
Abstractions for Constructing Dependable Distributed Systems

Shivakant Mishra1 and Richard D. Schlichting

TR 92-19

Abstract

Distributed systems, in which multiple machines are connected by a communications network, are often

used to build highly dependable computing systems. However, constructing the software required to

realize such dependability is a difficult task since it requires the programmer to build fault-tolerant software

that can continue to function despite failures. To simplify this process, canonical structuring techniques

or programming paradigms have been developed, including the object/action model, the primary/backup

approach, the state machine approach, and conversations. In this paper, some of the system abstractions

designed to support these paradigms are described. These abstractions, which are termed fault-tolerant

services, can be categorized into two types. One type provides functionality similar to standard hardware or

operating system services, but with improved semantics when failures occur; these include stable storage,

atomic actions, resilient processes, and certain kinds of remote procedure call. The other type provides

consistent information to all processors in a distributed system; these include common global time, group-

oriented multicast, and membership services. In addition to describing the fundamental properties of these

abstractions and their implementation techniques, a hierarchy highlighting common dependencies between

services is presented. Finally, a number of systems that use these abstractions are overviewed, including

the Advanced Automation System (AAS), Argus, Consul, Delta-4, ISIS, and MARS.

August 3, 1992

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1Current address: Dept. of Computer Science and Engineering, University of California San Diego, La Jolla,

CA 92093, USA

1 Introduction

The need for computer system dependability, defined as the basic trustworthiness of a computer system

that allows people to rely on the service it delivers [Lap92], has been steadily increasing. Not only are

computers becoming more pervasive, they are also being used in critical applications where failures

resulting in deviation from specified service can have disastrous consequences. For example, air traffic

control, banking, and nuclear reactor control are all applications that fit into this category. Moreover,

there are many, well-documented instances where problems in hardware and/or software have in fact

caused system failures resulting in loss of life or substantial economic disruptions [Neu91].

Distributed systems, where a collection of processors are connected by a network with no physically

shared memory, are often used as a basis for providing highly dependable computing services. One

reason for this is that many critical applications are process-control situations in which the components

being controlled—and hence the controlling computers—are physically dispersed. For example, au-

tomated factories and nuclear reactors often fit this description. In cases such as these, the particular

architecture is fixed by the demands of the application and is not a variable in the design process.

Another reason for the use of distributed systems is that such an architecture provides a natural

framework for using fault-tolerance techniques to enhance system dependability. These techniques,

which are used to construct a system that can continue to function despite the failure of internal

components, are all based on using redundancy of some form to mask and/or detect failures. The

multiple processors, memories, and secondary storage units typically found in a distributed system

inherently provide redundancy that can be used for fault-tolerance purposes. Thus, distributed systems

are a good basis for dependable computing even when not dictated directly by the characteristics of the

specific application.

A distributed architecture by itself is, of course, only a starting point: it rests with the software to

actually translate this potential into a dependable computing system. To accomplish this, the software

must be constructed as fault-tolerant software, that is, software that can continue to provide service

despite (some number and type of) failures. Unfortunately, there are a large number of complicating

factors that must be taken into account when writing this type of software. These include complexities

caused by the distributed nature of the software (e.g., concurrency, network delays), as well as the

arbitrary and asynchronous nature of hardware and software failures themselves. Moreover, many

of the applications requiring dependable computing have real-time constraints as well, which further

complicates the situation by adding yet another degree of freedom that must be taken into account.

All of the these factors conspire to raise the complexity level of such software and to make its design,

implementation, and validation a daunting task.

The problems associated with developing complex software have, of course, been recognized for

years, and many different techniques have been proposed for rectifying the situation. Of these, one

that has proved especially effective for constructing fault-tolerant software is the judicious use of

programming paradigms, which reduce the complexity of the task by providing canonical software

organization techniques and supporting abstractions for a given type of problem. Important paradigms

that have been developed for fault-tolerant software include the object/action paradigm [Gra86], the

primary/backup approach [AD76], the state machine approach [Sch90], and conversations [Ran75].

Fundamental abstractions that have been defined in conjunction with these paradigms include stable

storage [Lam81], atomic actions [Lis85], common global time [Lam78], and reliable multicast [CM84].

These abstractions serve as a convenient base for realizing the various paradigms by defining operations

with higher-level functionality or with semantics that are well-defined even when failures occur. For

example, many of these abstractions can be thought of as more dependable variants of common hardware

1

or operating system services. These paradigms and abstractions have been used in many systems

oriented towards fault-tolerant distributed applications, such as the Advanced Automation System

(AAS) [CDD90], Argus [LS83, Lis88], Consul [MPS91], Delta-4 [PSB+88], ISIS [BJ87, BSS91], and

MARS [KDK+89].

In this paper, we overview these abstractions, which we refer to by the general term fault-tolerant

services. Our primary goal in doing so is to identify useful services and describe their relevant

properties. In the process, we also outline various implementation techniques for each service, paying

special attention to their assumptions and limitations. Our secondary goal is also to describe the

relationships between the different services, and to highlight the common ways in which services

depend on each other. We do this by constructing a service hierarchy that illustrates how a given service

can be implemented using the other services. This focus on surveying a wide range of fault-tolerance

abstractions for distributed systems and explaining their interrelationships help distinguish this paper

from other similar efforts (e.g., [BMD91, Cri91, Koh81, RLT78, Sch90].)

This paper is organized as follows. We begin by outlining our software and hardware system

model in Section 2, with a special focus on identifying properties that affect the algorithms used in the

implementation of the different fault-tolerant services. We also describe the four software structuring

paradigms mentioned above in more detail. Section 3 through 8 then describe the fault-tolerant

services; specifically, we consider services that implement a common global time in a distributed

system, multicast communication, remote procedure call, membership, atomic actions, and resilient

processes. The common dependencies between services are outlined in Section 9, while Section 10

overviews some of the fault-tolerant systems that have been designed and built using these abstractions.

Finally, Section 11 summarizes the paper.

2 System Model

2.1 Overview

The hardware basis for a distributed system consists of a collection of processors connected by a

communication network. Each processor has its own local memory, but there is typically no shared

memory between processors. This property implies that the only means for processes executing on

different machines to communicate is by message exchange. The actual configuration of the network

can vary within these constraints, ranging from, for example, local-area broadcast networks like an

Ethernet, to store-and-forward networks like those commonly used for wide-area communication.

The software found on such systems varies widely in its overall structure and organization, but can

generally be divided into application software and system software. The fault-tolerant services that are

the focus of this paper are part of the system software, so the organization of the software on a particular

processor is as depicted in Figure 1. From the bottom, the software consists of the standard operating

system services providing abstractions such as processes and virtual memory, a fault-tolerance support

layer realizing the fault-tolerant services, and finally the application software. As is standard in such a

level-structured organization, each layer uses the abstractions defined by the level below it to implement

its own services. Section 9 further refines this organization for the fault-tolerance support layer by giving

common dependencies between the various services.

The purpose of the fault-tolerance support layer is to implement abstractions—i.e., fault-tolerant

services—that simplify the programming of distributed applications requiring resilience to failures.

For many of these abstractions, the implementation requires that software components on two or more

machines communicate and cooperate, so the most accurate way to view this support layer is as a single

2

Operating System
Services

Fault-Tolerance
Support Layer

Application
Software

System
Software

Improved Failure
Semantics

Stable Storage

Atomic Action

Resilient Processes

 RPC

Consistent
Information

Common Global Time

Membership

Multicast

Process Management

Memory Management

File System
......

Object/Action

Conversation

State Machine Approach

Primary/Backup

Figure 1: Overall system model

logical entity that spans multiple machines. Protocols are the set of rules that software components

on different machines use to realize a given abstraction. We also use this term informally to refer to

the actual software components implementing these rules, so each fault-tolerant service can be thought

of as being implemented by one or more protocols on each machine. These protocols are typically

identical on all machines.

The abstractions implemented by the fault-tolerance support layer can be classified into two general

categories based on the kind of functionality they provide. The first contains those abstractions that

are similar to features found in standard systems, but with improved failure semantics. Examples of

such abstractions in Figure 1 include stable storage, atomic actions, resilient processes, and certain

types of remote procedure call (RPC). Stable storage is data storage that suffers no failures itself and

is not affected by the failure of other components [Lam81]; thus, stable storage is similar to standard

memory or disk storage, but with better semantics in the face of failures. Atomic actions are sequences

of instructions potentially spanning multiple machines that are guaranteed to either execute completely

or not at all despite failures [Lis85]; again, this makes atomic actions similar to standard sequential

execution sequences, but with better behavior when failures occur. Resilient processes are processes

that can continue executing correctly even if interrupted by failure and then restarted; the similarity

here is, of course, to regular processes, but with the ability to tolerate failures. Finally, RPC refers to a

collection of interprocess communication protocols commonly used in distributed systems that attempt

to provide semantics similar to procedure calls; while most of these protocols simply terminate a call

abnormally when failures occurs, a few actually provide strong fault-tolerance guarantees.

The second category encompasses abstractions whose purpose is to provide consistent information

to processes executing on different machines in a distributed system. Examples of such abstractions

in Figure 1 include common global time, membership, and multicast. Common global time provides a

consistent time base for all machines despite the lack of a single physical clock; this service is especially

useful for consistently ordering events in a distributed system. Membership is a service that provides a

consistent view of which processors are functioning and which have failed at any given moment in time.

3

Finally, multicast is a communication service that allows a message to be transmitted asynchronously

to a group of processes rather than just a single process; properties often associated with multicast

primitives designed for fault-tolerant systems include atomicity and various ordering properties, which

ensure that messages are delivered to all processes in some sort of consistent order.

The collection of fault-tolerant services needed for a given application and the exact way in which

they are implemented depend on a multitude of factors. Of these, three can be identified as especially

important: the programming paradigm used for the application, the failure model assumed, and the

synchrony of the system. The first refers to the way in which the application software is organized;

as mentioned in the Introduction, several canonical structuring techniques have been identified, so

we concentrate our attention on these. The failure model is the type of failure a component in the

system is assumed to suffer; common failure models used for fault-tolerant distributed systems include

fail-stop [SS83], crash [PSB+88], and Byzantine [LSM82]. The synchrony of the system is related to

assumptions made about the time bound on certain activities; components are usually assumed to be

either synchronous or asynchronous. Given the importance of these factors, we now discuss each in

more detail.

2.2 Programming Paradigms

As noted above, four common programming paradigms for fault-tolerant distributed software are the

object/action model, the conversation model, the primary/backup approach, and the state machine

approach. As its name implies, the primary components of the object/action model are objects and

actions. Objects are passive entities that encapsulate a state and export certain operations to modify

that state; typically, this state involves long-lived data that is assumed to be stored on stable storage

to survive failures. Actions are active entities similar to threads that invoke operations on objects to

carry out some task. The objects comprising an application can potentially be located on multiple

machines in a network, which implies that actions may logically cross machine boundaries during their

execution. An action has two properties that guarantee the atomicity of its execution with respect

to both failures and the concurrent execution of other actions. First, it is recoverable, that is, it is

either executed completely or not at all, despite failures; second, it is serializable, that is, the effect of

executing multiple actions concurrently is equivalent to some serial schedule. Serializability has also

been called indivisibility [Lis85], while recoverability has also been called totality [Wei89] and the

unitary property [Lam81]. In the context of databases, atomic actions are usually called transactions

[BHG87]. Abstractions that are useful for supporting the object/action model include stable storage,

atomic actions, RPC, and resilient processes.

In the conversation model, processes and messages play a primary role. An application is structured

as a collection of concurrent processes that communicate by exchanging messages. Processes periodi-

cally checkpoint their state onto stable storage so that they can recover and continue executing following

failures. Conversations are a structuring technique for coordinating checkpoints among processes to

guarantee that the checkpoints represent a consistent global state or, equivalently, form a recovery line

[RLT78]. This avoids the domino effect, in which a single failure can force the rollback of multiple

processes to successively earlier checkpoints to find a consistent state. In addition to checkpointing

facilities, some sort of reliable interprocess communication is also required to implement this model.

The object/action model and conversation model have been shown to be duals of one another [SMR88].

Abstractions that are useful for supporting conversations include stable storage and resilient processes.

An application following the primary/backup approach is organized as a collection of services, each

of which is implemented by multiple processes to provide fault-tolerance. The name comes from the

notion that only one of the processes for a given service is active at any time; this process is called the

4

primary, and all requests for service are routed to that process. The remainder of the processes, which

are referred to as backups, do not respond to requests unless a failure occurs that prevents the primary

from providing service. At this point, one of the backups becomes the primary, typically starting in a

state that was checkpointed by the primary onto stable storage prior to failure; alternatively, this state

could be actively propagated to the backups during execution rather than checkpointed. This approach

is also sometimes called passive replication. Abstractions useful for supporting the primary/backup

approach include stable storage, multicast, and membership.

Like primary/backup, in the state machine approach, an application is structured as a collection

of services that are implemented by multiple processes for fault-tolerance. Here, each service is

characterized as a state machine, which maintains state variables that are modified in response to

commands that are received from other state machines or the environment. Execution of a command

is deterministic and atomic with respect to other commands. The output of a state machine, that is,

the sequence of commands to other state machines or the environment, is completely determined by

the sequence of commands input for execution by the state machine. The fundamental difference from

primary/backup is that the fault-tolerant version of a state machine is implemented by replicating that

state machine and running each replica in parallel on a different processor in a distributed system. This

approach is sometimes called active replication. Issues that must be addressed in the state machine

approach include maintaining replica consistency at all times and integrating repaired replicas following

failure. Abstractions that are useful for supporting replicated state machines include common global

time, multicast, membership, RPC, and, if reintegration of replicas back onto the computation is desired,

stable storage and resilient processes.

2.3 Failure Models

When a specification of a component’s acceptable behavior is available, it provides a standard against

which the behavior of that component can be judged. The specification may prescribe both the

component’s response for any initial state and input sequence, and the real-time interval within which

the response should occur. A component is correct if, in response to inputs, it behaves in a manner

consistent with the specification; if it behaves otherwise, it has failed [Cri91].

A failure model is a way for precisely specifying assumptions about how a component behaves when

it fails. A number of such failure models have been defined; although we state these in terms of generic

components, they are most often applied to processors. In the fail-stop failure model, it is assumed that

the component fails by ceasing execution without undergoing any incorrect state transition and that this

failure is detectable by other components [SS83]. In a crash model, a component is assumed to fail in

the same way, but without the guarantee of detectability. This model has also been termed fail-silent

[PSB+88]. The omission failure model assumes that a component fails by not responding to some

input [CASD85]. Under the assumption that a component remains inactive following a crash failure,

then failures in this class are a special case of omission failures in which a component never responds

to inputs following its first omission. The timing failure model assumes that a component fails by

giving an untimely response; that is, the response is functionally correct but occurs outside the required

real-time interval [CASD85]. The timing failure can be early timing failure or a late timing failure;

late timing failures are also sometimes called performance failures. A failure is classified as arbitrary

or Byzantine if the component’s failure behavior is completely unspecified [LSM82]. A component

assumed to fail in this make may unknown, inconsistent, or even malicious actions. The inclusion

relationship among these models is illustrated in Figure 2.

