
& Claiborne 1966]. Overall Carbon-14 dating is accurate to within at best 50 to 1000 years of the

age of the sample.

Carbon-14 radioactive dating works with organic materials, but many scientists, especially

geochronologists, need to date inorganic materials. Geochronologists have developed a battery

of radioactive dating techniques based on ratios of isotopes of lead and uranium, rubidium and

argon, and potassium and strontium, among others [Hood 1969]. The ratios of these isotopes are

�xed in inorganic materials when molten rock solidi�es into igneous rock. Unequal decay rates

change the ratio and can be used to date the igneous layers. The methods used to determine the

ratio are similar to the technique of Carbon-14 dating, but the measurements yield dates that are

much older, and consequently, less precise. The date that results from inorganic radioactive dating

techniques and the error bars on the dating process are in terms of millions of years.

Another clock used by stratigraphers to date inorganic materials is the sedimentation clock

[Silverberg 1971]. Sediments are deposited in layers (with perhaps intervening igneous layers). The

relative age of sedimentary strata can be deduced from their position in the layering; usually the

oldest layers are on the bottom while the youngest are on top, but tectonic activity may permute

the ordering.

The polarity of the Earth's magnetic �eld o�ers yet another geologic clock. Samples drilled

from basalt layers in the ocean
oor indicate that the Earth's polarity switches, sometimes as

rapidly as every few million years. The change in polarity is believed to be the result of a change

in the direction of the swirling mass of molten magma at the core. Polarity reversals are detectable

in ancient basalt out
owings on the ocean
oor [Kirkaldy 1977].

This brief survey of the important clocks used by scientists and the general public is by no

means complete. The details on clocks presented here only provide the necessary background

to understanding the base-line clock. For a more in-depth treatment of an individual clock, the

interested reader is directed to the reference(s) cited with each clock discussion.

41

tropical years in terms of days, while common to most calendars, is a very di�cult problem.

Dendrochronology is the study of the tree-ring record . A tree trunk viewed in cross-section

will often exhibit a series of concentric rings. The rings are a by-product of the uneven seasonal

growth of the tree. In the northern hemisphere, a growth spurt occurs in the Spring and early

Summer, with little or no growth during the Fall and Winter. The growth rings are of nonuniform

width since the growth depends on nonconstant variables such as yearly climatic conditions. Also,

the rings only occur in some tree species.

A tree-ring record is constructed by correlating rings from many di�erent trees. Since tree-

ring records depend on local climatic conditions, they are speci�c to a geographic region. Tree ring

records in the Southwestern United States are di�erent from those in the Northwest. However,

tree-rings are a very accurate type of archaeological dating techniques. A tree-ring record spanning

770 years of English weather and accurate to the season was pieced together in 1838 by Charles

Babbage, whom some claim to be the father of the modern computer. In the United States, a

tree-ring record of the past 3000 years has been made from Sequoias in central California. An even

more ambitious tree ring record dating back to 5112 B.C. was made from Bristlecone Pine cores

at the University of Arizona's Laboratory of Tree-Ring Research [Silverberg 1971].

Another kind of archaeological dating is based on the decay rate of Carbon-14. Carbon-14 is

a naturally occurring unstable isotope of Carbon. It has a half-life of somewhere between 5,700 and

5,770 years. New Carbon-14 is constantly being produced in the atmosphere as a by-product of

the cosmic radiation bombardment of nitrogen. The Carbon-14 binds with oxygen to form carbon

dioxide. It is assumed that the amount of Carbon-14 in the environment is uniform. But it is

somewhat rarer than some other isotopes of Carbon. In particular, for every trillion Carbon-12

atoms there is approximately one Carbon-14 atom.

Plants take in both Carbon-12 and Carbon-14 atoms in carbon dioxide from the atmosphere

during photosynthesis. From plants, Carbon-14 is passed up the food chain to other organisms.

During the lifetime of an organism the ratio of Carbon-12 to Carbon-14 remains at a trillion

to one. But after the organism dies no more Carbon-14 or Carbon-12 is accumulated. As the

Carbon-14 decays, the ratio of Carbon-12 to Carbon-14 increases (Carbon-12 is a stable isotope).

Determining the ratio is a complicated procedure. It involves counting the number of Carbon-14

disintegrations per hour per gram of carbon in the sample. Because of the probabilistic nature

of radioactivity, the number of disintegrations per hour is not �xed, but is described by a known

probability distribution. Intuitively, the distribution captures the notion that it is more likely

that a recent sample produces more disintegrations per hour than does an ancient sample. The

average rate can be probabilistically estimated after several hours of counting. Longer periods of

observations will lead to increasingly more probable estimations of the ratio.

Once the ratio has been determined, it can be used to date the remains of a deceased organism.

For instance, 5,700 to 5,770 years after the death of an organism approximately half of its original

Carbon-14 has decayed. The accuracy of Carbon-14 dating depends on assumptions about the rate

of Carbon-14 decay, the uniform presence and rate of renewal of Carbon-14 atoms in the absence

of other sources of Carbon-14 contamination, and the precision of the instruments used to measure

the amount of Carbon-14. On top of this, 45,000 to 70,000 years after the death of an organism,

Carbon-14 dating is impossible since only an undetectable amount is left in a sample [Goudsmit

40

Sun

vernal equinox

autumnal equinox

precession of equinoxes

Figure 13: Precession of the equinoxes, a �26,000 year cycle [Schultz 1986]

365:242; 191 ephemeris days, and the sidereal year was 365:256; 363 ephemeris days [Fraser 1987].

The anomalistic year is slightly longer than the sidereal year because of the progression of the

line of the apsides. And the sidereal year is slightly longer than the tropical year because of the

precession of the equinoxes.

The Gregorian calendar, like most calendars, is designed to keep count of the tropical year.

Recall that the tropical year is the year with respect to the seasons. Keeping track of the seasons is

important for both biological and cultural reasons. But since the Gregorian calendar counts days

and there are not an integral number of days in the tropical year, an intercalation must be made

to keep the calendar year roughly equivalent to the tropical year. The intercalation used in the

Gregorian calendar adds a leap day in years divisible by four, except for those years that happen to

fall on a century mark and the century count is not evenly divisible by four. This rule is actually

not quite good enough. Even with this intercalation rule the Gregorian year is approximately 25

seconds faster than the tropical year. Twenty-�ve seconds may not seem like very long, but over

time, this di�erence accumulates. In 3,330 years, the Gregorian calendar will be one day out of

sync with the tropical year. Other reforms have been proposed to help keep the Gregorian calendar

in sync. In 1923, an Eastern Orthodox congress held in Constantinople agreed to legislation that

stated that century years divisible by 900 will be leap years only if the remainder is 200 or 600.

This keeps the Gregorian calendar accurate to 1 day in 40,000 tropical years [Aveni 1989].

In general, simple intercalation rules are not enough in the long term to keep calendar years,

counted in terms of days, and tropical years in step. The number of days in the year is gradually

decreasing due to the long-term slowdown in the Earth's rate of rotation. About 400 million years

ago, there were approximately 400 solar days in a tropical year. Today there are between 365 and

366. Also the length of the tropical year in relation to other clocks is not a �xed period. In terms

of ephemeris days, it is slowly decreasing at the rate of 0.530 seconds per century due to a complex

gravitational interaction of the Earth, Sun, and Moon [Thomson 1978]. In summary, counting

39

Sun

aphelion perihelion

line of apsides

Figure 12: Progression of the line of apsides, a �110,000 year cycle [Schultz 1986]

takes takes approximately 110,000 years as illustrated in Figure 12 [Schultz 1986].

The unit of the second primary clock is called the tropical year . The tropical year is the time

between successive passages of the Sun through the vernal equinox. An equinox occurs when the

Sun's path, known as the ecliptic, intersects the celestial equator. A less precise de�nition of an

equinox is the day when the duration of sunlight and darkness are the same. It happens twice

a year; once in the spring, the vernal equinox, and once in the Fall, the autumnal equinox. The

equinoxes are important events because they mark the beginning of the Fall and Spring seasons.

The tropical year can be roughly thought of as the year with respect to the seasons. The equinoxes

do not occur in the same place in the orbit each year. The equinoxes gradually migrate through

the Earth's orbit in a clockwise direction in what is called the precession of the equinoxes . This

migration is due to a slow, cyclic wobbling of the Earth around its axis. The wobbling moves the

celestial equator a fraction each year. But this movement is enough to a�ect the measurement of

the tropical year [O'Neil 1975]. One complete precessional cycle takes about 26,000 years. The

precession of the equinoxes is depicted in Figure 13.

A sidereal year is another clock unit based on the Earth's orbit. But the sidereal year looks

to the distant stars, rather than the Sun, to determine when a year has elapsed. Since the distant

stars are a �xed frame of reference, the start of the sidereal year occurs in the same place in the

Earth's orbit every year.

In general, calendar years are related to, yet independent of, celestial year clocks. There are

a bewildering variety of calendars, too many to describe even brie
y in this paper [Pavise 1982]. In

order to simplify the present discussion we shall adopt the Gregorian calendar as our prototypical

calendar. Calendar years are typically an integral number of days, yet there are not (currently)

an integral number of days in any astronomically computed year. For example, for the Gregorian

calendar year 1985, the anomalistic year was 365:259; 641 ephemeris days, the tropical year was

38

in the northern hemisphere's Spring and fast in its Fall; and unpredictable variations, probably

caused by di�ering rates of rotation between the core and the mantle. The gradual slowing of the

rate of rotation adds about 1.5 milliseconds to the length of a day (in comparison to other clocks)

during a century. The length of a day could
uctuate by 4 milliseconds over the course of a decade

due to the unpredictable variations. Finally, seasonal variations can cause changes on the order of

1.2 milliseconds in the length of a day during a year [Howse 1980].

Another factor to consider in making precise sidereal time measurements is polar wander .

Polar wander is a slight circular wobble of the Earth around the North/South pole on the order of

8 meters a year. Polar wander shifts an observer's meridian by a fraction each day (recall that the

observer's meridian is used to determine when the sidereal and solar days start). The size of the

shift depends on the observer's latitude.

The family of universal times attempts to correct for these variations. UT0 is the mean solar

time for the prime meridian computed by direct astronomical observations. The prime meridian is

the 0

o

line of longitude that runs through Greenwich Observatory in England. Corrections for polar

wander applied to UT0 yields a new measure of time called UT1. Further corrections for seasonal

variations are used to compute UT2 from UT1 [Thomson 1978]. Since 1958, the UK time service

has broadcast yet another time, Coordinated Universal Time (UTC). Prior to 1972, UTC measured

time by comparing a quartz clock with UT2. The announced time was kept to within 0.1 seconds

of UT2 by adding o�sets. In 1972, UTC was rede�ned to be the relationship between TAI and

UT1; UTC must be within 0.9 seconds of UT1. The International Earth Rotation Service (IERS)

currently has the responsibility for computing UTC and making leap seconds adjustments. The

di�erence between UTC and UT1, which is important for navigational purposes, is also broadcast

[Howse 1980].

The clocks that are mostly of astronomical use are maintained by several observatories

throughout the world. However, there are some distinguished observatories. The Royal Green-

wich Observatory maintains Greenwich Mean Time (GMT), which is the mean solar day clock at

the prime meridian. The BBC has broadcast GMT since 1924. GMT was the standard for uni-

versal time prior to UTC. Another important organization is the Bureau International de l'Heure

(BIH) at the Paris Observatory. BIH used to maintain UT1 and determine polar wander, but in

1987 that responsibility was transferred to the International Earth Rotation Service [Quinn 1991].

A naturally occurring physical phenomenon with a stability approaching (or perhaps exceed-

ing) that of the best atomic clocks is a millisecond pulsar . A millisecond pulsar is a rapidly rotating

neutron star. A neutron star is the collapsed remnant of a supernova explosion. As it rotates, the

star emits periodic broad-band radio pulses which can be detected here on Earth. Over 30 of these

remarkable clocks have been identi�ed to date [Taylor 1991].

There are three primary clocks based on the Earth's orbit around the Sun. As noted before,

the Earth's orbit is slightly elliptical. One orbital measurement is based on the time needed for

the Earth to travel from aphelion to perihelion back to aphelion. The period is known as the

anomalistic year . The perihelion and aphelion do not occur in the same place in the orbit each

year. There is an imaginary line, known as the line of apsides , connecting perihelion and aphelion.

The line is not stationary, it gradually migrates in a counterclockwise direction through the Earth's

orbit. This is known as progression of the line of apsides . A complete cycle in the progression

37

Sun

Earth

Figure 10: The orbital motion of the Earth is noticeable in an apparent solar day [O'Neil 1975]

Sun

Distant Star

Earth

Figure 11: The e�ects of orbital motion are negligible in a sidereal day [O'Neil 1975]

to a distant star (not the Sun). It is the time between successive crossings of a earthly observer's

meridian by a distant star. This can be measured using a telescope that can only move up and

down along the meridian (called a meridian circle) [Schultz 1986]. Because the orbital motion of

the Earth with respect to the distant stars is negligible, the Earth rotates exactly 360 degrees in

one sidereal day. This is illustrated in Figure 11.

