separate, more formal tuple relational calculus [Klug 1982]. In this approach, each

aggregate is associated with a function. This function is applied to a set of r-tuples,

resulting in a single tuple containing r attribute values, with each attribute value

equivalent to applying the aggregate over that attribute. By applying the function

to the set of complete tuples, rather than to a set of values drawn from a single

attribute's domain, the distinction between unique and non-unique aggregation can

be preserved.

The values of TQuel aggregates change over time. This will be reected as

di�erent values of an aggregate being associated with di�erent valid times, even in

queries that look similar to Quel queries with scalar aggregates, in which no inner

when or as-of clauses exist. In TQuel, the role of the external or outer where, when

and as of clauses will be similar to that of the outer where clause in Quel: they

determine which tuples from the underlying relations participate in the remainder

of the query. These selected tuples are combined with the values computed in the

aggregate sets to obtain the �nal output relation.

Aggregates always generate temporary interval relations, even though an ag-

gregated attribute can appear in a query that results in an event relation. This

temporary relation has exactly one value at any point in time (for an aggregate

with a by clause, the interval relation has at most one value at any point in time

for each value of attributes in the by list). It is convenient to determine the points

at which the value changes. Let us �rst de�ne the time-partition of a set of relations

R

1

; : : : ; R

k

, relative to a given window function w, to be de�ned shortly, as

18 Chapter 6 TQuel Overview

T (R

1

; : : : ; R

k

; w)

�

= f0; foreverg

[fs j(9x)(9i) (6.16)

(1 � i � k ^R

i

(x) ^ (s = x[from] _ s = x[to]

_(9t)(s = t^t�w(t) = x[to]

^8t

0

; t

0

> t; t

0

� w(t

0

) > x[to]))g :

The time-partition brings together all the times (chronons) when the aggregate's

value could change. These times include the beginning time of each tuple, the time

following the ending time of each tuple, and the time when a tuple no longer falls

into an aggregation window.

The window function w is speci�ed in the for clause. w maps each time t into

its aggregation window size.

EXAMPLE 37 The clause \for each %month%", given in the query in Example 19

in Section 6.2.6, implies a window size dependent on the timestamp granularity. Let

us assume an underlying granularity of a day. Then the window function for this

example would require w(January 31, 1980) = 31� 1 = 30, w(February 28, 1980)

= 28� 1 = 27, and w(March 20, 1980) = 28� 1 = 27 (since February 20, 1980, the

�rst day in the aggregate window, was 27 days before March 20). 2

If two times y and z are consecutive in the set T , then the time interval from

y to z did not witness any change in the set of relations, or in other words, all the

relations remained \constant". De�ne then the Constant interval set as

Constant(R

1

; : : : ; R

k

; w) (6.17)

�

=

�

hy; zi j y 2 T (R

1

; : : : ; R

k

; w) ^ z 2 T (R

1

; : : : ; R

k

; w)

^y 6= z ^ Before (y; z)

^(8e)(e 2 T (R

1

; : : :; R

k

; w)) (Before(e; y)

_Equal(e; y) _ Before(z; e)

_Equal(z; e))

g:

The last three lines state that there is no event in the time between y and z. The

constant interval set allows us to treat each constant time interval hy; zi separately,

thus reducing the inner query to a number of queries, each dealing with a constant

time interval. Hence, we will be able to follow the same steps as in the snapshot

Quel case. For each time interval hy; zi in the constant interval set a value of

the aggregate, valid from y to z, will be computed and will potentially go into the

result. This value is guaranteed to be unique and unchanging by the de�nition of

Constant.

In general, a partition is de�ned for each aggregate, on which the aggregate

function is applied.

EXAMPLE 38 We illustrate by giving the semantics of the query in Example 19 in

Section 6.2.6 selecting those stocks that have doubled over the last month. The

partition is indexed by the Stock attribute, as well as an interval in the Constant

set (which in this case simply returns the intervals in the Stocks relation).

6.3 Formal Semantics 19

P (Stock; y; z) =

�

u

1

j (Stocks(u) ^ u[1] = Stock

^overlap(hy; zi; hu[from]; u[to] +w

0

(y)i)g

The window function w

0

in the second line corresponds to \for each %month%"

in the retrieve statement. This line indicates that all tuples participating in the

aggregate must overlap the interval hy; zi. From the de�nition of the Constant

interval set, which supplies the intervals hy; zi, it is not di�cult to see that the

overlapping is total. This way, aggregates will always be computed from the tuples

that were valid during that interval. In determining the overlap, the window func-

tion w

0

is used in a similar fashion to the de�nition of the time partition. Should

the aggregate contain a where, when, or as of clause, these clauses would have been

accommodated in this partition.

The output relation from the query is

�

u

(2+2)

j (9S)(9y)(9z)(Stocks (S)

^hy; zi 2 Constant(Stocks ; w

0

) ^ overlap(hy; zi; hS[from]; S[to]i)

^u[1] = S[Stock] ^ u[2] = S[Price]

^u[3] = rate(P (u[Stock]; y; z))[2]

^u[4] = last(y; S[from]) ^ u[5] = First(z; S[to])^ Before(u[4]; u[5])

^overlap(now; hS[from]; S[to]i)

)g :

A comparison with the tuple calculus expression for the TQuel retrieve statement

given earlier reveals that lines two and four are new and lines one and �ve are

altered. In line two, the Constant interval set provides the interval hy; zi during

which the tuples are constant. It involves the relations appearing in the aggregate;

the relation whose attribute is being aggregated plus all the di�erent relations in

the by-list; other relations cannot a�ect the aggregate. Again, these relations are

assumed to be distinct for notational convenience. The window function w

0

appears

explicitly as an argument to the Constant interval set and implicitly in P . Line

two also ensures that the intervals associated with the tuple variables aggregated

over as well as with those tuple variables speci�ed in the by-clause overlap with the

interval during which the aggregate is constant. Line four computes the aggregate.

The rate function that is applied to each partition is de�ned elsewhere [Snodgrass,

et al. 1992]. Line �ve ensures that the valid time of the result relation is the

intersection with the speci�ed valid time and the interval hy; zi). 2

6.3.6 Valid-time Indeterminacy

The changes to the semantics to support valid-time indeterminacy are quite mini-

mal. There are two aspects that require support. Range credibility restricts the range

of the indeterminate events participating in the query. E�ectively, non-credible

starting and terminating times are eliminated to the chosen level of credibility dur-

ing query processing, allowing the user to control the quality of the information

used in the query. Ordering plausibility, exempli�ed in Section 6.2.7, controls the

construction of an answer to the query using the pool of credible information. It

20 Chapter 6 TQuel Overview

allows the user to express a level of plausibility in a temporal relationship such as

precede.

To permit timestamps to model indeterminate events, we incorporate in time-

stamps an indeterminacy span, indicating the period of time when the event could

have occurred, and a probability distribution, indicating the probability of the event

occurring before or during each chronon in the indeterminacy span. In the example

in Section 6.2.7, both are speci�ed at the schema level, and hence need not be

modeled explicitly in the timestamps. However, in the general case, both need to

be e�ciently represented in an individual timestamp [Dyreson & Snodgrass 1992A,

Dyreson & Snodgrass 1992B].

To support range credibility, two functions are introduced. These functions

compute a \shortened" version of an indeterminate event by shrinking its set of

possible events and modifying its probability distribution [Dyreson & Snodgrass

1992A].

To support ordering plausibility we rede�ne the ordering relation Before. The

semantics of retrieve without indeterminacy given in the preceding sections is based

on a well-de�ned ordering of the valid time events in the underlying relations. Every

temporal predicate and temporal constructor refers to this ordering to determine

if the predicate is true or the constructor succeeds. A set of determinate events

has a single temporal ordering. Given a temporal expression consisting of temporal

predicates and temporal constructors, this ordering either satis�es the expression

or fails to satisfy it.

A set of indeterminate events, however, typically has many possible temporal

orderings. Some of these temporal orderings are plausible while others are implau-

sible. The user speci�es which orderings are plausible by setting an appropriate

ordering plausibility value. We stipulate that a temporal expression is satis�ed if

there exists a plausible ordering that satis�es it.

The temporal ordering is given by the Before relation. In the determinate seman-

tics, Before is the \�" relation on event times. In the indeterminate semantics, the

temporal ordering depends on a probabilistic ordering operator \�

prob

" which is de-

�ned as follows. For any two independent indeterminate events, � = ([�

1

; �

m

]; P

�

)

and � = ([�

1

; �

n

]; P

�

),

� �

prob

� = b100� (

�

m

X

E

i

=�

1

�

n

X

E

j

=�

1

(if E

i

� E

j

then P

�

(E

i

) � P

�

(E

j

) else 0))c;

(6.18)

where the possible chronons are ordered by the \�" operator on the integers.

We modify Before to include an additional initial parameter, the ordering plau-

sibility . The value of can be any integer between 1 and 100 (inclusive). In

general, higher (closer to 100) ordering plausibilities stipulate that fewer orderings

should be considered plausible. The indeterminate Before is de�ned as follows.

Before(; �; �) =

(

TRUE (� is �) _ ((� �

prob

�) �)

FALSE otherwise

(6.19)

6.3 Formal Semantics 21

An event is de�ned to be Before itself, for all values of . Two events are said

to be equivalent if they have both the same set of possible chronons and the same

probability distribution. Two equivalent, but not identical, events may or may not

be Before one another, depending on .

EXAMPLE 39 With this apparatus, we can give the semantics for the query given

in Example 24 in Section 6.2.7, listing the stocks that Melanie probably owned at

1AM.

�

u

(5)

j (9O)(Own(O)

^u[1] = O[Stock] ^ u[2] = O[Stock] ^ u[3] = O[Shares]

^u[4] = |1AM|

^O[Client] = "Melanie"

^Before(70; O[from]; |1AM|) ^ Before(70; |1AM|; O[to])

^overlap(present; hO[start]; O[stop]i)

)g 2

Elsewhere we give the semantics for the generic TQuel retrieve statement, incor-

porating both range credibility and order plausibility [Dyreson & Snodgrass 1992A].

