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of the storage of a temporal relation or the time e�ciency of evaluating a temporal query, yet are

not relevant to the semantics of the temporal relation.

A fully articulated design methodology utilizing the normal forms presented here and taking

into account the time semantics of tuples and attributes and e�ciency concerns is still needed.
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Space and time varying | modeled with an arbitrary bitemporal/bispatial element, a set of 4-

dimensional quanta. An example is the Emp = (Name, Dept, PhNo j S-T) relation modeling

employees that commute between two (or more) di�erent company plants and who are pos-

sibly in di�erent departments in di�erent locations.

Spatial extensions of the relational operators could be de�ned. For example, x-slice and y-

slice operators, analogous to valid and transaction timeslice, could be de�ned. The spaceslice of a

relation r, then, is a relation containing the tuples in r that apply to speci�ed values of x and y.

The functional dependency X ! Y is intensional: it applies to all possible instances of the

relation at all times and at all points in space. We can de�ne a spatial functional dependency,

denoted X

SP

!Y , by formalizing the dependency predicate to apply to all space slices of all possible

extensions, as well as a spatial-temporal functional dependency, denoted X

SP-T

! Y , that would take

all space slices and time snapshots of all possible extensions. These would be natural extensions

of snapshot dependencies, in that the following would hold.

X ! Y , X

T

!Y , X

SP

!Y , X

SP-T

! Y

Note that these various dependencies are being applied in the context of di�erent data models,

speci�cally the snapshot, bitemporal conceptual, spatial conceptual, and bitemporal spatial con-

ceptual data models, respectively.

Finally, it is possible to generalize all of the other dependency results, multivalued, fourth

and �fth normal forms, etc, to the spatial and spatial-temporal regimes.

7 Conclusion and Future Research

In this paper, we have de�ned an consistent temporal extension of the concepts of functional depen-

dencies, keys and normal forms. We demonstrated that our de�nitions are more natural extensions

than those previously proposed. The generality of our approach was indicated by applying it to

spatial databases. The result is a consistent and wholesale application of existing dependency and

normalization theory to valid-time, transaction-time, bitemporal, spatial, and spatial-temporal

databases, allowing temporal and spatial database design to closely track conventional database

design.

We want to emphasize the fundamental decisions that made this possible. First, we used

snapshot equivalence of temporal relations (de�ned as having identical snapshots over all valid

and transaction times) as a formalization of the notion of temporal relations having the same

information content. Secondly, we focused on the semantics of temporal relations rather than

their representation. The concepts apply globally, across most if not all existing representational

temporal data models. Our use of snapshot equivalence makes this possible as representational

models provide means of computing snapshots. As a result, new concepts are not needed for each

representational data model. Finally, we chose a simple data model that has no intentions of being

suitable as a basis for display or implementation (existing models may be used for these important

tasks). The model has the important feature that relation instances with the same information

content are identical. Our approach e�ectively moves the distinction between the various data

models from a semantic basis to a physical, performance-relevant basis.

Our normal forms do not address all the issues that come into play when the schema for a

temporal database is being designed. First, the normal forms do not consider the semantics of

time-varying attributes, such as whether they are continuously varying or are stepwise constant.

Secondly, the normal forms do not consider important e�ciency concerns. Speci�cally, synchronous

attributes, as de�ned by Navathe [Navathe & Ahmed 89], may be seen to a�ect the space e�ciency
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that relies on the presence of the surrogate attribute [Segev & Shoshani 88]. The timeslice opera-

tors de�ned in Section 4.2 do not rely on any distinguished attribute.

Informally, 1TNF was de�ned to ensure that applications of the special valid timeslice result

in a 1NF relation. Our valid timeslice operator (�

B

) always returns a 1NF relation when applied

to a valid time relation. In our framework, 1TNF may be de�ned as follows: A relation schema

R is in 1TNF if the surrogate attribute S is a temporal key, i.e., S

T

!R. Thus, 1TNF is simply an

application of the concept of a key.

Time normal form (TNF) was de�ned to ensure that time-varying attributes were syn-

chronous, i.e., change at the same time [Navathe & Ahmed 89]. This aspect is not accommodated

in our de�nitions of temporal normal forms.

Using our de�nition of temporal key, P Normal Form (PNF) [Lorentzos 91] will automati-

cally be satis�ed. Thus PNF is also simply an application of the concept of a key. Q Normal

Form appears to have similarities with Navathe's concept of synchronicity, and in any case is not

accommodated in our de�nitions.

The snapshot normal forms were also applied to the representations of valid time relations

in several data models [Navathe & Ahmed 89, Sarda 90A, Lorentzos 91]. Our approach provides

a more natural, representation-independent extension of the snapshot normal forms.

Concerning keys, we formalized and extended the notions present in the HQL [Sadeghi et al. 87],

HSQL [Sarda 90A], and IXRM [Lorentzos 91] data models, using the more general concept of tem-

poral dependency. The concept of key in the TempSQL data model [Gadia 92] appears to be

entirely representational, does not re
ect the semantics of the time-varying data, and is not con-

sistent with the concept of a snapshot key.

6 Application to Spatial Databases

The graphical representation of a bitemporal element as an area in the two-dimensional valid-

time/transaction-time space (c.f., Figure 1) leads one to consider spatial databases, which are either

two dimensional (e.g., index by x and y axes, say latitude and longitude over the surface of the

Earth) (c.f., [Mark et al. 89]) or three dimensions (e.g., the third dimension being altitude or depth)

(c.f., [Jones 89]). In fact, the entire discussion of generalizing normal form and dependency theory

to accommodate time can be applied to space. In this section, we outline this correspondence.

Each relation in the spatial data model would be \space-stamped" with an implicit spatial

element S, which is a set of n-dimensional quanta (the spatial analogue of the temporal \chronon").

For two-dimensional modeling, bispatial elements would be used; for three-dimensional modeling,

trispatial elements would be used. In the following, we will focus on geographical applications that

require modeling the surface of the Earth in two dimensions [Bracken & Webster 89].

Relations can be of several general types.

Space and time invariant | modeled with a valid-time element of \all time" (from beginning to

forever) and a bispatial element of \everywhere." An example is the relation ParentOf =

(Parent, Child).

Space invariant, time varying | modeled with a bispatial element of everywhere. An example is

the Emp = (Name, Dept, PhNo j T) relation discussed in detail earlier.

Space varying, time invariant | modeled with a valid-time element of all time. An example is

the relation Elevation = (Value j S), with a value at each point on the Earth (geographical

databases do not consider geological processes that could change the elevation, so for all

practical purposes it is time-invariant).
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Every concept de�ned above is applicable, as special cases, to both valid-time and transaction-

time relations, using the appropriate temporal operators.

The following theorem states three additional properties of the temporal natural join. The

snapshot natural join has a parallel for each of these properties. For example, the �rst property

states that in general, a decomposition is lossy, i.e., may produce additional, spurious tuples that

makes it impossible to identify the true information.

Theorem: Let r be a bitemporal relation instance of a schema that includes the sets X and Y of

non-timestamp attributes. Also let 
 be an instances of a bitemporal relation schema with precisely

the non-timestamp attributes X , and let � be an arbitrary relation instance. The following three

properties hold.

r

S

� �

B

X

(r) 1

B

�

B

Y

(r)

�

B

X

(r)

S

� �

B

X

(�

B

X

(r) 1

B

�

B

Y

(r))

�

X

(
 1

B

�)

S

� 


Proof: The proof of the �rst property follows from the �rst half of the previous proof.

The proof of the second property follows from the �rst property and the fact that if r

S

� r

0

are arbitrary instances of a relation schema R then �

X

(r)

S

� �

X

(r

0

). To see this is true, let x

s

X

be an arbitrary tuple in a snapshot at transaction time t

0

and valid time t of the left hand side

relation. This means that there exists a tuple x

X

with (t

0

; t) 2 x

X

[T ] in the left hand side.