The sidereal day di�ers from the solar day in one important respect; a sidereal day is slightly

shorter than a solar day. The Earth rotates a tiny fraction more during a solar day than it does

during a sidereal day, because the e�ect of orbital motion is negligible when observing a distant

star. Currently, in solar time, the solar day is 24

h

and the sidereal day is 23

h

50

m

4:09055

s

(although

this relationship varies with changes in the Earth's orbit). In sidereal time, the sidereal day is 24

h

and the solar day is 24

h

03

m

56:55537

s

[Fraser 1987].

Accurate astronomical predictions of celestial bodies depend on an unvarying fundamental

unit of time. Unfortunately, a sidereal day is not a �xed period, it also
uctuates in duration (in

comparison to other clocks). The
uctuation is due to a combination of factors that a�ect the

rate of the Earth's rotation. These factors include a gradual overall slowing of the rate of rotation

thought to be caused by tidal friction in the shallow seas; seasonal variations, the Earth runs slow

36

Appendix: Clocks

In this appendix we provide a more detailed examination of the clocks discussed brie
y in Section 3.

Due to the diversity of physical processes underlying these clocks, and the variety of scienti�c

disciplines represented, information on these clocks is widely scattered [Das 1990]. Hence, we go

into some detail in our discussion to provide a comprehensive overview of some two dozen of the

most important clocks. These details are also required to fully understand the motivation behind

the base-line clock we propose in Section 3.2.

An apparent solar day is one rotation of the Earth with respect to the Sun. It is the time

between successive \noons". Noon is when the Sun crosses the meridian of a stationary earthbound

observer. A meridian is a line of longitude. An apparent solar day begins at noon and ends just

before the next day's noon. During an apparent solar day, the Earth not only spins on its axis, it

also moves in orbit around the Sun. Because of the orbital motion, the Earth must rotate slightly

more than 360 degrees during one apparent solar day. This is illustrated in Figure 10.

As far back as Ptolemy, it was known that the length of each apparent solar day
uctuates

in comparison to other clocks|Ptolemy could have used a water clock|by as much as 15 minutes

during the course of a year (a year will be de�ned later). This
uctuation is due to two factors.

First, the Earth's orbit is elliptical rather than circular. Because it is elliptical, the Earth speeds

up from aphelion (the point in the orbit closest to the Sun) to perihelion (the point farthest from

the Sun) and slows down from perihelion to aphelion. The change in orbital velocity changes how

far the Earth must rotate between successive noons. Second, the Earth is tilted on its axis. An

earthly observer placed on the equator can witness the Sun tracing a slightly di�erent route each

day. In December the Sun will be below the equator while in July it will be above the equator.

The varying positions of the Sun also play a role in alterning the length of the apparent solar day

[O'Neil 1975].

The daily
uctuations in the length of the apparent solar day can be \smoothed" using a

di�erent method of measurement; this is the basis of the mean solar day . Instead of measuring

the apparent Sun, this clock measures an imaginary Sun called the \mean Sun". The Earth orbits

the mean Sun at a constant rate, with the Sun always in the plane of the celestial equator. A

mean solar day is roughly equivalent to an average apparent solar day. For any day of the year,

the di�erence between the apparent solar day and the mean solar day is given by the equation of

time. From here on, a solar day will refer to a mean solar day rather than an apparent solar day.

One curious aspect of a solar day is that it starts at noon while the day familiar to most of

us starts at midnight. The day starting at midnight is called a civil day . A civil day is computed

from a solar day by shifting the solar day by half a day. In many cultures, each civil day (and each

solar day) is commonly subdivided into 24 units called hours (and each hour is subdivided into

60 minutes, etc.). But this is not the only possible division. Other cultures, such as the Chinese,

(historically) subdivided the civil day di�erently. The Chinese split the day into 100 k'o (a 14

minute 24 second period) [Fraser 1987].

An altogether di�erent method of measurement is used to determine a sidereal day , yet another

clock based on the Earth's rotation. One sidereal day is one rotation of the Earth with respect

35

[Quinn 1991] Quinn, T.J. \The BIPM and the Accurate Measurement of Time." Proceedings of

the IEEE, 79, No. 9, July 1991, pp. 894{906.

[Rohr 1965] Rohr, R. \Sundials: History, Theory, and Practice." Toronto, Canada: University of

Toronto Press, 1965.

[Roy & Clarke 1988] Roy, A. and D. Clarke. \Astronomy: Principles and Practice, 3rd Edition."

Bristol and Philadelphia: Adam Hilger, 1988.

[Schultz 1986] Schultz, J. \Movement and rhythms of the stars." Edinburgh: Floris Books, 1986.

[Silverberg 1971] Silberberg, R. \Clocks for the Ages: How Scientists Date the Past." New York:

The Macmillian Company, 1971.

[Soo & Snodgrass 1992A] Soo, M. and R. Snodgrass. \Multiple Calendar Support for Conventional

Database Management Systems." Technical Report 92-7. Computer Science Department,

University of Arizona. Feb. 1992.

[Soo & Snodgrass 1992B] Soo, M. and R. Snodgrass. \Mixed Calendar Query Language Support

for Temporal Constants." TempIS Technical Report 29. Computer Science Department,

University of Arizona. Revised May 1992.

[Soo et al. 1992] Soo, M., R. Snodgrass, Dyreson, C., Jensen, C. S., and N. Kline. \Architectural

Extensions to Support Multiple Calendars." TempIS Technical Report 32. Computer

Science Department, University of Arizona. Revised May 1992.

[Tansel & Arkun 1986] Tansel, A.U. and M.E. Arkun. \HQUEL, A Query Language for Historical

Relational Databases," in Proceedings of the Third International Workshop on Statistical

and Scienti�c Databases. July 1986.

[Taylor 1991] Taylor, J.H., Jr. \Millisecond Pulsars: Nature's Most Stable Clocks." Proceedings of

the IEEE, 79, No. 9, July 1991, pp. 1054{1063.

[Thomson 1978] Thomson, M. \The Beginning of the Long Dash: a history of timekeeping in

Canada." Toronto, Canada: University of Toronto Press, 1978.

[Whitrow 1980] Whitrow, G.J. \The Natural Philosophy of Time." New York, NY: Oxford Uni-

versity Press, 1980.

[Wiederhold et al. 1991] Wiederhold, G., S. Jajodia and W. Litwin. \Dealing with Granularity

of Time in Temporal Databases," in Proc. 3rd Nordic Conf. on Advanced Information

Systems Engineering. Trondheim, Norway: May 1991.

[Wyatt 1971] Wyatt, S. \Principles of Astronomy." Boston, MA: Allyn and Bacon, Inc., 1971.

34

[Gadia 1986] Gadia, S.K. \Toward a Multihomogeneous Model for a Temporal Database," in Pro-

ceedings of the International Conference on Data Engineering. IEEE Computer Society.

Los Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp. 390{397.

[Goudsmit & Claiborne 1966] Goudsmit, S. and R. Claiborne. \Time." New York: Time Inc.,

1966.

[Guinot & Seidelmann 1988] Guinot, B. and P.K. Seidelmann. \Time scales: their history, de�nition

and interpretation." Astronmy & Astrophysics, 194 (1988), pp. 304{308.

[Hawking 1988] Hawking, S. \A Brief History of Time." New York: Bantam Books, 1988.

[Hood 1969] Hood, P. \How Time is Measured." Oxford, England: Oxford University Press, 1969.

[Howse 1980] Howse, D. \Greenwich Time and the discovery of the longitude." Oxford: Oxford

University Press, 1980.

[Jesperson & Fitz{Randolph 1979] Jesperson, J. and J. Fitz{Randolph. \Time & Clocks for the

Space Age." New York: Atheneum, 1979.

[Kirkaldy 1977] Kirkaldy, J.F. \Geological Time." Edinburgh, UK: Oliver and Boyd, 1977.

[Kudlek & Mickler 1971] Kudlek, M. and E. Mickler. \Solar and Lunar Eclipses of the Ancient

Near East from 3000 B.C. to 0 with Maps." Neukirchen{Vluyn: Verlag Butzon & Bercker

Kevelaer, 1971.

[McNally 1974] McNally, D. \Positional Astronomy." Bristol: Muller Educational, 1974.

[Melton 1990] Melton, J. (ed.) \Solicitation of Comments: Database Language SQL2." American

National Standards Institute, Washington, DC, 1990.

[Navathe & Ahmed 1987] Navathe, S. B. and R. Ahmed. \TSQL-A Language Interface for History

Databases," in Proceedings of the Conference on Temporal Aspects in Information Systems.

AFCET. France: May 1987, pp. 113{128.

[O'Neil 1975] O'Neil, W.M. \Time and the Calendars." Sydney, Australia: Sydney University

Press, 1975.

[USNO 1992] Observatory, U.S. Naval \Time Service Announcement." Series 14. Washington,

D.C.. Feb. 1992.

[Pavise 1982] Pavise, F. \The Book of Calendars." New York: Facts on File, 1982.

[Petley 1991] Petley, B.W. \Time and Frequency in Fundamental Metrology." Proceedings of the

IEEE, 79, No. 9, July 1991, pp. 1070{1077.

33

References

[Allen & Hayes 1985] Allen, J.F. and P.J. Hayes. \A Common-Sense Theory of Time," in Pro-

ceedings of the International Joint Conference on Arti�cial Intelligence. Los Angeles, CA:

Aug. 1985, pp. 528{531.

[Anderson 1982] Anderson, T.L. \Modeling Time at the Conceptual Level," in Proceedings of the

International Conference on Databases: Improving Usability and Responsiveness. Ed. P.

Scheuermann. Jerusalem, Israel: Academic Press, June 1982, pp. 273{297.

[Ariav 1986] Ariav, G. \A Temporally Oriented Data Model." ACM Transactions on Database

Systems, 11, No. 4, Dec. 1986, pp. 499{527.

[Aveni 1989] Aveni, A. F. \Empires of Time: Calendars, Clocks, and Cultures." New York: Basic

Books, Inc., 1989.

[Bell & Bell 1963] Bell, T. and C. Bell. \The Riddle of Time." New York: The Viking Press, 1963.

[Cli�ord & Tansel 1985] Cli�ord, J. and A.U. Tansel. \On an Algebra for Historical Relational

Databases: Two Views," in Proceedings of ACM SIGMOD International Conference on

Management of Data. Ed. S. Navathe. Association for Computing Machinery. Austin,

TX: May 1985, pp. 247{265.

[Cli�ord & Rao 1987] Cli�ord, J. and A. Rao. \A Simple, General Structure for Temporal Do-

mains," in Proceedings of the Conference on Temporal Aspects in Information Systems.

AFCET. France: May 1987, pp. 23{30.

[Das 1990] Das, T. K. \The Time Dimension: An Interdisciplinary Guide." New York: Praeger

Books, 1990.

[Date & White 1990] Date, C. J. and C. J. White. \A Guide to DB2." Reading, MA: Addison-

Wesley, 1990. Vol. 1, 3rd edition.

[Doane 1966] Doane, D. \Time Changes in the U.S.A.." Tempe, AZ: American Federation of

Astrologers, Inc., 1966.

[Dyreson & Snodgrass 1992] Dyreson, C. E. and R. T. Snodgrass. \Historical Indeterminacy."

Technical Report TR 91-30a. Computer Science Department, University of Arizona. Re-

vised Feb. 1992.

[Fitzpatrick 1990] Fitzpatrick, G. \International Time Tables." London: The Scarecrow Press,

1990.

[Fraser 1987] Fraser, J. \Time the Familiar Stranger." Redmond, WA: Tempus Books, 1987.

32

For the physical realization, we proposed the high, low, and extended resolution time-stamp

formats. Our formats blend OS-style and database-style time-stamp features. Like OS-style time-

stamps, our formats are a simple count of chronons from the origin. They support e�cient com-

parison and arithmetic operations, but are less e�cient at input and output. Like database-style

time-stamps, our formats have both extensive range and �ne granularity. Some of our formats also

have a limited internal structure (e.g., the high resolution time-stamp maintains separate �elds for

milliseconds and microseconds).

Our proposed representations met certain design goals. First, the range of our representation

had to accommodate all of time. The low and extended resolution formats satisfy this goal. Second,

we placed a 64 bit size limit on our basic time-stamp formats. The formats we expect to be used

most often are the standard high resolution format and the chunked with uniform distribution

high resolution format; both of these formats are 64 bits in size. Third, we did not want to unduly

restrict the granularity of time-stamps that are close to \now". The standard high resolution format

has a granularity of one microsecond while the extended resolution format has a granularity of a

nanosecond (with accommodation for even more precision via extra words; just a single extra word

narrows the granularity to 0.0001 femtoseconds; surely 10

�18

seconds should be adequate for quite

awhile!). Fourth, we wanted to be able to represent historical indeterminacy at minimal cost. This

lead to the creation of the chunking scheme. Fifth, we have shown how the issues of granularity

and historical indeterminacy can be uni�ed, by utilizing chronons to model �xed-length periods

of indeterminacy. Sixth, time and space e�ciency were important concerns. Our lowest space

e�ciency, that of the high resolution format, is 93%. In contrast, the highest space e�ciency of a

database-style format, DB2's timestamp format, is only 73%. The timings given in Section 6 show

that our formats are very e�cient at frequent time-stamp operations. Finally, our time-stamps are

calendar \independent". Unlike both DB2 and SQL2 time-stamps, our time-stamps can be easily

and e�ciently used to support multiple calendars [Soo et al. 1992].