6.3.7 The Update Statements

In examining the semantics of the TQuel update, we proceed by �rst considering

the skeletal Quel append statement,

append to R (t

i

1

:D

j

1

; : : : ; t

i

r

:D

j

r

)

where ,

which has the tuple calculus semantics

R

0

= R [fu

r

j (9t

1

) : : : (9t

k

)(R

1

(t

1

) ^ : : :^R

k

(t

k

) (6.20)

^u[1] = t

i

1

[j

1

]^ : : :^ u[r] = t

i

r

[j

r

]

^

0

)g.

The set being appended is identical to that for the Quel retrieve statement (see

Section 6.3.1). Note that the set being appended may contain tuples already in R.

The semantics for the TQuel append statement is somewhat complicated, be-

cause the set to be unioned with the existing relation should only contain tuples

that are not valid in the existing relation. We cannot depend on the union work-

ing correctly when the tuples being appended are identical to tuples in the current

valid-time relation. So the semantics only appends tuples during those times when a

tuple with identical explicit attributes is not valid. We do not give the full semantics

here; it is available elsewhere [Snodgrass 1987].

The tuple calculus semantics of the delete statement shows a similar increase in

complexity. This statement will perhaps change some transaction stop times from

until changed to now, logically removing them, and will perhaps also add tuples

with a transaction start time of now, for those portions of time not logically deleted.

Hence, the semantics for logical deletion is physical insertion!

22 Chapter 6 TQuel Overview

The semantics of the replace statement is even more complex. The replace

statement has a semantics similar to that of a delete statement followed by an

append statement. It is not equivalent to a delete followed by an append when

the expressions in the target list mention the primary tuple variable. Hence, the

semantics must be careful to union just the right amount of information implied

by logical deletion, followed by just the right amount of information implied by the

append.

6.3.8 Reducibility

If a TQuel statement does not contain a valid, when, or as-of clause, then it looks

identical to a standard Quel retrieve statement; thus it should have an identical

semantics. However, an Ingres database is not temporal; it is a snapshot database.

Hence, the tuples participating in a Quel statement are in the snapshot relation that

is the result of the last transaction performed on the database (i.e., are current) and

are valid at the time the statement is executed. This snapshot database slice (all

current tuples valid at a particular time �) is formed by �rst eliminating the event

relations (since snapshot relations cannot represent events at all), eliminating all

tuples with a start time greater than � and with a stop time less than � , eliminating

all tuples not valid at � , and �nally removing the implicit time attributes. Then

reducibility is satis�ed if taking a snapshot of the result of applying a query with

the TQuel semantics just speci�ed is identical to the result of applying the same

query with the Quel semantics to a snapshot of the database.

Theorem 1 The TQuel semantics reduces to the standard Quel semantics when applied to

a snapshot database slice of the temporal database.

The proof of this equality revolves around the defaults for the valid, when, and as-of

clauses [Snodgrass 1987]. The defaults e�ectively take a database slice at � = now,

which is the time the query is executed. The default when and valid clauses state

that all the underlying tuples are valid for the entire interval the resulting tuple

was valid. The resulting tuples are guaranteed to be current by the tuple calculus

semantics of the retrieve statement.

A similar reduction can be argued concerning queries with aggregates and with

valid-time indeterminacy, and concerning the update statements, as the defaults

were speci�cally chosen to ensure their reducibility to the standard Quel semantics.

The bene�t of these reductions is that the intuition and understanding gained by

using Quel on a snapshot database applies to TQuel on a temporal database.

6.3.9 Summary

In this section, we �rst presented the tuple calculus semantics of Quel, then pro-

ceeded to extend this semantics. We added support for temporal constructors, used

in the valid clause, temporal predicates, used in the when clause, aggregates, which

required an auxiliary partition and a constant interval set for each aggregate, and

valid-time indeterminacy, which required augmenting all the temporal predicates

6.4 A Temporal Algebra 23

and constructors with another parameter, the order plausibility. The update state-

ments were transformed into set unions. Finally, we argued that this semantics is

a faithful extension of the Quel semantics.

6.4 A Temporal Algebra

We now extend the relational algebra [Codd 1970] to enable it to handle time.

Several bene�ts accrue from de�ning a temporal algebra. A temporal algebra is

useful in the formulation of a temporal data model because it de�nes formally the

types of objects and the operations on object instances allowed in the data model.

Similarly, the algebra provides support of calculus-based query languages. Also,

implementation issues, such as query optimization and physical storage strategies,

can best be addressed in terms of the algebra.

The relational algebra already supports user-de�ned time in that user-de�ned

time is simply another domain, such as integer or character string, provided by

the DBMS [Bontempo 1983, Overmyer & Stonebraker 1982, Tandem 1983]. The

relational algebra, however, supports neither valid time nor transaction time. Hence,

for clarity, we refer to the relational algebra hereafter as the snapshot algebra and

our proposed algebra, which supports valid time, as a valid-time algebra. We later

embed the algebra in a language to support transaction time. We provide formal

de�nitions for valid-time relations and for their associated algebraic operators. The

result is an algebraic language supporting all three kinds of time.

In this section we de�ne the valid-time algebra and provide a formal semantics.

To do so, we rede�ne a relation, the only type of object manipulated in the algebra, to

include valid time. We also rede�ne the existing relational algebraic operators, and

introduce new operators, to handle this new temporal dimension. We then show

that the algebra has the expressive power of TQuel facilities that support valid

time. We demonstrate that several important properties hold: closure, relational

completeness, and a restricted form of reducibility.

6.4.1 Data Model

The algebra presented here is an extension of the snapshot algebra. As such, it

retains the basic restrictions on attribute values found in the snapshot algebra.

Neither set-valued attributes nor tuples with duplicate attribute values are allowed.

Valid time is represented by a set-valued timestamp that is associated with indi-

vidual attribute values. A timestamp represents possibly disjoint intervals and the

timestamps assigned to two attributes in a given tuple need not be identical.

Assume that we are given a relation scheme de�ned as a �nite set of attribute

names N = fN

1

, : : :, N

m

g. Corresponding to each attribute name N 2 N is a

domain Dom(N), an arbitrary, non-empty, �nite or denumerable set [Maier 83].

Let the positive integers be the domain T , where each element of T represents a

chronon. Also, let the domain

}

(T) be the power set of T. An element of

}

(T) is

then a set of integers, each of which represents an interval of unit duration. Also, any

24 Chapter 6 TQuel Overview

group of consecutive integers t

1

; : : : ; t

n

appearing in an element of

}

(T), together

represent the interval ht

1

; t

n

+1i. An element of

}

(T), termed a valid-time element,

is thus a union of intervals.

If we let value range over the domainDom(N

1

)[� � �[Dom(N

m

) and valid range

over the domain

}

(T), we can de�ne an valid-time tuple ht as a mapping from the

set of attribute names to the set of ordered pairs (value, valid), with the following

restrictions.

� 8a; 1 � a � m (value(ht[N
a

]) 2 Dom(N

a

) and

� 9a; 1 � a � m (valid(ht[N
a

]) 6= ;).

Note that it is possible for all but one attribute to have an empty timestamp.

Two tuples, ht and ht0, are said to be value-equivalent (ht � ht

0

) if and only if

8A 2 N ; value(ht[A]) = value(ht
0

[A]). An valid-time relation h is then de�ned as a

�nite set of valid-time tuples, with the restriction that no two tuples in the relation

are value-equivalent.

EXAMPLE 40 For this and all later examples, assume that the granularity of time

is a minute relative to midnight, January 1, 1970. Hence, 1 represents 12:01AM,

1-1-1970. Rather than express sets of chronons as sets of integers, we'll show the

integers in Gregorian. We enclose each attribute value in parentheses and each

tuple in angular brackets (i.e., h i). The following is the Stocks relation in this new

representation.

Stocks = f h(IBM; f6-3-91:11:23AM::foreverg); (8; f6-3-91:11:23AM::10-1-91:9:28AMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (10; f10-1-91:9:30AM::10-2-91:2:14PMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (12; f10-2-91:2:15PM::10-7-91:10:06AMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (16; f10-7-91:10:07AM::10-15-91:4:34PM;

10-30-91:4:57PM::11-2-91:12:52PMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (19; f10-15-91:4:35PM::10-30-91:4:56PMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (25; f11-2-91:12:53PM::11-5-91:2:01PMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (27; f11-5-91:2:02PM::12-3-91:8:43AMg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (23; f12-3-91:8:44AM::12-29-91:9:00AM;
1-3-92:4:28PM::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (21; f12-29-91:9:01AM::1-3-92:4:27PMg)i g 2

6.4.2 Extension of Snapshot Operators

Twelve operators complete the de�nition of the valid-time algebra. Five of these

operators, union, di�erence, Cartesian product, projection, and selection, are anal-

ogous to the �ve operators that de�ne the snapshot algebra for snapshot relations

[Ullman 1988]. Each of these �ve operators on valid-time relations is represented

as ôp to distinguish it from its snapshot algebra counterpart op.

We use two auxiliary functions in the formal semantics. Both operate over a set

of tuples R.

NotNull(R)

�

= fR j 9r 2 R ^ 9A 2N (valid(R[A]) 6= ;)g (6.21)

This function ensures that all tuples in the resulting relation have at least one

attribute value which has a non-null timestamp.

6.4 A Temporal Algebra 25

Reduce(R)

�

= fU

n

j 8A 2 N 9r 2 R(r � u ^ 8t 2 valid(u[A])(t 2 valid(r[A])))

^8r 2 R(r � u) 8A 2N (valid(r[A]) � valid(u[A])))g (6.22)

Reduce expresses the minimal set of value-equivalent tuples, i.e., the set for which

there are no such tuples. The �rst line ensures that no chronons have been manu-

factured; the second line ensures that all chronons of R are accounted for. If R is a

set of tuples over N , then Reduce(NotNull(R)) is a valid-time relation.

Let Q and R be valid-time relations of m-tuples over the same relation scheme.

Then the valid-time union of Q and R, Q ^

[R, is the set of tuples that are only in

Q, are only in R, or are in both relations, with the restriction that each pair of

value-equivalent tuples is represented by a single tuple. The timestamp associated

with each attribute of this tuple in Q ^

[R is the set union of the timestamps of the

corresponding attribute in the value-equivalent tuples in Q and R.