5

Fail-stop

Crash

Omission

Timing

Byzantine

Figure 2: Failure model hierarchy

2.4 Synchrony

Synchrony refers to assumptions that are made about the execution bounds on components. A hardware

or software component is synchronous if it always performs its intended function within a finite and

known time bound, and asynchronous otherwise. This bound on the execution time of the synchronous

component must hold whenever the component is correctly operating, and in particular, under all

operational conditions within its specification. Synchrony can be defined for communication channels,

communication networks, processors, and protocols. For example, in a synchronous communication

channel, the transmission delay of a unit of data across the link is known and bounded. Similarly, a

synchronous processor is a processor in which the time to execute a unit of work is known and bounded.

These definitions of synchronous components extend to groups of components as well. For example,

a synchronous network is one in which the time required to transmit a unit of data from any machine

to another is known and bounded. This will be the case either if all of the channels are synchronous,

or if a time limit is placed on transmission such that any data arriving after that limit has expired

is considered an indication of failure on the part of the network or sending machine. Similarly, a

distributed system is considered synchronous if it contains a synchronous network and synchronous

processors, and asynchronous otherwise. Examples of synchronous systems used in the literature

include [CDD90, KDK+89]; a completely asynchronous system is assumed in [FLP85]. Some systems

in the literature [BJ87, CM84] have been described as asynchronous, but actually employ certain

mechanisms that have the effect of making them synchronous. Examples of such restrictions include

assumptions about failure detection or, as noted above, bounds on message transmission time. In

fact, strong impossibility results related to cooperation among processes have been proved for truly

asynchronous systems [FLP85], so any realistic system is actually based on assumptions of synchrony.

The notion of synchrony can be applied to software components as well. A protocol is defined to

be synchronous if the time to perform the sequence of events required by the protocol is known and

bounded. Two different approaches have been taken to designing such protocols: clock-driven and

clockless [Ver90]. In the clock-driven approach, the protocol relies on a common global time base

constructed using the clock synchronization techniques described in Section 3. Most of these protocols

are periodic in nature, taking certain actions based on the time read from the common clock; synchronous

6

processors and communication are typically assumed by these protocols. In contrast, clockless protocols

do not rely on the existence of such synchronized clocks, nor do they explicitly assume the existence

of synchronous processors or communication. The result is a radically different system style and

organization, where the protocols themselves approximate processor and communication synchrony by

using techniques such as timeouts and acknowledgements to put a bound on delays.

3 Common Global Time

In a standard distributed architecture, each processor has its own clock, but there is no global physical

clock that can be accessed by all processors. This lack of a global time base has important negative

implications, perhaps the most important of which relates to determining the causal relation among

various events on different processors. This causality relation holds between two events a and b on

the same or different processors if the execution of a could possibly have affected execution of b. For

example, two consecutive statements in the same process are causally related, as are the send of a

message in one process and the receive of the same message in the destination process. The relation is

extended using transitive closure.

Normally, one would think to use the local clock time to determine the causal relation between two

events a and b. That is, if the time at which a occurred is less than the time at which b occurred, then

a and b would be defined to be causally related. However, given that local clocks can drift relative to

one another at a variable and unpredictable rate, this may not hold if a and b are events on different

processors. For example, if would be possible to conclude that the send of a message occurred after its

receipt if the clocks were skewed in the right way, a violation of causality. This type of clock drift also

makes it difficult to determine the real time at which an event occurred.

A fault-tolerant time service in a distributed system addresses these problems by providing the

abstraction of a common global time despite failures. Since this service provides functionality similar

to a single shared clock, it facilitates the construction of event orderings that are consistent with the

causality relation. This property is useful for, among other things, ensuring that messages multicast

among a group of processes are received in the same order by all processes and in an order that reflects

causality. This, in turn, provides the kind of ordering that is needed to preserve replica consistency in

the state machine approach to constructing fault-tolerant programs.

There are two basic approaches to implementing a decentralized fault-tolerant time service in a

distributed system. In the first approach, local processor clocks are synchronized at regular intervals in

such a way that the clocks remain within some maximum distance of each other. The time of an event

at a process executing in processor P is then defined to be the value of P’s clock at the time the event

occurs. The timing of events at different processors may be compared by allowing for the maximum

difference by which the local clocks may differ before they are synchronized.

The second approach derives the temporal order in which different events occur in the system

without direct association to a hardware clock value. To do this, a logical clock is constructed that

causally orders different events of the system. For any two events, say a and b, exactly one of the

following three relationships holds: event a occurred before event b, event a occurred after event b, or

events a and b occurred at the same logical time. The logical clock is constructed to assign values to

these events in such a way that these relationships are preserved.

Each of these two approaches has advantages and disadvantages. For example, logical clocks do

not provide a mapping from the timing of an event to real time, whereas synchronized clocks may

provide this mapping by synchronizing with an external time source. On the other hand, logical clocks

preserve causality among different events depending on what events have been seen by the processes

7

when an event occurs. In particular, two events happen at the same time at different processes if neither

process is aware of the other event. A synchronized clock coerces an order that depends on their local

times, thereby leading to loss of information about causality.

In the following, we discuss the details of how a common global time base can be constructed in a

distributed system using each of these approaches.

3.1 Synchronizing Clocks

As mentioned, clock synchronization involves periodically adjusting the values of local clocks to prevent

them from drifting too far apart. There are two basic variants on clock synchronization. In the first,

termed internal clock synchronization, the processor clocks are always kept within a certain maximum

drift of one another. In the second, termed external clock synchronization, the processor clocks are

always kept within certain maximum deviation from an external time reference. By definition, externally

synchronized clocks are also internally synchronized, while internally synchronized clocks may deviate

arbitrarily from the external time reference. In the following, we introduce the salient features and

algorithms of clock synchronization; C
p

(t) is used to denote the local clock time at processor p at real

time t. Our discussion concentrates primarily on internal clock synchronization since the additional

mechanism required to synchronize to an external time source is usually straightforward.

Properties of synchronized clocks

The following three correctness criteria can be used to assess clock synchronization schemes.

� Monotonicity: The clock is a monotonically increasing counter, that is

C

i

(t+ �) � C

i

(t) � � 0

In general, since a clock increases by discrete values, it is possible that in a small real-time

interval, � , C
i

(t+ �) = C

i

(t). However, the granularity of most clocks is very small and for all

practical reasons it is correct to assume that C
i

(t) is a strictly increasing function of t.

� Precision: The synchronized clocks are always within some maximum deviation of each other.

That is,

j C

i

(t)� C

j

(t) j < �

where � is the specified synchronization precision.

� Interval Preservation: Also known as the linear envelope, this property states that any interval

measured by the synchronized clocks is within some linear function of the real time interval:

(1� �)� � C

i

(t+ �)� C

i

(t) � (1 + �)�

Here, � is called the maximum clock drift rate.

While � specifies the maximum allowed distance between any two clocks, � specifies the maximum

allowed drift of a clock from real time. Thus, � and � together specify the interval in which the local

clocks must resynchronize. Multiple local clocks that are synchronized so as to satisfy the above three

properties can be thought of as a common global clock ^

C that has the following property for all pairs

of i and j

8

(1�R) �

^

C

i

(t + �)�

^

C

j

(t)

�

� (1 +R)

Here, ^

C

p

(t) denotes the value of the common global clock at process p, and R is the maximum allowed

drift between any two synchronized clocks per unit time. This second value is called the drift rate of

the synchronized clock.

A synchronized clock may be used to measure intervals and to order various events in the system.

The most common way to measure time intervals is by using a function get time elapsed(t : time) that

returns the time elapsed since the clock showed time t. This function typically compensates for the

changes in the clock value due to synchronization. In another approach [HSSD84], the notion of a clock

is not bound to specific hardware and a processor may possess any number of clocks. In particular,

every instance of clock synchronization logically gives rise to a new version of the clock. Here, the

version of the clock used to time an event is the most recent version at the time the event occurred.

Various events in the system can then be ordered using the local clock time of the processor at which

they occur.

Complexities of clock synchronization

One of the basic functions needed to synchronize clocks is the ability to read the value of a remote clock.

This is done either through the exchange of messages using some underlying communication network

or through special hardware that generates clock signals and propagates them to other processors. In

either case, there is a random propagation delay introduced before a process receives the message

or signal. Thus, the time it takes to read a local clock or to set a local clock is not deterministic.

This variation, along with the variable processing time for various messages received, introduces a

random processing delay in the process of clock synchronization. The random propagation delays and

the random processing delays limit the extent to which the clocks may be synchronized. The need to

consider failures also complicates the algorithms, especially when failures are assumed to be Byzantine.

A few results are known that put a limit on the closeness with which clocks may be synchronized.

In [LWL88], the authors show that n clocks cannot be synchronized with certainty closer than (1 �

1=n)(max�min), even in the absence of any failures; here, max andmin represent the maximum and

minimum delay in message communication. Another result states thatN clocks cannot be synchronized

in the presence of more than N=3 Byzantine failures if authentication is not used, that is, if it is not

possible to determine reliably who sent a given message. However, clocks may be synchronized in

presence of any number of Byzantine failures given authentication [DHS86]. Optimal algorithms for

clock synchronization under different failure scenarios are also known [ST87].

Algorithms

The problem of clock synchronization has been studied extensively, and a large number of algorithms

proposed [Cri89, HSSD84, KO87, LMS85, LWL88, ST87]. A survey of some of these algorithms

appears in [RSB90]. These algorithms differ from each other in their assumptions about the clocks

and the network topology, as well as their failure hypothesis. The mechanics of clock synchronization

involves periodically exchanging information about local clock values and then computing a correction

factor and applying it to the local clock.

Both hardware and software approaches have been taken to address the problem of clock synchro-

nization. In the former, special hardware is used to propagate signals between network nodes and

to calculate correction values, as opposed to the use of explicit messages and software in the latter.

Software approaches tend to be more flexible but suffer from larger clock skews, since the lower bound

9

on clock skews in such cases is the difference between the minimum and the maximum message transit

times. The hardware approaches provide a smaller clock skew, but are expensive and inflexible. Some

of the algorithms use a combination of hardware and software, where the smaller skew of the hardware

algorithms is sacrificed for a lower software cost [RSB90].

Most of the software approaches use a convergence function that guarantees the properties of

monotonicity, precision and interval preservation. One class of algorithms consists of first exchanging

local clock values and then applying a fault-tolerant averaging function to these values to compute a

new clock value [LMS85, LWL88]. Among the fault-tolerant averaging functions used are egocentric

average, fast convergence algorithm, fault-tolerant midpoint, and fault-tolerant average [Sch87]. These

algorithms require a fully connected network, a known upper bound on message transit delay, and initial

synchronization of the clocks.

In another class of algorithms, the clock values of various processors are first obtained through a

protocol that guarantees an agreement among all correct processors on a vector of values, one from

each clock [LMS85]. Each processor then applies the same averaging function to compute a new clock

value. The agreement process is used to tolerate failures and ensures that all the processors apply

the averaging function on the same set of values. In general, these algorithms do not require a fully

connected network or initial synchronization of clocks, but do require a bound on message transit delays

and a limit on the maximum number of processes that may fail.

A third class of algorithms use a synchronizer process to synchronize clocks [HSSD84, ST87]. In

this approach, the synchronizer process collects values from all local clocks and then propagates these

values to all processes, which use them to compute a new clock value. To avoid problems caused by the

single point of failure represented by the synchronizer process, every process in the system periodically

attempts to become the synchronizer at preset time intervals. At least one is guaranteed to succeed. An

agreement protocol is used to guarantee that all correct processes attempt to become the synchronizer

at roughly the same time. These algorithms require a bound on the message time delays and initial

synchronization of the clocks. The network need not be fully connected.

A probabilistic approach has been used in [Cri89], where an algorithm is given that allows a process

to read the clock on another machine to within some specified precision with a probability as close to

one as desired. When a process succeeds in reading the clock, it knows the actual reading precision

achieved. This method of reading a remote clock can also be used to improve most of the algorithms

described above. A master-slave arrangement, in which one clock acts as master and others as slaves,

is used to synchronize the clocks here, where the slave clocks adjust their value according to the value

of the master clock. In general, the algorithms to elect a new master clock are fairly complex.

All the algorithms described above make the assumption that the network is synchronous, i.e., that

message transit times are bounded. In [Mar84], the author assumes an asynchronous network and uses

explicit timeouts to put a bound on processor and communication delay.

3.2 Logical clocks

The original approach for constructing a logical clock was proposed by Lamport in [Lam78]. In this

paper, a happened before relation is defined that can be used to construct a logical clock in terms of

the ordering of events in a distributed system. Specifically, given that a and b are events, a “happened

before” b (denoted a! b) if either of the following are satisfied.

� a and b are events in the same process and a comes before b, or

� a corresponds to the sending of a message and b corresponds to the receipt of the same message.

10

Furthermore, this relation is transitive, so that if a ! b and b ! c, then a ! c. If events a and b are

such that a 6! b and b 6! a, then they are said to be concurrent.

This relation is used to construct a logical clock C by assigning a value C(a) to every event a in

the distributed system. This value can be thought of as the logical time at which the event occurred.

This assignment is done in such a way that the happened before relation is preserved, so that for any

two events a and b, if a ! b then C(a) < C(b). A logical clock constructed in this manner can then

be used to order the various events in the system.

The various algorithms that have been proposed to implement logical clocks differ in the notations

they use and the amount of information they convey through the clock values. In the original solution

by Lamport, the system-wide logical clock C is implemented by a collection of individual logical

clocks C
i

for each process P
i

; here, C
i

is a function that assigns an integer C
i

(a) to every event a that

happens in process P
i

. The logical clock assigns an integer C(a) to such an event a by using C
i

, i.e.,

C(a) = C

i

(a). Each process P
i

implements C
i

by maintaining a counter K
i

which is incremented

between successive events. Also, on receipt of a message, m, P
i

sets K
i

to the larger of the current

value of K
i

and a value greater than the logical clock time of the event corresponding to the sending of

m.