In future, we will need to more thoroughly explore the issue of compact interval time-stamps,

both determinate and historically indeterminate. Two type values, 1101 and 1110, have been

reserved to accommodate the addition of new formats, if they are deemed appropriate.

Acknowledgements

This work was supported in part by NSF grant ISI-8902707 and in part by IBM contract #1124.

We would also like to thank Alan Condit, who prototyped the basic event time-stamp formats, and

Michael Soo, Nick Kline, Christian S. Jensen, Thomas W. Snodgrass, and Suchen Hsu, for their

valuable comments on previous drafts of the paper.

31

probability distribution, we optimized representation of this distribution. It is represented in the

type of the time-stamp, and thus requires slightly less than one bit to encode.

Even with a uniform probability distribution, we still need to encode two times in a single

time-stamp. On the surface, it would appear that we would require more than 64 bits for an

indeterminate event since a single time-stamp requires 64 bits. But we expect that arbitrary

periods of indeterminacy will be rare. What will be more common are periods such as N hours,

N days, or N years. We also expect that precise knowledge of starting and terminating times for

large periods of indeterminacy will be rare. For example, it would be very uncommon for a user to

know that an event occurred sometime between 6:23:43.003 A.M. July 23, 1985 and 3:00:57.23409

August 15, 1990. It is more likely that the user knows it occurred sometime between July 1985

and August 1990.

The chunking scheme was developed to meet the expectation that regular periods of inde-

terminacy will the norm. Chunking is a very e�cient method of encoding a terminating time;

the encoding only occupies eleven bits. But the space e�ciency comes at the expense of some

run-time computation since the terminating time must be computed on the
y. To ease the burden

of the run-time computation, we plan to precompute every combination of chunk and chunk size

and to pin this table in main memory (the table is 48K bytes in size). The computation of the

terminating time will cost one table lookup (to get the duration speci�ed by the chunk and chunk

size) and one time-stamp addition to add the duration to the starting time. Another cost is that

many periods of indeterminacy cannot be represented using the chunking scheme. For example,

we cannot represent a period of 3 hours and 2 minutes using 1 minute chunk sizes (the maximum

period in this case is 2 hours and 8 minutes).

8 Summary and Future Work

A time-stamp has a temporal interpretation and a physical realization. The temporal interpretation

given in this paper is the base-line clock. The base-line clock tells us which time a pattern of bits

in a time-stamp represents. We presented some twenty clocks which could have provided this

interpretation, but we chose only a select few for the base-line clock, and we motivated these

choices. Mappings exist between the base-line clock and other clocks.

The base-line clock spans all of time. The base-line clock ticks in ephemeris seconds during

prehistorical times (from the \Big Bang" to B.C. 9,000). Because historical dates are more likely

to be given in terms of the mean solar clock than the ephemeris clock, the base-line clock switches

to the mean solar clock at the dawn of civilization. Within the last half-century, the need for

precise time measurements spawned a host of clocks. From this pack, Universal Coordinated Time

(UTC), which describes the relationship between International Atomic Time and the mean solar

clock, has emerged as the new standard. The base-line clock follows UTC from the inception of

its current de�nition (January 1, 1972 A.D.) to when it is no longer de�ned (July 1, 1992 A.D.).

Beyond that time, the base-line clock switches to an idealized \atomic time", Terrestrial Dynamic

Time (TDT).

30

Chunks and chunk size are either recorded explicitly or implicitly in the time-stamp format.

Every time-stamp that does not explicitly encode a particular terminating time uses a chunking

scheme to compute the terminating time. For example, the standard high resolution format has

an implicit terminating time. Furthermore it has an implicit chunking scheme. It is assumed to

have a single chunk with a chunk size of one microsecond.

7.2 Indeterminate Intervals and Spans

Indeterminate intervals are intervals which have indeterminate delimiting events. These formats are

identi�ed by the type �elds in the underlying events. The semantics of operations on indeterminate

intervals is given elsewhere [Dyreson & Snodgrass 1992]. Like determinate intervals, indeterminate

intervals are represented using two event time-stamps. Because there are so many indeterminate

event time-stamps, there are 153 di�erent indeterminate interval formats (plus sixteen determinate

formats). These formats are identi�ed by the type �elds in the underlying events. Some of these

formats are larger than their determinate brethren; the largest indeterminate interval time-stamp

is a whopping 448 bits (14 words). We anticipate that the 128 bit (4 word) indeterminate interval

formats will be the most common; this is still smaller by 32 bits than SQL2's limited datetime

event type without fractional seconds. As with determinate intervals, we are considering special

formats for common indeterminate formats.

Many common spans are of indeterminate duration. For example the typical response as

to when the garbage will be carried out is \in about �ve minutes," which actually represents

a �xed span of between �ve minutes and several days. Fixed indeterminate spans can use the

same representational formats as indeterminate events, but we have yet to de�ne the semantics

of operations using �xed indeterminate spans. Likewise, we have yet to de�ne the semantics of

operations using variable indeterminate spans. We expect that such spans will use the same (or a

similar) representational format as variable determinate spans.

7.3 Design Decisions

The three basic parts of a time-stamp format are exactly what is needed to represent indeterminate

events. Each of our event time-stamps represents a single indeterminate event. No other operating

system or database time-stamp format has this feature.

Although it is essential, support for indeterminate events greatly compounds the complexity

of the representation, because an event is no longer just a single time, rather it is two times and a

probability distribution. In the worst case, the probability distribution information alone adds an

extra word to the representation. The representation of a probability distribution has three parts,

the name of a normalized distribution (including identifying parameters), a left o�set , and a right

o�set , occupying somewhat less than 32 bits in toto [Dyreson & Snodgrass 1992]. The probability

distribution of events that have the same normalized distribution are distinguished by how much

of the distribution has been removed through the machinations of various operators. The left and

right o�sets are the percentage that has been removed from the \early" and the \late" portion of

the period of indeterminacy. Since we expect that most indeterminate events will use the uniform

29

Chunk Size Number of Seconds High Low Extended

10
microseconds 10� 10

�6

1 | 1

250
microseconds 250� 10

�6

2 | 2

10
milliseconds 10� 10

�3

3 | 3

250
milliseconds 250� 10

�3

4 | 4

5
seconds 5 5 1 5

30
seconds 30 6 2 |

1
minute 60 7 3 6

5
minutes 300 8 4 |

1
hour 3,600 9 5 7

6
hours 21,600 10 6 |

1
day 86,400 11 7 8

7
days 604,800 12 8 9

30
days 2,592,000 13 9 10

1
year 31,536,000 14 10 11

25
years 788,400,000 15 11 |

1
century 3,153,000,000 16 12 12

1
millennium 3,153,000,000,000 | 13 13

100
millennium 315,300,000,000,000 | 14 14

10
million years 31,530,000,000,000,000 | 15 15

250
million years 788,250,000,000,000,000 | 16 16

Table 8: The default chunk sizes

distribution, which is assumed to be the uniform probability distribution. It is in this sense that

every time-stamp stored in the database is indeterminate, and that granularity and historical

indeterminacy are two sides of the same coin.

The terminating time is also sometimes encoded implicitly. If it is encoded implicitly then it

it composed of a chunk size and a number of chunks . A chunk is a �xed duration. The length of

the duration is given by the chunk size. The terminating time is computed by adding the number

of chunks, each of size chunk size, to the starting time. For example, to represent a period of 7

hours using chunks, the time-stamp would record that there are seven chunks with a chunk size

of an hour. The chunk sizes that can be used with the high resolution formats are di�erent from

those that can be used with the low resolution formats since low resolution cannot use chunks

smaller than one second. One of the duties of the database implementor (whose other duties are

described elsewhere [Soo & Snodgrass 1992A]) is to build three chunk size tables, one for each kind

of resolution.

Table 8 lists the sixteen default chunk sizes we provide for each resolution, but the database

implementor can override the default choices. We chose these chunk sizes for the default chunk

sizes because we expect them to be the commonly used chunk sizes. The entries marked as \|"

indicate that the chunk size is unavailable for the indicated resolution. Reading the table from top

to bottom, the chunk sizes increase from smaller to larger. The jump from one chunk size to the

next is by a factor of between 10 and 100. For instance, the 250 millisecond chunk size is 25 times

bigger than the 10 millisecond chunk size. If the jump factor were smaller, little advantage would

be gained by having di�erent chunk sizes. If the jump factor were larger, there would be gaps in

there range of available chunk sizes since there can be at most 128 chunks each of chunk size.

28

High Resolution, Chunked, Uniform Distribution (64 bits)

normalized distribution

of chunks

High Resolution, Chunked, NonUniform Distribution (96 bits)

seconds from origin

 sign

 4 7 7 7 7

chunk size

right offset
left offset

High Resolution, Nonstandard, NonUniform Distribution (160 bits)

38 1010

seconds from origin

 11 7 7 7

wasted

normalized distribution

right offset
left offset

seconds from origin

 sign
 wasted

milli micro

milli micro

 type = 0010
wasted

 4

 sign

wasted
 type = 0011

 4

milli micro

 4

10 10

10 10

38

38

of chunks
chunk size

 sign

 7 4 10

seconds from origin

38 4

 type = 0001

milli

Figure 9: The indeterminate high resolution formats

Starting Terminating Period of Probability

FORMAT
Time Time Indeterminacy Distribution

Standard
explicit implicit implicit implicit

Chunked, Uniform
explicit implicit explicit implicit

Chunked, NonUniform
explicit implicit explicit explicit

NonStandard
explicit explicit implicit explicit

Table 7: Encoding of the high resolution formats

27

Supporting indeterminacy is important because our basic model of time incorporates indeter-

minacy at a fundamental level. We view granularity as an indeterminacy issue. For example, Unix

time-stamps have a granularity of a second. In our model of time, a Unix time-stamp would have a

resolution of a second with an implicit indeterminacy of a single second and a uniform distribution.

Our standard low resolution format has exactly the same semantics, but with a much wider range.

The advantage of viewing granularity as indeterminacy is that changing the granularity changes

the amount of indeterminacy in the stored database but does not change the time-stamp or query

semantics. Alternatively, both the time-stamp and query semantics could be modi�ed by translat-

ing each to the coarsest granularity [Wiederhold et al. 1991]. But we feel that it is an advantage

to make answers to queries independent of the granularity of the time-stamps in the underlying

database to as great an extent as possible.

When indeterminacy is supported, the concept of \now" can have both a determinate and an

indeterminate representation. The determinate representation is the current clock reading when

the value is stored in the database. It is used to record that an event occurred now. Now, in this

sense, is merely used as a synonym for the current clock value. Another common use of \now" is

to indicate that an event will occur sometime in the future, but when is unknown. For example, an

employee tuple could indicate that an employee has been working with the company from 1/1/80

until now. Now, in this sense, represents a currently unknown future time when the employee will

stop working for the company. An indeterminate event can capture this use of \now".

7.1 Indeterminate Events

In this paper, we focus on the representation of historical indeterminacy. The semantics of the

operations performed on such values is given elsewhere [Dyreson & Snodgrass 1992]. To represent

indeterminate events, we added nine formats, three of each resolution. The proposed high resolution

indeterminate formats are shown in Figure 9. There are three analogous formats for low resolution

(64, 96, and 160 bits in length), and three for extended resolution (96, 128, and 192 bits in length).

The formats appear to be very di�erent, but they are all fundamentally alike. Each time-

stamp format has four parts: a starting time, a terminating time, a period of indeterminacy , and a

probability distribution. The starting and terminating times are times on the base-line clock. They

anchor the time-stamp to a particular interval on the base-line clock. The period of indeterminacy

is the duration (in terms of chronons) between the starting and terminating times. The probability

distribution function ranges over the chronons in the anchored duration on the base-line clock. The

value of the function at a particular chronon during the anchored duration is the probability that

the event occurred during that chronon.