Then, by the de�nition of projection, 9x 2 r (x[X ] = x

X

^ (t

0

; t) 2 x[T ]). By the assumption,

9x

0

2 r

0

(x

0

[X ] = x[X ] ^ (t

0

; t) 2 x

0

[T ]). Thus, applying the de�nition of projection, x

s

X

is in the

snapshot at transaction time t and valid time t

0

of the right hand side relation.

Finally, to prove the third property, assume that a tuple x

s

X

belongs to �

V

t

(�

B

t

0

(�

X

(
 1

B

�))).

Then there is an x in �

X

(
 1

B

�) such that x[X ] = x

s

X

^ (t

0

; t) 2 x[T ]. By the de�nition of 1

B

,

9x

0

2 
(x

0

[X ] = x[X ]^ x[T ] � x

0

[T ]). The existence of tuple x

0

means that x

s

X

2 �

V

t

(�

B

t

0

(
)). ut

In an entirely analogous way, by using the modi�ed version of the relational operators given in

Section 4.2 and the concept of snapshot equivalence, one can extend all the other properties of func-

tional dependencies to hold for temporal functional dependencies. One can also de�ne temporal

variants of join dependencies [Rissanen 77], �fth normal form (also called project-join normal form)

[Fagin 79], embedded join dependencies [Fagin 77], inclusion dependencies [Casanova et al. 81],

template dependencies [Sadri & Ullman 82], domain-key normal form [Fagin 81], and generalized

functional dependencies [Sadri 80]. The extensions exploit the intensional quality of these proper-

ties (i.e., applying to every extension implies applying over all time), as well as the simplicity of the

bitemporal conceptual data model. The result is a consistent and wholesale application of existing

dependency and normalization theory to valid-time, transaction-time, and bitemporal databases.

5.5 Evaluation

It should be clear from the discussion in Section 5.3 that the bitemporal conceptual data model,

with its associated de�nitions of functional dependency and normal forms, satis�es all �ve desider-

ata listed in Section 3.1. It should also be evident that the de�nition of key in this model satis�es

all six desiderata listed in Section 3.2.

We now brie
y compare our approach in turn to previously proposed de�nitions of temporal

normal forms and temporal keys.

To de�ne �rst temporal normal form (1TNF), a special valid timeslice operator was de�ned
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Definition: Two bitemporal relation instances, r and s, are snapshot equivalent, r

S

� s, if for all

times t and for all times t

0

not exceeding NOW ,

�

V

t

(�

B

t

0

(r)) = �

V

t

(�

B

t

0

(s)): ut

Observe that bitemporal relations in the BCDM have the property that

r

1

= r

2

, r

1

S

� r

2

:

With the property of snapshot equivalence, we de�ne the property of snapshot subset.

Definition: A temporal relation instance, r, is a snapshot subset of a temporal relation instance,

s, r

S

� s, if for all times t

1

not exceeding NOW and all times t

2

,

�

V

t

2

(�

B

t

1

(r)) � �

V

t

2

(�

B

t

1

(s)): ut

Here, the similar property does not apply. Speci�cally, r

1

S

� r

2

does not imply r

1

� r

2

.

Lemma: For two bitemporal relation instances r and s over the same schema,

r

S

� s and s

S

� r, r

S

� s: ut

We now show that algorithms for normal form decomposition in conventional relational

databases are applicable to temporal databases as well.

Theorem: The decomposition X; Y of a temporal relation schema, R, with a set of temporal

dependencies, F , is lossless (w.r.t. 1

B

) if

X \ Y

T

!X 2 F

+

or X \ Y

T

!Y 2 F

+

:

Proof: Assume that X \ Y

T

!X holds on R and let r be an arbitrary instance of R. Let A, B,

and C partition the attributes of R so that A = X \Y , B = X�Y , and C = Y �X . Showing that

the de�nition of lossless holds is equivalent to showing that r

S

� �

B

X

(r) 1

B

�

B

Y

(r), which in turn is

equivalent to showing each of

r

S

� �

B

X

(r) 1

B

�

B

Y

(r) and r

S

� �

B

X

(r) 1

B

�

B

Y

(r) :

To show the �rst inclusion, let u = (u

A

; u

B

; u

C

; t) 2 r. By de�nition of �

B

, u

1

= (u

A

; u

B

; t

1

) 2

�

B

X

(r) with t

1

� t. Also u

2

= (u

A

; u

C

; t

2

) 2 �

B

Y

(r) with t

2

� t. By the de�nition of 1

B

, u

0

=

(u

A

; u

B

; u

C

; t

0

) 2 r with t

0

= t

1

\ t

2

� t. Without use of the premise, this proves the inclusion.

To prove the second inclusion, pick two arbitrary tuples in the joining relations on the right

hand side. Let u

1

= (u

1

A

; u

B

; t

1

) 2 �

B

X

(r) and u

2

= (u

2

A

; u

C

; t

2

) 2 �

B

Y

(r). The inclusion follows if we

can show that the result of u

1

1

B

u

2

(= u

0

) is a snapshot subset of r. If u

1

A

6= u

2

A

or t

0

= t

1

\ t

2

= ;,

the result of u

1

1

B

u

2

is empty, and the relationship holds.

Otherwise, u

0

= (u

A

; u

B

; u

C

; t

0

) where u

A

= u

1

A

= u

2

A

. Now, for each chronon e 2 t

0

we need

to show that there is a tuple u 2 r with u = (u

A

; u

B

; u

C

; t) and e 2 t. Tuple u

1

must be (partially)

derived from a tuple u

e

2 r for which u

e

[A] = u

A

and u

e

[B] = u

B

and e 2 u

e

[T ] (since t

0

� t

1

).

Similarly, because e 2 t

2

, tuple u

2

must be (partially) derived from a tuple u

0

e

2 r with u

0

e

[A] = u

A

and u

0

e

[C] = u

C

and e 2 u

0

e

[T ]. From the assumption, we know thatA

T

!X , so A

T

!B. This temporal

functional dependency, along with the presence of u

e

in r, implies that u

0

e

[B] = u

e

[B] = u

B

(since

u

0

e

[A] = u

e

[A]). This u

0

e

in r is the tuple u that we were looking for, proving the second inclusion.

Finally, assuming that X \ Y

T

!Y (instead of X \ Y

T

!X) leads to a similar proof. ut

18



5.2 Temporal Keys

Since temporal functional dependencies are such a natural extension of conventional functional

dependencies, extension of the concepts of temporal key, temporal transitive closure, and temporal

normal forms are straightforward.

Definition: A set of attributes X of a temporal relation schema is a temporal superkey of R if

X

T

!R. The primary temporal key is a minimal temporal superkey. ut

Example: As before, there are two temporal superkeys, fName, PhNog and fName, PhNo,

Deptg, with the former being minimal, and thus serving as the primary temporal key. ut

As with functional dependencies, snapshot keys generalize to temporal keys, but only when

using temporal dependencies. Speci�cally, ifX is the primary key of the (snapshot) relation schema

R, then X is also the primary temporal key, but if X [ fTg is the (snapshot) primary key of the

representation of the temporal relation, it may not be the case that X is a temporal key.

5.3 Temporal Normal Forms

We can now generalize snapshot normal forms in a manner similar to generalizing keys. The

comments made in connection with dependencies in Section 5.1 about the inadequacy of using

snapshot de�nitions incorporating the timestamp attribute apply here as well.