In this solutionC(a) < C(b) if a! b, but the converse is not true. That is, C(a) < C(b) does not

necessarily imply a ! b. As a result, given any two events, it is not always possible to determine if

they are concurrent using these logical clock values. Extensions have been described in [Fid88, Mat89]

to rectify this problem. Here, the clock value is a vector of size n (sometimes called version vector),

where n is the total number of processors in the system. Each entry i in this vector keeps a count of

the messages received from process P
i

. The update of the vector follows a similar procedure to that

described above. Two vectors V
1

and V
2

can then be compared as follows :

V

1

< V

2

if 8i; 1 � i � n; V

1

[i] � V

2

[i] and 9j; 1 � j � n; V

1

[j] < V

2

[j]

Using this, two events a and b are concurrent if the corresponding logical times, say, vectors V
a

and V
b

respectively, satisfy the following :

V

a

6< V

b

and V

b

6< V

a

A logical clock is also constructed as part of the Psync multicast primitive [PBS89]. Here, the

complete temporal order of message-passing events in the system is represented in the form of a graph

called the context graph. A node in the graph represents an event corresponding to message transmission

and an edge represents the happened before relationship. For any two events a and b, there is a path

from a to b in the graph if a ! b. The absence of a path between a and b implies that a and b are

concurrent events.

4 Multicast

Providing consistent information to multiple processes is important for constructing fault-tolerant

distributed programs, particularly those structured using the state machine approach. A key component

to providing such consistency is multicast, an interprocess communication (IPC) mechanism that

provides the ability to send identical copies of a message to each process in a group. Such a service is

useful in other kinds of distributed applications as well. For example, distributed database update and

commit protocols, managing replicated data, distributed synchronization, and distributed transaction

logging require multicast of one type or another.

11

Properties

Many different multicast services have been designed, each with features tuned to the specific require-

ments of the target application. Nonetheless, most multicast services provide some combination of five

largely orthogonal properties, as follows.

Dissemination: The message is disseminated to all processes in a group. In a point-to-point network,

this is achieved by sending a copy of the message to every process in the group separately. In local-area

networks such as Ethernets and token rings that provide a multicast primitive, the dissemination can be

done with a single lower-level operation.

Atomicity: The message is delivered either to all the correctly functioning processes in the group or to

none. This property ensures that the information received by every functioning process is identical.

Reliability: The message is delivered to every process in the group. If a process has failed, a mechanism

is provided to deliver this message following recovery.

Order: Messages sent by different processes are delivered in some consistent order at all the group

members. Possible consistent orders include:

� Partial order: The messages are delivered in an order that preserves the causality or happened

before relation. Processes may receive concurrent messages in different orders, but a message is

only delivered after all the messages that precede this message in the relation have been delivered.

This is sometimes called causal ordering [BJ87].

� Semantic dependent order: Messages are delivered in an order that varies at processes depending

on the semantics of the information carried in a message. For example, the order of two messages

could be different at different processes and still preserve the correctness of the application if

the messages contain commutative operations. Typically, this ordering is a combination of other

kinds of ordering.

� Total order: Messages are delivered in the same order to all the processes. In other words, if a

message m
1

is delivered before m
2

at one process, m
1

is delivered before m
2

at every process.

� Total order preserving causality: Messages are delivered in the same order at all the processes

and this order preserves causality.

These orderings become more and more restrictive as we go down this list and, in general, most costly

in terms of how much synchronization they require between processes. As a result, the ordering used

by an application should be the least restrictive that is sufficient to preserve the correctness of the

application.

Termination: Every message is delivered to all correct processes in the group within a known time

interval, even if concurrent failures and recoveries occur. This property can be satisfied only if the

communication protocol is synchronous.

Examples of Multicast Services

The various multicast services that have been developed differ in which of the above properties they

provide. A large number, typically called atomic broadcast services, provide atomicity and total order;

examples include [BJ87, CM84, CASD85, KTHB89, MSM89, NCN88, PBS89, VRB89]. The total

order provided by [PBS89, VRB89] also preserves causality, while the service provided by [CASD85]

12

also includes the termination property. An atomic broadcast service is useful in many distributed agree-

ment applications, such as propagating updates to manage replicated data and committing distributed

transactions.

The multicast service proposed in [GMS91] preserves both atomicity and reliability, but not neces-

sarily order. This service, sometimes called a reliable multicast service, is useful in applications that

need fast delivery of messages where the order of delivery is not critical. Examples include managing

highly available replicated databases and some real-time applications.

The multicast services proposed in [BJ87, PBS89] provide atomicity and partial order. These

services are useful in cases where concurrent events may be executed in different order at different

processes. Moreover, using these services, it is possible to construct more restrictive multicast services.

An example of this is found in [MPS89], where a multicast is described that provides atomicity and a

semantic-dependent ordering based on the commutativity of the operations.

Algorithms

The algorithms used to implement multicast services are typically complex due to the uncertain nature

of the communication network and the possibility of processor failures. In particular, messages may

be lost or corrupted on the communication channel or may be received in different order at different

processors, while processors may fail in different ways. As a result, the two main problems that are

encountered in designing such algorithms—how to order messages and how to make the broadcast

atomic—must deal with these situations. The way in which this is done is also influenced by the

assumptions made about the topology of the network, the failure models used, and the synchrony of the

network and processors.

In [CASD85], synchronized clocks are used to order different messages. Each message includes

the clock time at which it was sent and the messages are ordered according to this time. The message

is then delivered to each process at local time t +4, where t is the time when the message was sent

and 4 is a constant that depends on such network properties as message delivery time. Atomicity is

achieved by diffusing every incoming message onto every outgoing link and treating non-receipt of a

message with time t +4 time units as a failure. With this approach, a family of broadcast protocols

that tolerate increasingly general fault classes—omission, timing and Byzantine—is constructed. All

these protocols assume a point-to-point communication network.

Algorithms proposed in [Lam78, MSM89, PBS89, BJ87, MPS89] use logical clocks to implement

order. Atomicity is achieved either by using positive acknowledgements, where every receiver sends an

acknowledgement for every message received [BJ87], or by using a negative acknowledgement scheme,

where a retransmission is requested by the receiver only when a missing message is detected[PBS89,

MSM89]. A point-to-point communication network is used in all but [MSM89], which assumes the

existence of a broadcast network. All of these algorithms assume a crash failure model.

Another approach employs a single process to order messages [CM84, GMS91, NCN88, KTHB89].

In this approach, every broadcast message is first sent to one process, called the funnel process, that puts

a sequence number on the message and then resends it to all the processes in the group. The messages

are then delivered in an order corresponding to the sequence numbers. This approach only supports a

total ordering among the messages exchanged in the system. There are also two other disadvantages

to this approach. First, the funnel process is a single point of failure and the protocols must provide

a way to recover from this failure, something that can be very complicated. Second, the funnel

process is potentially a performance bottleneck since it must process every message. The atomicity

in this approach is achieved by positive acknowledgements [NCN88], negative acknowledgements

[KTHB89], or a combination of positive and negative acknowledgements [CM84]. The approach

13

proposed in [CM84] uses a broadcast communication network, while the remainder assume point-to-

point. Once again, crash failures are assumed.

Multicast protocols that tolerate Byzantine failures, commonly called Byzantine agreement algo-

rithms, are inherently more complex. In [LSM82], it is shown at least 3t + 1 processes are needed

to tolerate t failures for any deterministic algorithm, and an algorithm is presented that achieves this

bound. This algorithm is based on multiple rounds of message exchange among all processes and is

essentially recursive in nature, with processes executing the algorithm for one fewer failure during each

successive round.

Simplier Byzantine agreement algorithms can be constructed if authentication schemes [RSA78] or

randomization [Rab76] are used. In the authentication schemes, a correct processor can sign a message

such that any modification of the message can be detected by other processors and other processors

cannot forge its signature. Using this, several algorithms have been proposed that can tolerate any

number of Byzantine failures [DS83, LSM82, BD85]. Algorithms using randomization techniques

make use of randomly chosen numbers to simulate a local random coin toss. Algorithms that use this

approach [Rab83, CC85, Per85] differ from each other mainly in their assumptions about synchrony,

in the number of failures they can tolerate, and in their complexity.

5 Remote Procedure Call

Remote procedure call (RPC) is an IPC mechanism based on the well-known and easily understood

procedure call mechanism. In particular, an RPC is like an ordinary procedure call except that the

invocation statement and procedure body are executed by two different processes, called the client and

server respectively, potentially on different machines in a distributed system. When a remote procedure

is invoked, the argument values are marshalled into a message by the client and transmitted to the server;

any result values are returned in an analogous manner following execution. The synchronization is like

that of a procedure call, so the client does not continue execution until the server completes execution

of the invoked procedure and returns the results.

RPC has many attractive features. One is it possesses clean and well-understood synchronization

semantics, which simplifies the process of writing distributed applications. Another is that it enhances

network transparency by hiding the fact that the client and server may be on different machines. Yet a

third is that its implementation can be optimized to the point that the resulting performance is superior

to other IPC mechanisms [SB90] and even within an order of magnitude of regular procedure call in

the case that the client and server are on the same machine [BALL90].

These features make RPC a good abstraction for building many kinds of distributed applications,

including those with fault-tolerant requirements. However, in such applications, careful attention needs

to be paid to the precise semantics in the presence of failures. For example, what is the effect on the

program if the processor executing a remote procedure crashes during the call operation? Although

failure to execute the desired action is sometimes a concern with regular procedures (these are often

termed exceptions [Cri84, Goo75]), the nature and effect of failures on RPC are fundamentally different

since two separate processes potentially communicating across a network are involved. This leads in

turn to different problems and different approaches for dealing with failures in the context of RPC.

Properties of RPC

Given that RPC is intended to be a natural extension of standard procedure call to multiple processes,

it is desirable that RPC semantics be as close to those of procedure call as possible. However, this is

sometimes difficult given the inherent uncertainties associated with a distributed architecture, including

14

the possibility of lost messages, out-of-order message delivery, processor failures, etc. To cope with

these, a number of different execution semantics have been defined for RPC. These differ based on

what inferences may be made in the invoking process about the number of times the remote procedure

has been executed, both in the case when the invocation terminates normally and when it terminates

abnormally; the latter occurs, for example, when the server crashes prior to completing execution of

the remote procedure. The most common are [Nel81, PS88]:

� At Least Once: The remote procedure has been executed one or more times if the invocation

terminates normally. If it terminates abnormally, no conclusion is possible, i.e., it may have been

executed one time or multiple times, may have been partially through an execution, or may not

have been executed at all.

� Exactly Once: The remote procedure has been executed exactly one time if the invocation

terminates normally. If it terminates abnormally, no conclusion is possible other than it has not

been executed more than once.

� At Most Once: The same as Exactly Once if the invocation terminates normally. However, in

addition, the effect if it terminates abnormally is guaranteed to be atomic, i.e., has either been

executed completely or not at all.

Communication and processor failures during a remote invocation can also give rise to orphans,

which are unneeded computations that continue at the server even after a call has been terminated

abnormally. For example, a client that crashes during an RPC may reissue the call after being restarted

even though the server is still executing the original call. Another possible scenario is that the client

reissues an RPC after failing to receive a response from the server within a specified period of time even

though the server is still up and running. Orphans can cause consistency problems by interfering with

subsequent calls to the server or with other computations going on in the system [PS88]. In addition,

orphans waste system resources.

The possible creation of orphans is a fundamental problem for any RPC mechanism, so techniques

must be provided to detect such computations and eliminate them. In addition, if the semantics of the

mechanism require that there be no side effects in the event of an abnormally terminated call—as would

be the case with At Most Once semantics, for example—the effects of the orphan must be undone. A

number of RPC orphan detection and abortion algorithms have been described [LS83, PS88, RC89],

and will be discussed further below.

Another property that should be preserved by an RPC mechanism is call ordering. This criterion

states that a sequence of invocations generated by a given client should result in the computations being

performed by the destination servers in the same order. This requirement can be relaxed somewhat,

however, if the invoked procedures operate on disjoint data. Due to the synchronous nature of RPC, this

criteria is trivially satisfied in the absence of failures, so the problem reduces to ensuring that orphans

not invalidate call ordering. Note that this property is very similar to the partial ordering property of

multicast, and that the ability to relax the requirement with disjoint data is like a semantic-dependent

ordering.

Replicated RPC

RPC has been generalized in both system [Coo85, SDP91] and language [CGR88] contexts to work in

cases where the client and/or server have been replicated to enhance fault-tolerance. This facility is

called replicated RPC, with the replicated client termed the client replica set and the replicated server

15

termed the server replica set. In this approach, an RPC results in independent invocation messages being

generated by processes in the client replica set, with each client replica sending invocation messages to

all processes in the server replica set. Upon receiving these messages, each server replica executes the

appropriate remote procedure. No coordination is done between server replicas on a call, so the remote

procedures will be executed concurrently. Upon completing execution, each server replica will send a

reply message to every client replica. Note that the client and server can be viewed as replicated state

machines, making this program structure a variant of the state machine approach.

In addition to the general RPC issues, there are other issues that arise due to the replicated nature of

the invocation. One is fixing the point at which a server replica begins to execute the remote procedure,

with the basic choices being either as soon as a message from one client replica arrives, or only after

messages from all client replicas have arrived. Each choice represents a tradeoff. In the first case,

execution can proceed with no delay, but the results of the procedure execution must be retained by the

server replica until it has been communicated to every client replica. In the second case, the execution

delay is longer, although error detection and transparent error correction can be provided by checking

whether all the messages received are identical.

Another aspect of replicated procedure calls that is somewhat more complex is ensuring call order.

When a server is replicated, not only must the concurrent calls from different client replica sets be

ordered by each server replica, but the order chosen must be consistent across all replicas. This requires

additional coordination that makes the implementation more complex than standard RPC.

Algorithms

Numerous RPC mechanisms have been described [BN84, Coo85, Cou81, LG85, LS83, PS88, RC89].

These algorithms differ from one other in their assumptions about the underlying network and the

type of processor failures to be tolerated, in the particular semantics they implement, whether they

support replicated procedure call, and in their treatment of orphans. The algorithms proposed in

[BN84, Cou81, Coo85, PS88] implement Exactly Once semantics, while those in [LG85, LS83] are At

Most Once. Techniques to detect and abort orphans are provided in [LS83, PS88], with orphan adoption

being used in [RC89]. The algorithms in [BN84, PS88] can deal with a fixed number of communication

failures (i.e., lost messages), while those in [Coo85, LG85, LS83, RC89] can also tolerate crash failures

of processors executing servers. Only [LG85] and [LS83] add support for recovery to remove side

effects caused by orphans prior to being aborted.

All of these algorithms can be viewed as having two distinct components. The first deals with

issues such as naming a procedure, locating remote machines, and managing message transfer, while

the second deals with detecting failures, and detecting and aborting orphans. The algorithms are broadly

similar in how they implement this functionality, although there are many differences in the details.

A typical scheme is to have a manager process on every processor that can be contacted using some

well-known network address. This process acts as a conduit for all RPC requests either originating

from or destined for its machine. In the first instance, it accepts the message from a local client and then

either deals with the invocation itself if the server is local, or forwards it to the appropriate manager if

not. In the second, it accepts messages from other managers for servers on its machine and generates

the invocation. In [PS88], the manager process spawns a server process on receiving a request, with all

subsequent calls from that particular client being handled directly by the server. In [BN84], every call

goes through the manager.