Each time-stamp format contains some of these four parts only implicitly. Whether these

parts are represented explicitly or implicitly for each format is indicated in Table 7. For example,

the standard high resolution format (shown in Figure 4) can represent a time to the precision of a

microsecond. It has an explicit starting time, but an implicit terminating time. The starting time

is the start of the represented microsecond and the terminating time is the end of the represented

microsecond. The period of indeterminacy, one microsecond, is implicit, as is the probability

26

query while input and output occur at most once per tuple. Consider a sequence of database oper-

ations, S, that determines the overlap of relation R

A

and relation R

B

. Overlap is a very common

time-stamp operation and can be implemented with four precedes comparisons. R

A

contains A tu-

ples and R

B

containsB tuples. We will also assume that each time-stamp is input (using the Grego-

rian calendar) and that A+B tuples are output (using the Gregorian calendar) during the execution

of S. The time needed to evaluate S is approximately 4�(A�B)�C

p

+(A+B)�C

i

+(A+B)�C

o

where C

p

is the cost of an individual precedes operation, C

i

is the cost of the input operation, and

C

o

is the cost of the output operation. Overlap is an O(A�B) operation because it compares every

tuple in R

A

with every tuple in R

B

. If there are 49 tuples in R

A

and in R

B

then the execution of

S with SQL2 time-stamps costs 18:6 milliseconds while the execution of S using high resolution

time-stamps costs 18:5 milliseconds (calculated from the timings given in Table 6). Greater than

49 tuples in R

A

or R

B

increases the time savings of our format over that of SQL2. For example,

if there are 2000 tuples in each relation then S with SQL2 time-stamps takes 30 seconds while S

with high resolution time-stamps takes just 13 seconds.

In summary, the high, low, and extended resolution time-stamps are competitive. They are

outperformed only by the OS format on the frequent time-stamp operations. But the superior

performance of the OS format is a product of its 32 bit size, and an adequate range and granularity

cannot be represented using just 32 bits. The relatively slow Gregorian calendar input and output

performance of the high, low, and extended resolution formats is o�set by the observation that

input and output are infrequent time-stamp operations in the evaluation of a query and input and

output to non-Gregorian calendars is relatively quick.

7 Historical Indeterminacy

Often a user knows only approximately when an event happened. For instance, a user may know

that it happened \between 2 PM and 4 PM", \on Friday", \sometime last week", or \around

the middle of the month". These are examples of historical indeterminacy . Information that

is historically indeterminate can be characterized as \don't know when" information, or more

precisely, \don't know exactly when" information. A null time-stamp can be used to represent

missing, but applicable, time-stamp information; but historical indeterminacy is more general

since it concerns information that is missing or partially known.

Our proposal includes support for both determinate and indeterminate events [Dyreson &

Snodgrass 1992]. An event is determinate if it is known during which chronon it occurred. A

determinate event cannot overlap two chronons. If it is unknown when an event occurred, but

known that it did occur, then the event is indeterminate. Two pieces of information completely

describe an indeterminate event: a set of possible chronons and a probability distribution. The set

of possible chronons describes when the event could have occurred (we assume that the chronons in

the set are contiguous). The event happened during exactly one of the chronons in the set, but we

do not know during which chronon it happened. For each chronon in the set, the probability dis-

tribution gives the probability that the event occurred during that chronon. A uniform probability

distribution means that every possible chronon is equally likely.

25

SYSTEM Precedes Addition Division Gregorian Generic

Output Input Output Input

OS
0:20 1:0 3:3 76 21 0:79 0:29

DB2
1:3 150 240 4:3 44 26 190

SQL2
1:9 7:5 170 1:8 1:9 19 78

High
0:81 4:6 63 86 24 3:0 3:2

Low
0:81 2:5 15 82 23 2:1 2:0

Extended
1:3 5:2 86 86 24 3:3 3:3

Table 6: Results of benchmark tests (in microseconds)

less e�cient are the arithmetic operations. There are �ve internal �elds in both the SQL2 and

DB2 formats, four in the extended resolution format, three in the high resolution format, and one

in both the OS and low resolution formats. The OS and low resolution formats have the lowest

arithmetic operation speeds, followed by the high resolution, extended resolution, SQL2, and DB2

formats, in that order. The arithmetic operation times for the DB2 format are much higher than

the others because each operation must convert the DB2 time-stamp from a packed decimal to

an integer representation and back (the conversion must also be done during translation, but only

once, versus three times for arithmetic). This conversion imposes a debilitating overhead.

The speed of the comparison operations is ordered by time-stamp word size. The size of the

OS format is one word, the low and high resolution formats are each two words, the extended

resolution and DB2 (10 bytes) are three words, and the SQL2 format is �ve words in size.

The translation benchmarks highlight the di�erences between the SQL2 format and the other

formats. The SQL2 format is e�cient at input and output to the Gregorian calendar, but ine�cient

at input and output to generic calendars. The DB2 format is e�cient at output to the Gregorian

calendar, but ine�cient at input because the conversion to a packed decimal representation is

more expensive than the conversion from a packed decimal representation. Both the SQL2 and

DB2 formats store the relevant Gregorian calendar information (the year, month, day, hour, minute,

and second of a Gregorian date) but must compute the generic calendar information (the number

of seconds from the origin). Conversely, the other formats store the relevant generic calendar

information (the number of seconds from the origin) but must compute the Gregorian calendar

information. Hence, while the high, low, and extended resolution formats outperform both the DB2

and SQL2 formats on some time-stamp operations, they are outperformed by SQL2 on Gregorian

calendar input by a factor of 12 and on output by a factor of 47.

To determine which format is better overall, the the disparity in the execution speeds of the

various time-stamp operations must be balanced against the frequency of those operations. Com-

parison operations will be the most frequent kind of time-stamp operation, followed by arithmetic

operations, output, and then input (in that order). Input will be performed exactly once per

time-stamp.

E�cient comparison and arithmetic operations outweigh e�cient input and output since com-

parison and arithmetic operations are likely to be executed many times during a evaluation of a

24

function GREG TO SECONDS(year , month, day , hour , minute, second : integer) : integer;

const

leap year : array [0..399] of boolean;

year to seconds: array [0..399] of integer;

month day to seconds : array [boolean, 1..12, 1..31] of integer;

seconds to 1970 = 62167132800;

seconds in 400 years = 146097� 86400;

var

temp, year residue: integer;

begin

temp := {seconds to 1970 ; f Only if needed g

temp := (year div 400)� seconds in 400 years + temp;

year residue := year mod 400;

return temp +

year to seconds [year residue] +

month day to seconds [leap year [year residue], month, day] +

hour � 3600 + minute � 60 + second

end; f GREG TO SECONDS g

Figure 8: The conversion from the Gregorian to the generic calendar representation

SYSTEM
Precedes Addition Division

OS
3

h

14

m

7

s

1/23/2038 3

h

14

m

7

s

1/23/2038 3

h

14

m

12

s

1/23/2038

DB2
23

h

59

m

59

s

12/31/9999 23

h

59

m

59

s

9/31/1970 23

h

59

m

59

s

12/31/9999

SQL2
23

h

59

m

59

s

12/31/9999 23

h

59

m

59

s

9/31/1970 23

h

59

m

59

s

12/31/9999

High
22

h

36

m

47

s

11/25/8502 1

h

8

m

15

s

1/1/1970 6

h

9

m

3

s

7/14/10680

Low
22

h

36

m

47

s

11/25/8502 6

h

28

m

15

s

2/7/2106 7

h

45

m

3

s

6/19/109626219

Extended
22

h

36

m

47

s

11/25/8502 6

h

28

m

15

s

2/7/2106 7

h

45

m

3

s

6/19/109626219

Table 5: The dates used in the benchmark tests (in Gregorian format)

to compare every word in the SQL2 format. The worst-case performance for the comparison and

arithmetic operations depended on the date used in the benchmark. The exact date we used is

shown in Table 5. For addition and comparison, the same date is used for both operands. For

division, the indicated date is the divisee; the divisor is the scalar value 2

32

� 1. Every translation

benchmark used the same date: 3:14:07 A.M. January 19, 2038 A.D. We chose this date because

it is within the range of every time-stamp format, yet it is distant enough from the origin to serve

as an exotic date for translation purposes. We repeated each benchmark ten times in succession

to exploit any advantageous cache e�ects. The results in Table 6 show the median execution time

with a 0.12 microsecond correction for extraneous test loop overhead.

As we expected, the OS format is very e�cient at comparison, addition, and division. This

is due, in part, to its single word size. The implementation of the benchmark operations for the

OS format did not have to make use of slow 64 bit division and addition operations; quicker 32

bit operations were adequate. Also, as we anticipated, the more �elds there are in a format, the

23

�elds for the year, month, day in month, hour, minute, second, millisecond, microsecond, and

nanosecond. We experimented with the C library functions timegm() and gmtime() available in

Unix to perform the translations between the calendar generic representation and the Gregorian

calendar representation, but discovered that these functions have poor execution speeds. Hence,

we wrote our own Gregorian calendar translation functions. For certain dates, a single call to

gmtime() takes nine milliseconds, versus 20 microseconds for our implementation.

The algorithm to convert the Gregorian calendar representation to the generic representation

is shown in Figure 8; the reverse conversion is similar. Our algorithm is very e�cient at translating

Gregorian dates between 1 A.D. to 400 A.D. We precompute the cumulative number of seconds for

each year in this period, yielding a table of 400 values. We also precompute the number of seconds

in each month and day from the start of an arbitrary year (a table of 744 values). The tables in

toto require 12352 bytes of main memory. To translate a Gregorian date between 1 A.D. and 400

A.D., we perform one table lookup to obtain the cumulative number of seconds to the start of the

given year and a second table lookup to determine the cumulative number of seconds to the start

of the day within the year. We then convert the hours and minutes in the date to seconds and sum

all of the translated values, yielding the number of seconds from the Midnight January 1, 1 A.D.

to that date.

For Gregorian dates that are not between 1 A.D. and 400 A.D., we observe that there are a

�xed number of seconds in every 400 year period from the 1 A.D. For instance, the period from 1

A.D. to 400 A.D. has (365� 400+ 97)� 86400 seconds (there are 97 leap days every 400 years and

86400 seconds in a day) as does the period from 401 A.D. to 800 A.D. Our algorithm to determine

the number of seconds from 1 A.D. to a Gregorian date �rst calculates the number of 400 year

periods to that date and then determines how many seconds lie between the nearest earlier 400

year boundary and the date using the techniques described above. For example, to determine

how many seconds lie between 1 A.D. and Midnight July 2nd, 1970 A.D., we observe that 1970 is

400 + 400 + 400 + 400 + 370. We add the number of seconds in a 400 year period four times to

the number of seconds between Midnight January 1, 1 A.D. and Midnight July 2nd, 370 A.D. We

optimized the calculation of the 400 year periods to avoid a 64 bit division and multiplication (this

optimization is not shown in Figure 8). We iterate over the bits in the Gregorian year, determine

via a table lookup how many 400 year periods an individual bit represents, and add the appropriate

number of seconds to a running total.

We implemented the benchmarks for each time-stamp format in the C programming language.

To avoid penalizing any operation with a spurious function call overhead each operation was coded

in-line. We compiled the benchmarks using the GNU C compiler, version 2.0, with compiler

optimization fully enabled. We chose this compiler primarily because it supports a 64 bit integer

type (long long) which we utilized to implement the division and translation benchmarks. All

the benchmarks were performed in a controlled environment on a dedicated Sun-4. For the DB2

format, we wrote code to simulate the packed decimal arithmetic operations; neither C nor the

SPARC architecture directly supports arithmetic on packed decimal values.

Each arithmetic and comparison benchmark performed the worst-case amount of work for an

operation between ten thousand and ten million times. For example, the precedes benchmark on

the SQL2 format compared 11:59 PM, December 31, 9999 with itself. This comparison does the

worst-case amount of work since the comparison of a date with itself forces the precedes operation

22

(array of values)

representation

calendar speci�c

time-stamp

format

calendar generic

(seconds from origin)

representation

Figure 6: The two-step output process

time-stamp

format

Gregorian calendar

representation

(array of values)

Figure 7: Output to the Gregorian calendar representation

Division also operates �eld by �eld with the necessary carries between the �elds. Unlike

addition, the time-stamp �elds are divided from largest granularity to smallest (e.g., �rst seconds,

then milliseconds). For example, to divide a one hour SQL2 �xed span by the scalar value 3 results

in a �xed span of 20 minutes. In some cases (e.g., when dividing by a very large scalar value), the

SQL2 and DB2 formats must be converted into the number of seconds represented and reconverted

into years, months, days, hours, minutes, and seconds after the division. Like addition, division

also checks to ensure that the resulting span is valid.

We implemented two arithmetic operations because we expect there to be signi�cant variation

in the execution speed of (binary) arithmetic operations. The two operations we implemented,

addition and division, are at opposite ends of the execution speed spectrum; addition is one of the

quickest arithmetic operations while division is one of the slowest.

We view output as a two-step process shown in Figure 6 [Soo & Snodgrass 1992A]. The �rst

step converts a time-stamp to a calendar generic representation. The second step converts the

calendar generic representation to a calendar speci�c representation. The calendar speci�c repre-

sentation is an array of pertinent values. For example, the Gregorian calendar representation has

array values for the year, month, day, hour, minute, second, millisecond, microsecond, and nanosec-

ond. Input is the reverse process. The two-step process simpli�es the task of input from and output

to multiple calendars by utilizing a calendric lingua franca, the calendar generic representation.