Definition: A pair (R; F ) of a temporal relation schema R and a set of associated temporal

functional dependencies F is in Boyce-Codd temporal normal form (BCTNF) if

8 X

T

!Y 2 F

+

(Y � X _X

T

!R). ut

Definition: A pair (R; F ) of a temporal relation schema R and a set of associated temporal

functional dependencies F is in third temporal normal form (3TNF) if for all non-trivial temporal

functional dependencies X

T

!Y in F

+

, X is a temporal superkey for R or each attribute of Y is

part of a minimal temporal key of R. ut

Example: The relational schema Emp = (Name, Dept, PhNo jT) violates both 3TNF and

BCTNF. ut

Temporal versions of other conventional normal forms based on functional and multivalued

dependencies may be expressed analogously, e.g., 2NF, 4NF.

5.4 Properties of Temporal Normal Forms

During database design, relation schemas are brought to satisfy normal forms by means of decom-

position. Such decompositions must be reversible. We utilize the temporal natural join operator

to identify such loss-less join decompositions.

Definition: Let X and Y be arbitrary sets of explicit attributes of a temporal relation schema

R. Then the pair X; Y is a lossless-join decomposition with respect to the join 1

B

if for all r(R)

that satisfy the set of temporal functional dependencies on R,

r = �

B

X

(r) 1

B

�

B

Y

(r). ut

In order to prove the theorems stated here, a few auxiliary de�nitions are practical.
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any one time an employee can belong to only one department, and may have zero, one, or several

phone numbers. Expressing these constraints as temporal dependencies, we have Name

T

!Dept and

fName; PhNog

T

!fName; PhNo; Deptg. ut

Functional dependencies on snapshot schemas generalize to analogous temporal functional

dependencies, as illustrated in the previous example. Speci�cally, the following holds.

X ! Y , X

T

!Y:

Note that both X ! Y and X

T

!Y impose constraints derived from the reality being modeled on

possible instances in the data model (intuitively, the same real world constraints generate both

X ! Y and X

T

!Y ). It is also important to note that two separate data models are involved

here. The dependency X ! Y applies to the snapshot data model only, whereas X

T

!Y applies to

temporal data models: valid-time, transaction-time, and bitemporal data models.

However, it is not always the case that functional dependencies on snapshot schemas generalize

to snapshot functional dependencies on temporal schemas, even when the timestamp attribute

is factored in [Sarda 90A]. Assume that (A

1

; : : : ; A

n

jT) is the schema for a temporal relation

R. An instance of R can be interpreted in two rather di�erent ways: as an instance in the

bitemporal conceptual data model, where the timestamp attribute is implicit and is accorded a

special semantics, or as an instance in the snapshot data model, with schema (A

1

; : : : ; A

n

; T ),

where T is simply another explicit attribute. We can compare functional dependencies in the two

interpretations.

Theorem: With X and Y denoting arbitrary non-timestamp attributes of a relation schema,

X [ fTg ! Y 6) X

T

!Y:

Proof: The following instance satis�es Emp [ fTg ! Dept but not Emp

T

!Dept.

Emp
Dept T

Bill
Shipping 10 { 25

Bill
Loading 15 { 30

Note also that the implication does hold when Y � X . ut

The problem is that the timestamp attribute is considered to be atomic by the snapshot functional

dependency.

It turns out that the converse does hold.

Theorem: Letting X and Y be sets of non-timestamp attributes of a relation schema,

X

T

!Y ) X [ fTg ! Y:

Proof: Assume that X

T

!Y holds in R and let r be an arbitrary instance of R. Assume that

X [ fTg ! Y does not hold, i.e., that there exist two separate tuples s

1

and s

2

in r such that

s

1

[X [ fTg] = s

2

[X [ fTg] but s

1

[Y ] 6= s

2

[Y ]. Let (t; t

0

) be a bitemporal chronon in s

1

[T], and

let s

0

1

= s

1

[A

1

; : : :A

n

] and s

0

2

= s

2

[A

1

; : : :A

n

]. By construction, s

0

1

; s

0

2

2 �

t

(�

t

0(r)). However,

s

0

1

[X ] = s

0

2

[X ] and by assumption s

1

[Y ] 6= s

2

[Y ], and hence X

T

!Y is not satis�ed, and the impli-

cation of the theorem is true by contradiction. ut

Multivalued temporal dependencies may be de�ned using the same template as that used for

de�ning temporal functional dependencies. Speci�cally, for each universal quali�cation of possible

instances of R, 8r(R)8s 2 r, in the original de�nition, substitute universal quanti�cation over all

possible snapshots of instances of R, 8r(R)8t; t

0

8s 2 �

t

(�

t

0(r)).
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We have demonstrated equivalence mappings between the conceptual model and several repre-

sentational models [Jensen et al. 92A]. This equivalence is based on snapshot equivalence, de�ned

in Section 5.4. Snapshot equivalence formalizes the notion that two temporal relations have the

same information contents and provides a natural means of comparing rather disparate represen-

tations. Speci�cally, we have shown that conceptual instances could be mapped into instances of

three data models: a 1NF tuple timestamped data model [Snodgrass 87], a data model based on

1NF timestamped change requests recorded in backlog relations [Jensen et al. 91], and a non-1NF

data model in which attribute values were stamped with rectangles in transaction-time/valid-time

space [Gadia 92]. We also showed how the relational algebraic operators de�ned in the previous

section could be mapped to analogous operators in the representational models.

5 Generalizing Dependency and Normal Form Theory

The bitemporal conceptual data model just de�ned provides the means to generalize standard

relational dependency and normal form theory to accommodate temporal relations. In this sec-

tion we do just that, generalizing in turn the concepts of functional dependencies, multivalued

dependencies, keys, the normal forms themselves, and lossless join decomposition.

5.1 Temporal Dependencies

Functional dependencies are intensional, i.e., they apply to every possible extension. This intuitive

notion already encompasses time, for it may be interpreted as applying at any time in reality and

for any stored state of the relation.

To be more speci�c, consider the restricted case of a transaction-time relation r, with schema

R = (A

1

; : : : ; A

n

jT), and a parallel snapshot relation r

0

with the same schema (but without the

implicit timestamp attribute): R

0

= (A

1

; : : : ; A

n

). The current state of r, denoted by �

T

NOW

(r),

will faithfully track the current state of r

0

. The information in a past state of r

0

will be retained

in r, and can be extracted via �

T

t

0

(r). A functional dependency on R

0

will hold for all possible

extensions, and hence for all past states of r

0

. Hence, the same functional dependency must hold

for all snapshots of r. The same argument can be applied to valid-time relations and to bitemporal

relations, yielding the following characterization.

Definition: Let X and Y be sets of non time-stamp attributes of a temporal relation schema,

R. A temporal functional dependency , denoted X

T

!Y , exists on R if

8r(R) 8t; t

0

8s

1

; s

2

2 �

t

(�

t

0(r)) (s

1

[X ] = s

2

[X ]) s

1

[Y ] = s

2

[Y ]). ut

Note that temporal functional dependencies are generalizations of conventional functional

dependencies. In the de�nition of a temporal functional dependency, a temporal relation is per-

ceived as a collection of snapshot relations. Each such snapshot of any extension must satisfy the

corresponding functional dependency.

Also note that this de�nition applies equally well to valid-time, transaction-time, and bitem-

poral relations, utilizing the relevant variants of the transaction and valid timeslice operators.

While we di�erentiate operator variants with the superscripts \V" (for valid-time), \T" (for trans-

action-time) and \B" (for bitemporal), the temporal functional dependency is generic, applying to

all forms of temporal relations, with the appropriate operator variants coming into play. The \T"

designation in a temporal functional dependency refers to the generic adjective \temporal", not

the speci�c adjective \transaction-time."

Example: Consider again the database recording phone numbers, departments, and employees

in a company. While employees come and go, and phones are added and dropped as needed, at
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The �rst line ensures that no chronon in any value-equivalent tuple of r is left unaccounted for,

and the second line ensures that no spurious chronons are introduced.