The algorithms differ from each other in the way they handle orphans. In [PS88], orphans are

managed by including a deadline and crash count in every invocation. The deadline indicates the

maximum time allowed for execution of the remote procedure by the server; if a server exceeds this

16

deadline, it aborts itself. The crash count is used to distinguish between calls prior to a processor crash

from new calls. In [RC89], servers are replicated, so an orphan is adopted by one of the secondary

replicas of the server when the primary one fails. Algorithms proposed in [LG85, LS83] provide

backward error recovery techniques to abort an orphan and remove side effects. These techniques are

similar to the ones described in Section 7.

6 Membership

To ensure consistent actions, a group of cooperating processes typically needs to have an agreement

on the set of functioning members at any moment in time. Changes in group membership may occur

due to the failure of processes, the recovery of previously failed processes, new processes joining the

group, or a process voluntarily leaving the group. A membership service is used to maintain such a

consistent, system-wide view of which processes are functioning at any given moment. This service

has proved to be one of the most fundamental services in fault-tolerant distributed systems, simplifying

many problems. It is especially associated with the state machine approach, although variants are used

in other paradigms as well.

There are actually two types of membership services, each serving a different purpose [VM90]. The

first can be viewed as a user-level service that typically translates the failure or recovery confirmation

into an event that is then ordered with respect to other events in the system. This ordering is then

made available to the application to use in making decisions. Examples of this kind of service include

[BJ87, CM84, Cri88, KGR91]. In this case, the application program is explicitly notified of the changes

in the group membership.

The other type of membership service is sometimes called a monitor service [VM90]. In contrast

to the user-level orientation of the first type, the monitor service is used by the system itself to maintain

a consistent view of which processes are functioning and hence participating in system decisions. For

example, such information is used in reliable multicast protocols to determine when a message has been

received and acknowledged by every functioning process so that it can be committed to the application.

The processor failure or recovery event must again be consistently ordered with respect to other events

such as interprocess communication to guarantee that messages are committed consistently, but the

failure notification is not necessarily passed on to the application. Examples of this kind of protocol

include [MPS92, VM90].

Properties

Intuitively, an algorithmsolves the membership problem if it ensures that the processes using this service

remain consistent in the presence of failures and recoveries. Although this implies that the solution to

the membership problem is application-dependent, there are solutions that are general enough to ensure

the correctness of any distributed application. Typically, such a solution enforces agreement among

all the processors on a unique sequence of process joins and departures, and the precise way in which

these membership changes interleave with regular events such as message receipt. A large number

of membership services satisfy this condition [BJ87, CM84, Cri88, KGR91, RB91]. However, such a

condition may actually be overly restrictive for many applications. The membership protocol described

in [MPS92] is less restrictive in this regard. Here, an sf-group at process P is defined to be the set of

all the processes that have failed simultaneously as perceived by the process P. The proposed solution

ensures that all the processes in an sf-group are removed simultaneously and the order of removal of

these sf-groups is the same at all the processes, but the points at which these changes occur need not be

same at all processes.

17

There are some critical applications, such as process control, in which the membership service

must also satisfy the timeliness property. This property states that, once initiated, the membership

service is guaranteed to terminate in a known real time interval. This property is typically satisfied

by membership services implemented using clock-driven protocols, that is, protocols built on top of a

global time base [Cri88, KGR91]. Membership protocols constructed without such a facility do not

satisfy the timeliness property.

Failure and Recovery Detection

As mentioned above, changes in membership occur when a process fails or recovers. Thus, the

membership protocol is initiated when a process is suspected to have failed or when a functioning

process learns about the recovery of a previously failed processor. The technique used to detect the

failure varies from system to system depending on the system model used. Typically, a failure of a

process P is suspected when no messages from P arrive in a given interval of time. This failure detection

mechanism is typically implemented by a heartbeat protocol where every functioning member of the

group periodically sends “I am alive” messages. Examples of protocols using such a mechanism

include [BJ87, Cri88, KGR91]. This detection protocol can also be application dependent, where

the application messages being exchanged are monitored and a failure is suspected when a message

expected by the application fails to arrive within certain interval of time [MPS92]. For systems

that assume asynchronous processors and communication, it is this failure detection mechanism that

puts an upper bound on response time, and hence, essentially adds the synchrony required to reach

agreement. Notification of recovery is typically done explicitly by the recovering process as part of its

reboot process; when received by other group members, the membership protocol is initiated. These

mechanisms may also be used to detect failures or recoveries while the membership protocol itself is

in progress, thus allowing simultaneous failures and recoveries to be handled.

Network Partitions

A network partition occurs when a subset of processes in the group cannot communicate with another

subset due to a failure. In such a case, processes in each subset may conclude that all the processes in the

other subset have failed. Some of the clockless membership protocols can tolerate network partitions by

allowing a subset with a clear majority of processes to continue functioning [CM84, RB91]. However,

clock-driven protocols cannot tolerate a network partition since this may lead to divergent views

among different processors. There are known techniques to reconcile divergent views [SSCA87], but

inconsistent actions may be taken while the reconciliation protocol is in progress.

Algorithms

A number of algorithms have been proposed to solve the membership problem. In [Cri88, EL90,

KGR91], the authors have proposed clock-driven solutions to the membership problem for systems

with a broadcast communication network. The algorithm proposed in [Cri88] relies on an atomic

broadcast service and a message diffusion service; periodically, each process affirms its existence by

sending a present message. In [KGR91], global time is used to control access to the communication

channel by a synchronous TDMA (Time-Division Multiple-Access) strategy; a process includes certain

membership information with every message that it broadcasts, which is then used by all the processes

to compute group membership.

Clockless membership algorithms such as those proposed in [BJ87, CM84, MPS92, RB91] tend to

be more complex since they typically assume only asynchronous processors and then add synchrony

through mechanisms such as failure detection. A completely connected network with FIFO channels

18

is required in the algorithm proposed in [RB91]. A distinct manager process is used to coordinate

updates to the other processes’ local views. A two-phase protocol is used by the manager to coordinate

updates and a three-phase protocol is used to select a new coordinator when the manager is thought to

have failed. The protocol proposed in [CM84] also makes use of a distinct manager process. In this

approach, all the normal traffic is suspended while the protocol is in progress. The protocol is three-

phase for the manager process and two-phase for other processes. The protocol proposed in [MPS92] is

fully distributed in the sense that it does not require a single manager process; instead, the functioning

processes use multicast communication among themselves to agree on removal of failed processes. As

mentioned above, a novel feature in this algorithm is that additional failures during execution of the

membership protocol are handled incrementally.

7 Atomic Actions

Atomic actions are an abstraction that is central to the structuring of many fault-tolerant distributed

systems [Lam81, Lis88, SDP91, Svo84]. An atomic action is defined informally as a program-specified

computation that, although composed of many primitive computational steps executed at different times

and by different processors, is seen as an indivisible state transformation by other computations despite

concurrency and failures. The relevance of atomic actions to the design of fault-tolerant systems is that

they provide a simple framework for controlling the effects of failures, since a failure can only occur

(conceptually) between atomic actions. They are most commonly used in contexts where long-lived

data stored on stable storage is subject to concurrent access by multiple processes.

An atomic action satisfies two important properties: serializability and recoverability. The serial-

izability property states that the effect of executing a collection of atomic actions is equivalent to some

serial schedule in which the actions are executed one after another. The recoverability property states

that the external effect of an atomic action is all-or-nothing; that is, either all the state modifications

performed by the atomic action take place or none of them. Note that this potentially involves multiple

processors. These properties and various techniques to implement them have been discussed in detail

in [BHG87, Koh81]. We discuss some of the salient features of these in the following.

7.1 Serializability

A simple way to implement serializability is by forcing actions to actually execute sequentially. How-

ever, this method does not allow the constituent steps of the various actions to be interleaved or executed

concurrently, a decided disadvantage especially in a distributed system. The usual method for avoiding

this problem is to synchronize access to shared resources in such a way that the overall effect is as if

the actions had been run sequentially even through concurrent execution is actually taking place.

Algorithms

One of the most popular techniques for implementing serializability is two-phase locking [BSW79,

EGLT76, Pap79]. In this scheme, a lock is associated with each shared resource, with the requirement

that a lock be acquired prior to any access of the associated resource. The action is further constrained

in the order in which it can acquire and release locks to go through two distinct phases. In the first,

sometimes called the growing phase, needed locks are accumulated; in the second, called the shrinking

phase, locks are released. The key to this scheme is that an action is prohibited from acquiring additional

locks once it has entered its second phase by doing a release. While ensuring serializability, two-phase

locking can lead to deadlocks in which one or more actions waiting to acquire locks may block forever.

19

Deadlock detection and elimination schemes such as [CES71, GS80, Hol72, Mar76, MR79] must be

used in such situations. This deadlock may also be avoided by using a conservative approach in which

every action acquires all the locks that it needs at one time.

A second technique for implementing a serializable schedule uses timestamps to order various

actions [SM77, Tho79]. A timestamp is a system-wide unique number chosen from a monotonically

increasing sequence that is assigned to an action. In this technique, a shared resource is accessed by

various actions in their respective timestamp ordering. If the timestamp of an action trying to access a

shared resource is smaller than some action that has accessed that resource then this access is denied

and the corresponding action must be aborted. This scheme essentially regulates the access to shared

resources according to the logical global time at which the actions start (see Section 3). Timestamps

can also be used to avoid deadlocks in the two-phase locking scheme [RSL78].

Another approach maintains a dynamic graph of how different actions are accessing various shared

resources at any point in time [Bad79, Cas81, HY86]. This graph contains a node for each action that

is currently executing, as well as a node for actions that have committed. The edges between nodes

specify dependencies between actions, and serializability is guaranteed by ensuring that the graph

always remains acyclic. The unbounded growth of this graph is controlled by deleting the nodes and

the corresponding edges for the actions that will not be involved in a cycle at any time in the future.

An easy way to do this is to delete the nodes that have no incoming edges and the corresponding action

has been terminated.

Many more techniques have been proposed to ensure serializable schedules, including those based

on token circulation [LeL78], analysis of conflicts among various actions [BSR80], use of reservation

lists [Mil79], and certification tests [KR81]. Many of these techniques can be combined in various

ways to produce additional approaches [BG81, BGL83].

7.2 Recoverability

The recoverability property implies that the system state at any given time—and in particular, the state

of data on stable storage—reflects only the effects of completely executed actions. The mechanism for

realizing this is a commit operation, which is executed by the action to make its state changes across

all of the machines on which it executed available to other actions; a commit is an irrevocable action

that must appear to be indivisible with respect to failures. An action that does not commit due to, say,

bad data or an untimely processor failure, is aborted; in this case, all machine states must be restored to

their original values. Thus, the two problems that must be addressed are, first, providing a mechanism

to install and restore the state on an individual machine, and, second, ensuring that the decision on

whether an action is committed or aborted is made consistently across all machines.

Installing and Restoring State

The techniques used to deal with the problem of state installation and restoration depends on which of

two basic update strategies are used [BHG87]. One strategy is called in-place updating; this involves

keeping a single copy of each data element that is modified directly by actions during execution.

Installing the new state is trivial and typically involves releasing locks; note that this installation is easy

to restart should, for example, it be interrupted by a processor crash. Restoring the state should the

action be aborted is somewhat more difficult since each modified data element must be restored to its

old value. Perhaps the most common way to do this is to maintain an incremental log of all changes on

stable storage, which can later be used to recreate the initial state of a data element.

The second update strategy is called shadow updating. This strategy involves maintaining two

20

copies of each data element, and also two copies of directory or index that is used to access the data

elements. One copy of the index contains references to the current copy of each data element, that

is, the value from the most recently committed actions. The second copy contains references to a

shadow copy of each data element, which is the copy updated by actions that have not yet committed.

The current copy pointer indicates which index contains references to the current copies of the date

elements. Installing a new state when an action commits is done by changing the current copy pointer

to indicate the other index, effectively reversing the roles of the current and shadow copies. Note that

this can be done indivisibly since it involves changing only a single value. Restoring the state of an

aborted action is trivial: the current copy pointer is simply not changed. This leaves each data element

in its original state.

Commit Protocols

While the above techniques solve the problem of committing or aborting actions on a single machine,

an atomic action in a distributed system may execute across many machines prior to committing or

aborting. Thus, the second problem to be addressed is guaranteeing that machines make a consistent

decision on whether to commit or abort a given action, a process that is complicated substantially by

the need to tolerate failures during the decision-making process. A commit protocol is an algorithm

that ensures such consistency despite failures [Gra78].

A large number of commit protocols have been proposed [DIW89, Gra78, LS76, ML83, NS89,

Ske82a, SC90], with different approaches based on assumptions about the type of failures, the network

model and so on. The best known of these protocols is the two-phase commit protocol [Gra78], which

is designed to reach a consistent decision despite processor crashes. In this approach, a collection of

processes, one on each machine on which the atomic action executed, cooperate to decide whether to

commit or abort the action. One of these processes—usually the one on the machine where the action

originated—acts as the coordinator, while the others are participants. In this scheme, all participants

make a tentative local decision as to whether to commit or abort. The protocol then guarantees the

following:

� All processes that reach a final decision reach the same one.

� If all local decisions are to commit and there are no processor crashes and communication failures

during protocol execution, the final decision is to commit.

� If all machines that crash eventually restart and remain up sufficiently long, all processes even-

tually reach a final decision.

In the first phase of the protocol, the coordinator starts by sending a prepare message to each

participant. Upon receipt of such a message, the participant replies “commit” if its local decision

is commit and “abort” if its local decision is abort. If the coordinator receives at least one negative

response, it multicasts an abort message. Upon receiving such a message, a participant does a local abort

of the action, and acknowledges receipt. On the other hand, if all processes have replied affirmatively,

the coordinator commits the action by writing a commit record to stable storage and multicasting

a commit message. On receipt, each participant commits the action on its machine and sends an

acknowledgment.

The consequences of a failure of the machine executing the coordinator depend on how far the

protocol has progressed at the time of the failure. If the failure occurs after the coordinator has decided

to commit, as evidenced by the existence of the commit record, then upon restart, the coordinator checks

to ensure that every participant has been notified to commit the action. If a commit record is not found,

21

an abort message can be transmitted. The effect of the failure of a participant’s machine also depends

on how far the protocol has progressed. Should the failure occur during the prepare phase, the action

is aborted by the coordinator. On the other hand, should failure occur after a final decision has been

reached, the coordinator waits until the participant recovers and then retransmits its decision. Note that

the protocol is subject to blocking if the coordinator crashes or if the network suffers a partition.