Q ^

[R
�

= Reduce(fu j u 2 Q _ u 2 Rg) (6.23)

The valid-time di�erence of Q and R, Q^

�R, is the set of all tuples such that the

timestamp of each attribute of a tuple in Q ^

�R must equal the set di�erence of the

timestamps of the corresponding attribute in the value-equivalent tuple in Q and

the value-equivalent tuple in R.

Q ^

�R
�

= fq

m

j 9q 2 Q ^ :(9r 2 R (r � q))g (6.24)

S

NotNull(fum j 9q 2 Q 9r 2 R (u � q � r

^8A 2N (valid(u[A]) = valid(q[A])� valid(r[A])))g)

Now let Q be a valid-time relation of m

1

-tuples and R be a valid-time relation of

m

2

-tuples. Because valid-time relations are attribute-value timestamped, Cartesian

product is a particularly simple operator. The valid-time Cartesian product is

identical to that for snapshot relations. In the following, \�" denotes concatenation.

Q ^

�R
�

= fq � r j 9q 2 Q ^ 9r 2 Rg (6.25)

EXAMPLE 41 Let O be the current valid-time state from Own.

O =fh(Melanie; f3-8-91:2:10PM::foreverg); (IBM; f6-3-91:11:23AM::foreverg);

(20; f9-15-91:3:12PM::12-30-91:10:30AMg)i,

h(Melanie; f3-8-91:2:10PM::foreverg); (IBM; f6-3-91:11:23AM::foreverg);

(30; f12-30-91:10:31AM::foreverg)i
	

26 Chapter 6 TQuel Overview

S
1

= Stocks ^�O

=fhIBM; f6-3-91:11:23AM::foreverg); (8; f6-3-91:11:23AM::10-1-91:9:28AMg);

(Melanie; f3-8-91:2:10PM::foreverg); (IBM; f6-3-91:11:23AM::foreverg);

(20; f9-15-91:3:12PM::12-30-91:10:30AMg)i,

: : :

h(IBM; f6-3-91:11:23AM::foreverg); (21; f12-29-91:9:01AM::1-3-92:4:27PMg)

(Melanie; f3-8-91:2:10PM::foreverg); (IBM; f6-3-91:11:23AM::foreverg);

(30; f12-30-91:10:31AM::foreverg)i g

Since Stocks contains 9 tuples and O contains 2 tuples, S

1

will contain 18 tuples. 2

To de�ne valid-time selection, let R be a valid-time relation of m-tuples. Also,

let F be a boolean function involving the attribute names N

1

; : : : ; N

R

from R,

constants from the domains Dom(N

1

); : : :, Dom(N

R

), the relational operators <,

=, and >, and the logical operators ^; _; and :. To evaluate F for a tuple r 2 R,

we substitute the value components of the attributes of r for all occurrences of

their corresponding attribute names in F . Then the valid-time selection �̂

F

(R) is

identical to selection in the snapshot algebra: it evaluates to the set of tuples in R

for which F is true.

�̂

F

(R)
�

= fr

m

j r 2 R ^ F (value(r[1]); : : : ; value(r[m]))g (6.26)

EXAMPLE 42 Select those tuples from S
1

with a O.Client of "Melanie" and

O.Stock=S.Stock.

S
2

= �̂

Client="Melanie"^O:Stock=S:Stock

(S
1

) 2

Let R be a valid-time relation of m-tuples and let a

1

; : : : ; a

n

be distinct integers

in the range 1 to m. Like the projection operator for snapshot relation, the projec-

tion operator for valid-time relations, �̂

N

a

1

; :::; N

a

n

, retains, for each tuple, the tuple

components that correspond to the attribute names N

a

1

; : : : ; N

a

n

.

�̂

N

a

1

; :::; N

a

n

(R)

�

= Reduce(NotNull(fu

n

j 9r 2 R 8i; 1 � i � n (u[i] = r[a

i

])g))

(6.27)

6.4.3 New, Temporal Operators

We now de�ne three new operators that do not have snapshot analogues. The �rst,

derivation, is a new operator that replaces the timestamp of each attribute value in

a tuple with a new timestamp, where the new timestamps are computed from the

existing timestamps of the tuple's attributes. The second and third, the snapshot

(

c

SN) and AT operators, convert between valid-time and snapshot relations.

The derivation operator

^

�

G; V

1

; :::; V

m

(R) determines, for a tuple r 2 R, new

timestamps for r's attributes. The derivation operator �rst determines all possible

assignments of intervals to attribute names for which the predicate G on timestamps

6.4 A Temporal Algebra 27

is true. Hence, an occurrence of an attribute name N in G and in V is intended

to be a variable, which evaluates to an interval upon tuple substitution. For each

assignment of intervals to attribute names for which G is true, the operator evaluates

V

a

; 1 � a � m. The sets of times resulting from the evaluations of V

a

are then

combined to form a new timestamp for attribute N

a

. For notational convenience,

we assume that if only one V -function is provided, it applies to all attributes.

EXAMPLE 43 Extract from S

2

those intervals of Price (originally from Stocks) and

Shares (originally from Own) that overlap each other and now.

S
3

=

^

�

G;V

(S
2

)

=fh(IBM; f1-3-92:4:28PM::foreverg); (23; f1-3-92:4:28PM::foreverg);

(Melanie; f1-3-92:4:28PM::foreverg); (IBM; f1-3-92:4:28PM::foreverg);

(20; f1-3-92:4:28PM::foreverg)i g

where G � (Price\Shares)\now 6= ; and V � Price\Shares. Here G determines

whether the overlap occurs, and V calculates this overlap, i.e., the interval during

which both were valid. This interval is assigned to all of the attributes. 2

The derivation operator performs two functions. First, it performs a selection

on the valid component of a tuple's attributes. For a tuple r, if G is false when an

interval from the valid component of each of r's attributes is substituted for each

occurrence of its corresponding attribute name in G, then the temporal information

represented by that combination of intervals is not used in the calculation of the

new timestamps of the resulting tuples. Secondly, the derivation operator calculates

a new timestamp for each attribute N

a

of the resulting tuples from those combi-

nations of intervals for which G is true, using V

a

. If V

1

; : : : ; V

m

are all the same

function, the tuple is e�ectively converted from attribute timestamping to tuple

timestamping.

The semantics of the derivation operator is de�ned using an auxiliary function,

Apply, that selects an interval from the valid-time element of each attribute's time-

stamp, applies the predicate G to these intervals, and, if G returns true, evaluates

the V

i

to generate an output interval.

Apply(G; V

1

; : : : ; V

m

; R) (6.28)

= fu j 9r 2 R (u � r

^ 9I

i

2 interval(valid(r[i]));

� � �

^ 9I

i

2 interval(valid(r[i]));

(G(I

1

; : : : ; I

m

) ^ valid(u[i]) = V

i

(I

1

; : : : ; I

m

))g

Note that the resulting set may contain many value-equivalent tuples. With this

function, we can now de�ne the derivation operator.

^

�

G; V

1

; :::; V

m

(R)

�

= NotNull(Reduce(Apply(G; V

1

; : : : ; V

m

; R))) (6.29)

Had we had disallowed set-valued timestamps, the derivation operator could

have been replaced by two simpler operators, analogous to the selection and projec-

tion operators, that would have performed tuple selection and attribute projection

28 Chapter 6 TQuel Overview

in terms of the valid components, rather than the value components, of attributes.

But disallowing set-valued timestamps would have required that the algebra sup-

port value-equivalent tuples, which would have prevented the algebra from having

several other, more highly desirable properties.

The snapshot operator

c

SN computes a snapshot relation valid at a speci�ed time

� . If only a subset of attributes is valid at � , that tuple is not selected. Assume

that tuples in R have n attributes.

c

SN

�

(R)

�

= f(value(r[1]); : : : ; value(r[n])) j R(r) ^ 8A 2N (� 2 valid(r[A]))g

(6.30)

EXAMPLE 44 S

4

=

c

SN 2-1-92:12:00PM(S3) = f(IBM; 23; Melanie; IBM; 20)g 2

The dual is the AT operator, which converts a snapshot relation to its valid-time

analogue considered valid at the speci�ed time � .

AT

�

(R

0

)

�

= fr j 9r

0

2 R

0

8A 2N (r

0

[A] = value(r[A])^ valid(r[A]) = f�g)g (6.31)

EXAMPLE 45 S
5

= AT2-1-92:12:00PM(S4)

=

�

h(IBM; f2-1-92:12:00PMg); (23; f2-1-92:12:00PMg);

(Melanie; f2-1-92:12:00PMg); (IBM; f2-1-92:12:00PMg);

(20; f2-1-92:12:00PMg)i
	

2

6.4.4 Aggregates

Klug introduced an approach to handle aggregates in the snapshot algebra [Klug

1982]. His approach makes it possible to de�ne aggregates, in particular, non-unique

aggregates, in a rigorous fashion. We use his approach to de�ne two aggregate

operators for the algebra,

b

A, which calculates non-unique aggregates, and

c

AU , which

calculates unique aggregates. These two valid-time aggregate operators serve as the

valid-time counterpart of both scalar aggregates and aggregates with a by clause.

The aggregate operators must contend with a variety of demands that surface

as parameters (subscripts) to the operators. First, a speci�c aggregate (e.g., count)

must be speci�ed. Secondly, the attribute over which the aggregate is to be applied

must be stated and the aggregation window function must be indicated. Finally,

to accommodate partitioning, where the aggregate is applied to partitions of a

relation, a set of partitioning attributes must be given. These demands complicate

the de�nitions of

b

A and

c

AU , but at the same time ensure some degree of generality

to these operators.

The aggregate operator is denoted by

b

A

f; w; N; X

(Q; R). R is a valid-time

relation ofm-tuples over the relation schemeN

R

. N 2N

R

is the attribute on which

the aggregate is applied. Q supplies the values that partition R. X denotes the

attributes on which the partitioning is applied, with the restrictions that N

Q

� N

R

and fNg [X � N

Q

. The schema of the result consists of the attributes of R along

with an additional attribute, the computed aggregate.

Assume, as does Klug, that for each aggregate operation (e.g., count) we have

a family of scalar aggregates that performs the indicated aggregation on R (e.g.,

COUNT
N

1

, COUNT
N

2

, : : :, COUNT
N

m

, where COUNT
N

a

counts the (possibly duplicate)

6.4 A Temporal Algebra 29

values of attribute N

a

of R). The particular scalar aggregate is denoted by f . w

represents an aggregation window function.