Let P be a predicate de�ned on A

1

; : : : ; A

n

. The selection P on r, �

B

P

(r), is de�ned as follows.

�

B

P

(r) = fz j z 2 r (P (z[A]))g

In the bitemporal natural join, two tuples join if they match on the join attributes and

have overlapping bitemporal element timestamps. De�ne r and s to be instances of R and S,

respectively, and let R and S be bitemporal relation schemas given as follows.

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

l

jT)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

m

jT)

The bitemporal natural join of r and s, r 1

B

s, is de�ned below. As can be seen, the timestamp of

a tuple in the join-result is computed as the intersection of the timestamps of the two tuples that

produced it.

r 1

B

s = fz

(n+l+m+1)

j 9x 2 r 9y 2 s (x[A] = y[A] ^ x[T]\ y[T] 6= ;^

z[A] = x[A] ^ z[B] = x[B] ^ z[C] = y[C]^

z[T] = x[T]\ y[T])g

We have only de�ned operators for bitemporal relations. The similar operators for valid time

and transaction time relations are special cases. The valid and transaction time natural joins

are denoted 1

V

and 1

T

, respectively. The same naming convention is used for the remaining

operators.

Finally, we de�ne two operators that select on valid time and transaction time. Let t denote an

arbitrary time value and let t

0

denote a time not exceeding NOW . The valid timeslice operator (�

B

)

yields a relation timestamped with transaction-time elements; the transaction timeslice operator

(�

B

) evaluates to a relation timestamped with valid-time elements

2

.

�

B

t

(r) = fz

(n+1)

j 9x 2 r (z[A] = x[A] ^ t

0

2 elem 1 (x[T])^ z[T

v

] = elem 2 (x[T]))g

�

B

t

0

(r) = fz

(n+1)

j 9x 2 r (z[A] = x[A] ^ t 2 elem 2 (x[T])^ z[T

t

] = elem 1 (x[T]))g

Here, elem 1 selects all the transaction-time chronons from a bitemporal element, and elem 2

selects all the valid-time chronons.

There also exist variants that extract a snapshot relation from a valid-time relation (�

V

) and

that extract a snapshot relation from a transaction-time relation (�

T

). To extract from r the tuples

valid at time t and current in the database during t

0

(termed a snapshot of r), either �

V

t

(�

B

t

0

(r)) or

�

T

t

0

(�

B

t

(r)) may be used; these two expressions evaluate to the same snapshot relation.

Note that since relations in the data model are homogeneous, i.e., all attributes in a tuple are

associated with the same timestamp [Gadia 88], the valid or transaction timeslice of a relation will

not introduce any nulls into the resulting relation.

4.3 Associated Representational Data Models

The objectives of the bitemporal conceptual data model are narrow in scope. This data model is

designed capture the time-varying semantics of the data, without concern for ease of implementa-

tion, convenience of presentation, or amenability to query optimization. For these aspects, we rely

on existing representational data model(s).

2
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Command Transaction Time

insert(dept,("Bill","Ship"),[6/10,6/15])
6/5

modify(dept,("Bill","Ship"),[6/5,6/20])
6/10

modify(dept,("Bill","Ship"),[6/10,6/15])
6/15

delete(dept,("Bill","Ship"))
6/20

insert(dept,("Bill","Load"),[6/10,6/15])
6/20

insert(dept,("Al","Ship"),[6/25,6/30])
6/20

ut

Depending on the extent of decomposition, a tuple in a bitemporal relation represents an

atomic or a composite fact. Thus, we will use the terminology that a tuple stores a fact and that

a bitemporal relation instance is a collection of (bitemporal) facts.

Valid time relations and transaction time relations are special cases of bitemporal relations

that support only valid time and transaction time, respectively. Thus a valid-time tuple has an

associated set of valid time chronons (termed a valid-time element), and a transaction-time tuple

has an associated set of transaction time chronons (termed a transaction-time element). For clarity,

we use the term snapshot relation for a conventional relation. Snapshot relations support neither

valid time nor transaction time.

Time-invariant relationships can be accommodated in this model. Note that such relationships

are almost always valid-time invariant; they generally vary over transaction time.

Example: The relation ParentOf(Parent, Child) can be modeled with a valid-time element cov-

ering all of time, from beginning to forever. If it was later determined that someone else was the

parent of a particular person, this would cause the present tuple associated with that person to be

terminated at that transaction time. ut

The bitemporal conceptual data model timestamps tuples, as does the Time Relational Model

[Ben-Zvi 82], the Historical Data Model [Cli�ord & Warren 83], the Temporal Relational Model

[Navathe & Ahmed 89], the Temporal Data Model [Segev & Shoshani 87] and the data models as-

sociated with Legol 2.0 [Jones et al. 79], HQL [Sadeghi et al. 87], HSQL [Sarda 90B] and TQuel

[Snodgrass 87]. The timestamps are temporal elements, as in the Historical Relational Data Model

[Cli�ord & Croker 87], the Homogeneous Relational Model [Gadia 88] and the data model associ-

ated with TempSQL [Gadia 92]. Attributes are atomic, as in most of the temporal data models

proposed to date [Snodgrass 92].

4.2 Operators in the Model

The previous section described the objects in the bitemporal conceptual data model, tuples time-

stamped with a bitemporal element. We now de�ne some algebraic operators on these objects that

will be used in the de�nition of temporal normal forms.

We �rst de�ne bitemporal analogues of some of the snapshot relational operators, to be

denoted with the superscript \B".

De�ne a relation schema R = (A

1

; : : : ; A

n

jT), and let r be an instance of this schema. Let D

be an arbitrary set of explicit (i.e., non-timestamp) attributes of relation schemaR. The projection

on D of r, �

B

D

(r), is de�ned as follows.

�

B

D

(r) = fz

(jDj+1)

j 9x 2 r (z[D] = x[D])^ 8y 2 r (y[D] = z[D]) y[T] � z[T])^

8t 2 z[T] 9y 2 r (y[D] = z[D] ^ t 2 y[T])g
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Figure 1: Bitemporal Elements

The example illustrates how transaction time and valid time are handled. As time passes, i.e.,

as the computer's internal clock advances, the bitemporal elements associated with current facts

are updated. For example, when (Bill, Ship) was �rst inserted, the six valid time chronons from

10 to 15 had associated the transaction time chronon NOW . At time 5, the six new bitemporal

chronons, (5; 10); : : : ; (5; 15), were appended. This continued until time 9, after which the valid

time was updated. Thus, starting at time 10, 16 bitemporal chronons are added at every clock

tick.

The actual bitemporal relation corresponding to the graphical representation in Figure 1(d)

is shown below. This relation contains three facts. The implicit timestamp attribute T shows each

transaction time chronon associated with each valid time chronon as a set of ordered pairs.

Emp
Dept

T

Bill Ship f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : : ; (9; 15);

(10; 5); : : : ; (10; 20); : : : ; (14; 5); : : : ; (14; 20);

(15; 10); : : : ; (15; 15) : : : ; (19; 10); : : : ; (19; 15)g

Bill
Load f(NOW ; 10); : : : ; (NOW ; 15)g

Al
Ship f(NOW ; 25); : : : ; (NOW ; 30)g

The relation is created by the following sequence of commands, described in detail elsewhere

[Jensen et al. 92A], invoked at the indicated transaction times.
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varying nature of the part of reality being modeled, and transaction time models the update activity

of the relation [Snodgrass & Ahn 86]. For both domains, we assume that the database system has

limited precision, and we term the smallest time unit a chronon [Dyreson & Snodgrass 92]. As we

can number the chronons, the domains are isomorphic to the domain of natural numbers.