The two-phase commit protocol has been extended and improved in many different papers, including

[Bor81, DIW89, HS80, ML83, MSF83, MLO86, SC90]. A three-phase commit protocol has also been

developed to avoid the blocking property mentioned above [Ske82a, Ske82b]. Many of these variants

are described in [BHG87].

8 Resilient Processes and Stable Storage

A resilient process is a process that can continue to execute correctly even if interrupted by a failure

and then restarted. This abstraction is oriented towards crash or fail-stop type failures, so the intuition

is that these are processes whose execution was suddenly halted at some arbitrary point and then later

restarted, either on the same processor after repair and reboot, or on another functioning processor. The

hardware model also typically assumes that storage is divided into two types: volatile storage, whose

contents are lost when the failure occurs and stable storage, whose contents remain intact. Given that

stable storage is an important abstraction for programming fault-tolerant systems in its own right, we

briefly elaborate on it below as well.

8.1 Recovery Techniques

Implementation of resilient processes is based on recovery techniques, which involve restoring the

process to some well-defined state following a failure so that it can continue execution. The most

common variant of this strategy is backward recovery in which enough values are saved on stable

storage to enable some past state of the process to be reconstructed should a failure occur. Recovery

techniques are useful in all of the programming paradigms outlined in Section 2. In particular, recovery

is used to maintain the atomicity of object operation execution in the object/action model, to ensure that

the states of all processes remain consistent following failure in the conversation model, to provide a

starting state for a new primary in the primary/backup approach, and to reconstruct the state of a failed

state machine in the state machine approach.

The most common form of backward recovery is based on the use of checkpoints, in which the entire

state of a process is periodically written to stable storage. Then, should a failure occur, the most recent

checkpoint is used as the beginning state after restart. This checkpoint must be written atomically with

respect to failures, implying the use of recoverability techniques similar to those described in Section

7.2. Most often, a variant of shadow updating is used in which two copies are maintained along with an

indication of which is current. If stable storage is implemented using multiple machines (see below), a

commit protocol is needed as well.

The decision of when to checkpoint involves a tradeoff between the time it takes to write the

checkpoint to stable storage and the amount of computation that must be redone in the event of failure.

Details of the particular application also can play a role; for example, it may not be possible to restart

the computation from every state, which would make these ineligible for use as a checkpoint. Or, one

might choose a state in which the size of the state to be checkpointed is small in order to minimize the

overhead associated with writing to stable storage. Yet another factor to be considered in the timing of

checkpoints is whether values generated by the program as output can be safely repeated; this can occur

22

since any computation after a checkpoint may potentially be executed more than once in the event of

failures. If this is not feasible, then the output and the checkpoint must be done as one atomic action.

It is essentially this same problem that can cause difficulties with interacting resilient processes, where

the output in this case consists of the messages being transmitted between processes.

Checkpointing and, in fact, most recovery techniques rely on stable storage, an abstraction of

perfect storage that survives processor failures [LS76]. Access is performed using atomic read and

write operations, with different techniques used to implement failure resilience depending on the needs

of the application. For some, keeping a single copy of the values on a non-volatile device like a disk is

sufficient. For others, where the cost associated with losing values in stable storage (i.e., the abstraction

failing) is less acceptable, redundant copies are kept. These can be on the same device or, if more

safety is needed, on multiple devices with independent failure behavior. The abstraction can also be

implemented by having redundant processes executing on multiple machines keep copies of the data,

such as done in [CASD85]. 1

Finally, as already noted above, the techniques for achieving atomic access to stable storage are

identical to those described earlier for atomic actions. This naturally raises the question of whether these

techniques are implemented in this case as part of the stable storage abstraction or as a separate service.

Although this depends on many factors (e.g., whether data replication is used), for the purposes of this

paper, we adopt the view that stable storage directly provides atomic access for relatively small-grained

values (e.g., a single variable), with the atomic action abstraction used to implement atomicity for

writing multiple values, such as would typically be required for a checkpoint.

8.2 Interacting Resilient Processes

Consider a distributed program in which resilient processes interact with each other using message

passing to accomplish a task. Following [JZ90], we characterize such a process by a sequence of

events, where an event is either a local computation, or the send or receipt of a message. The state of

a process after receiving a message, say m, becomes dependent on the state the sender had just before

it sent m. 2 Thus, as a result of message exchanges in the system, the states of various processes

become dependent on one another in interlocking ways. Define the system state at a particular time to

be a history of events that constitute the set of all process states at that time. Then, a system state is

said to be consistent if for every event corresponding to the receipt of a message in the state, the event

corresponding to the sending of that message is also included [JZ90].

In a collection of interacting resilient processes, the fundamental issue is ensuring a consistent

system state after recovery following a failure. The particular problem is that it may be necessary to

modify the states of processes other than the one that was on the failed processor because of the state

dependence caused by message passing. For example, consider a scenario in which a process fails after

sending a message that is received by another process. If the state to which the process is restored

during recovery is prior to the send, then the corresponding event will no longer be in the process state.

As a result, the resulting system state will be inconsistent unless the event corresponding to the message

receipt is also removed from the state of the receiving process. Special recovery techniques have been

designed to deal with this type of problem by ensuring that the state of the system remains consistent

following recovery of one or more processes.

1 This technique is, in fact, just an example of the state machine approach, so many of the services described in this paper

are directly relevant to the problem of implementing stable storage as well as other applications.
2 This notion of state dependence is also captured in formal axiomatic rules for message passing as, for example, in

[AFdR80, LG81, SS84].

23

Checkpoint and Rollback Recovery

The first technique is based on each process checkpointing similar to that described above. Recovery

then involves rolling back all the processes to the most recent combination of saved states that gives

a consistent system state. There are two approaches to creating these checkpoints. In the first,

each process periodically checkpoints independent of the other processes. During recovery, then, the

processes must dynamically determine a set of checkpoints, one from each process, such that the system

state constructed out of these checkpoints is consistent. In this approach, no coordination between the

processes is required while checkpointing but processes must coordinate during recovery. One of the

drawbacks of this approach is that the rollback of a process may result in a cascade of rollbacks that,

in the worst case, can push all processes back to their starting states. This is again the domino effect

mentioned in Section 2 [Ran75, Rus80]. Moreover, since cascading rollbacks may require any of the

previously stored checkpoints, the processes must retain all of their checkpoints indefinitely.

This independent checkpointing approach is used in a variety of contexts [BL88, Had82, Kim78,

KYA86, MPS91, Ng88, RS88, SY85]. The scheme proposed in [Had82] is limited to a centralized

database, while the ones proposed in [Kim78, KYA86] rely on an intelligent underlying processor

system to automatically establish checkpoints of the coordinating processes. In [BL88], a recovering

process computes the set of globally consistent checkpoints by invokinga two-phase rollback algorithm.

In the first phase, it collects the information about relevant message exchanges in the system and uses it

in the second phase to determine both the set of processes that must roll back and the set of checkpoints

up to which rollback must occur. In [Ng88], the authors propose a commit protocol for checkpointing

distributed transactions. Although the domino effect is possible here, it is shown that the lost work can

be reduced by reusing portions of completed computations. In [RS88], synchronized clocks have been

used for checkpointing and rollback recovery; these clocks coupled with the idea of a pseudo-recovery

block approach [SL84] are used to develop a checkpointing algorithm. Independent checkpointing is

also done in [MPS91]. However, no domino effect is possible here because checkpointing is done just

as an optimization and the state of a process can fully be recovered from information stored at other

processes.

In the other main approach, processes coordinate with each other to checkpoint [BS83, KT87, LB89,

TS84]. Typically, the processes use a two-phase commit protocol to checkpoint, thus ensuring that the

set of checkpoints stored is consistent. In this scheme, two checkpoints need to be stored at any time: a

permanent checkpoint that cannot be undone and a tentative checkpoint that can be undone or changed

to a permanent checkpoint. Note that even with the coordinated checkpointing, there is a need for some

synchronization. In the absence of such synchronization, processes cannot all restore their checkpoints

simultaneously and livelocks, in which processes endlessly cycle, can be introduced [KT87]. To avoid

this, the recovery is again done in two phases. In the first phase, a request to restart from a checkpoint

is sent; in the second, a decision to restart is propagated.

Message Logging

Independent checkpointing can be enhanced by the use of message logging in a technique sometimes

called optimistic recovery [JZ90, SW89, SY85]. In these schemes, processes checkpoint independently

and log input messages along with some dependency information in stable storage. Recovery then

consists of (a) restoring an earlier possible state of the failed process using a checkpoint from the stable

store plus potentially replaying the logged messages, (b) recognizing the set of processes whose states

depend on lost states using the dependency information and rolling them back, and (c) committing

messages to the outside when it is known that the states that generated the messages will never need

to be undone. The logging of messages can also be done on volatile storage as has been shown in

24

[JZ87, PBS89, SY85]. In this case, messages are logged on the volatile storage of other processes and

then replayed to the recovering process at the time of recovery.

9 Common Dependencies

In the preceding sections, we have described some of the key abstractions that have proved important

for constructing dependable distributed systems, focusing on both the fundamental properties of each

abstraction and the most important approaches used to realize these properties. In doing so, however,

each service was treated largely as an isolated entity without concern for how it might interact with

other services. The reality of the situation, of course, is that any given system usually contains a

number of these fault-tolerant services that interact in various ways and use one another to implement

their functionality. For example, in Section 4 we outlined how some approaches to multicast use the

functionality provided by a common global time service to implement a consistent message ordering.

Following [Cri91], we term such relationships dependencies, where a service u depends on a service

v if the correctness of u depends on the correctness of v; in this case, we will informally refer to u

as the higher-level service and v as the lower-level service. This notion of dependency can be viewed

as generalizing the kind of level-structuring that has long been common in operating system design

[Dij68].

As might be expected, the dependencies exhibited by a given system vary based on the programming

paradigm used, and other details of the design and implementation. However, some dependencies are

essentially independent of a specific system or implementation, and hence, are more common than

others. In this situation, the lower-level service usually provides some fundamental function without

which the higher-level service cannot be implemented. 3 The goal of this section is to identify and

explain some of these common dependencies.

The graph in Figure 3 shows some of the common dependencies among the programming paradigms

and fault-tolerant services we have described. In this figure, the rectangles are paradigms or services,

and edges are dependencies. The edge labels indicate the property (or properties) that induce the

dependency; that is, they indicate properties of the higher-level entity that require the functionality

of the lower-level entity to be realized. Note that a new abstraction called “Atomic Actions (shadow

updating)” has been introduced. We simply use this term to refer to single-machine atomic actions where

recoverability is implemented by the shadow updating (or two-copy) approach described in Section 7.2;

this particular implementation technique for atomic actions is being separated from the others in order

to clarify certain dependencies. Two additional caveats are also in order before describing the graph

in more detail. First, it should be emphasized that this graph is not intended to capture all possible

combinations of services or dependencies, but only certain common patterns. Second, the graph should

be considered speculative at best, since these services often interact in subtle ways that are only now

beginning to be understood.

Programming Paradigms

Many of the direct dependencies from the four programming paradigms to lower-level fault-tolerant

services should be clear based on their descriptions in Section 2 and subsequent discussions. The

object/action model, of course, uses atomic actions as one of its fundamental concepts, and also relies

on RPC for communication between objects. A conversation is a collection of resilient processes that

interact by message-passing, making that edge its fundamental dependency to a fault-tolerant service.

3 Whether these two services can in fact be identified as separate in the implementation is a different issue.

25

Atomic Actions

Atomic Actions
(shadow updating)

Resilient Processes

Stable Storage

Primary/Backup

RPC

Application

Software

Fault-Tolerance

Support

Object/ActionConversation State Machine

Membership Multicast

Time

{communication}

{recoverability}

{replication}

{process join}
{message dissemination}

{primary election}

{checkpointing}

{atomicity} {replica coordination}

{consistent view}

{update backups}

{recoverability}

{recoverability}

{order}

{termination}

{at most once
semantics}

{logging}

{commit protocols}

{recoverability}

{total order in

clockless protocols}

Figure 3: Common dependencies

The state machine approach uses a number of the abstractions directly. Multicast is often used to

coordinate replicas, usually a variant with at least atomicity and ordering properties. Membership is

also used to provide consistent information on which replicas are functioning at any given time. In

some systems, replicas are reintegrated into the system upon recovery following a failure, which means

that each replica is a resilient process. Finally, interaction between replicas of different state machines

is sometimes implemented using either regular or replicated RPC.

The primary/backup approach commonly depends on both multicast and membership services.

Multicast is useful for updating backup processes to reduce the amount of recomputation required when

the primary fails, while membership is needed to recognize the failure of the primary. Another common

dependency, although not shown explicitly as an edge on the graph, is to the lower-level atomic actions;

this occurs if the primary employs checkpointing to save intermediate states for a backup to use should

a failure occur.

Atomic Actions

The major dependency edge for atomic actions is to the resilient process abstraction since many of the

relevant implementation techniques require that a process execute some recovery action upon restart.

For example, the use of in-place updating for realizing recoverability on a single machine requires that

the modified data elements be restored to their original values after recovery. Another example is found

26

in the two-phase commit protocol for coordinating actions across multiple machines; in this technique,

the coordinator process reads a commit record following recovery and then either commits or aborts

the action.

Remote Procedure Call

Some of the variants of RPC have dependencies to other fault-tolerant services. For example, an RPC

mechanism defined to have At Most Once semantics is dependent on the atomic action abstraction

because of the need to implement orphan removal; that is, the remote procedure needs to be executed

as an atomic action by the server to guarantee that any effects are undone and that call ordering is not

violated should the process become orphaned. In the graph, we have drawn this edge to the lower-level

atomic action since checkpointing is the most common implementation technique; alternatively, the

edge could be to the higher-level variant if logging is used instead. Another variant of RPC that

has dependencies is replicated RPC. Specifically, this type of RPC often depends on the multicast

abstraction to ensure that messages are delivered to a collection of processes reliably and in some

consistent ordering.

Resilient Processes

The resilient process abstraction has several properties that can induce dependencies. One that has

already been mentioned is recovery of a previous state following failure; this requires writing check-

points and/or log entries to stable storage. Given that checkpoints are usually large, the dependency

here is to lower-level atomic actions, which implement the atomicity aspect of the write. Log records

are usually on the order of a single value that can be written atomically by stable storage directly, so

the dependency in this case is directly to stable storage. Another relevant property when a collection of

processes are cooperating is ensuring that the recovering process is reincorporated back into the group.

Doing this consistently across all processes is the task of the membership service, leading again to a

dependency relationship between abstractions.

Atomic Actions (shadow updating)

The basic dependency for this type of atomic actions is to stable storage, for two reasons. One is simply

that atomic actions at this level are typically used to manipulate long-lived data of the type that is

typically stored on stable storage. The other is that the shadow updating technique uses redundancy in

the form of extra data stored on stable storage as the basis for implementing recoverability. Specifically,

two copies of the data are kept on stable storage, along with an indicator of which is current.