If X is empty, the valid-time aggregate operators simply calculate a single dis-

tribution of scalar values over time for an arbitrary aggregate applied to attribute

N of relation R. In this case, the tuples in Q are ignored.

EXAMPLE 46 How many shares of stock does Melanie own?

�̂

Sum

(

b

A

sum;0;Shares;;

(;; �̂

Client="Melanie"

(Own)))

The TQuel version of this query was given in Example 15 in Section 6.2.6. Since

this aggregate is an instantaneous aggregate, the aggregate window function is the

constant function returning 0. 2

If X is not empty, the operators calculate, for each subtuple in Q formed from

the attributes X, a distribution of scalar values over time for an aggregate applied

to attribute N of the subset of tuples in R whose values for attributes X match

the values for the same attributes of the tuple in Q. Hence, X corresponds to the

by-list of an aggregate function in conventional database query languages (e.g., the

attributes in the GROUP BY clause in SQL [IBM 1981]). Generally X = N

Q

and

Q = �̂

X

(R), but these constraints are not dictated by the formal de�nition of

b

A.

EXAMPLE 47 Calculate the rate of the Price attribute, partition by the Stock attribute, for

each month.
b

A

rate; month; Price; fStockg

(�̂

Stock

(Stocks); Stocks)

The values to partition the relation are also drawn from Stocks. 2

6.4.5 Accommodating Transaction Time

Two aspects of supporting transaction time in the algebra must be considered,

handling evolution of a database's content and handling evolution of a database's

schema. To handle evolution of the contents of a database containing snapshot,

transaction-time, valid-time, and bitemporal relations, we de�ne a relation to be a

sequence of snapshot or valid-time states, indexed by transaction time [McKenzie &

Snodgrass 1987]. Snapshot and valid-time relations are modeled as single-element

sequences. Timeslice operators, to be de�ned shortly, make past states available in

the algebra.

Evolution of a database's schema is associated solely with transaction time.

For example, a person's marital status is a (time-varying) aspect of reality, but

the decision whether to record marital status, recorded in the schema, is a (time-

varying) aspect of the database. We add the relation schemas to the domain of

database states [McKenzie & Snodgrass 1990]. Also, as shown in Section 6.2.9, not

only the state, but also the class of a relation (snapshot, valid-time, etc.), as well

as the signature (that is, the attribute names and their associated domains), may

change over time. Hence, the representation of a relation manipulated by the algebra

must include the current class, signature and state, as well as the signature and state

for the intervals of transaction time during which the relation was persistent, i.e.,

when the class was either transaction-time or bitemporal.

30 Chapter 6 TQuel Overview

EXAMPLE 48 The following is the Stocks relation, with all of its components.

Class sequence:

(TRANSACTION-TIME, 9-3-92:8:35AM, 10-17-92:4:48PM)

(UNDEFINED, 10-17-92:4:49PM, until changed)

Signature sequence:

((Stock!char, Price!monetary), 6-2-91:1:35PM)

((Stock!char, Price!monetary, NumTraded!integer), 8-19-91:11:31AM)

State sequence:

(fh(IBM; f6-3-91:11:23AM::foreverg); (8; f6-3-91:11:23AM::10-1-91:9:28AMg);

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (10; f10-1-91:9:30AM::10-2-91:2:14PMg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (12; f10-2-91:2:15PM::10-7-91:10:06AMg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (16; f10-7-91:10:07AM::10-15-91:4:34PM;

10-30-91:4:57PM::11-2-91:12:52PMg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (19; f10-15-91:4:35PM::10-30-91:4:56PMg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (25; f11-2-91:12:53PM::11-5-91:2:01PMg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (27; f11-5-91:2:02PM::12-3-91:8:43AMg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (23; f12-3-91:8:44AM::12-29-91:9:00AM;

1-3-92:4:28PM::foreverg),

(0; fbeginning::foreverg)i,

h(IBM; f6-3-91:11:23AM::foreverg); (21; f12-29-91:9:01AM::1-3-92:4:27PMg),

(0; fbeginning::foreverg)ig ; 9-3-92:8:35AM)

: : :

The class sequence contains two elements, the signature sequence, two elements,

and the state sequence as many elements as there were transactions executed on

this relation between September 3, 1992 and October 17, 1992. Before September

3, 1992, the class of the Stocks relation was VALID-TIME, and so no old states were

retained. 2

Two new algebraic operators are available to select a particular snapshot or

valid-time state from the sequence recorded in the relation. The snapshot trans-

action timeslice operator � has one argument, a relation name I, and a subscript

N designating a transaction number. It retrieves from the relation I the snapshot

state current at transaction time N . Note that the timeslice operator does not take

relations as arguments; it does, however, evaluate to a (snapshot) relation.

6.4 A Temporal Algebra 31

EXAMPLE 49 Retrieve the current state of the Stocks relation.

�now("Stocks") 2

Similarly, the valid-time transaction timeslice operator �̂

N

(I) retrieves from the

bitemporal relation I the valid-time state current after the transaction at time N .

The algebra is embedded in a language that supports seven commands for

database update. BEGIN TRANSACTION, COMMIT TRANSACTION and ABORT

TRANSACTION provide both single-command and multiple-command transactions;

the latter is treated as an atomic update operation, whether it changes one or

several relations. (Like Quel, TQuel treats each statement as a transaction.)

The DEFINE RELATION command assigns a new class and signature, along with an

empty state, to an unde�ned relation.

EXAMPLE 50 Define the Stocks relation.

BEGIN TRANSACTION

DEFINE RELATION("Stocks", VALID-TIME, (Stock!char, Price!monetary))

COMMIT TRANSACTION

Example 1 in Section 6.2.1 illustrates the equivalent TQuel create statement. 2

The MODIFY RELATION command changes the current class, signature, and state

of a de�ned relation. This command supports several TQuel statements. The

append, delete, and replace TQuel statements change the state of a relation. All

three can be translated into appropriate MODIFY RELATION commands.

EXAMPLE 51 On July 15, 1992 at 3PM, Melanie bought 20 shares of DEC stock.

BEGIN TRANSACTION

MODIFY RELATION("Own", *, *,

[VALID-TIME,(Client!char, Stock!char, Shares!int),

fh ("Melanie"; f7-15-92:3:00PM::foreverg);

("DEC"; f7-15-92:3:00PM::foreverg);

(20; f7-15-92:3:00PM::foreverg)ig]
^

[�̂now("Stocks"))

COMMIT TRANSACTION

This is equivalent to the TQuel statement in Example 27. A *" implies that the

previous value, in this case the class and schema, should be retained. The \[� � �]"

denotes a constant relation, in this case a single tuple with three attributes; note

that a constant relation includes its state and schema. 2

The MODIFY RELATION command may also be used to change the signature.

EXAMPLE 52 Add a NumTraded attribute to the Stocks relation.

BEGIN TRANSACTION

MODIFY RELATION("Stocks", *,

(Stock!char, Price!monetary, NumTraded!integer),

�̂now("Stocks")

^

�[VALID-TIME, (NumTraded!integer), fh(0; fbeginning::foreverg)ig])

COMMIT TRANSACTION

32 Chapter 6 TQuel Overview

This is equivalent to Example 32. The third argument to MODIFY RELATION pro-

vides the new signature, and the fourth, a new valid-time state consistent with this

signature. 2

EXAMPLE 53 The Stocks relation should also record all errors.

BEGIN TRANSACTION

MODIFY RELATION("Stocks", BITEMPORAL, *, �̂now("Stocks")))

COMMIT TRANSACTION

This is equivalent to Example 33. 2

The DESTROY command is the counterpart of the DEFINE RELATION command. It

either physically or logically deletes from the database the current class, signature,

and state of the relation, depending on the relation's class when the command is

executed.

EXAMPLE 54 Remove the Stocks relation.

BEGIN TRANSACTION

DESTROY("Stocks")

COMMIT TRANSACTION

This is equivalent to Example 34. Because Stocks is persistent, this command

simply appends to the class sequence in the relation the triple

(UNDEFINED, 10-17-92:4:49PM, until changed)

Nothing is physically deleted! 2

The RENAME RELATION command binds the current class, signature, and state of

a relation to a new identi�er.

We assume that the above commands execute in the context of a single, previ-

ously created database. Hence, no commands are necessary to create or delete the

database. Since we are considering modeling transaction time from a functional,

rather than from a performance, viewpoint, commands a�ecting access methods,

storage mechanisms, or index maintenance are also not relevant.

The full formal semantics of the timeslice operators and the commands intro-

duced above is given elsewhere [McKenzie & Snodgrass 1990]. Allowing a database's

schema, as well as its contents, to change increases the complexity of the language.

If we allow the database's schema to change, an algebraic expression that is seman-

tically correct for the database's schema when one command executes may not be

semantically correct for the database's schema when another command executes.

We need a mechanism for identifying semantically incorrect algebraic expressions

relative to the database's schema when each command executes and a way of ensur-

ing that the schema and contents of the database state resulting from the command's

execution are compatible. To identify semantically incorrect expressions, we intro-

duced a semantic type system and augmented the semantics of the commands to do

type-checking [McKenzie & Snodgrass 1990]. We chose denotational semantics to

de�ne the language because denotational semantics combines a powerful descriptive

notation with rigorous mathematical theory [Gordon 1979, Stoy 1977], permitting

the precise de�nition of the database's state.

6.4 A Temporal Algebra 33

6.4.6 Valid-time Indeterminacy

As with the tuple calculus, the extensions to the algebra to support histroical in-

determinacy are quite minimal. Three basic changes are required, though no new

operators or commands are needed. The �rst is to accommodate indeterminacy

spans and probabilities in both the schema and in the tuples themselves, as all

combinations are possible. In the schema, this information may be recorded as

another component, a sequence indexed by transaction time.

The second change is to add an additional subscript to the timeslice operators,

specifying a range credibility between 0 and 100. The modi�ed semantics utilizes

the two shrinking functions mentioned in Section 6.3.6.

The third change adds an additional parameter, the ordering plausibility, to

temporal predicates and constructors mentioned in the derivation operator.

EXAMPLE 55 What stocks did Melanie probably own?
^

�overlap(70; Client; |1AM|);|1AM|(�̂Client="Melanie"(�̂now; 100("Own"))) 2

6.4.7 Properties of the Algebra

An important property of an algebra is that it is closed, that is, all operators produce

valid objects, in this case valid-time relations.

