
4. Repeated application produces a relation instance with no repetition of information.

Proof: There is no repetition of information between the resulting tuples as they do not overlap

in transaction time.

Let x and x

0

be given as in the de�nition of elimination of repetition and de�ne T

x

=

cover

max

t

(x[T] � x

0

[T]) and T

0

x

= cover

max

t

(x

0

[T] � x[T]). Tuples x and x

0

are replaced by at

most three tuples. Line 3 results in one tuple. Lines 1 and 2 collectively result in two tuples, for

the following reasons. The set T

x

has two elements when x

0

[T] contains no endpoints of x[T]. In

this case T

0

x

is empty. The sets T

x

and T

0

x

have both one element when x

0

[T] contains exactly one

of the endpoints of x[T]. Lastly, T

x

is empty when x

0

[T] contains both endpoints of x[T]. In this

case T

0

x

has two elements.

Being similar to that for coalescing, the proof of equivalence preservation is omitted.

The process of eliminating repetition is terminating because the new tuples that result from

one transformation step cover strictly smaller intervals in the transaction time dimension. In ad-

dition, two tuples that cover only a single transaction time and have repeated information may be

coalesced into a single tuple that would not be further partitioned. ut

26

By the de�nition of 1

B

, there exists tuples x

1

2 r and x

2

2 s such that x

1

[A] = x

2

[A] = x

0

[A],

x

1

[B] = x

0

[B], x

2

[C] = x

0

[C], x

0

[T] = x

1

[T]\x

2

[T], and x

0

[V] = x

1

[V]\x

2

[V]. By the de�nition of

�

B

t

, there exists a tuple x

0

1

2 �

B

t

(r) such that x

0

1

= x

0

[AB] and x

0

1

[V] = x

0

[V] and a tuple x

0

2

2 �

B

t

(s)

such that x

0

2

= x

0

[AC] and x

0

2

[V] = x

0

[V]. Then there exists x

00

12

2 rhs such that x

00

12

[AB] = x

0

1

,

x

00

12

[C] = x

0

2

[C], and x

00

12

[V] = x

0

1

[V] \ x

0

2

[V]. By construction x

00

12

S

� x

00

(in fact, x

00

12

= x

00

).

Now assume x

00

2 rhs. Then there exists tuples x

0

1

and x

0

2

in �

B

t

(r) and �

B

t

(s), respectively,

such that x

0

1

= x

00

[AB] and x

0

2

= x

00

[AC] and x

00

[V] = x

0

1

[V] \ x

0

2

[V]. This implies the existence of

tuples x

1

2 r and x

2

ins and with x

1

[AB] = x

0

1

[AB], x

1

[V] = x

1

[V], t 2 x

1

[T], x

2

[AC] = x

0

2

[AC],

x

2

[V] = x

0

2

[V], and t 2 x

2

[T]. There must exist a tuple x

0

2 r 1

B

s with x

0

[AB] = x

1

[AB],

x

0

[C] = x

2

[C], x

0

[V] = x

1

[V] \ x

2

[V], and t 2 x

0

[T]. Consequently, there exists a tuple x

00

12

2 lhs

such that x

00

12

= x

0

[ABC] and x

00

12

[V] = x

0

[V]. By construction, x

00

12

S

� x

00

. ut

The proof of the next theorem utilizes a subtle requirement on null values in bitemporal

relations. Speci�cally, we require that null information not conict with non-null information. If

one tuple states that the value of an attribute is null then another, temporally concurrent tuple

that contains non-null information for that attribute must not exist. More formally, we de�ne this

property as follows.

Definition: Consistency of null information. Let two tuples x and x

0

, both belonging to a

relation instance r, be given as

x = (a

1

; : : : ; a

i�1

;?; a

i+1

; : : : ; a

n

; t)

x

0

= (a

1

; : : : ; a

i�1

; a

i

; a

i+1

; : : : ; a

n

; t

0

)

where a

i

6= ? and t and t

0

are bitemporal element valued timestamps. If, for all such tuple pairs

in r, it is the case that t \ t

0

= ; then the null information in r is consistent. ut

If a relation instance has consistent null information then a null value means that no other

tuple has more de�nite information, and all relevant information is contained within a single tuple.

When inconsistent null information is present, nothing may be inferred from encountering a null

value, and the locality is jeopardized.

Theorem 5 Coalescing preserves snapshot equivalence.

Proof: Let r be a relation instance containing x and x

0

as given as in the de�nition of coalescing.

In the �rst of the two cases, let relation s be identical to r, but with x and x

0

replaced by the

tuple y as given in the de�nition. We must prove r and s snapshot equivalent. The tuples x

and x

0

result in exactly the tuple (a

1

; : : : ; a

n

) being present in all snapshots of r with a transac-

tion time in [t

1

; t

2

] and a valid time in [min(v

1

; v

3

);max(v

2

; v

4

)]. Similarly, the tuple y results in

(a

1

; : : : ; a

n

) being part of all snapshots of s with a transaction time in [t

1

; t

2

] and a valid time in

[min(v

1

; v

3

);max(v

2

; v

4

)]. The requirement that null information be genuine ensures this even in

the case when there are nulls among the a

i

. The proof for the second of the two cases is similar. ut

Theorem 6 The elimination of repetition transformation has the following properties.

1. It eliminates repetition among two argument tuples.

2. The result, s, has at most three tuples.

3. It is equivalence preserving.

25

t

1

2 y

j

[T] and t

2

2 y

j

[V] (the �rst requirement). Therefore, tuple y = x

0

[A] must be in �

V

t

2

(�

B

t

1

(r

2

)).

Since y = x, r

1

is a snapshot subset of r

2

. Due to symmetry, proving the reverse is similar.

To prove the second implication, pick an arbitrary tuple x in some snapshot of s

1

and let

(t

i

; t

j

) be the set of pairs of valid and transaction times so that x is in �

V

t

i

(�

B

t

j

(s

1

)). (This is simply

the bitemporal element in s

i

corresponding to the fact x.) By the premise and the de�nition of

snapshot equivalence, the set of pairs (t

0

i

; t

0

j

) such that x is in �

V

t

0

i

(�

B

t

0

j

(s

2

)) must be identical to

the set (t

i

; t

j

). In general, these sets of pairs are covered by di�erent sets of rectangles in s

1

and

s

2

. However, the function snap to conceptual simply accumulates the covered pairs (correspond-

ing to bitemporal chronons) in sets, rendering the particular covering by rectangles immaterial. ut

Theorem 3 The algebraic operators preserve snapshot equivalence. Speci�cally, let r

S

� r

0

and

s

S

� s

0

. Then

r 1

V

s

S

� r

0

1

V

s

0

r 1

B

s

S

� r

0

1

B

s

0

�

B

P

(r)

S

� �

B

P

(r

0

)

�

B

D

(r)

S

� �

B

D

(r

0

)

r [

B

s

S

� r

0

[

B

s

0

r �

B

s

S

� r

0

�

B

s

0

:

Proof: As before, we proceed by demonstrating snapshot subsets. To prove the �rst equivalence,

let tuple x be in the lhs. By the de�nition of 1

V

there exists a set of tuples x

i

2 r with x

i

[AB] =

x[AB] and so that [

i

x

i

[V] � x[V]. Similarly, there exists a set of tuples x

j

2 s with x

j

[AC] = x[AC]

and so that [

j

x

j

[V] � x[V]. Next, by the de�nition of

S

� , for each x

i

2 r the exists a set of tuples

x

i

k

2 r

0

with x

i

k

[AB] = x

i

[AB] and so that [

k

x

i

k

[V] � x

i

[V]. The set x

i

k

covers x

i

. For each j a

similar set x

j

l

exists that covers x

j

. Applying 1

V

to the sets of tuples x

i

k

2 r

0

and x

j

l

2 s

0

yields a

set of tuples x

m

with x

m

[AB] = x[AB] and so that [

m

x

m

[V] � x[V]. This proves that any tuple

in a snapshot made from the lhs will also be present in the same snapshot made from the rhs. By

symmetry, the reverse is also true, and the equivalence follows.