We include benchmarks for translation to both the calendar generic representation and the

Gregorian calendar representation because the DB2 and SQL2 formats are clearly designed to favor

the Gregorian calendar. The translation to and from the Gregorian calendar representation skips

the calendar generic representation as shown in Figure 7. Our benchmark for the calendar generic

translation does not include the second translation step, from the calendar generic representation

to the calendar speci�c representation, since the cost of this step is the same for every time-stamp.

The calendar generic representation is a 64 bit unsigned integer representing the number of

seconds from the origin. The Gregorian calendar representation has separate unsigned integer

21

Translation to and from a generic calendar representation |These translation operations

are used to quantify input and output to multiple calendar formats (e.g., Gregorian, Julian,

Mayan, Islamic, etc.). The generic calendar representation is the number of seconds o�set

from a favorably placed origin. The origin for the SQL2 and DB2 time-stamps is Midnight

January 1, 1 A.D. while the orgin for the rest is Midnight January 1, 1970 A.D.

We believe that these operations serve as an adequate benchmark. The benchmark operations

were culled from a more complete set of time-stamp operations [Soo et al. 1992]. The other time-

stamp operations in this set are either similar to one of the benchmark operations or a combination

thereof. For example, the subtraction of a �xed span from an event is similar to the addition of an

event with a �xed span, while the overlap comparison operation, which determines if two intervals

intersect, is a combination of four precedes comparisons. Note that none of the time-stamp formats

(except ours) have an explicit �xed span format. To remedy this we used the same format for both

events and �xed spans.

There are important details connected with the implementation of each operation. The pre-

cedes operation is virtually the same for every format. Each format orders its �elds by granularity, a

�eld with a larger granularity is to the left of a �eld with a smaller granularity, This property allows

our implementation of the precedes operation to ignore �elds altogether and optimally compare

the formats word by word from left to right.

The addition operation for the OS and low resolution time-stamps is a straightforward addition

of seconds to seconds. Addition for the other formats requires adding each relevant �eld separately

(e.g., microseconds to microseconds, milliseconds to milliseconds) and performing the necessary

carries between the �elds. The time-stamp �elds are added from smallest granularity to largest

(e.g., �rst milliseconds, then seconds).

Not every addition of an event and a �xed span results in a valid event. For example, adding

two OS time-stamps could result in an over
ow. Hence, we further constrain addition to indicate

whether or not the operation produces a valid result. To satisfy this constraint, the SQL2 and DB2

formats must be checked to ensure that each �eld conforms to Gregorian calendar standards. The

validity test makes sure that the number of days in a month does not exceed the allowed number,

and takes into account monthly di�erences in the number of days in a month (including leap years).

Any implementation which adheres to the SQL2 or DB2 standard must perform this test. Neither

standard mentions \leap seconds" so we did not implement a check for leap seconds, although leap

seconds are sometimes used with Gregorian dates after 1972. A leap second test would involve

determining whether the number of seconds corresponds to a valid number of seconds for a given

year, month, day, hour, and minute. We felt that the expense of doing a leap second check on the

DB2 and SQL2 formats would make meaningless any benchmarking.

The OS, high, low, and extended resolution time-stamps perform a di�erent kind of validity

check for addition. The addition operation for these formats ensures that no �eld over
ows during

computation (e.g., no more than 2

38

� 1 seconds can be put into the seconds �eld of the high

resolution time-stamp). These formats do not need a validity test for days in a month or for leap

seconds since none of these formats records either minutes, hours, days, months, or years separately.

20

SYSTEM Size Range Granularity Bytes Space

(bytes) Needed E�ciency

High Resolution
8 � 17400 years microsecond 7.5 93%

Low Resolution
8 � 36 billion years second 7.6 95%

Extended Resolution
12 � 36 billion years nanosecond 11.3 94%

Table 4: A comparison of the proposed event formats

Output is a more complex operation. Each time-stamp must be unpacked into relevant �elds

during output. For example, assume that a low resolution time-stamp is to be printed using a

Gregorian calendar format. In this case, the year, month, day, hour, and minute would have

to be extracted from the seconds �eld. Calculating these values involves numerous expensive

divisions. We could have decided to store each relevant �eld separately in the actual time-stamp

(as is commonly done in database-style time-stamps) and thus avoid the expense of extracting

these �elds. This was not done for two reasons. First, such a scheme would complicate arithmetic

operations, and to a lesser extent comparison operations, which we chose to optimize over output.

Second, deciding which �elds are relevant is very calendar speci�c. If a separate �eld is created

inside the time-stamp to record minutes, as was done in DB2, then an extra level of translation

must be provided to turn minutes back into seconds for the traditional Chinese calendar, which

does not have minutes.

The standard event formats are summarized in Table 4, which may be compared with Table 2

on page 12. The space e�ciency of the low resolution format is surprisingly only 93% rather than

100% because we count the type �eld (4 bits) as wasted space. But, even with this penalty, we

have the highest space utilization of any database time-stamp, and get within 7% of the optimal

space utilization of the generic OS time-stamp.

6 Execution E�ciency

To obtain quantitative time measures for the DB2 timestamp, SQL2 datetime, generic Operating

System (OS), high resolution, low resolution, and extended resolution time-stamps, we bench-

marked each time-stamp on the seven operations listed below.

Precedes comparison | This is a binary operation that determines if one event precedes an-

other. The result of the comparison is a boolean value that indicates if the �rst operand is

earlier than the second operand.

Addition | This operation displaces an event by the amount of time represented by a �xed span.

Division by a scalar value | The division operation divides the amount of time represented

by a �xed span by a scalar value in the range of 1 to 2

31

.

Translation to and from a Gregorian calendar representation | These translation oper-

ations are speci�c to the Gregorian calendar.

19

Date High Low Extended

Midnight 1/1/1970
0000000000000000 4000000000000000 800000000000000000000000

12:04:29 AM 1/1/1970
0100000010D00000 410000000000010D 810000000000010D00000000

10:51:41 PM 12/31/1969
0000000010300000 4000000000000103 800000000000010300000000

Midnight 1/1/9000 B.C.
| 4000005098092C00 8000005098092C0000000000

Midnight 1/1/1972
01003C2670000000 4100000003C26700 8100000003C2670000000000

Midnight 7/1/1992
0102962561A00000 010000002962561A 810000002962561A00000000

12:00:00.001 AM 12/4/1961
0000F2FD78000800 400000000F2FD780 800000000F2FD78000800000

Table 3: Some time values, in hexadecimal

time-stamp.) The origin need only be sometime within several thousand years of \now" so that

the range of the high resolution formats overlaps the historical past and the present. We chose an

origin close to now because this results in small time-stamps for times close to now. Since we �xed

the origin to a relatively recent date, we need a sign bit to represent dates in the past. A sign bit

is also useful because exactly the same formats are used to represent �xed spans (�xed spans can

be either positive or negative values). Fixed spans were described in Section 5.3.

The operations on temporal objects available at the logical level are presented elsewhere [Soo

& Snodgrass 1992A]. The physical level support that underpins these operations can be divided

into four broad categories: comparison operations, arithmetic operations, output, and input. Of

these categories, we anticipate that comparison operations will be the most frequent, arithmetic

operations will be less frequent, output will be less frequent still, and input will occur exactly once

per time-stamp. We also anticipate that the performance of output will not be critical, since the

generated string will need to be printed eventually, and printing is a very slow operation compared

with instruction execution.

Comparison operations compare two time-stamps using the standard comparison predicates.

In our design of the formats we kept the goal of e�cient comparison operations �rmly in sight. The

most obvious manifestation of this design decision is that the high resolution format has separate

second, millisecond, and microsecond �elds even though this increases the complexity of arithmetic

operations. In a comparison operation with a low resolution format, only the millisecond and

microsecond �elds need to be masked out. Alternatively, the high resolution format could have

been (and initially was) a simple count of microseconds. In this scenario, a comparison to the

low resolution format would have entailed extracting the number of seconds, a costly operation

involving a division by one million.

Although comparison operations were optimized at the expense of arithmetic operations,

arithmetic operations are by no means ine�cient. Performing arithmetic operations on the time-

stamps is essentially the same as doing limited mixed radix arithmetic. The operations are done

separately on the seconds, milliseconds, microseconds, and nanoseconds �elds with the necessary

carries between the �elds. Note, however, that the maximum of four sub-�elds in our formats is

exceeded both by SQL2's datetime format (six sub-�elds), and by DB2's time-stamp format (nine

sub-�elds), implying that arithmetic on those other formats will be less e�cient.

18

 Low Resolution Range

 Extended Resolution Range

Past Synchronization Point (M
idnight 1/1/9,000 B

.C
.)

U
T

C
 Synchronization Point (M

idnight A
.D

. 1/1/1972)

Future Synchronization Point (M
idnight A

.D
. 7/1/1992)

M
axim

um
 Future E

vent (A
.D

. 18,000,000,000)

O
ldest past event (18,000,000,000 B

.C
.)

D
aw

n of T
im

e (T
he B

ig B
ang) (~14,000,000,000 B

.C
.)

O
rigin (M

idnight A
.D

. 1/1/1970)

H
igh/L

ow
 B

oundary (5:50:57 P.M
. June 17, 6742 B

.C
.)

H
igh/L

ow
 B

oundary (6:09:03 A
.M

. July 14, A
.D

. 10680)

 High Resolution Range

Figure 5: Ranges of three event formats (not to scale)

Using 64 bits we found that we could represent all of time (that is, a range of 34 billion years)

to the granularity of a second, and less extensive ranges to granularities �ner than a second. We

also observed that users have a \telescoping" view of time. Events close to \now" should be

capable of being represented very precisely, while events further in the past or the future can have

much coarser granularities because users will not know such times precisely. Our design trades

range for resolution. High resolution has limited range but extended precision while low resolution

has extended range but limited precision. Extended resolution handles those uncommon cases

where the user wants both an extended range and an extended precision, at the cost of an extra

word of storage. The \extra
ag" �eld in the extended resolution format signals whether the user

wants even �ner precision by adding a further word(s) of precision information. The range of

the low resolution formats overlaps that of the high resolution formats and is coextensive with

the extended resolution formats. The range of each format on the base-line clock is diagramed

in Figure 5. Table 3 shows several Gregorian calendar dates, including the three synchronization

points, and their corresponding time-stamp representation (in hexadecimal). One date is outside

the range of the high resolution format.

We also included a sign bit in every format. The sign represents the direction from the origin.

The origin of each time-stamp format is the same (so that high and low resolution time-stamps

can be compared quickly). The \time" at the origin is represented by a time-stamp with the

relevant �elds all set to zero. We arbitrarily located the origin at Midnight January 1, 1970 GMT.

(Those familiar with the Unix operating system will notice that this is also the origin of the Unix

17

 Variable Span (64 bits)

param

16

variable span identifier

 type = 1111

calendar identifier

 4 5 7

param param

1616

321

Figure 4: The variable span format

from the origin. The sign bit indicates whether the span is positive or negative rather than the

direction from the origin.

Variable spans, however, use an altogether di�erent format, shown in Figure 4. The variable

span format is a 64 bit record with six �elds: type, calendar identi�er, variable span identi�er,

and three parameter �elds. Using a smaller format would not result in a space savings, as variable

spans must coexist with �xed spans, which are at least 64 bits in length. A variable span belongs

to a speci�c calendar [Soo & Snodgrass 1992B]. Since many variable spans can belong to the same

calendar, the format must also be able to identify the speci�c variable span (e.g., month). A

variable span can have up to three parameters . Fields for these parameters are also included in

the format (16 bits each). Finally, the variable span format has a type value that distinguishes

variable from �xed spans.

For example, in the Gregorian calendar (calendar identi�er 1), the variable span \3 months

and 4 days" (span identi�er of 2 indicating the \month+day" span), would have parameter val-

ues: param

1

= 3, param

2

= 4, param

3

= 0. The hexadecimal value of the span would be

F083000300040000.

5.4 Design Decisions

The time-stamp representations that we developed had to simultaneously satisfy several design

goals. One very important goal was that the entire range of the base-line clock, all of time, had

to be represented. As shown in Table 2, most time-stamp formats have a limited range. For

example, the Unix time-stamp can only represent times between January 1, 1970, 00:00 GMT and

(approximately) January 1, 2091. There is a natural tradeo� between range and granularity in

time-stamp development. Using the same number of bits, a time-stamp designer can make the

granularity coarser to extend the range or she can limit the range to support �ner granularities.

Unfortunately, the Unix time-stamp su�ers from both a limited range and a coarse granularity

(only a second).

These observations imply that a format based on a single 32 bit word is inadequate for our

purposes; there are simply not enough bits. Since we wanted to keep the time-stamp formats on

32 bit word boundaries we allocated the next word increment, or 64 bits, to our basic format.