Theorem 2 The valid-time algebra is closed.

A relational algebra is said to be complete if it is at least as expressive as the

snapshot algebra [Codd 1972].

Theorem 3 The valid-time algebra is complete.

We now examine whether the valid-time algebra is in some sense a consistent

extension of the snapshot algebra. An algebra is said to reduce to the snapshot

algebra if taking a snapshot of the result of applying a valid-time operator on one or

two valid-time relations is identical to the result of applying the analogous snapshot

operator to the snapshots (at the same times) of the valid-time relation(s). Because

the temporal algebra allows tuples that contain attributes of di�ering timestamps,

it satis�es this property only through the introduction of distinguished nulls when

taking snapshots. We avoid this problem by proving a weaker property: we restrict

reducibility to operations on valid-time relations that have identical timestamps for

all of their attributes, termed homogeneous relations [Gadia 1988].

Theorem 4 The valid-time operators ^[, ^�, ^�, �̂ and �̂ reduce to their snapshot counter-

parts when their arguments are homogeneous.

The language in which the algebra is embedded also has some nice properties

(proofs appear elsewhere [McKenzie & Snodgrass 1990]).

Theorem 5 The language is a natural extension of the relational algebra for database

query and update.

34 Chapter 6 TQuel Overview

By natural extension, we mean that our semantics subsumes the expressive power of

the relational algebra for database query and update. Expressions in the language

are a strict superset of those in the relational algebra. Also, if we restrict the class

of all relations to UNDEFINED and SNAPSHOT, then a natural extension implies that

(a) the signature and state sequences of a de�ned relation will have exactly one

element each: the relation's current signature and state; (b) a new state always

will be a function of the current signature and state of de�ned relations via the

relational algebra semantics; and (c) deletion will correspond to physical deletion.

The next property argues that the semantics is minimal, in a speci�c sense.

Other de�nitions of minimality, such as minimal redundancy or minimal space re-

quirements, are more appropriate for the physical level, where actual data structures

are implemented, than for the algebraic level.

Theorem 6 The semantics of the language minimizes the number of elements in a relation’s

class, signature, and state sequence needed to record the relation’s current class, signature,

and state and its history as a transaction-time or bitemporal relation.

Finally, we ensure that the language accommodates implementations that use

write-once-read-many (WORM) optical disk to store non-current class, signature,

and state information.

Theorem 7 Each transaction changes only a relation’s class, signature, and state current

at the start of the transaction.

6.4.8 Correspondence with the Calculus

We now show that the valid-time algebra de�ned above has the expressive power of

the TQuel facilities that support valid time.

Theorem 8 Every TQuel retrieve statement of the form of (6.14) found is equivalent to an

expression in the valid-time algebra of the form

R

k+1

= �̂

N

i

1

; a

1

; :::; N

i

n

; a

n

(

^

�

�

�

; �

�

(�̂

0

(�̂

�

�

(R

1

)

^

� : : :

^

��̂

�

�

(R

k

)))) (6.32)

EXAMPLE 56 The algebraic equivalent of the TQuel query in Example 15 in Section

6.2.5, listing the current worth of Melanie's stocks, is

�̂

Stock;Shares�Price

(S

3

);

where S

3

was de�ned in Example 43 on page 27. The full algebraic expression is

�̂

Stock;Shares�Price

(

^

�

(Price\Shares)\now 6=;; Price\Shares

(

�̂

Client="Melanie"^Stock=Stock

(�̂now("Stocks") ^� �̂now("Own")))): 2

Applying the semantics of aggregation and valid-time indeterminacy yields the

following, stronger result.

6.4 A Temporal Algebra 35

Theorem 9 Every TQuel retrieve statement has an equivalent expression in the valid-time

algebra.

EXAMPLE 57 What stocks have doubled in price over the last month?

�̂

Stock;Price

(

^

�

(Stock\Rate)\now 6=;; Stock\Rate

(

�̂

Rate�2

(

b

A

rate; month; Price; fStockg

(�̂

Stock

(�̂now; 100("Stocks"));

�̂now; 100("Stocks")))))) 2

In a similar fashion, by using the DEFINE RELATION, MODIFY RELATION and DE-

STROY commands, one can construct equivalent algebraic statements for the TQuel

create, delete, append, replace, modify, and destroy statements, as are given else-

where [McKenzie 1988]. This leads to the following central result.

Theorem 10 The language formed by embedding the valid-time algebra in the commands

used to support transaction time has the expressive power of TQuel.

It turns out that the dual does not hold. For two valid-time relations R

1

and

R

2

with at least two tuples that di�er in their timestamps, consider the algebraic

expression R

1

^

�R

2

. Because the semantics of TQuel requires that all attributes

within a tuple be associated with identical valid times, this algebraic expression has

no counterpart in TQuel, yielding the following result.

Theorem 11 The temporal algebraic language is strictly more powerful than TQuel.

Practically speaking, though, this additional power is not needed, as TQuel

would be the language of choice for users, with queries translated to the algebra for

execution.

6.4.9 Summary

We �rst introduced valid-time relations, in which attribute values are associated with

set-valued timestamps. We then de�ned twelve valid-time operators.

� Five operators are analogous to the �ve standard snapshot operators: union

(

^

[), di�erence (

^

�), Cartesian product (

^

�), selection (�̂), and projection (�̂).

� The derivation operator (

^

�) e�ectively performs selection and projection on

the valid-time dimension by replacing the timestamp of each attribute of se-

lected tuples with a new timestamp.

� Snapshot (

c

SN) and AT convert between snapshot and valid-time relations.

� Aggregation (

b

A) and unique aggregation (

c

AU) serve to compute a distribution

of single values over time for a collection of tuples.

36 Chapter 6 TQuel Overview

� The snapshot transaction-time timeslice (�) and valid-time transaction times-

lice (�̂) operators serve to generalize the algebra to handle bitemporal rela-

tions.

We should mention several other operators that can exist harmoniously with

these twelve operators. Intersection (

^

\) and �-join (
^
./

�

) can be de�ned in terms of

the �ve basic operators, in an identical fashion to the de�nition of their snapshot

counterparts. Valid-time natural join (
^
1) and quotient (

^

�) can't be de�ned in this

way, because both involve projection, an operation whose semantics in the valid-time

algebra is substantially di�erent from its semantics in the snapshot algebra. Small,

but important, changes must be made to the de�nitions to handle properly the

temporal dimension [McKenzie & Snodgrass 1991A]. It is also possible to extend

the algebra in a consistent fashion to support periodicity [Lorentzos & Johnson

1988], multi-dimensional valid timestamps [Bhargava & Gadia 1989, Bhargava &

Gadia 1991, Gadia & Yeung 1988], and non-�rst-normal-form valid-time relations

with an arbitrary level of nesting [Roth et al. 1988, Schek & Scholl 1986, Tansel &

Garnett 1989,

�

Ozsoyo�glu et al. 1987].

For valid-time indeterminacy, ordering plausibility is supported by an additional

argument in temporal predicates and constructors within the derivation operator.

A second subscript on the timeslice operators supports range credibility.

We also discussed seven commands that embed the algebra and permit evolu-

tion of the contents of the database as well as its schema: DEFINE RELATION, MOD-

IFY RELATION, DESTROY, RENAME RELATION, BEGIN TRANSACTION, COM-

MIT TRANSACTION and ABORT TRANSACTION.

Finally, we listed several important properties of the algebra, and showed that its

expressive power is greater than that of TQuel, allowing it to serve as the operational

counterpart of this declarative query language.

6.5 Implementation

A temporal algebra is a critical part of a DBMS that supports time-varying infor-

mation. Such an algebra can serve as (1) an appropriate target for a temporal query

language processor, (2) an appropriate structure on which to perform optimization,

and (3) an appropriate executable formalism for the DBMS to interpret to execute

queries. The previous section showed that the valid-time algebra has the expressive

power of TQuel, thus satisfying the �rst objective just listed. In this section we dis-

cuss the other two objectives, focusing on query optimization and page structure.

Elsewhere we also examine incremental update of materialized views [McKenzie

1988].

In particular, we show that all but one of the traditional tautologies used in

query optimization hold for the algebra. Various implementation aspects are also

considered. We show how the algebra may utilize a page layout that is quite similiar

to that used by conventional DBMS's.

6.5 Implementation 37

6.5.1 Query Optimization

Query optimization concerns the problem of selecting an e�cient query plan for

a query from the set of all its possible query plans. This problem for snapshot

queries has been studied extensively and heuristic algorithms have been proposed

for selection of a near optimal query plan based on a statistical description of the

database and a cost model for query plan execution [Hall 1976, Jarke & Koch 1984,

Krishnamurthy et al. 1986, Selinger et al. 1979, Smith & Chang 1975, Stonebraker

et al. 1976, Wong & Yousse� 1976, Yao 1979].

One important aspect of local query optimization is the transformation of one

query plan into an equivalent, but more e�cient, query plan. The size of the search

space of equivalent query plans for a snapshot query is determined in part by the

algebraic equivalences available in the snapshot algebra. Both Ullman and Maier

identify equivalences based on those in set theory [Enderton 1977] that are available

in the snapshot algebra for query plan transformation and describe their usefulness

to query optimization [Maier 1983, Ullman 1988]. We now examine which of these

equivalences hold.

For the theorems that follow, assume that Q, R, and S are valid-time relations.

Theorem 12 The following equivalences hold for the valid-time algebra.

Q

^

[R � R

^

[Q Q

^

�R � R

^

�Q

�̂

F

1

(�̂

F

2

(Q)) � �̂

F

2

(�̂

F

1

(Q)) Q

^

[(R

^

[S) � (Q

^

[R)

^

[S

Q

^

�(R

^

�S) � (Q

^

�R)

^

�S Q

^

�(R

^

[S) � (Q

^

�R)

^

[(Q

^

�S)

�̂

F

(Q

^

[R) � �̂

F

(Q)

^

[�̂

F

(R) �̂

F

(Q

^

�R) � �̂

F

(Q)

^

� �̂

F

(R)

�̂

X

(Q

^

[R) � �̂

X

(Q)

^

[�̂

X

(R)

Theorem 13 The distributive property of Cartesian product over difference, or

Q

^

�(R

^

�S) � (Q

^

�R)

^

�(Q

^

�S), does not hold for the valid-time algebra.