Multicast and Membership

The dependencies involving the multicast and membership services tend to differ depending on whether

the protocols are clock-driven or clockless, that is, whether or not they assume a common global time

base implemented by synchronized clocks. In both the clock-driven and clockless approaches, the

time service is used to provide consistent message ordering; however, in the clock-driven approach,

synchronized clocks are used, while logical clocks are used in the clockless approach. Multicast services

that satisfy the termination property, which are typically clock-driven, are also commonly implemented

using global time to achieve that property.

The biggest difference comes when considering the relationship between the multicast and mem-

bership services themselves. In clock-driven systems, multicast can determine a consistent order for

received messages independent of an explicit membership protocol by using the synchronized clocks

and assumptions about the synchrony of the network and processors. Specifically, for a message sent

27

at a given time and timestamped with that value, the receiving process need only wait long enough

to ensure no earlier messages will arrive. This approach is not sufficient with a clockless protocol,

however, since the logical timestamp included on a message puts no bound on how long the receiver

must wait to ensure no earlier messages. To overcome this, acknowledgements (implicit or explicit)

are used, which allows the receiver to conclude no earlier messages will arrive after it has received a

message from every other functioning process with a timestamp at the same or greater (logical) time. 4

But knowing “every other functioning process” consistently across machines requires membership, thus

leading to a dependency edge from multicast to membership for clockless protocols. The alternative

clockless algorithms that use a funnel process also need membership to detect the failure of the funnel

process and subsequent election of a new funnel process.

There is a more fundamental reason for the dependency of multicast on membership in clockless

protocols. As shown in [DDS83], reaching agreement in the presence of failures in a distributed system

is possible if both the communication system and processors (processes) are synchronous. Clockless

protocols approximate this first property given an asynchronous network by using low-level message

acknowledgments and retransmission. However, the second property of synchronous processors is

still needed to reach agreement, in this case on the consistent total order of messages to be enforced

by multicast. It is this property that is supplied by the membership service. Specifically, the failure

detection aspect of membership approximates this property by putting an upper bound on the amount

of time processes can execute before they are considered to have failed. Thus, in clockless protocols,

multicast depends on the membership service to realize the synchronous process requirement needed

to reach agreement.

10 Fault-Tolerant Systems

The abstractions outlined in the previous sections have been used as fundamental components in a

number of fault-tolerant distributed systems that have been designed and/or implemented over the

past decade. Here, we briefly outline some representative examples: the Advanced Automation

System (AAS) [BDD+89, CDD90], Argus [LS83, Lis88], Consul [MPS91], Delta-4 [PSB+88], ISIS

[BJ87, BSS91], and MARS [KM85, KDK+89]; our specific emphasis is on describing how each

fits into the framework developed above. Others systems of interest include ADS [IM84], ANSA

[Tea91, OOW91], Arjuna [SDP91], Avalon [DHW88], Chorus [BFG+85], and Clouds [LW85].

10.1 Advanced Automation System

AAS is a fault-tolerant distributed system currently being developed by IBM as the next-generation

air-traffic control system for the U.S. Federal Aviation Administration. The system is structured as

a collection of Area Control Computer Complexes (ACCC), each of which manages one of the 23

areas into which U.S. airspace is divided. An ACCC is, in turn, structured as a distributed system of

workstations and mainframes connected by a local-area network; among its tasks are to provide air

traffic controllers with display information concerning the location of aircraft within the area based on

radio and radar input, process flight plans, and interpret commands from air traffic controllers. Each

ACCC also communicates with other computing complexes, including other ACCCs to implement

transfer of aircraft between areas, airport tower complexes to coordinate takeoffs and landings, and

weather computer systems. As might be expected, the availability requirements for this system are

4 A message for which acknowledgmentshave been received is called a stable message in [PBS89] and fully acknowledged

in [Sch82].

28

stringent; for example, certain critical services are not supposed to be unavailable for more than 3

seconds per year. Such specifications have lead to the extensive use of fault-tolerance techniques.

The software associated with an ACCC is organized as a collection of services, each of which

implements a particular function. For example, the Surveillance Processes and Correlation (SPC)

Service tracks aircraft based on radar input. To increase availability in the face of failures, services

are implemented by groups of redundant server processes executing on separate physical machines.

These groups are organized using either the state machine approach or primary/backup, with the choice

depending primarily on the real-time requirements of the particular application. For example, the

SPC service has strict requirements in this regard and so uses the state machine approach, while the

Flight Planning Service uses primary/backup since a longer interval of unavailability can be tolerated.

Group management functions—for example, coordinating promotion of a backup to a primary—are

localized in a Group Service Availability Management (GSAM) Service, which is itself implemented

by redundant processes using the state machine approach. The failure model assumed throughout

corresponds to performance failures.

To support these paradigms, AAS uses a number of the abstractions described in previous sections,

including a time service, multicast, membership, RPC, and resilient processes. The time service is

provided by synchronizing clocks using the probabilistic scheme mentioned earlier [Cri89]. The multi-

cast service, termed atomic broadcast here, provides atomicity, consistent total order, and termination.

Interestingly, it and the membership service are used only in the implementation of the GSAM service,

with a separate replicated RPC service being used to implement group communication for the other

services; this RPC provides either At Least Once or At Most Once semantics depending on the situa-

tion. The checkpointing and message-logging techniques associated with resilient processes are used

to implement redundant server processes organized according to the primary/backup approach.

The dependency structure of the fault-tolerant services essentially follows the clock-driven organi-

zation, with the time service realized using clock synchronization as the lowest layer. On top of this are,

successively, multicast, membership, and then the GSAM service. The replicated RPC, as mentioned,

is implemented separately, and so depends on none of these. The GSAM also depends on recovery to

realize the primary/backup approach.

10.2 Argus

Argus is a programming language and system for constructing fault-tolerant distributed programs that

has been designed and implemented at MIT [LS83, Lis88]. The system is oriented towards applications

in which preserving the consistency of long-lived data is the primary concern, such as would be found,

for example, in banking or airline reservation systems. Thus, the emphasis has been on developing

mechanisms to efficiently manipulate such data, while controlling the consistency-destroying potential

of concurrent access and failures. A general distributed architecture is assumed, together with crash

failure semantics for the processors and performance failure semantics for the network.

To support this type of application, Argus provides a programming model based on objects and

actions. Objects in Argus are dynamically-created entities called guardians, which are the units of

distribution that encapsulate data and export handlers that can be invoked from within other guardians

to manipulate the data. Guardians also contain processes; these are created to execute incoming handler

invocations, or are background processes that operate independently of invocations. Data within a

guardian can be declared to be stable, in which case it is stored on stable storage to facilitate recovery

in the event of a processor crash; data not declared to be stable is stored in volatile storage, and is

therefore lost should a failure occur. In addition, there are provisions for specifying recovery code to

be executed upon restart of a guardian following failure.

29

Argus also supports actions,which are computations that exhibit the serializability and recoverability

properties described in Section 7. More precisely, an action preserves these properties for any built-in

or user-defined atomic object that it manipulates during execution; these objects—for example, atomic

arrays or records—typically contain the shared data that is being accessed concurrently by multiple

actions. Actions are denoted syntactically within the code of background processes of guardians, and

cross machine boundaries by using RPC to invoke the handlers of other guardians. Nested or subactions

are also supported [Mos85]. These are used both to increase concurrency and to limit the amount of

computation lost due to failure; the former comes from provisions for concurrent spawning of multiple

subactions, while the latter follows from the property that a failure during the execution of a subaction

only aborts the subaction and not the entire top-level action. The call to a handler automatically runs as

a subaction, which gives it the semantics of At Most Once RPC.

Of the abstractions described above, those that are used in the implementation of Argus include

atomic actions, RPC, and stable storage. For atomic actions, two-phase locking is used to realize

serializability, with shadow updating of stable data and the two-phase commit being the basis for

recoverability. As already mentioned, the RPC in Argus implements At Most Once semantics, and also

also handles the detection and elimination of orphans. Stable storage is used to store data declared to

be stable by the user and in the implementation of the two-phase commit protocol. The dependency

structure is similar to that shown in Figure 3.

10.3 Consul

Consul is a collection of protocols developed at The University of Arizona for implementing fault-

tolerant distributed programs based on the replicated state machine approach. As such, it provides

support for consistently ordering input messages submitted to the state machine, for maintaining a

consistent view of group membership despite process failure and recovery, and for reestablishing a

consistent state for a process upon recovery. At the heart of Consul is Psync, a multicast protocol

that maintains the partial (or causal) ordering of messages exchanged among replicas in the form of

an explicit graph that is made available to the application and other protocols [PBS89]. This graph is

replicated by Psync on all processors on which participating processes reside. Consul is implemented

in the x-kernel, an operating system kernel designed to facilitate the implementation of communication

protocols [HP91]. This platform makes Consul highly-configurable in the sense that it is simple to

construct an instance of the system oriented towards a particular application given a preexisting library

of protocols. The failure model assumed corresponds to performance failures.

Of the abstractions described in previous sections, Consul includes multicast, time, membership,

resilient processes, and stable storage. For multicast, the basic functionality plus consistent partial

ordering are realized directly by Psync; additional protocols that use Psync’s message graph give

semantic-dependent and total ordering. The time service is also provided by Psync in the form of

logical clocks. Membership is implemented by two protocols, one that does failure detection and

another that realizes agreement on group membership in the event of failure or recovery. The state

machine replicas are resilient processes that can use a combination of checkpointing and message

logging to recover following a failure; of special interest here is that the messages need not be logged

explicitly to stable storage since the replication of the message graph in the volatile memory of multiple

processors by Psync automatically implements similar functionality.

In Consul, the dependencies are as follows. The multicast service depends on the time service to

provide the various types of consistent message orderings. Membership and multicast, in turn, depend

on each other; membership uses the partial order provided by the multicast in its agreement algorithms,

while multicast uses membership to establish total ordering. Finally, resilient processes depend on the

30

membership service to consistently incorporate the recovering process into the collection of replicas,

and on stable storage to do checkpointing. 5

10.4 Delta-4

The Delta-4 project is a European effort whose goal is to define a general system architecture for

dependable, distributed systems. This project, which began in 1986 and involves both industrial and

academic organizations, has addressed a number of different problems ranging from communication

protocols and application support environments to protocol validation, dependability modeling, and

fault-injection. The applications targeted by the project are correspondingly broad, and include process

control, computer integrated manufacturing, distributeddatabases, transaction processing, and scientific

computation. The project officially ended in 1991, although work continues on various aspects under

follow-on projects.

Two complementary architectures have been developed during the course of the project: an Open

System Architecture (OSA) and an Extra Performance Architecture (XPA). As its name implies, the

OSA is intended to work in an open environment in the sense that it conforms to Open Systems

Interconnection (OSI) reference models and, hence, is able to work with heterogeneous architectures,

proprietary operating systems, etc. It also supports the widest variety of applications and fault-tolerance

techniques. The XPA, on the other hand, is an architecture designed explicitly for constructing fault-

tolerant distributed programs that also have critical real-time requirements. The two share the same

design philosophy and overall structure.

The Delta-4 hardware system model consists of a number of host machines connected by a com-

munication network. Interposed between each host and the network is a specialized processor called a

Network Attachment Controller (NAC) that executes the communications software. The failure model

assumed for hosts in the OSA can be either crash failures or arbitrary failures, with the latter naturally

requiring more expensive protocols and fault-tolerance techniques; the failure model for hosts in the

XPA is crash failures. In both architectures, the NACs are assumed to suffer only crash failures

Delta-4 supports a number of different software structuring paradigms to achieve fault-tolerance.

These include the state-machine approach, primary/backup, and a variant of the state-machine called

leader/follower in which replicas remain synchronized, but a single process is deemed responsible for

making all decisions that affect replica determinism, such as message receipt order and preemption

times. 6 The fundamental support for all of these techniques comes from two different multicast

protocols executed by the NAC. The first, called AMp (Atomic Multicast protocol), is used in the OSA;

it provides atomicity, total ordering, and termination. The second, called xAMp, is used by the XPA; it

extends AMp to provide a range of services ranging from unreliable datagrams to reliable (unordered)

multicast to full atomic multicast [RV91]. xAMp also includes a membership service in the form of a

Group Management layer.

In terms of the abstractions defined in earlier sections, Delta-4 includes multicast, membership, and

a time service. As already mentioned, the more general xAMp provides a variety of services, including

all of the possible message orderings described in Section 4. Membership allows processes to join

and leave process groups, as well as handling the detection and removal of failed processes. Two

time services are provided, one implemented by synchronizing physical clocks and the other by logical

clocks; the former is intended primarily for use by applications, while the latter is used in the multicast

5 A rudimentary single-processor atomic action service is implemented as part of stable storage, so it can be argued that

there is also a dependency to atomic actions similar to that in Figure 3.
6 This approach can be viewed as a generalization of the use of a funnel process described in Section 4.

31

services for messages orderings [VR91]. The dependency structure generally follows that shown in

Figure 3, although the exact relationship between membership and multicast is not entirely clear.

10.5 ISIS

ISIS is a toolkit developed at Cornell University to support the construction of distributed applications,

including those that have fault-tolerance requirements. The software is oriented around a programming

model based on virtually synchronous process groups, which are groups in which member processes

see a consistently-ordered stream of events such as multicast messages, group membership changes,

and failure notifications. This property makes the distributed system appear to be synchronous to the

user, and hence, easier to program as compared with a system in which events occur asynchronously. 7

This programming model is most attuned to the state machine approach for constructing fault-tolerant

programs, but experience has also shown it to be useful for structuring distributed applications in other

ways [BC91]. The toolkit is currently implemented as a library on top of UNIX, with plans underway

to integrate key features into the Mach operating system at a lower level to improve performance.

The fundamental fault-tolerant abstraction provided by ISIS is a multicast service made up of

a collection of different protocols. The most important of these is CBCAST (“Causal Broadcast”),

which provides delivery atomicity and partial ordering of messages; among its unique features is that

it preserves causal ordering among multiple groups that have overlapping memberships. An atomic

broadcast protocol called ABCAST, which extends CBCAST to a consistent total ordering, is also

provided; this protocol uses the funnel process approach described in Section 4. Other services found

within ISIS include a membership service, which is used to agree on when events corresponding to the

leaving and joining of processes occur, and a time service based on logical clocks.

Dependencies among services that can be identified in ISIS include the following. The multicast

service depends on the time service to provide both partial and total ordering of messages, and on the

membership service to manage the failure of the funnel process used for total ordering. Membership

also depends on the multicast service. In particular, the instances of the membership protocol executing

on different machines use a variant of multicast to communicate among themselves; in this protocol,

messages are delivered atomically but with no consistent ordering guarantee.