In general, the schema of a bitemporal relation, R, consists of an arbitrary number of ex-

plicit attributes, A

1

; : : : ; A

n

, encoding some fact (possibly composite) and an implicit timestamp

attribute, T. Thus, a tuple s = (a

1

; a

2

; : : : ; a

n

jt), in a bitemporal relation instance r(R), consists of

a number of attribute values associated with a timestamp value. Note that, as in the conventional

relational model, the attributes A

1

; : : : ; A

n

must each be atomic-valued, meeting the requirement

that relations be in 1NF. Finally, a set of bitemporal functional and multivalued dependencies on

the explicit attributes are part of the schema. For now, we ignore these dependencies|they are

treated in detail later.

Associated with a tuple is a set of bitemporal chronons (rectangles) in the two-dimensional

space spanned by valid time and transaction time. Such a set is termed a bitemporal element

1

.

An arbitrary subset of the domain of valid times is associated with each tuple, meaning that the

fact recorded by the tuple is true in the modeled reality during each valid time chronon in the

subset. Each individual valid time chronon of a single tuple has associated an arbitrary subset

of the domain of transaction times, meaning that the fact, valid during the particular chronon, is

current in the relation during each of the transaction time chronons in the subset.

Because no two tuples with mutually identical explicit attribute values (termed value-equiv-

alent) are allowed in a bitemporal relation instance, the full time history of a fact is contained in

a single tuple.

Example: Consider the normalized relation schema EmpDept = (Name, Dept) used in the ex-

ample of Section 3.2.4. This relation records information such as \Bill works for the shipping

department." The BCDM schema would be (Name, Dept j T). We assume that the granularity

of chronons is one day for both valid time and transaction time, and the period of interest is the

month of June 1992.

Figure 1 shows how the bitemporal element in an employee's department tuple changes. The

x-axis denotes transaction time, and the y-axis denotes valid time. Employee Bill was hired by

the company as temporary help in the shipping department for the interval from June 10th to

June 15th, and this fact is recorded in the database proactively on June 5th. This is shown in

Figure 1(a). The arrows pointing to the right signify that the tuple has not been logically deleted;

it continues through to the transaction time NOW . On June 10th, the personnel department

discovers an error. Bill had really been hired for the valid time interval from June 5th to June

20th. The database is corrected on June 10th, and the updated bitemporal element is shown in

Figure 1(b). On June 15th, the personnel department is informed that the correction was itself

incorrect; Bill really was hired for the original time interval, June 10th to June 15th, and the

database is corrected the same day. This is shown in Figure 1(c). Lastly, Figure 1(d) shows the

result of three updates to the relation, all of which take place on June 20th. While the the period

of validity was correct, it was discovered that Bill was not in the shipping department, but in the

loading department. Consequently, the fact (Bill, Ship) is removed from the current state and the

fact (Bill, Load) is inserted. A new employee, Al, is hired for the shipping department for the

interval from June 25th to June 30th.

We note that the number of bitemporal chronons in a given bitemporal element is the area en-

closed by the bitemporal element. The bitemporal element for (Bill, Ship) contains 140 bitemporal

chronons.

1

This term is a generalization of the term temporal element, used previously to denote a set of single dimensional

chronons [Gadia 88].
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Mgr Dept

[10; 30] Bill
[10; 14] Shipping

[15; 30] Loading

[15; 19] Al
[15; 19] Shipping

To summarize, this de�nition of key satis�es desiderata 4 and 5; it does not satisfy desiderata

1, 2, or 3 (because operators can change the key of a relation); and primary keys are not de�ned

in the model.

3.3 Summary

None of the �ve temporal normal forms proposed previously are a natural extension of conventional

normal forms; none satis�ed all the desiderata. For the few temporal data models in which keys

were discussed (in the majority of the two dozen temporal data models, keys were not discussed),

none include an extension of the concept of snapshot key satisfying all six desiderata. Finally, all

of these de�nitions were model-speci�c|it is generally not possible to apply in a straightforward

fashion particular de�nitions to other data models.

4 A Bitemporal Conceptual Data Model

We feel that the reason why so may temporal data models have been proposed, and why so many

temporal keys and temporal normal forms have been de�ned, is that previous models attempted to

simultaneously retain the simplicity of the relational model, present all the information concerning

an object in one tuple, and ensure ease of implementation and query evaluation e�ciency.

It is clear from the number of proposed models that meeting all of these goals simultaneously

is a di�cult, if not impossible task. We therefore advocate a separation of concerns. The time-

varying semantics is obscured in the representation schemes by other considerations of presentation

and implementation. We feel that the data model proposed in this section is the most appropriate

basis for expressing this semantics. However, in most situations, it is not the most appropriate

way to present the stored data to users, nor is it the best way to physically store the data. We

have de�ned mappings to several representations; these representations may be more amenable,

in many situations, to presentation and storage, those representations can be employed for those

purposes, while retaining the semantics of the conceptual data model.

We �rst informally characterize a bitemporal relation. Then we de�ne the set of bitemporal

algebra operators necessary for the introduction of normal forms. The objects and their operations

constitute the bitemporal conceptual data model, or BCDM [Jensen & Snodgrass 92]. Finally, we

outline a few of the representational data models in which instances and operators can be mapped

to and from the BCDM.

4.1 Objects in the Model

The primary reason behind the success of the relational model is its simplicity. A bitemporal

relation is necessarily more complex [Jensen et al. 92]. Not only must it associate values with

facts, as does the relational model, it must also specify when the facts were valid in reality, as well

as when the facts were current in the database. Since our emphasis is on semantic clarity, we will

extend the conventional relational model as small an extent as necessary to capture this additional

information.

Tuples in a bitemporal relation instance are associated with time values from two orthogonal

time domains, namely valid time and transaction time. Valid time is used for capturing the time-
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3.2.2 The HSQL Data Model

In the data model associated with the query language HSQL [Sarda 90B], a key is de�ned as

follows.

Definition: A set of attributes X is a key of a valid-time relation schema
R

= (A

1

; : : : ; A

n

) if

\it has unique values across all tuples at any point in time." [[Sarda 90A], p. 13] ut

This de�nition satis�es desiderata 3, 4 and 5; it does not satisfy desiderata 1 or 2; primary keys

are not de�ned.

3.2.3 The Interval Extended Relational Model

As before, we emphasize that the IXRM is not a temporal data model, in that it supports only

user-de�ned time [Lorentzos 91]. It can however be used as the representation of a valid-time

relation.

Keys are de�ned in this data model in terms of point and interval functional dependencies.

A key is required to be minimal. As Lorentzos mentions \the" key, one could assume that only

the primary key was being de�ned. This de�nition of key satis�es all but desideratum 5.

3.2.4 The TempSQL Data Model

Gadia and Nair de�ne a special notion of key in the data model associated with the query language

TempSQL [Gadia 92, Nair & Gadia 92]. To understand this concept, the type of relation employed

must be understood �rst.

Example: Consider the following relation indicating the managers for departments.

Mgr
Dept

[10; 14] Bill
[10; 19] Shipping

[15; 19] Al

[15; 30] Bill
[15; 30] Loading

Attribute values are stamped with �nite unions of intervals (i.e., valid-time elements). All infor-

mation about the Shipping department is contained in the �rst tuple, which states that Bill was

the manager from time 10 to 14 and that Al was the manager from time 15 to 19. ut

We now state the de�nition, then explain it using the example.

Definition: \A relation r over R, with K � R as its key , is a �nite set of non-empty tuples such

that no key attribute value of a tuple changes with time, and no two tuples agree on all their key

attributes." [[Gadia 92] p. 10] ut

The de�nition lists two requirements that must be ful�lled for a set of attributes to be a

key. In the example, the attribute Dept is a key because for each tuple, there is only one value of

attribute Dept and no two tuples have the same value for attribute Dept.