16

To di�erentiate amongst the three time-stamp formats, each format has a type �eld (the type

also distinguishes the indeterminate formats that are described in Section 7). The type �eld is

stored in the high order portion rather than the low order portion because not every format is the

same size. The extended resolution format is 32 bits bigger than the high or low resolution formats.

The type �eld is also used to distinguish special events, such as \beginning" and \for-

ever", from other events. Beginning is represents the youngest possible time while forever rep-

resents the oldest. The hexadecimal representation for beginning is C000000000000001 while

the representation of forever is C000000000000002. Finally, a null time-stamp is represented as

C000000000000000.

Each time-stamp is a distance, in base-line clock chronons, from the origin (recall that a

chronon in the base-line clock is de�ned to be a second). The sign bit indicates the direction from

the origin. The high resolution format has separate �elds for milliseconds and microseconds which

can be viewed as uniform-width o�sets within the speci�ed chronon. The extended resolution

format has �elds for milliseconds, microseconds, and nanoseconds, and can be extended to any

desired accuracy. The \extra
ag" �eld indicates whether an additional word or words of accuracy

is desired. Each word adds nine decimal digits of accuracy and has its own
ag �eld to indicate

whether more words follow.

5.2 Intervals

Interval time-stamp formats are simply two event time-stamps, one for the starting interval event

and one for the terminating interval event. We use this representation because all operations on

intervals are actually operations on their delimiting events [Soo et al. 1992]. There are sixteen

interval time-stamp formats in toto. The type �elds in the delimiting event time-stamps distinguish

each format.

Interval time-stamps are quite large; all intervals require at least 128 bits (16 bytes). Smaller

interval time-stamps are possible. For instance, we could develop a 96 bit interval for common

intervals. We are considering adding such time-stamp formats. Two type values, 1101 and 1110,

are still available for this purpose.

5.3 Spans

There are two kinds of spans, �xed and variable [Soo & Snodgrass 1992A]. A �xed span is a count

of chronons. It represents a �xed duration (in terms of chronons) on the base-line clock between

two time values. A variable span, on the other hand, is a span whose duration varies in relation to

an associated event. A common variable span is a month. The duration represented by a month

varies depending upon whether that month is associated with an event in June (30 days) or in July

(31 days), or even in February (28 or 29 days).

The �xed span formats use exactly the same layouts as the standard event formats, but are

interpreted di�erently. The span chronon count is independent of the origin instead of a count

15

 High Resolution (64 bits)

 Low Resolution (64 bits)

seconds from origin

 4

sign
type = 0100

59

 Extended Resolution (96 bits)

seconds from origin

 4

sign
type = 1000

59

wasted
extra flag

10 10 10

milli micro nano

seconds from origin

38

sign

 type = 0000
wasted

 4

microseconds
milliseconds

1010

Figure 3: The standard event formats

5 Proposed Time-stamp Formats

There are three basic types of time-stamps: events, spans, and intervals [Soo & Snodgrass 1992A].

The next two sections cover event time-stamps in detail. The �rst section describes a simple

general form behind each event time-stamp format that belies the format's complex facade. The

next sections show that the span and interval time-stamps are natural extensions of the event time-

stamps. The decisions we took in designing the event time-stamps are motivated in the subsequent

subsection. In Section 7, we expand these formats to cover indeterminacy [Dyreson & Snodgrass

1992].

5.1 Event Time-stamp Formats

We developed three new event time-stamp formats, shown in Figure 3. The dashed lines mark

word boundaries. The number above a sub�eld is the size of that sub�eld. The time-stamps

have di�erent resolutions : there are high, low, and extended resolution time-stamps. Resolution

is a rough measure of a time-stamp precision. The low resolution format can represent times to

the precision of a second. High resolution narrows the precision to a microsecond while extended

resolution is even more precise; it can represent times to the precision of a nanosecond.

14

Space e�ciency is a very important property of a time-stamp. Very roughly, it is a measure

of how much of the representation is actually needed. It is computed as a percentage of the number

of bits needed to represent every chronon in the temporal interpretation (DB2 and SQL2 both use

the Gregorian calendar temporal interpretation) versus the number of bits devoted to the physical

realization. All other considerations aside, that which is not utilized is wasted.

The minimum number of bytes needed to store the number of chronons dictated by a time-

stamp's granularity and range is shown as a separate column. For instance, SQL2's datetime

time-stamp uses 20 bytes, but only 4.8 bytes of space are needed to store a range of 10,000 years

to the granularity of a second.

The evaluated time-stamps fall into two camps: OS-style time-stamps and database-style

time-stamps. OS-style time-stamps have a limited range (about 121 years) and granularity (to

the second). These limitations are dictated by the size of the time-stamp (32 bits). OS-style

time-stamps are maximally space e�cient. The time-stamp itself is merely a count of the number

of chronons that have elapsed since the origin in the temporal interpretation. But optimal space

e�ciency is attained at the expense some time e�ciency . Detailed time e�ciency measures are

presented in Section 6. To manipulate an OS-style time-stamp, it must sometimes be converted to

an unpacked version. This translation imposes an overhead on many time-stamp operations. The

cost of arithmetic and comparison operations, however, remains low because time-stamps can be

manipulated as unsigned integers with no unpacking needed.

In contrast, database-style time-stamps, as exempli�ed by the DB2 timestamp format, are

generally larger than OS-style time-stamps. Because database-style time-stamps are larger, they

have a wider range and �ner granularity than the OS-style time-stamps. But, as a group, they

also have poorer space utilization. Database-style time-stamps, instead of being a simple count

of chronons, have a record-like structure with separate �elds for seconds, hours, days, etc. The

advantage of representing these values separately is that they can be quickly accessed. Extracting

the number of years from an OS-style time-stamp is more involved than performing a similar task

on an DB2 timestamp. As we show in Section 6, the input and output performance of the database-

style time-stamps is only partially satisfactory because they support but a single calendar. However,

separate �elds within a time-stamp makes arithmetic operations more complex. The addition of

two database-style time-stamps requires adding the value at each �eld separately and performing

carries between the �elds.

Neither style of time-stamp is completely adequate for our purposes. Most of the existing

time-stamps are incapable of realizing the base-line clock because of their limited range and granu-

larity. The proposed SQL2 format has the widest range, but even with 192 bits, it is still incapable

of representing all of time. Also, none of the time-stamps are able to represent historical indeter-

minacy (which we discuss in Section 7). Consequently, we developed our own time-stamp formats,

incorporating features from both the OS-style and database-style time-stamps.

13

year/month/day/hour/second but exact format unavailable

Ingres (96 bits)

OS (32 bits)

seconds since origin

hh mm ss

DB2 time (24 bits)

(packed decimal)

DB2 date (32 bits)

yyyy mm dd (packed decimal)

DB2 timestamp (80 bits)

yyyy mm dd hh mm ss nn nn nn (packed decimal)

SQL2 datetime (160 bits)

hour/minute second

year month day

Figure 2: The bit layout of several time-stamps

SYSTEM
Size Range Granularity Bytes Space

(bytes) Needed E�ciency

OS (several)
4 � 136 years second 4 100%

DB2 | date
4 10,000 years day 2.9 71%

DB2 | time
3 24 hours second 2.2 72%

DB2 | timestamp
10 10,000 years microsecond 7.3 73%

SQL2 | datetime
20 10,000 years second 4.8 24%

SQL2 | fractional datetime
27 10,000 years microsecond 7.3 27%

Ingres
12 10,000 years(?) second 4.8 40%(?)

Table 2: A comparison of some physical layouts

12

than one mean solar second in A.D. 1992. Another feature is that the number of chronons in a

\day" is not the same among all the constituent clocks because of leap seconds. The mean solar

clock counts 24� 60� 60 chronons (if the granularity is one second) between Midnight February

23, 1925 and Midnight February 24, 1925. But, the UTC clock counts 24 � 60 � 60 + 1 seconds

between Midnight December 31, 1990 and Midnight January 1, 1991, because a leap second was

added.

Having de�ned the base-line clock we now turn to describing the physical structure of a

time-stamp.

4 Existing Time-stamp Representations

The bit-level representation of a temporal object has a signi�cant impact on the performance of a

temporal database system. A space ine�cient representation will tax the resources of the database's

storage system. In some cases, the traditional space/time tradeo� can be exploited to reduce space

requirements. A common method of obtaining space e�ciency is to encode the time-stamp, that

is, to pack the representation into as few bits as possible. The bene�ts of compactness, however,

need to be balanced against the extra burden placed on the time e�ciency of the database system.

Support for common time-stamp operations should not incur a drastic e�ciency penalty as might

happen if the encoded representation had to be decoded each time it was used.

With these considerations in mind, we examine several existing time-stamp formats. We

scrutinize time-stamps from the MS Dos, Unix, and MacIntosh operating systems as well as the

database systems DB2, Ingres, and SQL2. The bit layouts of the database time-stamps are depicted

in Figure 2, drawn approximately to scale, along with a generic operating system time-stamp (all

the operating system time-stamps share a common format). The dashed lines in the �gure indicate

word boundaries. The Ingres format is proprietary. We evaluate these time-stamp formats on

�ve signi�cant properties: range, granularity , size, bytes needed, and space e�ciency . A table

summarizing the candidate time-stamps is shown in Table 2. The SQL datetime time-stamp

appears twice in the comparison, once with its optional fractional second precision �eld (not shown

in the Figure 2) set to microseconds, and once without the optional �eld. In Section 6, we evaluate

these formats in terms of execution e�ciency.

Size is the number of bytes devoted to the representation, while range refers to the di�erence

between the youngest and oldest time values that can be represented. We assume that the generic

OS time-stamp does not have a sign bit, although the Unix time-stamp is de�ned as an integer.

In general, a time-stamp with a narrow range is of limited usefulness since range is a restrictive

property. The range could be increased at a later date, but such conversions, such as the ongoing

zipcode conversion, from �ve to nine digits, in the United States, can be very costly.

The granularity of a time-stamp is the precision to which a time value can be represented.

Granularity is also a restrictive feature. The choice of a particular granularity for a time-stamp

eliminates the ability to represent time values with �ner granularities. A granularity of a second

means that time values cannot be represented more precisely than to the nearest second.

11

there are almost exactly the same number of days in a year today as there were in 9000 B.C (the

rate of decrease is on the order of 0.0014 days per century).

The switch from ephemeris to mean solar time happens at the \past synchronization point".

We de�ne this point as the time when the two clocks have the exact same time. Thus, there

is no di�erence between the time on the mean solar clock and the ephemeris clock at the past

synchronization point. One year prior to Midnight January 1, 9000 B.C. is one ephemeris year

prior to that date. One day after Midnight January 1, 9000 B.C. is one mean solar day after that

date.

The mean solar clock carries the base-line clock up to Midnight January 1, 1972 after which

the base-line clock follows UTC. Midnight January 1, 1972 is when UTC was synchronized with

the atomic clock and the current system of leap seconds adopted. In particular, during the interval

in which the base-line clock uses UTC, 26 leap seconds were added. The base-line clock runs on

UTC until one second before Midnight, July 1, 1992. This is the next time at which a leap second

may be added (a leap second will be added on this date according to the latest International Earth

Rotation Service bulletin [USNO 1992]).

The synchronization point at July 1, 1992 is a \moving" synchronization point. When UTC

becomes known beyond that time (by adding or subtracting leap seconds) the synchronization

point will move. Each movement of the synchronization point engenders a new de�nition of the

base-line clock because more of UTC is known. When the base-line clock is rede�ned, time-stamps

in the database that represent times later than the \old" synchronization point will have to be

modi�ed to ensure consistency with the rede�ned base-line clock (e.g., a second will have to be

added to each).

After Midnight July 1, 1992, until the \Big Crunch" or the end of our base-line clock, the

base-line clock follows Terrestrial Dynamic Time (TDT) since both UTC and mean solar time are

unknown and unpredictable. Also, since 1984, TDT has been favored over ephemeris time by the

international standards community.

The base-line clock de�nes the meaning of each time-stamp bit pattern in the physical realiza-

tion of a time-stamp. The chronons of the base-line clock are the chronons in its constituent clocks.

We will assume that each chronon is one second in the underlying constituent clock. For example, a

bit pattern corresponding to Midnight February 23, 1925 is interpreted using the mean solar clock

but Midnight June 30, 1992 is interpreted using UTC. Assuming that Midnight February 23, 1925

is a date in the Gregorian calendar, it is (10925� 365 + 54 + 2648)� 24� 60� 60 chronons after

the past synchronization point (there have been 2648 leap days) while Midnight June 30, 1992 is

((20� 365 + 181 + 6)� 60� 60) + 26 chronons after the UTC synchronization point (there have

been 6 leap days and 26 leap seconds).

The clocks that we chose for the base-line clock have two nonobvious features that are im-

portant to a database implementor. One feature is that the size of chronons in the base-line clock

varies (with respect to ephemeris time) because chronons in the mean solar day clock are not of

�xed size. Since the mean solar day 11,000 years ago was slightly longer (with respect to ephemeris

time) than it is today (about 160 milliseconds longer, extrapolating backwards from the current

rate of slow-down in the Earth's rotation), one mean solar second in 9000 B.C. was slightly longer

10

 Dawn of Time
 (The Big Bang)
(14,000,000,000 B.C.
 +/- 4,000,000,000)

 Past
 Synchronization
 Point
 (1/1/9,000 B.C.)