10.6 MARS

MARS (MAintainable Real-time System) is a system being developed at Institut für Technische In-

formatik, Vienna for use with distributed process control applications such as steel rolling mills and

railroads. In this application area, the control system must meet stringent real-time guarantees, in addi-

tion to being functionally correct and fault-tolerant. The system model used in MARS is hierarchical:

closely-cooperating machines are connected by a bus into clusters, which are themselves intercon-

nected. Unlike many of the other projects, MARS is a combined hardware and software effort. Custom

hardware that has been developed include the bus controller chip used for intracluster communication

and a clock synchronization unit.

The general software organization can be characterized as a periodic system in which components are

initiated periodically at predetermined intervals to handle external events that may have occurred since

the last time they were executed. The computation required to respond to a given event potentially

involves processes on several machines within a cluster; these computations are termed real-time

transactions, although fault-tolerance is handled by replication, implying that the computing model has

7 The meanings of synchronous and asynchronous in this case are somewhat different than the way in which they are used

in Section 2.

32

more in common with the state machine approach than a pure object/action model. The failure model

corresponds to crash failures; explicit assumptions about the number of possible concurrent failures are

also made.

As might be expected given its periodic nature, the various fault-tolerant services are organized

along the lines of a clock-driven system. Accordingly, a time service lies at the heart of the system; this

service is realized by the hardware clock synchronization units alluded to above, which synchronize

the clocks relative to an external time source. The fundamental multicast service for communicating

within a cluster is based on a TDMA (Time-Division Multiple-Access) approach in which the bus is

conceptually divided into slots along the time dimension and machines are allocated time slots using a

round-robin scheduling algorithm. Each message is sent multiple time in succession to deal with the

potential for lost messages. The combination of these strategies gives a service that realizes total order

and termination based on the definitions given in Section 4.

MARS also has a membership service, which is implemented by logically including a machine’s

current membership set in every message. Interestingly, the effect of combining this service with the

basic multicast is a multicast with atomicity, since any machine not receiving a message—and there

can be at most one due to their failure assumptions—is removed from the membership set on the next

TDMA cycle. In addition, the membership service is used in turn to construct an enhanced multicast

service, which the system’s developers term an atomic broadcast. However, the atomicity realized

by this service is somewhat different than that defined in Section 4; in particular, the sender specifies

a collection of destination machines, and the multicast succeeds only if that set is a subset of the

membership at the time the multicast originates. Thus, if one of the machines in the destination set has

failed, all receiving machines will discard the message.

The service dependencies in MARS are those implied by the above discussion. The basic multicast

service depends on the time service, while membership depends on multicast. The MARS atomic

multicast then depends on membership.

11 Summary

In this paper, we have described a number of fault-tolerant services that simplify the task of constructing

dependable distributed systems. The usefulness of these system abstractions comes in a general sense

from the support they provide for implementing the various programming paradigms that have been

developed for building this type of system, including the object/action model, the primary/backup

approach, the replicated state machine approach, and conversations. Some of these abstractions, such

as stable storage, atomic actions, resilient processes, and RPC, can be viewed as analogous in many

ways to standard functions, but with improved semantics when failures occur. Others, such as common

global time, multicast, and membership, are more oriented towards making consistent information

available to all machines in a distributed system despite the lack of physically shared memory. The

specific algorithms used to realize these services are sensitive to the programming paradigm being

supported and the failure model that is assumed. There are also significant differences based on the

overall organizational strategy used for the system, with the two most common being termed clock-

driven and clockless. In the literature, the former have often been referred to as synchronous and the

latter as asynchronous, although we attempted to argue that, strictly-speaking, all systems are actually

based on some type of synchrony assumption.

In addition to outlining key properties of these abstractions in isolation, different ways in which

fault-tolerant services interact have been identified. This was done in two ways. First, we argued that

certain interactions are fundamental when considering the properties of the various abstractions, which

33

led to a hierarchy of common dependencies. Second, we described the way in which these abstractions

are actually organized and interact in various fault-tolerant systems, specifically AAS, Argus, Consul,

Delta-4, ISIS, and MARS. While by no means an exhaustive survey, these systems represent in many

ways the current state-of-the-art in dependable distributed systems.

Finally, we note that the programming paradigms and fault-tolerant services described in this pa-

per by no means close the book on the problems associated with constructing dependable distributed

systems. Further work is needed in many areas, ranging from designing additional techniques for imple-

menting existing abstractions, to improving our understanding of dependencies between abstractions,

to developing new and better programming paradigms and supporting abstractions. All of these have

the potential to help meet the increasingly inevitable need for computer systems that can be relied on

provide dependable service.

Acknowledgments

We would like to thank D. Bakken, F. Cristian, M. Hiltunen, P. Homer, and V. Thomas for reading earlier

versions of this paper and providing valuable feedback. Special thanks also to V. Thomas for preparing

the figures and for contributing to the discussions on dependencies that led to the material in Section 9.

This work has been supported in part by NSF Grant CCR-9003161 and ONR Grant N00014-91J-1015.

References

[AD76] P. A. Alsberg and J. D. Day. A principle for resilient sharing of distributed resources. In Proceedings

of Second International Conference on Software Engineering, pages 627–644, Oct 1976.

[AFdR80] K. Apt, N. Francez, and W. de Roever. A proof system for Communicating Sequential Processes.

ACM Transactions on Programming Languages and Systems, 2(3):359–385, Jul 1980.

[Bad79] D. Z. Badal. Correctness of concurrency control and implications in distributed databases. In

Proceedings of IEEE COMPSAC Conference, pages 588–593, Nov 1979.

[BALL90] B. Bershad, T. Anderson, E. Lazokska, and H. Levy. Lightweight remote procedure call. ACM

Transactions on Computer Systems, 6(1):37–55, Feb 1990.

[BC91] K. Birman and R. Cooper. The ISIS project: Real experience with a fault-tolerant programming

system. Operating Systems Review, 25(2):103—107, Apr 1991.

[BD85] O. Babaoglu and R. Drummond. Streets of Byzantine: Network architectures for fast reliable

broadcast. IEEE Transactions on Software Engineering, SE-11(6):546–554, Jun 1985.

[BDD+89] R. A. Benel, R. D. Dancey, J. D. Dehn, J.C. Gutmann, and D.M. Smith. Advanced automation

system design. Proceedings of the IEEE, 77(11):1653–1660, Nov 1989.

[BFG+85] J.S. Banino, J.C. Fabre, M. Guillemont, G. Morisset, and M. Rozier. Some fault-tolerant aspects of

the Chorus distributed system. In Proceedings of the Fifth International Conference on Distributed

Computing Systems, pages 430–437, May 1985.

[BG81] P. A. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM

Computing Surveys, 13(2):185–221, Jun 1981.

[BGL83] P. A. Bernstein, N. Goodman, and M. Y. Lai. Analyzing concurrency control when user and system

operations differ. IEEE Transactions on Software Engineering, SE-9(3):233–239, May 1983.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley Publishing Company, 1987.

34

[BJ87] K. Birman and T. Joseph. Reliable communication in the presence of failures. ACM Transactions

on Computer Systems, 5(1):47–76, Feb 1987.

[BL88] B. Bhargava and S. Lian. Independent checkpointing and concurrent rollback for recovery in

distributed systems — An optimistic approach. In Proceedings of the Seventh Symposium on

Reliable Distributed Computing, pages 3–12, Columbus, Ohio, Oct 1988.

[BMD91] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in fault-tolerant computing.

Technical Report 91-40, Department of Computer Sciences, University of Texas at Austin, 1991.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on Computer

Systems, 2(1):39–59, Feb 1984.

[Bor81] A. Borr. Transaction monitoring in ENCOMPASS: Reliable distributed transaction processing. In

Proceedings of International Conference on Very Large Data Bases, Sep 1981.

[BS83] G. Barigazzi and L. Strigini. Application-transparent setting of recovery points. In Proceedings of

the Thirteenth Symposium on Fault Tolerant Computing, Jun 1983.

[BSR80] P. A. Bernstein, D. W. Shipman, and J. B. Jr. Rothnie. Concurrency control in a system for distributed

databases (SDD-1). ACM Transactions on Database Systems, 5(1):18–25, Mar 1980.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast. ACM

Transactions on Computer Systems, 9(3):272–314, Aug 1991.

[BSW79] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects of serializability in database

concurrency control. IEEE Transactions on Software Engineering, SE-5(3):203–216, May 1979.

[Cas81] M. A. Casanova. The concurrency control problem of database systems. In Lecture Notes in

Computer Science 116. Springer-Verlag, Berlin, 1981.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message diffusion

to Byzantine agreement. In Proceedings of the Fifteenth International Symposium on Fault-Tolerant

Computing, pages 200–206, Ann Arbor, MI, Jun 1985.

[CC85] B. Chor and B. A. Coan. A simple and efficient Byzantine agreement algorithm. IEEE Transactions

on Software Engineering, SE-11(6):531–539, Jun 1985.

[CDD90] F. Cristian, B. Dancey, and J. Dehn. Fault-tolerance in the Advanced Automation System. In

Proceedings of the Twentieth Symposium on Fault-Tolerant Computing, pages 6–17, Newcastle-

upon-Tyne, UK, Jun 1990.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Computing Surveys, 3(2):67–

78, Jun 1971.

[CGR88] R.F. Cmelik, N.H. Gehani, and W. D. Roome. Fault Tolerant Concurrent C: A tool for writing

fault tolerant distributed programs. In Proceedings of the Eighteenth International Symposium on

Fault-Tolerant Computing, pages 55–61, Tokyo, June 1988.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on Computer

Systems, 2(3):251–273, Aug 1984.

[Coo85] E. C. Cooper. Replicated distributed programs. In Proceedings of the Tenth ACM Symposium on

Operating Systems Principles, pages 63–78, Orcas Island, WA, 1985.

[Cou81] Courier. Courier: The remote procedure call protocol. Technical Report XSIS 038112, Xerox

System Integration Standard, Stamford, CT, Dec 1981.

[Cri84] F. Cristian. Correct and robust programs. IEEE Transactions on Software Engineering, SE-

10(2):163–174, Mar 1984.

35

[Cri88] F. Cristian. Agreeing on who is present and who is absent in a synchronous distributed system.

In Proceedings of the Eighteenth International Conference on Fault-tolerant Computing, pages

206–211, Tokyo, Jun 1988.

[Cri89] F. Cristian. Probabilistic clock synchronization. In Proceedings of the Ninth International Symposium

on Distributed Computing Systems, pages 288–296, Newport Beach, CA, Jun 1989.

[Cri91] F. Cristian. Understanding fault-tolerant distributedsystems. Communicationsof ACM, 34(2):56–78,

Feb 1991.

[DDS83] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributed

consensus. In Proceedings of 24th Annual Symposium on Foundations of Computer Science, Tucson,

AZ, Nov 1983.

[DHS86] D. Dolev, J. Y. Halpern, and R. Strong. On the possibility and impossibility of achieving clock

synchronization. Journal of Computer and System Science, 32(2):230–250, 1986.

[DHW88] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties

in Avalon/c++. IEEE Computer, 21(12):57–69, Dec 1988.

[Dij68] E. W. Dijkstra. The structure of the THE multiprogramming system. Communications of the ACM,

11(5):341–346, May 1968.

[DIW89] S. Davidson, L. Insup, and V. Wolfe. A protocol for timed atomic commitment. In Proceedings

of the Ninth International Conference on Distributed Computing Systems, pages 199–206, Newport

Beach, CA, Jun 1989.

[DS83] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agreement. SIAM Journal of

Computing, 12:656–666, Nov 1983.

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and predicate

locks in a database system. Communications of the ACM, 19(11):624–633, Nov 1976.

[EL90] P. D. Ezhilchelvan and R. Lemos. A robust group membership algorithm for distributed real-time

system. In Proceedings of the Eleventh Real-Time Systems Symposium, pages 173–179, Lake Buena

Vista, Florida, Dec 1990.

[Fid88] C. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proceedings

of the Eleventh Australian Computer Science Conference, 1988.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one

faulty process. Journal of the ACM, 32(2):374–382, Apr 1985.

[GMS91] H. Garcia-Molina and A. Spauster. Ordered and reliable multicast communication. ACM Transac-

tions on Computer Systems, 9(3):242–271, Aug 1991.

[Goo75] J. Goodenough. Exception handling, issues, and a proposed notation. Communications of the ACM,

18(12):683–696, Dec 1975.

[Gra78] J. Gray. Operating systems: An advanced course. In Lecture Notes in Computer Science 60, pages

393–481. Springer-Verlag, Berlin, 1978.

[Gra86] J. Gray. An approach to decentralized computer systems. IEEE Transactions on Software Engineer-

ing, SE-12(6):684–692, Jun 1986.

[GS80] V. D. Gligor and S. H. Shattuck. On deadlock detection in distributed systems. IEEE Transactions

on Software Engineering, SE-6(5):435–440, Sep 1980.

[Had82] V. Hadzilacos. An algorithm for minimizing rollback cost. In Proceedings of the First ACM

Symposium on Principles of Distributed Computing, pages 93–97, Ottawa, Canada, 1982.

[Hol72] R. C. Holt. Some deadlock properties in computer systems. ACM Computing Surveys, 4(3):179–196,

Sep 1972.

36

[HP91] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing network

protocols. IEEE Transactions on Software Engineering, 17(1):64–76, Jan 1991.

[HS80] M. Hammer and D. Shipman. Reliability mechanisms for SDD-1. ACM Transactions on Data Base

Systems, Dec 1980.

[HSSD84] J. Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchronization. In

Proceedings of the Third ACM Symposium on Principles of Distributed Computing, pages 89–102,

Vancouver, Canada, Aug 1984.

[HY86] T. Hadzilacos and M. Yannakakis. Deleting completed transactions. In Proceedings of Fifth ACM

SIGACT-SIGMOD Symposium on Pronciples of Database Systems, pages 43–47, Cambridge, MA,

Mar 1986.

[IM84] H. Ihara and M. Mori. Autonomous decentralized computer control systems. IEEE Computer,

17(8):57–66, Aug 1984.

[JZ87] D. Johnson and W. Zwaenopoel. Sender based message logging. In Proceedings of the Seventeenth

International Symposium on Fault-Tolerant Computing, pages 14–19, Pittsburgh, PA, Jun 1987.

[JZ90] D. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic message logging

and checkpointing. Journal of Algorithms, pages 462–491, 1990.

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger. Distributed

fault-tolerant real-time systems: The Mars approach. IEEE Micro, pages 25–40, Feb 1989.

[KGR91] H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in a synchronous

distributed real-time system. In A. Avizienis and J.C. Laprie, editors, Dependable Computing for

Critical Applications, pages 411–429. Springer-Verlag, Wien, 1991.