Ullman identi�es several conditional equivalences involving selection and pro-

jection that can be used in optimizing snapshot queries [Ullman 1988]. These con-

ditional equivalences also hold in the valid-time algebra. Elsewhere we give eight

additional equivalences involving the derivation operator that have no snapshot

counterparts [McKenzie & Snodgrass 1991A]. No equivalences are available that

involve the derivation operator together with union, di�erence, or projection: the

derivation operator doesn't commute with projection or distribute over union or

di�erence, even conditionally, as these operators may change attribute timestamps.

In summary, all the above non-conditional and conditional equivalences may be

used, along with statistical descriptions of valid-time databases and cost models for

query plan execution, to optimize individual temporal queries. Because all but one

of the equivalences that hold for the snapshot algebra also hold for the valid-time

algebra, the search space of equivalent query plans for a temporal query should

be comparable in size to that for an analogous snapshot query. Hence, the valid-

time algebra does not limit the practical use of query plan transformation as an

optimization technique for temporal queries. Also, most algorithms for optimization

38 Chapter 6 TQuel Overview

of snapshot queries may be extended to optimize temporal queries by taking into

account the possible presence of derivation operators in query plans.

6.5.2 Page Structure

A valid-time tuple is more complex than a conventional tuple, because timestamps

are sets. As �rst normal form (1NF) dictates that each value of a tuple be atomic

[Elmasri & Navathe 1989], valid-time relations cannot be considered to be in 1NF.

However, they are close, in that the value component of an attribute is atomic.

One simple means of retaining much of the simplicity of conventional relations

is to implement the set of chronons forming the timestamp of an attribute as a

linked list of intervals, each represented with an interval cell containing a starting

timestamp, an ending timestamp, and a pointer to the next interval. An attribute's

timestamp then becomes a �xed-length pointer �eld. For page sizes under 4K

bytes, a single byte su�cies for a pointer; if overow pages are permitted then two

bytes are required for the pointer. Using interval lists, �xed-length tuples remain of

�xed length even when timestamps are added, and conventional techniques, e.g., of

attribute-value space compression and null value representation, still apply. E�cient

implementations for determinate as well as indeterminate timestamps exist [Dyreson

& Snodgrass 1992B].

Various space management approaches are available to contend with the interval

lists now present [Hsu 1992]. If tuples are �xed-length, then the page may be

partitioned into �xed-length slots, each to be occupied either by a tuple or by several

interval cells. Variable-length tuples are often handled by placing the tuples at the

top of the page growing down and tuple headers at the bottom of the page growing

up, with free space in the middle [Stonebraker et al. 1976]. The interval lists also

vary in size. They can either be allocated in the same space as the tuples, or the

tuple headers can be pre-allocated (since they are short, 1 to 2 bytes, preallocation

will not waste much space), and the intervals can start at the bottom of the page and

grow up. In all cases, compaction will be necessary upon deallocation of an interval

[Knuth 1973]. Interval cells can be clustered into blocks to reduce the overhead of

the next block pointer. For 16-byte intervals, 2 to 5 cells per block are indicated

for several linked-list length distributions [Hsu & Snodgrass 1991].

The timestamps for time-invariant attributes may be either stored as a special

value, distinguishable from an interval pointer, that represents the set containing

all chronons, or not stored at all, but instead indicated as time-invariant in the

schema. Several attributes often share the same timestamp; again, this can be

indicated in the schema, with only one interval pointer allocated for the group (this

implementation shares some aspects with the multi-homogeneous data model [Gadia

1986]), or can be represented at the extension level by having multiple interval

pointers pointing to the same interval list head cell (though care must be taken

when modifying such shared interval lists).

If the algebra is used to implement TQuel, then a conversion will be necessary

between tuple timestamping, where each tuple is associated with a single interval,

and attribute-value timestamping, in which each attribute is associated with poten-

6.6 Summary 39

tially multiple intervals. This conversion is formalized in a transformation function

T [McKenzie & Snodgrass 1991A]; it is similar to the Pack operation (also termed

nest) proposed for non-1NF relations [Tansel 1986,

�

Ozsoyo�glu et al. 1987].

There are a variety of ways to e�ect this transformation. The brute-force method

is to �rst cluster the relation on a key, perhaps by sorting the relation, so that all of

the versions are collected on the same page, then link up the intervals, distributing

them to the attributes. Since redundant attribute values occur in a tuple times-

tamped representation, the space requirements will decrease during this conversion,

guaranteeing that no new overow pages will result. If we record in the schema

that all attributes contain the same timestamp, then we need not duplicate interval

lists for each attribute. The conversion can even be done in parallel with any of the

temporal operators. When the operator fetches another tuple, the interval list can

be constructed and passed to the operator, assuming that the underlying relation

was clustered on the key.

Once an algebraic expression has computed a result relation, it must be con-

verted back into a tuple timestamped representation. This step is even easier than

the other direction. The TQuel semantics presented in Section 6.4.8 ensures that

the timestamps of all of the attributes are identical within a tuple, so all that is

necessary is to make a duplicate of each tuple for each interval in the interval list.

This expansion also can be done within any of the temporal operators. The conver-

sion is similar to the Unpack operation (also termed unnest) in non-1NF relations.

It has been shown that applying the Pack operation followed by Unpack operation,

i.e., performing the empty algebraic expression on a tuple-timestamped relation,

produces the original relation [Jaeschke & Schek 1982].

Finally, there is no reason why a relation logically timestamped on a tuple basis

with single intervals can't be stored physically as timestamped with a set (linked

list) of intervals, in concert with the space optimization of utilizing only one interval

pointer for the entire tuple. This storage structure requires conversion only on

display, which is much less time-critical than conversion on access and on storage.

6.6 Summary

This chapter has presented the syntax and formal semantics for the temporal query

language TQuel. The discussion proceeded in an incremental fashion for both the

syntax and semantics. First, the Quel syntax was presented informally. Temporal

analogues for the where clause and the target list were examined. Aggregates,

valid-time indeterminacy, and database update were also considered.

After a short review of tuple calculus, the semantics of temporal constructors was

described as functions on time values or pairs of time values, ultimately yielding a

time value. A transformation system provided the semantics of temporal predicates,

yielding a conventional predicate on the participating tuples. The semantics of the

retrieve statement without aggregates was presented. This semantics was extended

to accommodate aggregation, valid-time indeterminacy, and update. The semantics

reduces to the standard Quel semantics.

40 Chapter 6 TQuel Overview

We then presented a temporal relational algebra. The design of a relational alge-

bra incorporating the time dimension that simultaneously satis�es many desirable

properties is a surprisingly di�cult task. Since all desirable properties of temporal

algebras are not compatible [McKenzie & Snodgrass 1991B], the best that can be

hoped for is not an algebra with all possible desirable properties but an algebra

with a maximal subset of the most desirable properties.

We de�ned our algebra as a straightforward extension of the conventional rela-

tional algebra. The algebra includes operators that are analogous to the �ve stan-

dard snapshot operators, a derivation operator, operators to perform aggregation

and unique aggregation, operators to convert between snapshot and valid-time rela-

tions, and two timeslice operators. Minor extensions to the derivation and timeslice

operators accommodate valid-time indeterminacy. The algebraic language contains

seven commands to e�ect evolution of the contents of the database as well as its

schema.

The algebra was shown to be closed, complete, minimal, and snapshot reducible.

It was also shown to have the expressive power of TQuel. As such, the algebra pro-

vides an executable equivalent of a declarative query language. The algebra satis�es

all but one of the commutative, associative, and distributive tautologies involving

union, di�erence, and Cartesian product as well as the non-conditional commuta-

tive laws involving selection and projection. Additional equivalences involving the

derivation operator also hold. Hence, most existing optimization algorithms may

be naturally extended to optimize temporal queries. Conversion between valid-time

relations and the tuple-timestamping assumed by TQuel is simple and e�cient. Fi-

nally, we discussed representations of valid-time relations on secondary storage that

are straightforward extensions of those of conventional relations.

6.7 TQuel Syntax

In this syntax speci�cation, we use an extended BNF in which \

�

� � �

�

�

� � �

	

" denotes

one of the listed alternatives, \

�

� � �

	

?

" denotes optional syntax, and

\

�

� � � ‘, ’
	

+

" denotes a list of one or more items, separated with commas.

hstatementi ::= hcreate stmti
�

�

hrange stmti
�

�

hretrieve stmti
�

�

happend stmti
�

�

hdelete stmti
�

�

hreplace stmti
�

�

hmodify stmti
�

�

hindex stmti
�

�

hset stmti
�

�

hdestroy stmti

hcreate stmti ::= create

�

persistent

	

?

hhistoryi hrelation namei

‘(’
�

hcolumn namei hisi htypei ‘ , ’
	

+ ‘) ’

hhistoryi ::= �

�

�

�

indeterminate

	

?

�

event

�

�

interval

	

hisi ::= ‘ : ’
�

�

is

6.7 TQuel Syntax 41

htypei ::= CHAR ‘ (’ hinteger constanti ‘) ’
�

�

I2

�

�

I4

�

�

F4

�

�

F8

�

�

interval

�

�

event

�

�

span

hinteger constanti ::=
�

hdigiti
	

+

hrange stmti ::= range of htuple variablei is hrelation namei
�

with credibility htwo digiti
	

?

htwo digiti ::= 100

�

�

hdigiti
�

�

hdigiti hdigiti

hdigiti ::= ‘ 0 ’
�

� ‘ 1 ’
�

� ‘ 2 ’
�

� ‘ 3 ’
�

� ‘4 ’
�

� ‘5 ’
�

� ‘6 ’
�

� ‘7 ’
�

� ‘ 8 ’
�

� ‘ 9 ’

hretrieve stmti ::= retrieve hintoi ‘ (’ htarget listi ‘) ’ hwith clausei

hvalid clausei hretrieve taili

htarget listi ::= htuple variablei ‘. ’ all

�

�

�

hcolumn namei
�

‘ = ’ hexpressioni
	

?

�

as hcalendar namei
	

?