The proofs of the other equivalences are similar. ut

Theorem 4 Let t denote an arbitrary time that, when used with a rollback operator, does not

exceed NOW . In each equivalence, let r and s be relation instances of the proper types for the

given operators. Then the following hold.

�

T

t

(r 1

T

s)

S

� �

T

t

(r) 1

S

�

T

t

(s)

�

V

t

(r 1

V

s)

S

� �

V

t

(r) 1

S

�

V

t

(s)

�

B

t

(r 1

B

s)

S

� �

B

t

(r) 1

T

�

B

t

(s)

�

B

t

(r 1

B

s)

S

� �

B

t

(r) 1

V

�

B

t

(s)

Proof: An equivalence is shown by proving its two inclusions separately. The non-timestamp

attributes of r and s are AB and AC, respectively, where A, B, and C are sets of attributes and

A denotes the join attribute(s).

We prove the fourth equivalence. The proofs of the remaining equivalences are similar and

are omitted. Let x

00

2 lhs. Then there is a tuple x

0

2 r 1

B

s such that x

0

[ABC] = x

00

and t 2 x

0

[T].

24

[Tan86] A.U. Tansel. Adding Time Dimension to Relational Model and Extending Relational

Algebra. Information Systems, 11(4):343{355, 1986.

[Ull82] J.D. Ullman. Principles of Database Systems, Second Edition. Computer Science Press,

Potomac, Maryland, 1982.

Appendix: Proofs of Theorems

Since the rollback and timeslice operations are de�ned separately for each representation, the

proofs involving these operators must necessarily be representation speci�c. While we utilize only

the tuple-timestamped representation, analogous proofs apply to the other representations.

Theorem 1 Let r be a temporal relation. Then for all times t

1

not exceeding NOW and for all

times t

2

,

�

V

t

2

(�

B

t

1

(r))

S

� �

T

t

1

(�

B

t

2

(r)):

Proof: Let x 2 �

V

t

2

(�

B

t

1

(r)); then there is a tuple y in �

B

t

1

(r) with y[A] = x[A] and t

2

2 y[V]. This

implies the existence of a tuple z in r so that z[A] = y[A], z[V] = y[V], and t

1

2 z[T]. As t

2

2 z[V],

there is a tuple u in �

B

t

2

(r) for which u[A] = z[A] and u[T] = z[T]. As t

1

2 u[T], there is a tuple

v in �

T

t

1

(�

B

t

2

(r)) with v[A] = u[A]. By construction, v = x. Thus, a tuple on the lhs (left hand

side) is also on the rhs (right hand side). Proving the opposite inclusion is similar and omitted.

Combining the inclusions proves the equivalence. ut

In the proof of the following theorem, the notion of snapshot subset is utilized.

Definition: A temporal relation instance, r, is a snapshot subset of a temporal relation instance,

s, r

S

� s, if for all times t

1

not exceeding NOW and all times t

2

,

�

V

t

2

(�

B

t

1

(r)) � �

V

t

2

(�

B

t

1

(s)): (25)

Further, a temporal query expression, Q

1

, is a snapshot subset of a temporal query expression, Q

2

,

Q

1

S

� Q

2

, if all instantiations of Q

1

are snapshot subsets of all instantiations of Q

2

. ut

Theorem 2 Snapshot equivalent temporal relations represent the same conceptual temporal

relation:

1. If conceptual to snap(r

0

; cover

1

) = r

1

and conceptual to snap(r

0

; cover

2

) = r

2

,

then r

1

S

� r

2

.

2. If s

1

S

� s

2

then snap to conceptual(s

1

) = snap to conceptual(s

2

).

Proof: We prove the two implications in turn. To prove that r

1

and r

2

are snapshot equivalent,

we prove that r

1

is a snapshot subset of r

2

, and conversely. We need to show that 8t

1

; t

2

; x 2

�

V

t

2

(�

B

t

1

(r

1

)), x 2 �

V

t

2

�

B

t

1

(r

2

)). Let tuple x be in �

V

t

2

(�

B

t

1

(r

1

)). By the de�nition of rollback and

timeslice, a set of tuples x

i

exist in r

1

with x

i

[A] = x and t

1

2 x

i

[T] and t

2

2 x

i

[V]. By the premise

and the de�nition of conceptual to snap, a single tuple x

0

exists in r

0

with x

0

[A] = x

i

[A] and so

that x

0

[T] contains exactly the bitemporal chronons covered by the x

i

. Further, the bitemporal

chronon (t

2

; t

1

) must be in x

0

[T]. In general, an application of conceptual to snap to x

0

will then

result in a set of tuples y

j

, each with y

j

[A] = x

0

[A]. For at least one of the y

j

, it must be true that

23

[BZ82] J. Ben-Zvi. The Time Relational Model. PhD thesis, Computer Science Department,

UCLA, 1982.

[CC87] J. Cli�ord and A. Croker. The Historical Relational Data Model (HRDM) and Al-

gebra Based on Lifespans. In Proceedings of the International Conference on Data

Engineering, pages 528{537, Los Angeles, CA, February 1987.

[Gad88] S.K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal

Databases. ACM Transactions on Database Systems, 13(4):418{448, December 1988.

[Gad92] S.K. Gadia. A seamless generic extension of SQL for querying temporal data. Technical

Report TR-92-02, Computer Science Department, Iowa State University, March 1992.

[JMRS92] C.S. Jensen, L. Mark, N. Roussopoulos, and T. Sellis. Using Caching, Cache Indexing,

and Di�erential Techniques to E�ciently Support Transaction Time. VLDB Journal,

to appear, 1992.

[Kim78] K.A. Kimball. The Data System. Master's thesis, University of Pennsylvania, 1978.

[LJ88] N. Lorentzos and R. Johnson. Extending Relational Algebra to Manipulate Temporal

Data. Information Systems, 13(3):289{296, 1988.

[McK86] E. McKenzie. Bibliography: Temporal Databases. ACM SIGMOD RECORD,

15(4):40{52, December 1986.

[MS91] E. McKenzie and R. Snodgrass. Supporting Valid Time in an Historical Relational Al-

gebra: Proofs and Extensions. Technical Report TR{91{15, Department of Computer

Science, University of Arizona, Tucson, AZ, August 1991.

[NA89] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Language.

Information Sciences, 49:147{175, 1989.

[SA85] R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proceedings of ACM

SIGMOD, pages 236{246, 1985.

[Sad87] R. Sadeghi. A Database Query Language for Operations on Historical Data. PhD

thesis, Dundee College of Technology, Dundee, Scotland, December 1987.

[Sar90] N. Sarda. Extensions to SQL for Historical Databases. IEEE Transactions on Knowl-

edge and Data Engineering, 2(2):220{230, June 1990.

[Sno87] R. Snodgrass. The Temporal Query Language TQUEL. ACM Transactions on

Database Systems, 12(2):247{298, June 1987.

[Sno90] R. Snodgrass. Temporal Databases: Status and Research Directions. ACM SIGMOD

Record, 19(4):83{89, December 1990.

[Sno93] R. Snodgrass. An Overview of TQuel, in Temporal Databases: Theory, Design, and

Implementation, Benjamin/Cummings Pub. Co., to appear, 1993.

[Soo91] M. D. Soo. Bibliography on Temporal Databases. ACM SIGMOD Record, 20(1):14{23,

March 1991.