[Kim78] K. H. Kim. An approach to program-transparent coordination of recovering parallel processes and

its efficient implementation rules. In Proceedings of 1978 International Conference on Parallel

Processing, Aug 1978.

[KM85] H. Kopetz and W. Merker. The architecture of MARS. In Proceedings of the Fifteenth Symposium

on Fault-Tolerant Computing, pages 274–279, Ann Arbor, Mi, Jun 1985.

[KO87] H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed, real-time systems. IEEE

Transactions on Computers, C-36(8):933–940, Aug 1987.

[Koh81] W. H. Kohler. A survey of techniques for synchronization and recovery in decentralized computer

systems. ACM Computing Surveys, 13(2):149–183, Jun 1981.

[KR81] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Transactions

on Database Systems, 6(2):213–226, Jun 1981.

[KT87] R. Koo and S. Toueg. Checkpointing and rolback-recovery for distributed systems. IEEE Transac-

tions on Software Engineering, SE-13(1):23–31, Jan 1987.

[KTHB89] M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H. Bal. An efficient reliable broadcast protocol.

Operating Systems Review, 23(4):5–19, Oct 1989.

[KYA86] K. H. Kim, J. h. You, and A. Abouelnaga. A scheme for coordinated execution of independently

designed recoverable distributed processes. In Proceedings of Sixteenth Symposium on Fault Tolerant

Computing, Jun 1986.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of

ACM, 21(7):558–565, Jul 1978.

[Lam81] B. Lampson. Atomic transactions. In Distributed Systems—Architecture and Implementation, pages

246–265. Springer-Verlag, Berlin, 1981.

37

[Lap92] J. C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-Verlag, Vienna,

1992.

[LB89] P. Leu and B. Bhargava. A model for concurrent checkpointing and recovery using transactions.

In Proceedings of the Ninth International Conference on Distributed Computing Systems, pages

423–430, Newport Beach, California, Jun 1989.

[LeL78] G. LeLann. Algorithms for distributed data-sharing which use tickets. In Proceedings of Third

Berkeley Workshop on Distributed Data Management and Computer Networks, pages 259–272,

Berkeley, CA, Aug 1978.

[LG81] G. Levin and D. Gries. A proof technique for Communicating Sequential Processes. Acta Informatica,

15:281–302, 1981.

[LG85] K. J. Lin and J. D. Gannon. Atomic remote procedure call. IEEE Transactions on Software

Engineering, SE-11(10):1126–1135, Oct 1985.

[Lis85] B. Liskov. The Argus language and system. In M. Paul and H.J. Siegert, editors, Distributed Systems:

Methods and Tools for Specification, Lecture Notes in Computer Science, Volume 190, chapter 7,

pages 343–430. Springer-Verlag, Berlin, 1985.

[Lis88] B. Liskov. Distributed programming in Argus. Communications of the ACM, 31(3):300–312, Mar

1988.

[LMS85] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults. Journal of the

ACM, 32(1):52–78, Jan 1985.

[LS76] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system. Technical report,

Computer Science Laboratory, Xerox, Palo Alto Research Center, Palo Alto, CA, 1976.

[LS83] B. Liskov and R. W. Scheifler. Guardians and actions: Linguistic support for robust distributed

programs. ACM Transactions on Programming Languages and Systems, 5(3):381–404, Jul 1983.

[LSM82] L. Lamport, R. Shostak, and Pease M. The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 4(3):382–401, Jul 1982.

[LW85] R. J. LeBlanc and C. T. Wilkes. Systems programming with objects and actions. In Proceedings

of the Fifth International Conference on Distributed Computing Systems, pages 132–139, Denver,

Colorado, May 1985.

[LWL88] J. Lundelius-Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization. Infor-

mation and Computation, 77(1):1–36, 1988.

[Mar76] P. M. Marci. Deadlock detection and resolution in a CODASYL based data management system.

In Proceedings of ACM SIGMOD International Conference on Management of Data, pages 45–49,

Washington, D.C., Jun 1976.

[Mar84] K. Marzullo. Maintaining the Time in a Distributed System. PhD thesis, Stanford University,

Department of Electrical Engineering, Mar 1984.

[Mat89] F. Mattern. Time and global states in distributed system. In Proceedings of the International

Workshop on Parallel and Distributed Algorithms, North-Holland, 1989.

[Mil79] M. Milenkovic. Update synchronization in multiaccess database systems. Technical Report PhD

dissertation, Dept of Electrical & Computer Engineering, University of Massachusetts, Amherst,

MA, 1979.

[ML83] C Mohan and B. Lindsay. Efficient commit protocols for the tree of processes model of distributed

transaction. In Proceedings of the Second ACM SIGACT/SIGOPS Symposium on Principles of

Distributed Computing, Montreal, Canada, Aug 1983.

38

[MLO86] C. Mohan, B. Lindsay, and R. Obermarck. Transactions management in the R* distributed database

management system. ACM Transaction on Database Systems, 11(4):378–396, Dec 1986.

[Mos85] J. E. B Moss. Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press,

Cambridge, MA, 1985.

[MPS89] S. Mishra, L. Peterson, and R. Schlichting. Implementing replicated objects using Psync. In

Proceedings of the Eighth Symposium on Reliable Distributed Computing, pages 42–52, Seattle,

Washington, Oct 1989.

[MPS91] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication substrate for fault-

tolerant distributed programs. Technical Report TR 91-32, Dept of Computer Science, University of

Arizona, Tucson, AZ, 1991.

[MPS92] S. Mishra, L. Peterson, and R. Schlichting. A membership protocol based on partial order. In J. F.

Meyer and R. D. Schlichting, editors, Dependable Computing for Critical Applications 2, pages

309–331. Springer-Verlag, Wien, 1992.

[MR79] D. A. Menasce and Muntz R. R. Locking and deadlock detection in distributed databases. IEEE

Transactions on Software Engineering, SE-5(3):195–201, May 1979.

[MSF83] C Mohan, R. Strong, and S. Finkelstein. Method for distributed transaction commit and recovery

using Byzantine agreement within clusters of processors. In Proceedings of the Second ACM

SIGACT/SIGOPS Symposium on Principles of Distributed Computing, Montreal, Canada, Aug

1983.

[MSM89] P. M. Melliar-Smith and L. E. Moser. Fault-tolerant distributed systems based on broadcast commu-

nication. In Proceedings of the Ninth International Conference on Distributed Computing Systems,

pages 129–134, Newport Beach, CA, Jun 1989.

[NCN88] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable group communication in distributed systems.

In Proceedings of the Eighth International Conference on Distributed Computing Systems, pages

439–446, San Jose, California, Jun 1988.

[Nel81] B.J. Nelson. Remote Procedure Call. PhD thesis, Dept of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA, 1981.

[Neu91] P.G. Neumann. Illustrative risks to the public in the use of computer systems and related technology.

Software Engineering Notes, 16(1):2–9, Jan 1991.

[Ng88] P. Ng. A commit protocol for checkpointing transactions. In Proceedings of the Seventh Symposium

on Reliable Distributed Computing, pages 22–31, Columbus, Ohio, Oct 1988.

[NS89] T. P. Ng and S. Shi. Replicated transactions. In Proceedings of the Ninth International Conference

on Distributed Computing Systems, pages 474–480, Newport Beach, CA, Jun 1989.

[OOW91] M. Olsen, E. Oskiewicz, and J. Warne. A model for interface groups. In Proceedings of the Tenth

Symposium on Reliable Distributed Systems, pages 98–107, Pisa, Italy, Sep 1991.

[Pap79] C. H. Papadimitriou. Serializability of concurrent database updates. Journal of the ACM, 26(4):631–

653, Oct 1979.

[PBS89] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context information in

interprocess communication. ACM Transactions on Computer Systems, 7(3):217–246, Aug 1989.

[Per85] K. J. Perry. Randomized Byzantine agreement. IEEE Transactions on Software Engineering, SE-

11(6):539–545, Jun 1985.

[PS88] F. Panzieri and S. K. Shrivastava. Rajdoot: A remote procedure call mechanism supporting orphan

detection and killing. IEEE Transactions on Software Engineering, SE-14(1):30–37, Jan 1988.

39

[PSB+88] D Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk. The Delta-4 approach to dependability

in open distributed computing systems. In Proceedings of the Eighteenth Symposium on Fault-

Tolerant Computing, Tokyo, Jun 1988.

[Rab76] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity, pages

21–39. Academic Press, 1976.

[Rab83] M. O. Rabin. Randomized Byzantine generals. In Proceedings of Twenty-fourth Annual Symposium

on Foundations of Computer Science, Tucson, AZ, Nov 1983.

[Ran75] B. Randell. System structure for software fault tolerance. IEEE Transactions on Software Engineer-

ing, SE-1(2):220–232, Jun 1975.

[RB91] A. Ricciardi and K. Birman. Using process groups to implement failure detection in asynchronous

environments. In Proceedings of Tenth Annual ACM Symposium on Principles of Distributed

Computing, pages 341–353, Montreal, Quebec, Canada, Aug 1991.

[RC89] K. Ravindran and S. T. Chanson. Failure transparency in remote procedure calls. IEEE Transactions

on Computers, 38(8):1173–1187, Aug 1989.

[RLT78] B. Randell, P.A. Lee, and P.C. Treleaven. Reliability issues in computing system design. ACM

Computing Surveys, 10(2):123–166, Jun 1978.

[RS88] P. Ramanathan and K. G. Shin. Checkpointing and rollback recovery in a distributed system using

common time base. In Proceedings of the Seventh Symposium on Reliable Distributed Systems,

pages 13–21, Columbus, OH, Oct 1988.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21:120–126, Feb 1978.

[RSB90] P. Ramanathan, K. G. Shin, and R. W. Butler. Fault-tolerant clock synchronization in distributed

systems. IEEE Computer, 23(10):33–42, Oct 1990.

[RSL78] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. System level concurrency control for distributed

database systems. ACM Transactions on Database Systems, 3(2):178–198, Jun 1978.

[Rus80] D. L. Russell. State restoration in systems of communicating processes. IEEE Transactions on

Software Engineering, SE-6(2):183–194, Mar 1980.

[RV91] L. Rodrigues and P. Verissimo. xAMp: A multi-primitive group communications service. Technical

report, INESC, Lisboa, Portugal, Sep 1991.

[SB90] M. Schroeder and M. Burrows. Performance of Firefly RPC. ACM Transactions on Computer

Systems, 6(1):1–17, Feb 1990.

[SC90] J. W. Stamos and F. Cristian. A low-cost atomic commit protocol. In Proceedings of the Ninth

Symposium on Reliable Distributed Systems, pages 66–75, Oct 1990.

[Sch82] F. Schneider. Synchronization in distributed programs. ACM Transactions on Programming Lan-

guages and Systems, 4(2):125–148, Apr 1982.

[Sch87] F. Schneider. Understanding protocols for Byzantine clock synchronization. Technical Report

87-859, Dept of Computer Science, Cornell University, Aug 1987.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.

ACM Computing Surveys, 22(4):299–319, Dec 1990.

[SDP91] S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An overview of the Arjuna distributed

programming system. IEEE Software, 8(1):66–73, Jan 1991.

[Ske82a] D. Skeen. Nonblocking commit protocols. In Proceedings of ACM SIGMOD Conference on

Management of Data, pages 133–147, Orlando, FL, Jun 1982.

40

[Ske82b] D. Skeen. A quorum based commit protocol. In Proceedings of Sixth Berkeley Workshop on

Distributed Data Management and Computer Networks, pages 69–80, Berkeley, CA, Feb 1982.

[SL84] K. G. Shin and Y. H. Lee. Evaluation of recovery blocks used for checkpointing processes. IEEE

Transactions on Software Engineering, SE-10(6):692–700, Nov 1984.

[SM77] R. M. Shapiro and R. E. Millstein. Reliability and fault recovery in distributed processing. In

Oceans’77 Conference Record, Vol II, Los Angeles, 1977.

[SMR88] S. K. Shrivastava, L. V. Mancini, and B. Randell. On the duality of fault tolerant system structures.

In J. Nehmer, editor, Experiences with Distributed Systems, volume 309. LNCS Springer-Verlag,

1988.

[SS83] R. Schlichting and F. Schneider. Fail-stop processors: An approach to designing fault tolerant

computing systems. ACM Transactions on Computer Systems, 1(3):222–238, Aug 1983.

[SS84] R. Schlichting and F. Schneider. Using message passing for distributed programming: Proof rules

and disciplines. ACM Transactions on Programming Languages and Systems, 6(3):402–431, Jul

1984.

[SSCA87] R. Strong, D. Skeen, F. Cristian, and H. Aghili. Handshake protocols. In Proceedings of the Seventh

International Conference on Distributed Computing Systems, pages 521–528, Berlin, Sep 1987.

[ST87] T. K. Srikanth and S. Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–645,

Jul 1987.

[Svo84] L. Svobodova. Resilient distributed computing. IEEE Transactions on Software Engineering, SE-

10(3):257–268, May 1984.

[SW89] A. P. Sistla and J. L. Welch. Efficient distributed recovery using message logging. In Proceedings of

Eighth Annual ACM Symposium on Principles of DistributedComputing, pages 223–238, Edmonton,

Canada, Aug 1989.

[SY85] R. Strom and S. Yemini. Optimistic recovery in distributedsystems. ACM Transactions on Computer

Systems, 3(3):204–226, Aug 1985.

[Tea91] ISA Project Core Team. ANSA: Assumptions, principles, and structures. In Conference proceedings

of Software Engineering Environments, University College of Wales, Aberystwyth, Wales, Mar

1991.

[Tho79] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy databases.

ACM Transactions on Database Systems, 4(2):180–209, Jun 1979.

[TS84] Y. Tamir and C. H. Sequin. Error recovery in multicomputers using global checkpoints. In Proceed-

ings of the Thirteenth International Conference on Parallel Processing, Aug 1984.

[Ver90] P. Verrissimo. Real-time data management with clockless reliable broadcast protocols. In Pro-

ceedings of the Workshop on Management of Replicated Data, pages 20–24, Houston, TX, Nov

1990.

[VM90] P. Verissimo and J. Marques. Reliable broadcast for fault-tolerance on local computer networks. In

Proceedings of the Ninth Symposium on Reliable Distributed Systems, pages 54–63, Huntsville, AL,

oct 1990.

[VR91] P. Verissimo and L. Rodrigues. A posteriori agreement for fault-tolerant clock synchronization on

broadcast networks. Technical report, INESC, Lisboa, Portugal, Nov 1991.

[VRB89] P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly parallel atomic multicast protocol. In

SIGCOMM’89, pages 83–93, Austin, TX, Sep 1989.

[Wei89] W. Weihl. Using transactions in distributed applications. In Sape Mullender, editor, Distributed

Systems, pages 215–235. Addison-Wesley Publishing Company, ACM Press, New York, New York,

1989.

41