This concept of key presents a major departure from conventional normalization theory and

has no counterpart there. First, it appears that a key is a property of a relational instance,

making the de�nition extensional. Second, the de�nition is independent of the notion of temporal

functional dependency. The dependencies Dept ! Mgr and Mgr ! Dept are assumed to hold,

making both Dept and Mgr keys of the schema (Dept, Mgr) in the conventional sense. Yet, in the

relation instance above, the attribute Mgr is not a key in the sense de�ned here. An operator is

available that restructures the instance to yield the following, equivalent relation, now with Mgr

as the only key.
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This normal form satis�es desiderata 1 and 3. However, as it does not apply at the conceptual

level, but at the representation level, it does not satisfy desiderata 2 or 4.

A second normal form is also de�ned. It relies on the following concept.

Definition: \Two or more attributes of a schema are independent if none of them is fully or

partially dependent on any of the others." [[Lorentzos 91], p. 51] ut

Here, \dependent" means point or interval dependent (which are generalizations of functionally

dependent). We give a simpli�ed version here also of this normal form ([Lorentzos 91], p. 51).

Definition: The schema of an interval extended relation, representing a valid time relation,

is said to be in Q normal form (QNF) if it is in PNF and all time invariant attributes (i.e.,

all attributes excluding the valid time interval attribute and the time-invariant key) are not

independent. ut

This normal form also satis�es desiderata 1 and 3. It does not satisfy desiderata 2 (because

it relies on PNF) or 4.

3.2 Keys

We now turn to the related topic of de�ning keys for a temporal data model. We �rst list the

properties held by the de�nition of snapshot keys.

1. Keys are intensional.

2. Relation keys are de�ned soley in terms of functional dependencies.

3. Keys are properties of stored (base) relations only.

4. Particular attributes are not a priori designated as keys.

5. Keys are independent of the representation.

6. Primary keys are minimal.

Next we examine various proposals for temporal keys.

3.2.1 The HQL Data Model

In the data model associated with the query language HQL [Sadeghi et al. 87], valid-time relations

are represented by snapshot relations where tuples are timestamped with intervals. Thus, a valid-

time relation with explicit attributes A

1

; : : : ; A

n

is represented by a snapshot relation with schema

(A

1

; : : : ; A

n

; start; end).

Without providing further explanation of the notion of key, it is required that the attributes

start and end be part of any primary key.

Two points can be made. First, using both timestamp attributes seems unnecessary. Indeed,

one of the attributes is redundant, violating the minimality requirement of a primary key. Second,

the de�nition of key, apart from being unclear, is representation-dependent. In summary, this

de�nition appears to satis�es desiderata 1{4, but does not satisfy desiderata 5 or 6.
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3. t[A

i

] = t

0

[A

i

] XOR t[A

j

] = t

0

[A

j

].

[[Navathe & Ahmed 89], p. 156 and [Ahmed 92]] ut

Thus, two attributes are mutually dependent if we are able to �nd, in some extension, two tuples

that represent the same object of the modeled reality, have consecutive valid time intervals, and

agree on A

k

(k is i or j) but disagree on A

i+j�k

.

Definition: A valid time relation \is in time normal form (TNF) if and only if it is in [snapshot]

BCNF and there exists no temporal dependency among its time varying attributes."

[[Navathe & Ahmed 89], p. 157] ut

This de�nition satis�es desideratum 1. The de�nition of TNF does not satisfy desiderata 2

(rather, it requires a normal form to be violated), 3 (because operators are de�ned only on TNF

relations) or 4.

Finally, snapshot normal forms, e.g., BCNF, and therefore snapshot functional dependen-

cies are applied to the representations of valid time relations [Navathe & Ahmed 89], violating

desideratum 4.

3.1.3 The HSQL Data Model

In the valid time data model associated with the query language HSQL [Sarda 90B], there is an

explicit distinction between valid time relations and their snapshot relation representations. Thus a

valid time relation
R
= (A

1

; : : : ; A

n

) is represented by a snapshot relation R = (A

1

; : : : ; A

n

;PERIOD)

[Sarda 90A]. It is claimed, but not demonstrated, that conventional normalization techniques ap-

ply to the design of a valid time database. Part of the purpose of this paper is to give a formal

characterization of the sense in which this is true.

3.1.4 P and Q Normal Forms

The interval extended relational model (IXRM) [Lorentzos 91] integrates (n-dimensional) intervals

into the snapshot relational model. The intervals, one per attribute, may be drawn from any

data type, including time and space. Interval-valued attribute values are accommodated, and new

operators that manipulate relations with interval attributes are de�ned.

IXRM is not a temporal data model. The timestamps in a tuple do not specify when that

tuple, or even an attribute value in that tuple, was valid. Rather, such timestamps are more

properly thought of as user-de�ned time [Snodgrass & Ahn 86]. IXRM is mentioned here because,

while not a valid-time model, relations in this model may represent valid-time relations and some

of the operators may be conveniently used for valid-time queries.

Lorentzos extended the notion of functional dependency to cover interval values as well as

atomic values, resulting in an extended notion of key as well. Here the timestamp merely appears

as one of the attributes in the functional dependency or key. The extensions are particular to

the special interval attributes, and they have no counterparts in conventional valid-time relational

models.

Lorentzos also de�ned P normal form. We give a simplied de�nition; the original de�nition

([Lorentzos 91], p. 49) used a rather complex algebraic operator.

Definition: The schema of an interval extended relation, representing a valid time relation, is

said to be in P normal form (PNF) if in all extensions of that relation scheme no two tuples with

the same key value have overlapping or adjacent time intervals. ut

7



3.1.1 First Temporal Normal Form

Segev and Shoshani de�ne in their Temporal Data Model a normal form, 1TNF, for valid time

relations [Segev & Shoshani 88]. To understand this normal form, we need to �rst describe their

data model and the special variant of the timeslice operator employed there.

Valid time relation schemas have a distinguished, so-called surrogate attribute. Surrogates

represent objects in the modeled reality, and the time-varying attribute values in a tuple of a

relation instance may be thought of as containing information about the object represented by the

surrogate of the tuple.

The special timeslice operator relies of the presence of the surrogate attribute. It takes a valid

time relation and a time value as arguments and returns, for each surrogate value, all the values of

each time-varying attribute that are valid at the time given as argument. Thus, the result contains

precisely one tuple per surrogate, valued with at least one time varying attribute value, valid at

the time argument. As another consequence, time varying attributes may be set-valued, leading

to a non-1NF result relation.

Definition: For a relation to be in �rst temporal normal form (1TNF), \a time-slice at point t

has to result in a standard 1NF-relation." [[Segev & Shoshani 88], p. 17] ut

In addition to giving a conceptual de�nition, the authors present two representation depen-

dent de�nitions of 1TNF, for valid time relations represented by snapshot relations using interval

and event tuple time stamping, respectively. For the interval based representation, the following

de�nition is given.

Definition: \A relation with a schema, R(S;A

1

; : : : ; A

n

; T

s

; T

e

), is in 1TNF if there do not exist

two tuples r

1

(s

1

; a

1

1

; : : : ; a

1

n

; t

1

s

; t

1

e

) and r

2

(s

2

; a

2

1

; : : : ; a

2

n

; t

2

s

; t

2

e

) such that s

1

= s

2

and the intervals

[t

1

s

; t

1

e

] and [t

2

s

; t

2

e

] intersect." [[Segev & Shoshani 88], p. 17] ut

According to the authors, 1TNF is required rather than desirable.