[SS88] R. Stam and R. Snodgrass. A Bibliography on Temporal Databases. Database Engi-

neering, 7(4):231{239, December 1988.

22

6

-

� -

6

-

6

-

(b)(a)

Figure 6: Eliminating Representational Repetition of Information

normal form (1NF) tuple timestamped data model, a data model based on 1NF timestamped

change requests recorded in backlog relations, and a non-1NF data model in which attribute

values were stamped with rectangles in transaction-time/valid-time space. We also showed how

an extension to the conventional relational algebraic operators could be de�ned in the conceptual

data model, and be mapped to analogous operators in the representational models.

An important property of the conceptual model shared with the conventional relational model,

but not held by the representational models, is that relation instances are semantically unique, each

models a di�erent reality and thus has a distinct semantics. We employed snapshot equivalence

to relate instances in these four models, and showed that the operators were equivalent, were

snapshot preserving, and were a natural extension of the snapshot operators. Finally, we discussed

covering functions at di�erent points along the space-time tradeo�, and presented two types of

transformations altering coverings of bitemporal relation representations.

We advocate a separation of concerns. Data presentation, storage representation, and time-

varying semantics should be considered in isolation, utilizing di�erent data models. Semantics,

speci�cally as determined by logical database design, should be expressed in the conceptual model.

Multiple presentation formats should be available, as di�erent applications require di�erent ways

of viewing the data. The storage and processing of bitemporal relations should be done in a data

model that emphasizes e�ciency.

Additional research is needed in database design, utilizing the conceptual data model. It

appears that normal forms may be more conveniently de�ned in this model than in the representa-

tional models. Also, more work is needed in mapping existing temporal query language proposals

into the conceptual data model.

Acknowledgements

This research was conducted while the �rst author visited the University of Arizona. Support was

provided by the Danish Natural Science Research Council through grant no. 11-9675-1 SE, the

National Science Foundation through grant IRI-8902707, the IBM Corporation through Contract

#1124, and by Christian and Otilia Brorsons Mindelegat.

References

[BADW82] A. Bolour, T.L. Anderson, L.J. Dekeyser, and H.K.T. Wong. The Role of Time in

Information Processing: A Survey. SigArt Newsletter, 80:28{48, April 1982.

[BG89] G. Bhargava and S. Gadia. Achieving Zero Information Loss in a Classical Database

Environment. In Proceedings of the Conference on Very Large Data Bases, pages

217{224, Amsterdam, August 1989.

21

valid time (b). Note that it is only possible to coalesce rectangles when the result is a bitemporal

rectangle. Compared to valid time relations with only one time dimension, this severely restricts

the applicability of coalescing.

We now formalize the notion that a relation may have repeated information among tuples.

Definition: A bitemporal relation instance r has repetition of information if it contains two

distinct tuples x = (a

1

; : : : ; a

n

; t

1

; t

2

; v

1

; v

2

) and x

0

= (a

1

; : : : ; a

n

; t

3

; t

4

; v

3

; v

4

) such that x[T] \

x

0

[T] 6= ; ^ x[V] \ x

0

[V] 6= ;. A relation with no such tuples has no repetition of information. ut

While coalescing may both reduce the number of rectangles and reduce repetition of infor-

mation, its applicability is restricted. The next equivalence preserving transformation may be

employed to completely eliminate temporally redundant information, at the expense of adding

extra tuples. We �rst de�ne the transformation and then describe its properties.

Definition: Elimination of repetition. With x and x

0

as in the de�nition above, the information

in tuple y, de�ned below, is contained in both x and x

0

.

y = (a

1

; : : : ; a

n

;max(t

1

; t

3

);min(t

2

; t

4

);max(v

1

; v

3

);min(v

2

; v

4

))

The repetition incurred by x and x

0

may be eliminated by replacing tuples x and x

0

by the set of

tuples, s, de�ned below.

1 s = fz

(n+4)

j z[A] = x[A] ^ ((z[T] 2 cover

max

t

(x[T]� x

0

[T])^ z[V] = x[V])_

2 (z[T] 2 cover

max

t

(x

0

[T]� x[T])^ z[V] = x

0

[V])_ (24)

3 (z[T] = x[T]\ x

0

[T]^ z[V] = x[V] [x

0

[V]))g

The function cover

max

t

transforms an argument set of transaction time chronons into a set of

maximal intervals of consecutive chronons. ut

Theorem 6 The elimination of repetition transformation has the following properties.

1. It eliminates repetition among two argument tuples.

2. The result, s, has at most three tuples.

3. It is equivalence preserving.

4. Repeated application produces a relation instance with no repetition of information. 2

The transformation partitions the regions covered by the argument rectangles on transaction

time. The symmetric transformation, which partitions on valid time, may also be included. These

transformations are illustrated in parts (a) and (b), respectively, of Figure 6.

The elimination of repetition of information may increase the number of tuples in a represen-

tation. The transformation may still be desirable because subsequent coalescing may be possible

and, more importantly, because certain updates are simpli�ed.

7 Summary and Future Research

In this paper, we de�ned a conceptual data model that timestamps facts with bitemporal elements,

which are sets of bitemporal chronons. We showed that it is a unifying model in that conceptual

instances could be mapped into instances of three existing representational data models, a �rst

20

-

-

??

Snapshot relationsRollback relations

1

S

1

T

�

T

t

�

T

t

�

T

t

(r 1

T

r

0

)

S

�

�t(r) 1

S

�

T

t

(r

0

)

r 1

T

r

0

�

T

t

(r), �

T

t

(r

0

)r, r

0

Figure 4: Reducibility of Rollback Natural Join to Snapshot Outer Natural Join.

A similar analysis can be made for the other operators. 2

6.4 Covering Transformations

When a conceptual bitemporal relation is mapped to a representation scheme, a covering function

is employed to represent bitemporal elements by sets of rectangles. The mappings were the topic of

Sections 3.1 to 3.3, and di�erent types of covering functions were discussed in Section 3.4. We now

de�ne two transformations that can change the covering in a representation without a�ecting the

results of queries, as the transformations preserve snapshot equivalence. Both are generalizations

of simpler transformations used in valid time data models.

The �rst transformation is termed coalescing. Informally, it states that two temporally over-

lapping or adjacent value-equivalent tuples may be collapsed into a single tuple [Sno87]. Coalescing

may help reduce the number of tuples necessary for representing a bitemporal relation, and, as

such, is a space optimization. We formally de�ne coalescing and show that it preserves snapshot

equivalence.

Definition: Coalescing . Let x = (a

1

; : : : ; a

n

; t

1

; t

2

; v

1

; v

2

) and x

0

= (a

1

; : : : ; a

n

; t

3

; t

4

; v

3

; v

4

) be

two distinct tuples belonging to the same bitemporal relation instance.

First, if x[T] = x

0

[T] and x[V] [x

0

[V] = [min(v

1

; v

3

);max(v

2

; v

4

)], the two tuples may be

coalesced into the single tuple y = (a

1

; : : : ; a

n

; t

1

; t

2

;min(v

1

; v

3

);max(v

2

; v

4

)). Second, if x[V] =

x

0

[V] and x[T] [x

0

[T] = [min(t

1

; t

3

);max(t

2

; t

4

)], the two tuples may be coalesced into the single

tuple y

0

= (a

1

; : : : ; a

n

;min(t

1

; t

3

);max(t

2

; t

4

); v

1

; v

2

).