 UTC/TAI
 Synchronization
 Point
 (A.D. 1/1/1972)

 Future (Moving)
 Synchronization
 Point
(Currently A.D. 7/1/1992)

 End of Time?

Ephemeris
 Time

Mean Solar Days UTC TDT

Figure 1: The base-line clock

because we expected the typical user to use tropical rather than anomalistic years.

The base-line clock is shown in Figure 1 (not to scale). It partitions the time line into a set

of contiguous periods. Each period runs on a di�erent clock. A synchronization point , where two

clocks are correlated, delimits a period boundary. The synchronization points occur at Midnight

on the speci�ed date.

We have adopted the beginning and ending of time in the base-line clock from the scienti�c

cosmology of the \Big Bang", although debates about the correctness of this cosmology continue

(Hawking provides a readable introduction to this controversy [Hawking 1988]). The cosmology

posits that time begins with the Big Bang, but there is much debate on when it will end. It depends

on whether the universe is open or closed . If the universe is closed then time will have an end

when the universe collapses back on itself in what is called the \Big Crunch". If it is open then the

universe will go on forever. We will not decide on the question of an open versus a closed universe.

Time in the base-line clock either does not end or ends at the \Big Crunch".

The base-line clock and its representation are independent of any calendar. We use Gregorian

calendar dates in this discussion only to provide an informal indication of when the synchronization

point occurred. From the Big Bang to Midnight January 1, 9000 B.C. the base-line clock runs on

ephemeris time. More formally, the past synchronization point is (10971�365+2659)�24�60�60

chronons (mean solar seconds) prior to the UTC/TAI synchronization point (we calculate 2659 leap

days between these two Gregorian dates). This clock is preferable to the tropical year clock since

ephemeris time is independent of the formation of the Earth and the Solar System. Also, we prefer

using the ephemeris clock to the tropical year clock because an ephemeris year is a �xed duration,

unlike the tropical year. Finally, when scientists date prehistoric events, if there is any di�erence

between the year they use and the ephemeris year, it is inconsequential to their calculations (the

di�erence between tropical and ephemeris years is on the order of 10

�5

seconds per year, which is

masked by the imprecision of their measurements).

For historic events, 9000 B.C. to January 1, 1972, the base-line clock follows the mean solar

day clock. Historic events are usually dated with calendars. Calendar dates invariably count days

and use an intercalation rule to relate the number of days to longer-term celestial clocks, e.g., the

Gregorian calendar relates days to tropical years. Because the rate of Earth's rotation is slowly

decreasing, there are more days in a tropical year now than there were 400 million years ago, though

9

Clock Kept by Whom Users

Apparent Solar Day
observatories general

Mean Solar Day
observatories general

Sidereal Day
observatories astronomers

Tropical Year
observatories general

Sidereal Year
observatories astronomers

Anomalistic Year
observatories astronomers

Ephemeris Time
observatories scientists

UT0
observatories astronomers

UT1
observatories navigators

UT2
observatories astronomers

UTC (pre 1972)
BIH general

TAI
BIH/BIPM general

UTC (post 1972)
BIH/IERS general

TDT
observatories scientists

Millisecond Pulsar
observatories astronomers

Generic Calendar
cultural organizations general

Tree-Ring Dating
tree ring labs dendrochronologists

Carbon-14 Dating
labs archaeologists

Radioactive Dating
labs geochronologists

Sedimentation Clock
labs stratigraphers

Magnetic Clock
labs geochronologists

Table 1: Clocks (continued)

3.2 The Proposed Base-line Clock

The previous discussion of clocks contains several implicit points that are germane to the overall

structure of the base-line clock. The �rst, perhaps obvious, comment is that events that occurred

in the prehistoric past cannot be dated as precisely as events that occur in the present. We have an

implicit \telescoping view" of time. Our dating of recent events can often be done to the millisecond

while events that occurred 400 million years ago can be dated only to, at best, the nearest 100,000

years. Dating future events is also problematic. It is impossible to say how many seconds there

will be between the UTC times Midnight January 1, 1990 A.D. and Midnight January 1, 2300

A.D. because we don't know how many leap seconds will be added to correct for changes in the

rotational clock. We can currently guess at the number of seconds, but \leap shifts" to the current

clock will invalidate our guess.

Second, many clocks are limited in their range of applicability. Tree-ring dating cannot be

used to date future events nor can UTC be used to date prehistoric events.

Finally, certain clocks are of interest only to specialists. In most cases, times on these clocks

can, within range limits, be approximately translated to times on clocks which are of more general

interest, but this translation might be expensive and imprecise. Hence, we anticipated the needs of

a typical user and favored those clocks that we believed to be of general interest for incorporation

into the base-line clock. For instance, we favored the tropical year clock, based on the seasons,

over the anomalistic year clock, based on the Earth's transit from perihelion to aphelion and back,

8

Clock Based On Corrections Applied (if any)

Apparent Solar Day
Sun crossing the observer's meridian none

Mean Solar Day
Sun crossing the observer`s meridian variable orbital speed and ecliptic orbit

Sidereal Day
distant star crossing the observer's meridian none

Tropical Year
Earth's orbit w.r.t. the equinoxes none

Sidereal Year
Earth's orbit w.r.t. distant stars none

Anomalistic Year
Earth's orbit w.r.t. apogee and perigee none

Ephemeris Time
celestial observations none

UT0
mean solar day voting among observatories

UT1
UT0 polar wander

UT2
UT1 seasonal variations in rate of rotation

UTC (pre 1972)
UT2 within 0.1 seconds of UT2

TAI
hyper�ne states of cesium atom voting among atomic clocks

UTC (post 1972)
TAI within 0.9 seconds of UT1

TDT
TAI and Ephemeris Time none

Millisecond Pulsar
rotating neutron star none

Generic Calendar
celestial day/month/year intercalations (e.g. leap years)

Tree-Ring Dating
tree rings none

Carbon-14 Dating
none none

Radioactive Dating
radioactive decay none

Sedimentation Clock
rock/fossil layers tectonics

Magnetic Clock
Earth's magnetic polarity none

Table 1: Clocks

Clock
Unit of Measure Range of Applicability Precision

Apparent Solar Day
day lifetime of Earth's rotation unknown

Mean Solar Day
day lifetime of Earth's rotation unknown

Sidereal Day
day lifetime of Earth's rotation 0.005 seconds

Tropical Year
year lifetime of Solar System millisecond

Sidereal Year
year lifetime of Solar System millisecond

Anomalistic Year
year lifetime of Solar System millisecond

Ephemeris Time
second lifetime of Universe millisecond

UT0
day 1958 { present nanosecond

UT1
second 1958 { present nanosecond

UT2
second 1958 { present millisecond

UTC (pre 1972)
second 1/1/1958 { 12/31/1971 second

TAI
second 1/1/1958 { present 10

�14

seconds

UTC (post 1972)
second 1/1/1972 { present second

TDT
second 1/1/1984 { end of time millisecond

Millisecond Pulsar
millisecond lifetime of neutron star 10

�10

seconds

Generic Calendar
politically legislated politically legislated usually day

Tree Ring Dating
seasons 5112 B.C. { present six months

Carbon-14 Dating
SI year � 70; 000 B.C. { A.D. 1500 centuries

Radioactive Dating
SI year � 4:5 billion { 100,000 years ago 10

4

{10

9

years

Sedimentation Clock
geologic epoch 4.5 billion years ago { present 10

4

{10

9

years

Magnetic Clock
constant polarity intervals � 170 million years ago { present 10

6

{10

9

years

Table 1: Clocks (continued)

7

3.1.3 Dating the Prehistoric Past

Astronomical observations can be used to determine the current time and to predict the time

of future events, but astronomical observations cannot be used to date past events unless the

con�guration of the heavens was recorded along with the event. Instead, clocks based on geological

and biological processes are used to date the past.

Dendrochronology is the study of the tree-ring record. By correlating rings from many dif-

ferent trees, a tree-ring clock accurate to the season with a range of 5000{7000 years can be

constructed [Silverberg 1971]. Carbon-14 dating determines the ratio of Carbon-14, an unstable

isotope of Carbon with a half-life of between 5700 and 5770 years, to Carbon 12, a stable isotope

[Goudsmit & Claiborne 1966]. Geochronologists have developed a battery of radioactive dating

techniques based on ratios of isotopes of lead and uranium, rubidium and argon, and potassium

and strontium, among others [Hood 1969]. The relative age of sedimentary strata can be deduced

from their position in the layering, providing a sedimentation clock [Silverberg 1971]. Finally,
ips

in the polarity of the Earth's magnetic �eld provide yet another clock, the magnetic clock [Kirkaldy

1977].

3.1.4 Summary

A comparative summary of the clocks we have considered is shown in Table 1 on pages 7 through 8.

The appendix brie
y discusses a few additional clocks not included in this table. The various clocks

are compared on the physical process they are based on, which corrections are applied in measuring

that process, the unit of measure, their range of applicability, precision, who performs the mea-

surements, and who uses the clock. The unit of measure is the common unit that the clock counts.

The precision column is a rough estimate of the average error in the method of measurement. One

of the most interesting comparative features is the range of applicability . Since the clocks are based

on physical processes, these processes may, at one time or another, be nonexistent. For instance,

4.5 billion years ago, clocks that measure the Earth's rate of rotation did not exist since the Earth

did not exist. The universe is thought to be about 14 billion years old (give or take 4 billion years),

so there is a long period of time when rotational clocks simply are not applicable.

The other columns are informative rather than comparative. The �rst column indicates the

physical process upon which each clock is ultimately based. Since some clocks are based on the

same physical process, they di�er not in the process but in the way that process is measured. This

is shown in the corrections applied column. Some of the clocks discussed above are of interest only

to specialists as indicated in the �nal column. For instance, Carbon-14 dating is used extensively

by anthropologists, historians, and archaeologists, the anomalistic and sidereal years are used

exclusively by astronomers to chart the movement of the heavens, and geochronologists use the

magnetic and sedimentation clocks to glean knowledge about past events. In day-to-day life,

the general public never encounters these clocks, except perhaps in a visit to a museum or an

observatory. However, the general public is in some sense regulated with UTC, as the alternating

current in their homes and o�ces is in synchronization with that clock.

6

atomic time (TAI) is the mean time of several, globally distributed atomic clocks.

Because of extraordinary accuracy of TAI, TAI was incorporated into the de�nition of UTC

(Universal Coordinated Time) in 1972. UTC was synchronized to TAI + 10 seconds and is kept

an integral number of seconds o�set from TAI. Since TAI runs increasingly faster than the rota-

tional clock, leap seconds must be sporadically added to UTC to keep UTC synchronized with the

rotational clock. The number of seconds to o�set is computed by deducing the rate of the Earth's

rotation from astronomical observations. Preference is given to July 1 or January 1 to add (or

subtract) leap seconds if needed.

In 1984, Dynamic Time (DT) replaced ephemeris time as the fundamental invariable time

scale. Dynamic time is a relationship between TAI and ephemeris time and can be thought of as

an \idealized atomic time" [Guinot & Seidelmann 1988]. The dynamic time on Earth, known as

Terrestrial Dynamic Time (TDT), is for all practical purposes TAI + 32.184 seconds (in 1984, the

di�erence between TAI and ET was determined to be 32.184 seconds). TDT does not su�er the

computational lag inherent in ET; it can be computed immediately from TAI.

A clock that rivals the stability of the atomic clocks are the millisecond pulsars . A millisecond

pulsar is a rapidly rotating neutron star that emits broad-band radio noise in periodic sequences.

Recent studies have suggested that millisecond pulsars are extremely reliable and can be used as a

diagnostic tool to check the long-term stability of individual atomic clocks [Taylor 1991].

3.1.2 Year Clocks

Clocks based on the Earth's rotation count o� relatively short periods of time, but clocks that

measure longer periods of time are also important. The long duration that is of interest is commonly

called a year . Like day clocks, most year clocks are based on astronomical processes.

There are three primary clocks based on the Earth's orbit around the Sun. The time needed

for the Earth to travel from aphelion to perihelion back to aphelion in its slightly elliptical orbit is

known as an anomalistic year . A tropical year is the time between successive passages of the Sun

through the vernal equinox (an equinox is the day when the duration of sunlight and darkness are

the same). A sidereal year is one rotation of the Earth around the Sun with respect to the distant

stars. The celestial years di�er slightly in length [Schultz 1986].

Calendar years are typically related to, but independent of, celestial years. For example, the

Gregorian calendar keeps in synchronization with the tropical year by counting mean solar days.