This normal form deviates from conventional normal forms in several respects. First, the

normal form is extensional|it applies to a relation instance, not a relation schema as do conven-

tional normal forms. Second, the normal form is based on an operator which relies on a designated

attribute, the surrogate attribute. In the conventional relational model, no attribute is special.

In summary, 1TNF does satisfy desideratum 4, as a conceptual de�nition is provided. How-

ever, 1TNF does not satisfy desiderata 1 (since normal forms are de�ned on relations, rather than

relation schemas), 2 (though the conceptual de�nition does employ the notion of snapshot 1NF)

or 3 (since operators are expected to preserve 1TNF, and are only de�ned over 1TNF relations).

3.1.2 Time Normal Form

This normal form for valid time relations also applies to an interval tuple timestamp represen-

tation, containing the attributes T

S

(the starting valid time) and T

E

(the ending valid time)

[Navathe & Ahmed 89]. Unlike 1TNF, it is based on the notion of temporal dependency, de�ned

as follows.

Definition: There exists a temporal dependency between two time-varying attributes, A

i

and

A

j

, in a relation schema R = (A

1

; A

2

; : : : ; A

n

; T

S

; T

E

) if there exists an extension r(R) containing

two distinct tuples, t and t

0

, that satisfy each of the following three properties.

1. t[K] = t

0

[K] where K is the time invariant key.

2. t[T

E

] = t

0

[T

S

] + 1 _ t

0

[T

E

] = t[T

S

] + 1.

6



Furthermore, assume that the functional dependency of the previous example, an employee may

only work for one department, no longer applies. With these restrictions, the non-trivial mul-

tivalued dependencies Dept!! Name, Dept!! PhNo and fDept, Nameg !! PhNo hold in the

schema. ut

Fourth normal form is a strict generalization of BCNF, i.e., any schema in fourth normal

form must also be in BCNF, and there exist schemas obeying BCNF that are not in fourth normal

form. By incorporating multivalued dependencies as well as functional dependencies in the schema

decomposition process, fourth normal form reduces additional data redundancy that may be present

in schemas developed using normal forms that rely solely on functional dependencies.

Definition: (4NF) A relation schema R is in fourth normal form (4NF) with respect to a set F

of functional and multivalued dependencies if for all non-trivial multivalued dependencies X!! Y

in F

+

, X is a superkey of R. ut

Example: Since there are no non-trivial functional dependencies for the Emp schema, the schema

is in BCNF. However, as Dept is not a superkey, 4NF is violated. ut

We have seen that normal forms are motivated by the desire to avoid update anomalies and

redundancy. These issues are only of interest for base relations as they are the only relations that

must be stored, and they are the only relations that can be updated. Normal forms do not apply

to views or derived relations, and they are independent of query languages.

We should mention two other normal forms [Codd 72B]. Second normal form is weaker than

third normal form, and is only of historical interest. First normal form (1NF) is unlike any of

the other normal forms, in that it is not de�ned in terms of functional dependencies. Instead, it

merely requires that attribute values be drawn from domains of atomic values, which do not have

internal structure.

3 Review of Previous Proposals

In this section, we consider previous proposals of temporal normalization concepts. We examine

in turn normal forms, functional dependencies and keys. We �rst explain each contribution, then

evaluate whether it naturally extends conventional normal forms.

3.1 Functional Dependencies and Normal Forms

As a basis for the discussion, we summarize, from Section 2, the fundamental qualities of the

(conventional) normal forms.

1. Functional dependencies and normal forms are intensional, not extensional, properties.

2. Normal forms are de�ned solely in terms of the dependencies that are satis�ed.

3. Normal forms are properties of stored (base) relations only.

4. Functional dependencies and normal forms are de�ned independently of the representation

of a relation.

We evaluate each of the previously proposed normal forms based on these desiderata.

5



Proof: The proof may be found elsewhere [Ullman 88, Korth & Silberschatz 86]. ut

Second, the decomposition should be dependency-preserving, in that it must be possible to

ensure that all dependencies are preserved when a relation is updated without requiring any joins

to be performed.

Definition: A decomposition D = fR

1

; : : : ; R

m

g of R is dependency-preserving with respect to

a set of functional dependencies F if

((�

R

1

(F ))[ � � � [ (�

R

m

(F )))

+

= F

+

:

Here, �

R

i

(F ) denotes the set of functional dependencies from F de�ned on the attributes of R

i

[Ullman 88]. ut

Example: All of the anomalies previously mentioned with the example relational schema are

avoided by decomposing the schema into EmpDept = (Name;Dept) and EmpPhNo = (Name;PhNo),

both of which are in BCNF. This decomposition is both loss-less and dependency-preserving. ut

Some decomposition algorithms can be proven to be dependency-preserving; others jettison

this property in favor of more desirable ones, such as lossless-join.

Note that BCNF is more restrictive than 3NF and therefore avoids more redundancy than does

3NF. While it is always possible to obtain a 3NF decomposition that is dependency preserving and

lossless, this is generally not possible for BCNF. If a dependency preserving BCNF decomposition

is not possible, 3NF is usually preferred, at the risk of added data redundancy.

In some applications, queries involving a join of two relations occur frequently. As joins are

expensive operations, performance considerations may dictate that the relation schemas be merged,

even if the resulting schema does not conform to a desirable normal form. Thus, anomalies and

redundancy may be tolerated in order to enhance the performance of the database management

system.

We de�ne an additional higher level normal form, fourth normal form [Fagin 77], which relies

on the concept of multivalued dependencies [Zaniolo 76].

Definition: Let a relation schema R be de�ned as R = (A

1

; A

2

; : : : ; A

n

), and let X and Y be

sets of attributes of R. The set Y is multivalue dependent on X , denoted X!! Y , if for any two

tuples s

1

and s

2

in any possible extension of R, where s

1

[X ] = s

2

[X ], there exists tuples s

3

; s

4

in

that extension such that

s

1

[X ] = s

2

[X ] = s

3

[X ] = s

4

[X ]

s

3

[Y ] = s

1

[Y ]

s

3

[R� (X [ Y )] = s

2

[R� (X [ Y )]

s

4

[Y ] = s

2

[Y ]

s

4

[R� (X [ Y )] = s

1

[R� (X [ Y )]. ut

Intuitively, X!! Y states that attribute values of X may determine multiple values of the at-

tributes in Y , and that the relationship between X and Y is independent of the values of the

remaining attributes in R.

Example: Consider again the relation schema Emp = (Name;Dept;PhNo), and assume that in

the reality being modeled, many employees can work for the same department and a single depart-

ment may have many telephones, each of which is accessible to all members of the department.

4



Definition: The pair of a relation schema, R, and a set, F , of functional dependencies on R is

in third normal form (3NF) if for all non-trivial dependencies, X ! Y , in F

+

, X is a superkey for

R or each attribute in Y is contained in a minimal key for R. ut

The normal forms only allow the existence of certain functional dependencies, making other

functional dependencies illegal. As we shall see, illegal dependencies indicate either the need for

null values, the possible existence of update anomalies, or the presence of redundant information.

By obeying the normal forms, some such anomalies are avoided.

Example: As Name is not a superkey, BCNF is violated. As Dept is not part of any minimal key,

3NF is also violated. As we may expect, a database using this schema exhibits several problems.

First, insertion anomalies are possible. If we want to insert the department of an employee

but do not know the employee's telephone number, either the information cannot be inserted or

the phone number must be represented by a null value. This is also true when we don't know the

employee's department. Normal forms attempt to avoid excessive use of null values.

Second, update anomalies are possible through redundant information. For example, when-

ever a new telephone number is inserted for an employee, the department information must be

repeated. Apart from being wasteful of space, this means that whenever an employee switches

departments, several tuples, one for each of the employee's telephone numbers, must be updated.

If one such tuple is not updated then an inconsistency will be generated in the database. Normal

forms attempt to avoid redundancy.