A bitemporal relation instance is coalesced if no pair of tuples may be coalesced. ut

Theorem 5 Coalescing preserves snapshot equivalence. 2

6

-

�-

6

-

6

-

(b)(a)

Figure 5: Coalescing

Coalescing of overlapping, value-equivalent tuples is illustrated in Figure 5. The �gure shows

how rectangles may be combined when overlap or adjacency occurs in transaction time (a) or

19

r

S

� r

0

) �

X

(r)

S

� �

X

(r

0

): (23)

This de�nition may be trivially extended to operators that accept two or more argument relation

instances. ut

In the snapshot relational algebra, an operator, e.g., natural join, must return identical re-

sults every time it is applied to the same pair of arguments. In our framework, we require only

preservation of snapshot equivalence. Thus, we add exibility in implementing the bitemporal

operators by accepting that they return di�erent, but snapshot equivalent, results when applied

to identical arguments at di�erent times.

The operators preserve snapshot equivalence. That is, given snapshot equivalent operands

each operator produces snapshot equivalent results. This ensures that the result of an algebraic

operation will be correct, irrespective of covering.

Theorem 3 The algebraic operators preserve snapshot equivalence. 2

The next step is to combine the conceptual and representation level transformation functions

with the representation level operators to create corresponding conceptual level operators. Given

a representation level operator, �

p

, its corresponding conceptual level operators, �

pc

, is de�ned as

follows.

�

pc

X

(r

0

) = snap to conceptual(�

p

X

(conceptual to snap(r

0

)))

Theorems 2 and 3 in combination make this meaningful and ensure that the conceptual level oper-

ators behave like the snapshot relational algebra operators|with identical arguments, they always

return identical results. This is required because, like snapshot relations, conceptual bitemporal

relations are unique, i.e., two conceptual relations have the same information content if and only

if they are identical.

Now, we have two sets of operators de�ned on the conceptual bitemporal relations, namely the

directly de�ned operators in Section 6.1 and the induced operators. In fact, we have constructed the

two sets of operators to be identical. Put di�erently, the operators in Section 6.1 are the explicitly

stated conceptual level operators, induced from the representation level operators (Section 6.2)

and the transformation algorithms in Section 3.1.

Next we show how the operators in the various data models, snapshot, transaction-time,

valid-time, and bitemporal, are related. Speci�cally, we show that the semantics of an operator

in a more complex data model reduces to the semantics of the operator in a simpler data model.

Reducibility guarantees that the semantics of simpler operators are preserved in their more complex

counterparts.

For example, the semantics of the transaction-time natural join reduces to the semantics of

the snapshot natural join in that the result of �rst joining two transaction-time relations and then

transforming the result to a snapshot relation yields a result equivalent to that obtained by �rst

transforming the arguments to snapshot relations and then joining the snapshot relations. This is

shown in Figure 4 and stated formally in the �rst equivalence of the following theorem.

Theorem 4 Let t denote an arbitrary time that, when used with a rollback operator, does not

exceed NOW . In each equivalence, let r and s be relation instances of the proper types for the

given operators. Then the following hold.

�

T

t

(r 1

T

s)

S

� �

T

t

(r) 1

S

�

T

t

(s)

�

V

t

(r 1

V

s)

S

� �

V

t

(r) 1

S

�

V

t

(s)

�

B

t

(r 1

B

s)

S

� �

B

t

(r) 1

T

�

B

t

(s)

�

B

t

(r 1

B

s)

S

� �

B

t

(r) 1

V

�

B

t

(s)

18

6.2 Mapping the Algebra to a Representation Scheme

For each of the algebraic operators de�ned in the previous section, we now de�ne counterparts

for the �rst of the three representation schemes. Throughout this section, R and S denote tuple

timestamped bitemporal relation schemas, and r and s are instances of these schemas. Initially, R

is assumed to have the attributes A

1

; : : : ; A

n

;T

s

;T

e

;V

s

;V

e

.

As the rollback and timeslice operators were de�ned in Section 3.1, we only de�ne projection,

selection, union, di�erence, and natural join. We consider each operator in turn.

To de�ne projection, let D be an arbitrary set of jDj attributes among A

1

; : : : ; A

n

. The

projection on D of r, �

B

D

(r), is de�ned as follows.

�

B

D

(r) = fz

(jDj+4)

j 9x 2 r (z[D] = x[D] ^ z[T] = x[T] ^ z[V] = x[V])g (18)

Next, let P be a predicate de�ned on A

1

; : : : ; A

n

. The selection P on r, �

B

P

(r), is de�ned as

follows.

�

B

P

(r) = fz

(n+4)

j 9x 2 r (z = x ^ P (x[A]))g (19)

To de�ne the union operator, [

B

, let both r

1

and r

2

be instances of schema R.

r

1

[

B

r

2

= fz

(n+4)

j 9x 2 r

1

9y 2 r

2

(z = x _ z = y)g (20)

With r

1

and r

2

de�ned as above, relational di�erence is de�ned using several functions intro-

duced in Section 3.1.

r

1

�

B

r

2

= fz

(n+4)

j 9x 2 r

1

(z[A] = x[A]^

9t 2 cover(bi chr(x[T]; x[V])� (21)

fbi chr(y[T]; y[V]) j y 2 r

2

^ y[A] = x[A]g)^

z[T

s

] = min 1 (t) ^ z[T

e

] = max 1 (t)^

z[V

s

] = min 2 (t) ^ z[V

e

] = max 2 (t))g

The new timestamp is conveniently determined by set di�erence on bitemporal elements.

To de�ne the bitemporal natural join, we need two bitemporal relation schemas R and S with

overlapping attributes.

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

m

;T

s

;T

e

;V

s

;V

e

)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

k

; ;T

s

;T

e

;V

s

;V

e

)

In the bitemporal natural join of r and s, r 1

B

s, two tuples join if they match on the join

attributes and overlap in both valid time and transaction time.

r 1

B

s = fz

(n+m+k+4)

j 9x 2 r 9y 2 s (z[A] = x[A] = y[A] ^ x[T]\ y[T] 6= ; ^ x[V] \ y[V] 6= ;^

z[B] = x[B] ^ z[C] = y[C]^ (22)

z[T] = x[T] \ y[T]^ z[V] = x[V] \ y[V])g

6.3 Equivalence Properties

We have seen that a conceptual bitemporal relation is represented by a class of snapshot equivalent

relations in the representation scheme. We now de�ne the notion of an operator preserving snapshot

equivalence.

Definition: An operator � preserves snapshot equivalence if, for all parameters X and snapshot

relation instances r and r

0

representing bitemporal relations,

17

6.1 De�nition

De�ne a relation schema R = (A

1

; : : : ; A

n

;T), and let r be an instance of this schema. Let t

denote an arbitrary time value and let t

0

denote a time not exceeding NOW . Then the timeslice

and rollback operators, explained in Section 5.1, may be de�ned as follows.

�

B

t

0

(r) = fz

(n+1)

j 9x 2 r (z[A] = x[A] ^ t

0

2 elem 1 (x[T])^ z[T

v

] = elem 2 (x[T]))g (11)

�

B

t

(r) = fz

(n+1)

j 9x 2 r (z[A] = x[A] ^ t 2 elem 2 (x[T])^ z[T

t

] = elem 1 (x[T]))g (12)

Here, elem 1 selects all the transaction time chronons from a bitemporal element, and elem 2

selects all the valid time chronons.

Let D be an arbitrary set of jDj non-timestamp attributes of relation schema R. The projec-

tion on D of r, �

B

D

(r), is de�ned as follows.

�

B

D

(r) = fz

(jDj+1)

j 9x 2 r (z[D] = x[D])^ 8y 2 r (y[D] = z[D]) y[T] � z[T])^ (13)

8t 2 z[T] 9y 2 r (y[D] = z[D] ^ t 2 y[T])g

The �rst line ensures that no chronon in any value-equivalent tuple of r is left unaccounted for,

and the second line ensures that no spurious chronons are introduced.