	

+

hwith clausei ::= �

�

�

with plausibility htwo digiti

hvalid clausei ::= hvalidi during hi-expressioni hwith clausei
�

�

hvalidi at he-expressioni hwith clausei

hvalidi ::= �

�

�

valid

hretrieve taili ::= hwhere clausei hwhen clausei has of clausei

hintoi ::= �

�

�

unique

�

�

hrelationi
�

�

into hrelationi
�

�

to hrelationi

hwhere clausei ::= �

�

�

where hbool expressioni

hwhen clausei ::= �

�

�

when htemporal predi hwith clausei

has-of clausei ::= �

�

�

as of he-expressioni hthrough clausei

hthrough clausei ::= �

�

�

through he-expressioni

happend stmti ::= append htoi htarget listi hmod stmt taili

htoi ::= hrelationi
�

�

to hrelationi

hdelete stmti ::= delete htuple variablei hmod stmt taili

hreplace stmti ::= replace htuple variablei htarget listi hmod stmt taili

hmod stmt taili ::= hvalid clausei hwhere clausei hwhen clausei

42 Chapter 6 TQuel Overview

he-expressioni ::= hevent elementi
�

�

begin of hi-expressioni
�

�

end of hi-expressioni
�

� ‘ (’ he-expressioni ‘) ’

hi-expressioni ::= hinterval elementi
�

�

interval ‘(’ he-expressioni ‘ , ’

he-expressioni ‘) ’
�

�

heither-expressioni overlap hplaus suffixi

heither-expressioni
�

�

heither-expressioni extend hplaus suffixi

heither-expressioni
�

� ‘ (’ hi-expressioni ‘) ’

hplaus suffixi ::= �

�

� ‘ (’ htwo digiti ‘) ’

heither-expressioni ::= he-expressioni
�

�

hi-expressioni

hevent elementi ::= htuple variablei hcredibility suffixi
�

� ‘ | ’ hevent valuei ‘ | ’
�

as hcalendar namei
	

?

�

�

present

�

�

hevent aggi ‘ (’ heither-expressioni

haggregate taili hwith clausei ‘) ’

hcredibility suffixi ::= �

�

� ‘ (’ htwo digiti ‘) ’

hevent aggi ::= earliest

�

�

latest

hinterval elementi ::= htuple variablei hcredibility suffixi
�

� ‘ [’ hinterval valuei ‘] ’
�

as hcalendar namei
	

?

�

�

hinterval aggi ‘(’ heither-expressioni

haggregate taili hwith clausei ‘) ’

hinterval aggi ::= earliest

�

�

latest

�

�

rising

htemporal predi ::= heither-expressioni precede hplaus suffixi

heither-expressioni
�

�

heither-expressioni overlap hplaus suffixi

heither-expressioni
�

�

heither-expressioni equal hplaus suffixi

heither-expressioni
�

�

htemporal predi and htemporal predi
�

�

htemporal predi or htemporal predi

6.7 TQuel Syntax 43

�

� ‘ (’ htemporal predi ‘) ’
�

�

not htemporal predi

hexpressioni ::= harithmetic expressioni
�

�

huser time expressioni

harithmetic expressioni ::= haggregate termi

haggregate termi ::= haggregate opi ‘(’ hexpressioni haggregate taili

hwith clausei ‘) ’
�

�

var ‘ (’ he-expressioni haggregate taili

hwith clausei ‘) ’
�

�

rate ‘ (’ he-expressioni haggregate taili

hper clausei hwith clausei ‘) ’

haggregate taili ::= hby clausei hfor clausei hretrieve taili

hby clausei ::= �

�

�

by

�

hexpressioni ‘, ’
	

+

haggregate opi ::= count

�

�

countU

�

�

sum

�

�

sumU

�

�

avg

�

�

avgU

�

�

stdev

�

�

stdevU

�

�

any

�

�

min

�

�

max

�

�

first

�

�

last

hfor clausei ::= �

�

�

for each instant

�

�

for ever

�

�

for each hspan elementi

hspan elementi ::= ‘ % ’ hspan valuei ‘ % ’
�

as hcalendar namei
	

?

hper clausei ::= �

�

�

per hspan elementi

hindex stmti ::= index on hrelation namei is hindex namei

‘ (’
�

hcolumni ‘ , ’
	

+ ‘) ’
�

as hindex typei
	

?

hindex typei ::= snapshot

�

�

valid-time

�

�

transaction-time

�

�

bitemporal

hmodify stmti ::= modify hrelation namei hmodify taili

hmodify taili ::= ‘ (’
�

hcolumn namei
�

hisi htypei
	

?

‘ = ’ hexpressioni ‘ , ’
	

+ ‘) ’

hvalid clausei hwith clausei hretrieve taili
�

�

to

� �

not

	

?

persistent

	

?

�

not valid-time

�

�

hhistoryi
	

?

�

�

to

�

validfrom

�

�

validto

	

?

44 Chapter 6 TQuel Overview

�

hrelation namei
�

�

arbitrary

	

distribution

�

�

to

�

validfrom

�

�

validto

	

?

determinate

�

�

to

�

validfrom

�

�

validto

	

?

indeterminate

span = hspan elementi
�

�

to

�

hash

�

�

isam

�

�

index

	

on

�

hcolumn namei ‘ , ’
	

+

as

� �

not

	

?

persistent

	

?

� �

not

	

?

historical

	

?

�

where fillfactor ‘ = ’ hinteger constanti
	

?

�

�

to accessionlist on

�

hcolumn namei ‘ , ’
	

+

where time ‘ = ’

‘(’
�

all

�

�

�

htimei ‘, ’
	

+

	

‘) ’
�

�

to

�

cellular

�

�

cluster

�

�

stack

	

on

�

hcolumn namei ‘, ’
	

+

where cellsize ‘ = ’ hinteger constanti

htimei ::= validfrom

�

�

validto

�

�

transactionfrom

�

�

transactionto

hset stmti ::= set calendric system hcalendar namei
�

�

set default hindeterminacyi ‘= ’ htwo digiti

hindeterminacyi ::= range credibility

�

�

ordering plausibility

hdestroy stmti ::= destroy

�

hrelation namei ‘ , ’
	

+

Acknowledgements

The author thanks Ilsoo Ahn, Curtis E. Dyreson, Christian S. Jensen, Edwin L.

McKenzie, Jr., Michael Soo, and Juan Valiente for their contributions towards the

design of this language, as well as for their assistance in preparing this chapter.

Keun Ryu assisted with the implementation of the prototype. Christian S. Jensen's

comments were especially detailed and helpful. The author was supported in part by

an IBM Faculty Development Award. This research was also supported in part by

NSF grants DCR-8402339 and IRI-8902707, by ONR contract N00014-86-K-0680,

by a Junior Faculty Development Award from the UNC-CH Foundation, and by

the NCR Corporation.

6.7 TQuel Syntax 45

Bibliography

[Ahn 1986] Ahn, I. Performance Modeling and Access Methods for Temporal Database

Management Systems. PhD. Diss. Computer Science Department, University

of North Carolina at Chapel Hill, July 1986.

[Ahn & Snodgrass 1986] Ahn, I. and R. Snodgrass. Performance Evaluation of a

Temporal Database Management System, in Proceedings of ACM SIGMOD In-

ternational Conference on Management of Data. Ed. C. Zaniolo. Association

for Computing Machinery. Washington, DC: May 1986, pp. 96{107.

[Ahn & Snodgrass 1988] Ahn, I. and R. Snodgrass. Partitioned Storage for Temporal

Databases. Information Systems, 13, No. 4 (1988), pp. 369{391.

[Ahn & Snodgrass 1989] Ahn, I. and R. Snodgrass. Performance Analysis of Temporal

Queries. Information Sciences, 49 (1989), pp. 103{146.

[Anderson 1982] Anderson, T.L. Modeling Time at the Conceptual Level, in Proceedings

of the International Conference on Databases: Improving Usability and Respon-

siveness. Ed. P. Scheuermann. Jerusalem, Israel: Academic Press, June

1982, pp. 273{297.

[Bhargava & Gadia 1989] Bhargava, G. and S.K. Gadia. A 2-dimensional temporal

relational database model for querying errors and updates, and for achieving zero

information-loss. Technical Report TR#89-24. Department of Computer

Science, Iowa State University. Dec. 1989.

[Bhargava & Gadia 1991] Bhargava, G. and S.K. Gadia. Relational database sys-

tems with zero information-loss. IEEE Transactions on Knowledge and Data

Engineering, (to appear) (1991).

[Bontempo 1983] Bontempo, C. J. Feature Analysis of Query-By-Example, in Rela-

tional Database Systems. New York: Springer-Verlag, 1983. pp. 409{433.

[Ceri & Gottlob 1985] Ceri, S. and G. Gottlob. Translating SQL Into Relational Alge-

bra: Optimization, Semantics, and Equivalence of SQL Queries. IEEE Transac-

tions on Software Engineering, SE-11, No. 4, Apr. 1985, pp. 324{345.

[Codd 1972] Codd, E. F. Relational Completeness of Data Base Sublanguages, in Data

Base Systems. Vol. 6 of Courant Computer Symposia Series. Englewood

Cli�s, N.J.: Prentice Hall, 1972. pp. 65{98.

46 Chapter 6 TQuel Overview

[Codd 1970] Codd, E.F. A Relational Model of Data for Large Shared Data Banks.

Communications of the Association of Computing Machinery, 13, No. 6, June

1970, pp. 377{387.

[Dyreson & Snodgrass 1992A] Dyreson, C. E. and R. T. Snodgrass. Historical In-

determinacy. Technical Report TR 91-30a. Computer Science Department,

University of Arizona. Revised Feb. 1992.

[Dyreson & Snodgrass 1992B] Dyreson, C. E. and R. T. Snodgrass. Time-stamp Se-

mantics and Representation. TempIS Technical Report 33. Computer Science

Department, University of Arizona. Revised May 1992.

[Elmasri & Navathe 1989] Elmasri, R. and S.B. Navathe. Fundamentals of Database

Systems. Benjamin/Cummings Pub. Co., 1989.

[Enderton 1977] Enderton, H.B. Elements of Set Theory. New York, N.Y.: Academic

Press, Inc., 1977.

[Gadia 1986] Gadia, S.K. Toward a Multihomogeneous Model for a Temporal Database,

in Proceedings of the International Conference on Data Engineering. IEEE

Computer Society. Los Angeles, CA: IEEE Computer Society Press, Feb.