Third, deletion anomalies are possible. Suppose that an employee no longer needs a telephone,

and all telephone numbers for that employee are deleted from the database. When the last tuple

containing that employee's telephone is deleted, the removal of that tuple results in the loss of the

employee's department information. Again, undesirable null values may be used to overcome this

problem. ut

Decomposition is one way to address these problems, by breaking up a large relational schema

into several smaller schemas, for which the normals forms are satis�ed. Such a decomposition

should have two important properties.

First, the decomposition should be lossless, i.e., the contents of the original relation should be

available simply by performing a natural join on the new relations, permitting the decomposition

to be reversed without loss of information. More formally, a decomposition of schema R is lossless

if every extension of R is the natural join of its projection onto the schemas resulting from the

decomposition.

Definition: Let X and Y be arbitrary sets of non time-stamp attributes of a temporal relation

schema R. Then the pair X; Y is a lossless-join decomposition with respect to the join 1 if, for all

r(R) that satisfy the set of functional dependencies on R,

r = �

X

(r) 1 �

Y

(r). ut

It is possible to guarantee that a given decomposition is lossless. This condition is used

to guide the decomposition process, ensuring that the generated decompositions are practical.

Assume that a single schema is decomposed into two smaller schemas. If both of the smaller

schemas contain a superkey of one of the smaller schemas then the decomposition is guaranteed to

be lossless.

Theorem: The decomposition X; Y of a relation schema R with a set of functional dependencies

F is lossless (w.r.t. 1) if

X \ Y ! X 2 F

+

or X \ Y ! Y 2 F

+

:
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We de�ne the three most important normal forms, third normal form [Codd 72], Boyce-Codd

normal form [Codd 74] and fourth normal form [Fagin 77], as well as the concept of key, all of which

rely on the concept of functional dependency [Codd 72B] or multivalued dependency [Zaniolo 76].

Definition: Let a relation schema R be de�ned as R = (A

1

; A

2

; : : : ; A

n

), and let X and Y be

sets of attributes of R. The set Y is functionally dependent on the set X , denoted X ! Y , if

8r(R) 8s

1

; s

2

2 r(s

1

[X ] = s

2

[X ]) s

1

[Y ] = s

2

[Y ]):

If X ! Y , we say that X determines Y . A functional dependency X ! Y is trivial if Y � X . ut

A functional dependency constrains the set of possible extensions of a relation. Which func-

tional dependencies are applicable to a schema re
ects the reality being modeled and the appli-

cations of the schema. Determining the relevant functional dependencies is a primary task of the

database designer.

Definition: The set of attributes X is a superkey of R if X ! R. A superkey is minimal if when

removing any attribute, it is no longer a superkey. A relation schema may have many minimal

keys. One such key is selected as the primary key, and the remaining keys are termed candidate

keys. ut

Example: To illustrate, consider a database recording the phone numbers, departments, and

employees in a company. This can be modeled with the schema Emp = (Name;Dept;PhNo).

In this company, an employee can belong to only one department, but may have several phone

numbers. Corresponding to these real-world constraints are the following functional dependencies.

Name ! Dept

fName; PhNog ! fName; PhNo; Deptg

There are two superkeys, fName, PhNog and fName, PhNo, Deptg. Only the former is minimal;

hence, it is the primary key, and there are no other candidate keys. ut

Definition: The transitive closure of a set of functional dependencies, F , with respect to some

set of inference rules (equivalent to Armstrong's inference rules), is given by F

+

. ut

Example: In the example database, the transitive closure of those two functional dependencies

contains the following additional non-trivial dependences.

fName;PhNog ! Dept

fName;PhNog ! fName;Deptg

fName;PhNog ! fPhNo;Deptg

ut

Definition: The pair of a relation schema, R, and a set, F , of functional dependencies on R

is in Boyce-Codd normal form (BCNF) if for all non-trivial dependencies X ! Y in F

+

, X is a

superkey for R. ut
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1 Introduction

The goal of relational database design is to produce a database schema, consisting of a set of

relation schemas. Each relation schema is a collection of attribute names and their associated

domains.

Normal forms are an attempt to characterize \good" relation schemes. A wide variety of

normal forms has been proposed, the most prominent being third normal form and Boyce-Codd

normal form. An extensive theory has been developed to provide a solid formal footing.

In this paper we describe how normal forms may be de�ned on temporal relations which

record time-varying information. A confusing array of normal forms for temporal relations has

been previously proposed, including �rst temporal normal form [Segev & Shoshani 88], time normal

form [Navathe & Ahmed 89], and P and Q normal forms [Lorentzos & Kollias 89]. None of these

de�nitions is truly an extension of conventional normal forms, for a variety of reasons that we

detail in Section 3. Also, each de�nition is restricted to a speci�c data model, and inherits the

peculiarities inherent in that model. It is not satisfactory to have to de�ne all the normal forms

anew for each of the two dozen existing temporal data models [Snodgrass 92].

We adopt a di�erent tack. In de�ning our normal forms, we utilize a new data model,

termed the bitemporal conceptual data model, that is in a sense the \largest common denominator"

for existing models [Jensen et al. 92A]. Speci�cally, we have shown how to map relations and

operations in several quite di�erent temporal data models into relations and operations in this

data model. This is an important property as it ensures that the normal forms expressed in this

model are applicable also to other models. Consequently, the temporal normal forms are de�ned

in the context of this model.

In the next section, we survey conventional normal forms, highlighting the properties that

should carry over to temporal normal forms. We then evaluate previously proposed de�nitions of

temporal normal forms and temporal keys against these properties, demonstrating that, while all

of these de�nitions satisfy some of the desiderata, no de�nition is an entirely natural extension of

conventional normal forms.

We introduce in Section 4 a new data model, the bitemporal conceptual data model, in which

to express normal forms. We then apply the conventional normal forms to this new model in such a

way that virtually all of the theory behind the normal forms applies to the temporal analogues that

we de�ne. The result is that the role played by temporal normal forms during temporal database

design closely parallels that of normal forms during conventional database design.

To demonstrate the generality of our approach, we outline how normal forms and dependency

theory can also be applied to spatial databases, as well as to spatial-temporal databases.

2 Conventional Normal Forms

Normal forms are guidelines for what constitutes a good relation schema when designing the con-

ceptual schema of a database. While temporal normal forms should be faithful extensions of these

notions, some previously proposed temporal normal forms do not maintain such a correspondence.

Hence, as a prelude to presenting our temporal normal forms, we survey existing standard re-

lational normal forms, describing the kinds of problems addressed and emphasizing the aspects

common to normal forms. Throughout we highlight the important concepts of dependency and

normalization theory that we wish to preserve when de�ning temporal normal forms.

A normal form is an intensional property of a database schema that follows from a set of

(functional or multivalued or other) dependencies. The goal of database design is to obtain a set

of relation schemas that, together with their dependencies, satisfy the normal forms.

1
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Abstract

Normal forms play a central role in the design of relational databases. Recently several normal

forms for temporal relational databases have been proposed. The result is a number of isolated

and sometimes contradictory contributions that only apply within specialized settings.

This paper attempts to rectify this situation. We de�ne a consistent framework of temporal

equivalents of all the important conventional database design concepts: functional and mul-

tivalued dependencies, primary keys, and third, Boyce-Codd, and fourth normal forms. This

framework is enabled by making a clear distinction between the logical concept of a temporal

relation and its physical representation. As a result, the role played by temporal normal forms

during temporal database design closely parallels that of normal forms during conventional

database design.

We compare our approach with previously proposed de�nitions of temporal normal forms

and temporal keys. To demonstrate the generality of our approach, we outline how normal forms

and dependency theory can also be applied to spatial databases, as well as to spatial-temporal

databases.
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