Let P be a predicate de�ned on A

1

; : : : ; A

n

. The selection P on r, �

B

P

(r), is de�ned as follows.

�

B

P

(r) = fz j 9x 2 r (z = x ^ P (x[A]))g (14)

To de�ne the union operator, [

B

, let both r

1

and r

2

be instances of R.

r

1

[

B

r

2

= fz

(n+1)

j (9x 2 r

1

9y 2 r

2

(z[A] = x[A] = y[A] ^ z[T] = x[T][y[T]))_ (15)

(9x 2 r

1

(z[A] = x[A] ^ (:9y 2 r

2

(y[A] = x[A]))^ z[T] = x[T]))_

(9y 2 r

2

(z[A] = y[A] ^ (:9x 2 r

1

(x[A] = y[A]))^ z[T] = y[T]))g

The �rst clause handles value-equivalent tuples found in both r

1

and r

2

; the second clause handles

those found only in r

1

; and the third handles those found only in r

2

.

With r

1

and r

2

de�ned as above, relational di�erence is de�ned as follows.

r

1

�

B

r

2

= fz

(n+1)

j 9x 2 r

1

(z[A] = x[A])^

((9y 2 r

2

(z[A] = y[A] ^ z[T] = x[T]� y[T]))_ (16)

(:9y 2 r

2

(z[A] = y[A])^ z[T] = x[T]))g

The last two lines compute the bitemporal element, depending on whether a value-equivalent tuple

may be found in s.

In the bitemporal natural join, two tuples join if they match on the join attributes and

have overlapping bitemporal element timestamps. De�ne r and s to be instances of R and S,

respectively, and let R and S be bitemporal relation schemas given as follows.

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

m

;T)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

k

;T)

The bitemporal natural join of r and s, r 1

B

s, is de�ned below. As can be seen, the timestamp of

a tuple in the join result is computed as the intersection of the timestamps of the two tuples that

produced it.

r 1

B

s = fz

(n+m+k+1)

j 9x 2 r 9y 2 s (x[A] = y[A] ^ x[T]\ y[T] 6= ;^

z[A] = x[A] ^ z[B] = x[B] ^ z[C] = y[C]^ (17)

z[T] = x[T] \ y[T])g

We have only de�ned operators for bitemporal relations. The similar operators for valid time

and transaction time relations are special cases. The valid and transaction time natural joins are

denoted 1

V

and 1

B

, respectively; the conventional snapshot natural join is denoted 1

S

. The

same naming convention is used for the remaining operators.

16

5.2 Snapshot Equivalence

We can now de�ne snapshot equivalence so that it applies to each of the three representations.

Definition: Two relation instances, r and s, are snapshot equivalent, r

S

� s, if for all times t

1

not exceeding NOW and all times t

2

,

�

V

t

2

(�

B

t

1

(r)) = �

V

t

2

(�

B

t

1

(s)): (10)

ut

The concept of snapshot equivalence generalizes the notion of weakly equivalent valid time

relations (c.f., [Gad88]). We use a new term to avoid confusion with the di�erent notion of weak

equivalence (e.g., [Ull82]).

There is no reason to apply � before � in the de�nition of snapshot equivalence, as the

following theorem states. Proofs of all theorems may be found in the appendix.

Theorem 1 Let r be a bitemporal relation. Then for all times t

1

not exceeding NOW and for

all times t

2

,

�

V

t

2

(�

B

t

1

(r))

S

� �

T

t

1

(�

B

t

2

(r)): 2

Snapshot equivalence precisely captures the notion that relation instances in the representa-

tion scheme have the same information content. More precisely, all representations of the same

conceptual bitemporal relation instance are snapshot equivalent, and two bitemporal relations that

are snapshot equivalent represent the same conceptual bitemporal relation.

Theorem 2 Snapshot equivalent bitemporal relations represent the same conceptual bitemporal

relation:

1. If conceptual to snap(r

0

; cover

1

) = r

1

and conceptual to snap(r

0

; cover

2

) = r

2

,

then r

1

S

� r

2

.

2. If s

1

S

� s

2

then snap to conceptual(s

1

) = snap to conceptual(s

2

). 2

This theorem has important consequences. For each representation, and for a given cover-

ing function, snapshot equivalence partitions the relation instances into equivalence classes. Each

instance in an equivalence class maps to the same conceptual bitemporal relation instance. The

semantics of the representation instance is thus identical to that of the conceptual instance. This

correspondence provides a way of converting instances between representations: this conversion can

proceed through a conceptual instance. Finally, the correspondence provides a way of demonstrat-

ing that two instances in di�erent representations are semantically equivalent, again by examining

the conceptual instance(s) to which they map. For example, it may be shown that the represen-

tation instances given in Sections 3.1 through 3.3 are semantically equivalent to the conceptual

bitemporal relation given in Section 2.1, and are thus semantically equivalent to each other.

6 An Algebra for Conceptual Bitemporal Relations

We now examine the operational aspects of the data models just introduced. A major goal is

to demonstrate the existence of the operational counterpart of the structural equivalence estab-

lished in the previous section. We �rst de�ne operations on conceptual bitemporal relations and

then de�ne corresponding operations on the tuple-timestamped representation. We prove that the

operators preserve snapshot equivalence and are natural generalizations of their snapshot counter-

parts. Finally, we examine two transformations that manipulate coverings in representations of

bitemporal relation instances.

15

turn. If any of its associated bitemporal chronons have a transaction time matching the argument

time, the explicit attribute values and each of the valid time chronons with a matching transaction

time become a tuple in the result. The rollback operator may also be applied to a transaction time

relation, in which case the result is a snapshot relation.

The timeslice operator, �

B

, is very similar. It also takes two arguments, a bitemporal relation

and a time value. The di�erence is that this operator does the selection on the valid time and

produces a transaction time relation. The timeslice operator may also be applied to a valid time

relation, in which case the result is a snapshot relation.

In the following, let t denote an arbitrary time value and let t

0

denote a time not exceeding

NOW .

Definition: (Tuple Timestamped Data Model). De�ne a relation schema R = (A

1

; : : : ; A

n

; T

s

,

T

e

, V

s

, V

e

), and let r be an instance of this schema.

�

B

t

0

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[V] = x[V] ^ t

0

2 x[T])g (4)

�

B

t

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[T] = x[T]^ t 2 x[V])g (5)

ut

Definition: (Backlog Data Model). De�ne a relation schema R = (A

1

; : : : ; A

n

;V

s

;V

e

;T;Op),

and let r be an instance of this schema. Let t denote an arbitrary time value and let t

0

denote a

time not exceeding NOW .

�

B

t

0

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[V] = x[V] ^ x[T] � t

0

^ x[Op] = I^ (6)

(:9y 2 r (y[A] = x[A] ^ y[V] = x[V] ^ y[Op] = D ^ x[T] � y[T] � t

0

)))g

�

B

t

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[T] = x[T]^ z[Op] = x[Op]^ t 2 x[V])g (7)

In the de�nition of rollback, an insertion request contributes to the result if it was entered before

the argument transaction time t

0

and if it was not subsequently countered by a deletion request

before t

0

. The non-symmetry of these two de�nitions betrays the emphasis accorded transaction

time in this model. ut

Definition: (Attribute Value Timestamped Data Model).