1986, pp. 390{397.

[Gadia 1988] Gadia, S.K. A Homogeneous Relational Model and Query Languages for

Temporal Databases. ACM Transactions on Database Systems, 13, No. 4, Dec.

1988, pp. 418{448.

[Gadia & Yeung 1988] Gadia, S.K. and C.S. Yeung. A Generalized Model for a

Relational Temporal Database, in Proceedings of ACM SIGMOD International

Conference on Management of Data. Association for Computing Machinery.

Chicago, IL: June 1988, pp. 251{259.

[Gordon 1979] Gordon, M.J.C. The Denotational Description of Programming Lan-

guages. New York-Heidelberg-Berlin: Springer-Verlag, 1979.

[Hall 1976] Hall, P.A.V. Optimization of Single Expressions in a Relational Data Base

System. IBM Journal of Research and Development, 20, No. 3, May 1976, pp.

244{257.

[Held et al. 1975] Held, G.D., M. Stonebraker and E. Wong. INGRES–A Relational

Data Base Management System, in Proceedings of the AFIPS National Computer

6.7 TQuel Syntax 47

Conference. Anaheim, CA: AFIPS Press, May 1975, pp. 409{416.

[Hsu & Snodgrass 1991] Hsu, S.H. and R.T. Snodgrass. Optimal Block Size for

Repeating Attributes. TempIS Technical Report No. 28. Department of

Computer Science, University of Arizona. Dec. 1991.

[Hsu 1992] Hsu, S.H. Page and Tuple Level Storage Structures for Historical Databases.

TempIS Technical Report No. 34. Computer Science Department, Univer-

sity of Arizona. May 1992.

[IBM 1981] IBM SQL/Data-System, Concepts and Facilities. Technical Report GH24-

5013-0. IBM. Jan. 1981.

[Jaeschke & Schek 1982] Jaeschke, G. and H.J. Schek. Remarks on the Algebra of

Non First Normal Form Relations, in Proceedings of the ACM Symposium on

Principles of Database Systems. 1982.

[Jarke & Koch 1984] Jarke, M. and J. Koch. Query Optimization in Database Systems.

ACM Computing Surveys, 16, No. 2, June 1984, pp. 111{152.

[Jensen & Snodgrass 1992A] Jensen, C. S. and R. Snodgrass. Temporal Specialization

and Generalization, to appear. IEEE Transactions on Knowledge and Data

Engineering, (1992).

[Jensen & Snodgrass 1992B] Jensen, C.S. and R. Snodgrass. Temporal Specialization,

in Proceedings of the International Conference on Data Engineering. Ed. F.

Golshani. IEEE. Tempe, AZ: Feb. 1992, pp. 594{603.

[Klug 1982] Klug, A. Equivalence of Relational Algebra and Relational Calculus Query

Languages Having Aggregate Functions. Journal of the Association of Computing

Machinery, 29, No. 3, July 1982, pp. 699{717.

[Knuth 1973] Knuth, D.E. Fundamental Algorithms. Vol. 1, Second Edition of The

Art of Computer Programming. Addison-Wesley, 1973.

[Krishnamurthy et al. 1986] Krishnamurthy, R., H. Boral and C. Zaniolo. Optimiza-

tion of Nonrecursive Queries, in Proceedings of the Conference on Very Large

Databases. Ed. Y. Kambayashi. Kyoto, Japan: Aug. 1986, pp. 128{137.

[Lorentzos & Johnson 1988] Lorentzos, N. and R. Johnson. Extending Relational

Algebra to Manipulate Temporal Data. Information Systems, 13, No. 3 (1988),

48 Chapter 6 TQuel Overview

pp. 289{296.

[Maier 1983] Maier, D. The Theory of Relational Databases. Rockville, MD: Computer

Science Press, 1983.

[McKenzie & Snodgrass 1987] McKenzie, E. and R. Snodgrass. Extending the Rela-

tional Algebra to Support Transaction Time, in Proceedings of ACM SIGMOD

International Conference on Management of Data. Ed. U. Dayal and I. Traiger.

Association for Computing Machinery. San Francisco, CA: May 1987, pp.

467{478.

[McKenzie 1988] McKenzie, E. An Algebraic Language for Query and Update of Tem-

poral Databases. PhD. Diss. Computer Science Department, University of

North Carolina at Chapel Hill, Sep. 1988.

[McKenzie & Snodgrass 1990] McKenzie, E. and R. Snodgrass. Schema Evolution

and the Relational Algebra. Information Systems, 15, No. 2, June 1990, pp.

207{232.

[McKenzie & Snodgrass 1991A] McKenzie, E. and R. Snodgrass. Supporting Valid

Time in an Historical Relational Algebra: Proofs and Extensions. Technical Re-

port TR{91{15. Department of Computer Science, University of Arizona.

Aug. 1991.

[McKenzie & Snodgrass 1991B] McKenzie, E. and R. Snodgrass. An Evaluation

of Relational Algebras Incorporating the Time Dimension in Databases. ACM

Computing Surveys, 23, No. 4, Dec. 1991, pp. 501{543.

[Navathe & Ahmed 1989] Navathe, S. B. and R. Ahmed. A Temporal Relational Model

and a Query Language. Information Sciences, 49 (1989), pp. 147{175.

[Overmyer & Stonebraker 1982] Overmyer, R. and M. Stonebraker. Implementation

of a Time Expert in a Database System. ACM SIGMOD Record, 12, No. 3, Apr.

1982, pp. 51{59.

[

�

Ozsoyo�glu et al. 1987]

�

Ozsoyo�glu, G., Z.

�

Ozsoyo�glu and V. Matos. Extending Rela-

tional Algebra and Relational Calculus with Set-Valued Attributes and Aggregate

Functions. ACM Transactions on Database Systems, 12, No. 4, Dec. 1987, pp.

566{592.

[Roth et al. 1988] Roth, Mark A., Henry F. Korth and Abraham Silberschatz. Ex-

6.7 TQuel Syntax 49

tended Algebra and Calculus for Nested Relational Databases. ACM Transactions

on Database Systems, 13, No. 4, Dec. 1988, pp. 389{417.

[Schek & Scholl 1986] Schek, H.-J., Scholl, M.H. The Relational Model with Relation-

valued Attributes. Information Systems, 11, No. 2 (1986), pp. 137{147.

[Segev & Shoshani 1987] Segev, A. and A. Shoshani. Logical Modeling of Temporal

Data, in Proceedings of the ACM SIGMOD Annual Conference on Management of

Data. Ed. U. Dayal and I. Traiger. Association for Computing Machinery.

San Francisco, CA: ACM Press, May 1987, pp. 454{466.

[Selinger et al. 1979] Selinger, P.G., M.M. Astrahan, D.D. Chamberlin, R.A. Lorie

and T.G. Price. Access Path Selection in a Relational Database Management

System, in Proceedings of ACM SIGMOD International Conference on Manage-

ment of Data. Ed. P.A. Bernstein. Association for Computing Machinery.

Boston, MA: 1979, pp. 23{34.

[Smith & Chang 1975] Smith, J.M. and P.Y-T. Chang. Optimizing the Performance

of a Relational Algebra Database Interface. Communications of the Association

of Computing Machinery, 18, No. 10, Oct. 1975, pp. 568{579.

[Snodgrass & Ahn 1985] Snodgrass, R. and I. Ahn. A Taxonomy of Time in Databases,

in Proceedings of ACM SIGMOD International Conference on Management of

Data. Ed. S. Navathe. Association for Computing Machinery. Austin, TX:

May 1985, pp. 236{246.

[Snodgrass & Ahn 1986] Snodgrass, R. and I. Ahn. Temporal Databases. IEEE

Computer, 19, No. 9, Sep. 1986, pp. 35{42.

[Snodgrass, et al. 1992] Snodgrass, R., S. Gomez and E. McKenzie. Aggregates in the

Temporal Query Language TQuel, to appear. IEEE Transactions on Knowledge

and Data Engineering, (1992).

[Snodgrass 1987] Snodgrass, R. T. The Temporal Query Language TQuel. ACM Trans-

actions on Database Systems, 12, No. 2, June 1987, pp. 247{298.

[Soo & Snodgrass 1992A] Soo, M. and R. Snodgrass. Multiple Calendar Support for

Conventional Database Management Systems. Technical Report 92-7. Com-

puter Science Department, University of Arizona. Feb. 1992.

[Soo & Snodgrass 1992B] Soo, M. and R. Snodgrass. Mixed Calendar Query Language

50 Chapter 6 TQuel Overview

Support for Temporal Constants. TempIS Technical Report 29. Computer

Science Department, University of Arizona. Revised May 1992.

[Soo et al. 1992] Soo, M., R. Snodgrass, C. Dyreson, C. S. Jensen and N. Kline.

Architectural Extensions to Support Multiple Calendars. TempIS Technical

Report 32. Computer Science Department, University of Arizona. Revised

May 1992.

[Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The

Design and Implementation of INGRES. ACM Transactions on Database Systems,

1, No. 3, Sep. 1976, pp. 189{222.

[Stoy 1977] Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory. The MIT Series in Computer Science. The

MIT Press, 1977.

[Tandem 1983] Tandem Computers, Inc. ENFORM Reference Manual. Cupertino,

CA, 1983.

[Tansel & Garnett 1989] Tansel, A. and L. Garnett. Nested Historical Relations, in

Proceedings of ACM SIGMOD International Conference on Management of Data.

May 1989, pp. 284{293.

[Tansel 1986] Tansel, A.U. Adding Time Dimension to Relational Model and Extending

Relational Algebra. Information Systems, 11, No. 4 (1986), pp. 343{355.

[Ullman 1988] Ullman, J.D. Principles of Database and Knowledge-Base Systems. Po-

tomac, Maryland: Computer Science Press, 1988. Vol. 1.

[Wong & Yousse� 1976] Wong, E. and K. Yousse�. Decomposition - A Strategy for

Query Processing. ACM Transactions on Database Systems, 1, No. 3, Sep.

1976, pp. 223{241.

[Yao 1979] Yao, S.B. Optimization of Query Evaluation Algorithms. ACM Transactions

on Database Systems, 4, No. 2, June 1979, pp. 133{155.