This is a di�cult task since there are not currently an integral number of solar days in the tropical

year and the length of the solar day and of the tropical year are both changing. The intercalation

or adjustment used by the Gregorian calendar to keep the count of solar days in step with the

tropical year is to add a leap day every few years. Even with the current leap day system, the

Gregorian year is approximately 25 seconds faster than the tropical year [Fraser 1987].

5

3.1 Previously De�ned Clocks

Traditionally, clocks have measured celestial processes, such as the rhythm of day and night, the

change of seasons, the phases of the Moon, and the patterns of stars at night. But nonastronomical

processes, such as tree-rings, radioactive decay, and transitions between excitation states of atoms,

can also make perfectly good clocks. The following sections develop a catalogue of existing clocks,

each of which is a candidate for the base-line clock. One reason for presenting this brief review is to

collect, from quite disparate sources, descriptions of most of the commonly used clocks. A second

reason is to demonstrate that di�erent clocks are used for di�erent purposes, and that there is no

\best clock".

3.1.1 Day Clocks

A day is an important biological and cultural unit. It is such a familiar unit that it may be surprising

to learn that there are actually several di�erent kinds of day. Each, however, is ultimately related

to the rotation of the Earth.

An apparent solar day is one rotation of the Earth with respect to the Sun. The length of

this day
uctuates by as much as 15 minutes during the course of a year, and continues to lengthen

slightly as the years progress. The daily
uctuations in the length of the apparent solar day can

be \smoothed", resulting in the mean solar day (by measuring an imaginary Sun called the \mean

Sun") or a sidereal day (by measuring the rotation of the Earth with respect to a distant star).

Unfortunately, a mean solar day also
uctuates in duration, due to various factors that a�ect the

rate of the Earth's rotation. Correcting for combinations of these factors results in a family of

universal times : UT0, UT1, UT2, and UTC [Howse 1980].

The family of universal times are ultimately related to the rotation of the Earth. But since the

rate of rotation varies, scientists who need to make accurate time calculations need a unit of time

that is independent of the Earth's rotation. In 1955, one such standard, called Ephemeris Time

(ET) was adopted by the scienti�c community. Prior to 1955, the International System of Units

(SI) de�ned the second in terms of the mean solar day. Ephemeris time is based on the tropical

year (to be de�ned later) 1900 A.D.; an ephemeris second is de�ned to be 1=31; 556; 925:9747 of

that year. While this may seem an odd de�nition, the ephemeris second is actually the average

value of a second calculated from astronomical observations over the eighteenth and nineteenth

centuries [Quinn 1991]. Ephemeris time is a computed time. There is no mechanical device that

counts o� ephemeris seconds. Variations in the length of the day in terms of ephemeris seconds

can be computed ex post facto from observed versus predicted positions of celestial bodies. But

this computation is commonly done years after the observations are made. Ephemeris time is

impractical for everyday use since it su�ers from this computational lag [Howse 1980].

The advent of atomic clocks have provided another unit that is �xed for all practical purposes.

In 1967, the atomic second was adopted as the fundamental unit of time (the SI second) by the

international standards community. The atomic clock measures \hyper�ne" states of the cesium

atom. The accuracy of the measurement methods are extraordinary [Petley 1991]. Modern atomic

clocks lose at most one second in 30; 000 years (with respect to ephemeris time). International

4

mentation or application dependent feature, from the semantics of the underlying temporal model.

For example, assume that two events occur during the same hour-long chronon. In our model, the

two events do not occur at the same time. Queries that ask for this information should respond

that the events are not simultaneous. If the user changes the granularity to one second, the two

events may or may not occur during the same second. Even if they do occur during the same

second-long chronon, the events still cannot be said to occur simultaneously.

In addition to events, we are also interested in representing intervals and spans. An interval

is a set of contiguous chronons, or in our model of time, a particular segment of the time-line.

Our intervals are closed rather than open; an interval is denoted by the starting and terminating

chronons. We will assume that an interval begins somewhere within the starting chronon, but

exactly where is unknown, and ends somewhere within the terminating chronon.

Spans are unanchored durations of time, that is, a span is a number of chronons with no speci�c

starting or terminating chronon. An example span is \60 seconds" which denotes a duration of one

minute.

3 Clocks

Our representation of time is related to the physical world through a base-line clock . The base-line

clock is an abstract clock. Unlike a Seiko wristwatch, the base-line clock exists only on paper. This

section explores the nature of the base-line clock and how it relates to other clocks.

There are literally thousands of kinds of clocks. They vary greatly in their precision, accuracy,

unit of measure, applicability to di�erent times, and relevance. Before describing our proposal for

a base-line clock, we examine brie
y the major clocks that have been used to reckon time. A

basic understanding of these clocks is necessary to justify our de�nition of the base-line clock. The

appendix augments the discussion given here.

A clock is a physical process coupled with a method of measuring that process. A clock by

itself does not measure time; it only measures the process. The units of measurement are the

chronons of the clock. The size of the units is the granularity of the clock. The accuracy of the

measurement method restricts the granularity.

For example, consider a clock based on the rotation of the Earth. A chronon in this clock

might be the period from one dawn to the next. To observe when dawn occurs we can imagine

a suitable method that involves being able to distinguish a white thread from a black thread by

dawn's early light (and takes into account various factors such as clouds and solar eclipses). The

best accuracy we could hope to achieve from this method is to distinguish one dawn from the next.

The granularity of our clock is the unit of measure, the period from one dawn to the next (e.g., a

\day").

One desirable clock feature is that chronons be of uniform duration (in comparison to other

clocks). If the rotational clock described above were used at the North Pole, there would be a wide

variation in the size of each chronon, compared to other clocks, between winter and summer.

3

clock. We begin with a comparative summary of existing time-stamps that are candidates for the

physical realization. The inadequacies of these time-stamp layouts in realizing the base-line clock

will become apparent. Consequently, we propose new layouts, describe those layouts, and brie
y

motivate our basic design goals and decisions. We test the utility of our design by making detailed

time and space comparisons with existing time-stamps. We then propose additional layouts to

support indeterminate events . An indeterminate event is an event that is known to have occurred,

but precisely when is unknown. An appendix provides a more extensive discussion of the clocks

introduced in the �rst part of this paper.

2 Model of the Time-Line

This paper is not a philosophical treatise on time; rather it de�nes the meaning of a time-stamp by

showing a correspondence between existing clocks and time-stamp bit patterns. This correspon-

dence is based on a particular model of time.

In the temporal database community, two basic time models have been proposed: the con-

tinuous model , in which time is viewed as being isomorphic to the real numbers, with each real

number corresponding to a \point" in time, and the discrete model , in which time is viewed as

being isomorphic to the natural numbers [Cli�ord & Tansel 1985]. We choose to use a discrete

model. We propose that time is modeled by a closed interval on the real number line. Since it is

a closed interval, time has both an origin and an endpoint. The time-line can be subdivided into

a �nite number of contiguous, pairwise disjoint subintervals. Each subinterval is called a chronon

[Ariav 1986, Cli�ord & Rao 1987]. A chronon is the smallest duration of time that we can represent.

Other terms, such as \instant" [Gadia 1986], \moment" [Allen & Hayes 1985], \time quantum"

[Anderson 1982], and \time unit" [Navathe & Ahmed 1987, Tansel & Arkun 1986], have been used

in the literature to describe a nondecomposable unit of time, but we favor the term chronon.

It is important to note that a chronon is not a point, but a line segment. We assume that

the set of chronons is linearly ordered. A di�erent model of time, where the chronons are partially

ordered, is called branching time. Our model of time is linear rather than branching. The least and

the greatest values in the linear ordering are specially designated, respectively, as beginning and

forever . These two values are not chronons; rather, they are the extreme points on the time-line.

The size of each chronon is usually �xed by the granularity of the interpretation (e.g, second,

day, year), but this need not be the case. We assume that every event occurs at a point in time;

but, because we are using a discrete model, a chronon represents a line segment. We can only

record that an event occurred during a particular chronon. We further assume that an event may

occur anywhere within a chronon. We consider events to be instantaneous, and we do not model

events that have duration [Anderson 1982], although we do model intervals (see below). Hence,

the time that an event occurred is never precisely known. At best, only the chronon during which

it happened is known. Two events that occur during the same chronon may still occur at di�erent

times .

Our motivation in selecting this model of time is to unhitch the granularity, often an imple-

2

1 Overview

Many database management systems and operating systems provide support for time values. This

support is present at both the logical and physical levels. The logical level is the user's view of

the time values and the query level operations permitted on those values, while the physical level

concerns the bit layout of the time values and the bit level operations on those values. The physical

level serves as a platform for the logical level but is inaccessible to the average user. This paper

presents a proposal for the physical level of time values. A proposal for the logical level in the

relational data model is presented elsewhere [Soo & Snodgrass 1992A].

At the physical level, time values are known as time-stamps . A time-stamp has both a physical

realization and a temporal interpretation. The physical realization is an encoding as a pattern of

bits while the temporal interpretation stipulates the meaning of each bit pattern, the time to which

each pattern corresponds. Without such an interpretation, the meaning of a time-stamp stored in

a database or by an operating system is unclear.

Various time-stamps are in use in commercial database management systems and operating

systems. These time-stamp representations su�er from inadequate range, too coarse granularity,

excessive space requirements, or a combination of these drawbacks. For example, the DB2 date type

has a granularity of a day [Date & White 1990]. Most operating system formats reduce this coarse

granularity to a second, but only cover about 120 years. DB2's timestamp type further reduces

the granularity to a microsecond, but requires 10 bytes and still only covers 10,000 years, which is

of little use to geologists. The SQL2 standard datetime type requires 27 bytes to accommodate

an identical range and granularity [Melton 1990].

All previous time-stamps were de�ned in terms of seconds. However, as will be shown, there

are many de�nitions of second, including the ephemeris second , the sidereal second , the UT1 and

UT2 seconds , the SI second , and the TAI and UTC seconds. When a range of less than 10,000

years is supported, the di�erences between these de�nitions are generally inconsequential. When

ranges of several billion years are supported, however, these de�nitions di�er signi�cantly. Another

consideration is that seconds based on the mean solar day, as in Universal Coordinated Time

(UTC), are not de�ned more than 4.5 billion years ago, before the Earth existed.

In this paper, we propose a physical realization for time-stamps that encompasses the entire

age of the universe to a granularity of a second, encompasses all of recorded history to a granularity

of a microsecond, and requires only eight bytes. The proposed physical realization does not sacri�ce

the e�ciency of run-time operations. We also provide a well-de�ned temporal interpretation for

each possible bit pattern that avoids the ambiguity of previous proposals.

This paper is divided into two parts. The �rst part describes the base-line clock . The base-line

clock provides the semantics for the physical representation. Our model of time, which underlies

the base-line clock, is presented in the second section. The third section explores many kinds of

clocks in detail. Some of these clocks are part of the base-line clock. The base-line clock, itself a

collection of physical clocks, is then presented.

The second part of this paper describes the physical realization that is used for the base-line

1

Acknowledgements 31

References 32

Appendix 35

ii

Contents

1 Overview 1

2 Model of the Time-Line 2

3 Clocks 3

3.1 Previously De�ned Clocks : 4

3.1.1 Day Clocks : 4

3.1.2 Year Clocks : 5

3.1.3 Dating the Prehistoric Past : 6

3.1.4 Summary : 6

3.2 The Proposed Base-line Clock : 8

4 Existing Time-stamp Representations 11

5 Proposed Time-stamp Formats 14

5.1 Event Time-stamp Formats : 14

5.2 Intervals : 15

5.3 Spans : 15

5.4 Design Decisions : 16

6 Execution E�ciency 19

7 Historical Indeterminacy 25

7.1 Indeterminate Events : 26

7.2 Indeterminate Intervals and Spans : 29

7.3 Design Decisions : 29

8 Summary and Future Work 30

i

Copyright
c

 Curtis E. Dyreson and Richard T. Snodgrass 1991

Time-stamp Semantics and Representation

1

Time-stamp Semantics and

Representation

Curtis E. Dyreson

1

Richard T. Snodgrass

2

TR 92-16

Revised July 3, 1992

Abstract

Many database management systems and operating systems provide support for time values.

At the physical level time values are known as time-stamps. A time-stamp has a physical

realization and a temporal interpretation. The physical realization is a pattern of bits while

the temporal interpretation is the meaning of each bit pattern, that is, the time each pattern

represents. All previous proposals de�ned time-stamps in terms of seconds. However, as we

show, there are at least seven de�nitions of this fundamental time unit. We propose a more

precise temporal interpretation, the base-line clock , that constructs a time-line by using di�erent

well-de�ned clocks in di�erent periods. We also propose time-stamp formats for events, intervals,

and spans. These formats can represent all of time to the granularity of a second, and all of

recorded history to a �ner granularity of a microsecond. Our proposed formats were designed

to be more space and time e�cient than existing representations. We compare our formats with

those used in common operating systems and database management systems.

1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

curtis@cs.arizona.edu

2

Department of Computer Science

University of Arizona

Tucson, AZ 85721

rts@cs.arizona.edu