�

B

t

0

(r) = fz

(n)

j 9x 2 r (8i 1 � i � n 8a 2 x[A

i

](t

0

2 a:T) (a:V a:val) 2 z[A

i

])^ (8)

8b 2 z[A

i

](9a 2 x[A

i

](t

0

2 a:T ^ b:val = a:val ^ b:V = a:V))g

�

B

t

(r) = fz

(n)

j 9x 2 r (8i 1 � i � n 8a 2 x[A

i

](t 2 a:V) (a:T a:val) 2 z[A

i

])^ (9)

8b 2 z[A

i

](9a 2 x[A

i

](t 2 a:V ^ b:val = a:val ^ b:T = a:T))g

For each, the �rst line ensures that no chronon is left unaccounted for, and the second line ensures

that no spurious chronons are introduced. ut

For each of the three representation schemes, the rollback operator for transaction-time re-

lations (�

T

) and the timeslice operator for valid-time relations (�

V

) are straightforward special

cases of these de�nitions. Note that the rollback and timeslice operators in the various repre-

sentations all have the same names, �

B

t

and �

B

t

. For the remainder of the paper, we will use the

tuple-timestamped representation as a focus, and this representation will be assumed for these

operators.

14

Representational Data ModelsDisplay Formats

Physical

Database

Design

Attribute-value

Timestamping

Backlogs

Tuple-timestamping

Conceptual

Temporal

Data Model

�

�

�

�

�

�

�
��

Q

Q

Q

Q

Qk

?

6

a

a

a

a

a

a

a

�

�

�

�

�

�
�

P

P

P

P

P

P
P

Parameterized

1

Database

Design

Logical

Format

Format

Query

Optimization

Figure 3: Interaction of Conceptual and Representational Data Models

in its use of bitemporal chronons to stamp facts. Clearly, in most situations, this is not the most

appropriate way to present the stored data to users, nor is it the best way to physically store the

data. However, since there are mappings to several representations that, in many situations, may

be more amenable to presentation and storage, those representations can be employed for those

purposes, while retaining the semantics of the conceptual data model. Figure 3 shows the place-

ment of the conceptual bitemporal data model with respect to the tasks of logical and physical

database design, storage representation, query optimization, and display. As the �gure shows, log-

ical database design produces the conceptual relation schemas, which are then re�ned into relation

schemas in some representational data model(s). Query optimization may be performed on the

logical algebra, parameterized by the cost models of the representation(s) chosen for the stored

data. Finally, display presentation should be decoupled from the storage representation. Section

3 gave four di�erent representations of the example conceptual relation introduced in Section 2.1.

Each of these is an appropriate presentation for some situations, independent of how the relation

is stored. The backlog presentation is quite useful during an audit, and the �rst attribute value

timestamped presentation is suitable when the history of an employee is desired.

Note that this arrangement hinges on the semantic equivalence of the various data models. It

must be possible to map between the conceptual model and the various representational models,

as discussed next.

5 Semantic Equivalence

The previous section claimed that many equivalent representations of the same conceptual relation

may co-exist. In this and the next section, we explore in more detail this relationship between the

conceptual data model and the representational data models. We focus here on the objects in the

models; the next section will examine operations on these objects.

5.1 The Rollback and Timeslice Operators

We use snapshot equivalence to formalize the notion of equivalent representations. Snapshot equiv-

alence makes use of the notions of rollback and timeslice, which we de�ne for each representation.

The rollback operator, �

B

, takes two arguments, a bitemporal relation and a time value, the

latter appearing as a subscript. The result is a valid-time relation. In order to explain the semantics

of trho, we describe its operation on a conceptual bitemporal relation. Each tuple is examined in

13

perhaps the most natural choice of covering [Sno87]. Indeed, all the examples of representations

of the employee bitemporal relation use covering functions that partition by transaction time.

Figure 2(b) illustrates the symmetric partitioning by valid time. Here, three rectangles are

created with corners at ((5,10), (19,15)), ((10,5), (14,10)), and ((10,15), (14,20)).

Figure 2(c) exempli�es a type of covering that allows overlaps. The two rectangles in this

covering have corners at ((5,10), (19,15)) and ((10,5), (14,20)). The overlap of these rectangles

means that two tuples will express the fact that Jake was in the shipping department from June

10th to June 15th, recorded as current information from June 10th to June 14th.

The example demonstrates that a covering function that allows overlap may result in a smaller

number of covering rectangles, and therefore may yield a more compressed representation, than

a covering function that partitions. However, this repetition of information makes some updates

more time consuming.

3.5 Other Representations

The three representations just discussed are not the only ones that have been proposed to support

both valid and transaction time. BenZvi introduced the �rst bitemporal representation, similar to

the tuple timestamping scheme in Section 3.1, but with �ve timestamps: (1) valid begin, (2) valid

end, (3) the transaction time that valid begin was recorded, (4) the transaction time that valid

end was recorded, and (5) the transaction time that the tuple was logically deleted [BZ82].

Another representation often mentioned is a sequence of historical states indexed by transac-

tion time [SA85]. This representation is derived by �rst partitioning the transaction time dimension

according to the beginning and ending points of the transaction time intervals of all the tuples in

the bitemporal relation. Second, for each partition, all tuples current in the partition are collected

along with their valid time intervals. These sets are historical relations indexed by transaction

time. The transaction time interval of a partition is the existence interval of the historical re-

lation, i.e., the time when the entire historical relation was the current state of the bitemporal

relation. Alternatively, we can envision a bitemporal relation as a sequence of transaction time

states indexed by valid time.

It is possible to also devise mapping functions between these two additional representation

schemes (BenZvi's tuple-timestamped and a sequence of historical states) and conceptual bitem-

poral relations. Also, the results of the rest of the paper could be applied to these other represen-

tations.

4 Data Model Interaction

The previously proposed representations arose from several considerations. They were all exten-

sions of the conventional relational model that attempted to capture the time-varying semantics

of both the enterprise being modeled and the state of the database. They attempted to retain the

simplicity of the relational model; the tuple timestamping model was perhaps most successful in

this regard. They attempted to present all the information concerning an object in one tuple; the

attribute value timestamped model was perhaps best at that. And they attempted to ensure ease of

implementation and query evaluation e�ciency; the backlog representation may be advantageous

here.

It is clear from the number of proposed representations that meeting all of these goals simul-

taneously is a di�cult, if not impossible task. We therefore advocate a separation of concerns.

The time-varying semantics is obscured in the representation schemes by other considerations of

presentation and implementation. We feel that the conceptual bitemporal data model proposed in

this paper is the most appropriate basis for expressing this semantics. This data model is notable

12

The second function, att to conceptual, performs the inverse transformation. Given an

attribute value timestamped representation it produces the equivalent conceptual relation. If we

regard the transaction/valid times associated with an attribute value as rectangles, then the func-

tion simply constructs these rectangles for each attribute value in a tuple and then uses intersection

semantics to determine the equivalent tuple timestamp. In this transformation, the grouping is

ignored.

In the above, the function next returns an attribute value and its rectangle from an attribute in

a tuple. Subsequent calls to next cycle through the attribute values. The facts function computes,

for an array of attribute value/rectangle sets, all combinations of facts that can be constructed

from those attribute values.

facts(g) = f((a

1

; t

1

); (a

2

; t

2

); : : : ; (a

n

; t

n

)) j 8i 1 � i � n((a

i

; t

i

) 2 g[i])g

As before the function bi chr computes the bitemporal chronons represented by a given rectangle.

While insertion and deletion functions can be de�ned, their implementations provide little

insight. A simple, but very ine�cient, way to implement these functions is to convert the repre-

sentation to a conceptual relation, perform the update, and then convert the modi�ed conceptual

relation back to the attribute value timestamped representation.

3.4 Covering Functions

In Sections 3.1 to 3.3, we used covering functions when representing bitemporal elements of con-

ceptual tuples by sets of rectangles. Any covering function that covered every bitemporal chronon

in an argument bitemporal element and did not cover bitemporal chronons not in the bitemporal

element was permitted. In this sense, the results presented in this paper are independent of par-

ticular covering functions. Here, we briey present some types of covering functions to illustrate

the range of possibilities.

Figure 2 illustrates three ways of covering the bitemporal element associated with the fact

(Jake, Ship) in Figure 1(d). We may distinguish between those covering functions that partition

the argument set into disjoint rectangles and those that allow overlap between the result rectangles.

Figure 2(a) and Figure 2(b) are examples of partitioned coverings while the covering in Figure 2(c)

has overlapping rectangles.

@

@
@

@

@
@

@

@
@

���

�
�

6

-

�

�
�
�

�
�
�

�
�
�

�
�
�
�

@
@

6

-

@

@
@

@

@
@
@
@

@
@

�
�

�

�
�

6

-

@

@
@

�

�
�

��

@

@
@
@
@

�

�
�

@

@
@

@

@
@

@

@
@

�

�
�

�

�
�

(b)

0

0 10

10

15

20

5

5

15 20

(a)

2015

5

5

20

15

10

100

0

2015

5

5

20

15

10

100

0

(c)

Figure 2: Example Coverings of a Bitemporal Element

Figure 2(a) illustrates a type of covering where regions are partitioned by transaction time.

Maximal transaction time intervals are located so that each transaction time in an interval has

the same interval of valid times associated. In the �gure, the transaction time interval (5,9) is

maximal, and the associated valid time interval is (10,15). Thus, the rectangle with corners (5,10)

and (9,15) is part of the result. Similarly, the two rectangles with corners ((10,5), (14,20)), and

((15,10), (19,15)) are in the result. Due to the semantics of transaction time [JMRS92], this is

11

Emp Dept

[20,NOW] � [25,30]
Kate [20,NOW] � [25,30] Ship

[5,9] � [10,15]
Jake [5,10] � [10,15] Ship

[10,14] � [5,20]
Jake [10,15] � [5,20] Ship

[15,19] � [10,15]
Jake [15,20] � [10,15] Ship

[20,NOW] � [10,15]
Jake [20,NOW] � [10,15] Load

A tuple in the above relation shows all departments for which a single employee has worked. A

di�erent way to view the same information is to perform the grouping by department. A single

tuple then contains all information for a department, i.e., the full record of employees who have

worked for the department.

Emp
Dept

[20,NOW] � [10,15]
Jake [20,NOW] � [10,15] Load

[5,9] � [10,15]
Jake [5,10] � [10,15] Ship

[10,14] � [5,20]
Jake [10,15] � [5,20] Ship

[15,19] � [10,15]
Jake [15,20] � [10,15] Ship

[20,NOW] � [25,30]
Kate [20,NOW] � [25,30] Ship

Grouping by both attributes would yield three tuples, (Jake, Load), (Jake, Ship), and (Kate,

Ship). ut

Next we consider the conversion between a conceptual relation and an attribute value times-

tamped representation. The �rst function, conceptual to att, takes three arguments, r

0

, a con-

ceptual relation, cover, a covering function, and group, a grouping function. r

0

and cover are as

described for the other representation schemes. group partitions r

0

into disjoint subsets where all

tuples in a subset agree on the values of a particular attribute or set of attributes, as illustrated

in the above example. Each group of conceptual tuples produces one representation tuple.

conceptual to att(r

0

,cover,group):

s ;;

G group(r

0

);

for each g 2 G

for each x 2 g

z (;; : : : ; ;);

for each t 2 cover(x[T])

for i 1 to n

z[A

i

] z[A

i

] [

f([min 1 (t);max 1 (t)];

[min 2 (t);max 2(t)] x[A

i

])g;

s s [fzg;

return s;

att to conceptual(r):

s ;;

for each z 2 r

for i 1 to n

g[i] ;;

while z[A

i

] 6= ;

y next(z[A

i

]);

a:val y:val;

a:t bi chr(y:T,y:V);

z[A

i

] z[A

i

]� y;

for each y 2 z[A

i

]

if a:val = y:val

a:t a:t[bi chr(y:T,y:V);

z[A

i

] z[A

i

]� fyg;

g[i] g[i] [fag;

f facts(g);

for each (a

1

; a

2

; : : : ; a

n

) 2 f

t a

1

:t;

for i 2 to n

t t \ a

i

:t;

if t 6= ;

for i 1 to n

x[A

i

] a

i

:val;

x[T] t;

s s [fxg;

return s;

10

deletion request with a larger transaction time. If more than one exists, the earliest is chosen.

Now, the correct rectangular region of bitemporal chronons has been computed, and this can be

recorded in conceptual bitemporal relation. If other chronons have already been computed and

recorded for the same fact, the two sets of chronons are simply merged.

As expected, insertion into backlogs, where tuples are never changed, is straightforward.

For each set of consecutive valid-time chronons returned by the argument covering function, an

insertion request with the appropriate attribute values is created. The current transaction time is

assumed to be c

t

.

Deletion follows the same pattern, the only complication being that a deletion request can

only be inserted if a value-equivalent, previously entered and so far undeleted insertion request is

found. First, the backlog is scanned to locate a matching insertion request. Second, it is ensured

that the located insertion request has not previously been deleted. For every undeleted, matching

insertion request that is found, a deletion request is inserted.

insert(r;(a

1

; : : : ; a

n

); t

v

; cover

v

):

for each t 2 cover

v

(t

v

)

r r [f(a

1

; : : : ; a

n

;min(t);max(t); c

t

; I)g;

return r;

delete(r;(a

1

; : : : ; a

n

)):

r

0

 r;

for each x

1

2 r

if x

1

[A] = (a

1

; : : : ; a

n

) and x

1

[Op] = I

found TRUE;

for each x

2

2 r

if x

2

[A] = x

1

[A] and x

2

[V] = x

1

[V] and

x

2

[OP] = D and x

2

[T] > x

1

[T]

found FALSE;

if found

r

0

 r

0

[f(a

1

; : : : ; a

n

; x

1

[V

s

]; x

1

[V

e

]; c

t

;D)g;

return r

0

;

3.3 An Attribute Value Timestamped Representation Scheme

Non-1NF representations group all information about an object within a single tuple. As such,

attribute value timestamped representations have become popular for their exibility in data mod-

eling. We describe here how to represent conceptual relations by non-1NF attribute value time-

stamped relations.

Let a bitemporal relation schema R have the attributes A

1

; : : : ; A

n

;T, where T is the times-

tamp attribute de�ned on the domain of bitemporal elements. Then bitemporal relation schema

R is represented by an attribute value timestamped relation schema R as follows.

R = (f([T

s

;T

e

]; [V

s

;V

e

] A

1

)g; : : : ; f([T

s

;T

e

]; [V

s

;V

e

] A

n

)g)

A tuple is composed of n sets. Each set element a is a triple of a transaction-time interval

pair [T

s

;T

e

], a valid-time interval pair [V

s

;V

e

], representing in concert a rectangle of bitemporal

chronons, and an attribute value, denoted a:val. As shorthand we will use T to denote the

transaction time interval [T

s

,T

e

], and, similarly, V for [V

s

,V

e

], and will refer to them as a:T

and a:V.

Example: In an attribute value timestamped representation, the grouping of information within

a tuple can be based on the value of any attribute or set of attributes. For example, we could

represent the conceptual relation in Figure 1(d) by grouping on the employee attribute. Then all

information for an employee is contained within a single tuple, as shown below [Gad92].

9

valid time attribute values is recorded. Modi�cations are recorded by a pair of a deletion request

and an insertion request, both with the same T value.

Example: The backlog relation corresponding to the conceptual relation in Figure 1(d) is shown

below.

Emp
Dept V

s

V

e

T Op

Jake
Ship 6/10 6/15 6/5 I

Jake
Ship 6/10 6/15 6/10 D

Jake
Ship 6/5 6/20 6/10 I

Jake
Ship 6/5 6/20 6/15 D

Jake
Ship 6/10 6/15 6/15 I

Jake
Ship 6/10 6/15 6/20 D

Jake
Load 6/10 6/15 6/20 I

Kate
Ship 6/25 6/30 6/20 I

ut

Next, we consider the conversion between a bitemporal relation and its backlog representation.

The �rst function, conceptual to back, takes a conceptual relation as its �rst argument. The

second argument is an arbitrary covering function as described in Section 3.1. The result is a

backlog relation. Each conceptual tuple, x, is treated in turn. For each rectangle of bitemporal

chronons in the cover of the timestamp of x, an insertion request is appended to the result. Further,

if the rectangle has an ending transaction time di�erent from NOW then a deletion request is

inserted.

conceptual to back(r

0

, cover):

r ;;

for each x 2 r

0

for each t 2 cover(x[T])

z[A] x[A];

z[V

s

] min 2(t); z[V

e

] max 2(t);

z[Op] I; z[T] min 1(t);

r r [fzg;

if max 1(t) 6= NOW

z[Op] D; z[T] max 1(t);

r r [fzg;

return r;

back to conceptual(r):

r

0

 ;;

for each z

1

2 r

if z

1

[Op] = I

a min 2 (z

1

[V

s

]); b max 2 (z

1

[V

e

]);

c z

1

[T]; d NOW;

x

1

[A] z

1

[A];

r r � fz

1

g;

for each z

2

2 r

if z

2

[A] = z

1

[A] and z

2

[V] = z

1

[V] and

z

2

[Op] = D and z

1

[T] < z

2

[T] < d

d z

2

[T];

z

3

 z

2

;

if d 6= NOW

r r � fz

3

g;

x

1

[T] bi chr((c;d); (a; b));

for each x

2

2 r

0

if x

2

[A] = x

1

[A]

x

1

[T] x

1

[T] [x

2

[T];

r

0

 r

0

� fx

2

g;

r

0

 r

0

[fx

1

g;

return r

0

;

The second function, back to conceptual, is the inverse transformation. It is rather complex

because not only is information about a single fact spread over a set of update requests, but,

as we just saw, one element in a covering may also be recorded in two change requests. The

change requests in the argument backlog relation are treated in turn. First, an insertion request

is located, and its attribute values are recorded as appropriate. It is initially assumed that the

ending transaction time is NOW . Then, in the second loop, the backlog is scanned for a matching

8

In the conversion routines above, the functions min 1 and min 2 select a minimum �rst and second

component, respectively, in a set of binary tuples. The function max 1 returns the value NOW if

encountered as a �rst component; otherwise, it returns a maximum �rst component. The function

max 2 selects a maximum second component. Finally, the function bi chr computes the bitemporal

chronons covered by the argument rectangular region.

The conceptual to snap routine generates possibly many representational tuples from each

conceptual tuple, each corresponding to a rectangle in valid/transaction time space. The snap to -

conceptual routine merges the rectangles associated with a single fact into a single bitemporal

element.

For the update routines, the most convenient covering function partitions on transaction time,

and does not permit overlap. The current transaction time is c

t

.

insert(r;(a

1

; : : : ; a

n

); t

v

; cover

v

):

for each t 2 cover

v

(t

v

)

for each x 2 r

if x[T

e

] = NOW and x[A] = (a

1

; : : : ; a

n

) and

x[V]\ t 6= ;

r r � fsg;

x[T

e

] c

t

;

z[A] x[A];

z[T

s

] c

t

; z[T

e

] NOW ;

z[V

s

] min(z[V][t); z[V

e

] max(z[V][t);

r r [fx; zg;

return r;

delete(r;(a

1

; : : : ; a

n

)):

s ;;

for each x 2 r

if x[A] = (a

1

; : : : ; a

n

) and

x[T

e

] = NOW

x[T

e

] c

t

;

s s [fxg;

return s;

The insert routine logically deletes any bitemporal rectangles with a transaction time extending

to NOW that overlaps in valid time with t

v

, and inserts a new rectangle with the inclusive valid

time. Function cover

v

returns a set of valid time intervals (each a set of contiguous valid-time

chronons). The delete routine simply replaces the transaction end time with the current time, c

t

.

As for the conceptual data model, modify is simply a combination of append and delete.

3.2 A Backlog-Based Representation Scheme

The previous representation scheme presented a very natural and frequently used way of repre-

senting a bitemporal relation by a snapshot relation.

In the backlog-based representation scheme bitemporal relations are represented by backlogs,

which are also 1NF relations [Kim78, JMRS92]. The most important di�erence between this and

the previous schemes is that tuples in backlogs are never updated, i.e., backlogs are append-only.

Therefore, this representation scheme is well-suited for log based storage of bitemporal relations,

and it opens the possibility of using cheap write-once optical disk storage devices. This is highly

desirable since the information content of bitemporal relations is ever-growing, resulting in very

large relations.

A bitemporal relation schemaR = (A

1

; : : : ; A

n

;T) is represented by a backlog relation schema

R as follows.

R = (A

1

; : : : ; A

n

;V

s

;V

e

;T;Op)

As in the previous representation scheme, the attributes V

s

and V

n

store starting and ending valid

time chronons, respectively. Attribute T stores the transaction time when the tuple was inserted

into the backlog. Tuples, termed update requests, are either insertion requests or deletion requests,

as indicated by the values, I , and D, of attribute Op. The fact in an insertion request is current

starting at its transaction timestamp and until a matching deletion request with same explicit and

7

idea is to divide the complete region, covered by the bitemporal element of a single tuple in a

conceptual relation instance, into a number of rectangles and then represent the conceptual tuple

by a set of tuples, one for each rectangle.

There is a multitude of possible ways of covering a bitemporal element. For any function,

cover , that covers a bitemporal element x[T] of a bitemporal tuple x, we require that

1. Any bitemporal chronon in x[T] must be contained in at least one rectangle.

2. Each bitemporal chronon in a rectangle must be contained in x[T].

Apart from these requirements, the covering function is purposefully left unspeci�ed|an imple-

mentation is free to choose a covering with properties it �nds desirable. For example, a set of

covering rectangles need not be disjoint. Overlapping rectangles may reduce the number of tuples

needed in the representation, at the possible expense of additional processing during update.

Example: The 1NF relation corresponding to the conceptual relation in Figure 1(d) is shown

below.

Emp
Dept T

s

T

e

V

s

V

e

Jake
Ship 6/5 6/9 6/10 6/15

Jake
Ship 6/10 6/14 6/5 6/20

Jake
Ship 6/15 6/19 6/10 6/15

Jake
Load 6/20 NOW 6/10 6/15

Kate
Ship 6/20 NOW 6/25 6/30

Here we use a non-overlapping covering function that partitions the bitemporal element by trans-

action time. ut

Throughout the paper, we will use R and S to denote relation schemas. Relation instances

are denoted r, s, and t, and r(R) means that r is an instance of R. Attributes are denoted A

i

,

B

i

, and C

i

. For brevity, we let A denote the set of all attributes A

i

. For tuples we use x, y, and z

(possibly indexed), and the notation x[A

i

] is de�ned to be the A

th

i

attribute value of tuple x. As a

shorthand, we de�ne x[V] to be the closed interval from x[V

s

] to x[V

e

] (a set of one-dimensional

valid-time chronons), and similarly for x[T], a set of transaction-time chronons.

The following functions convert between a conceptual bitemporal relation instance and a

corresponding instance in the representation scheme. The second argument, cover, of the routine

conceptual to snap is a covering function. It returns a set of rectangles, each denoted by a set of

bitemporal chronons. Note that the functions are the inverse of each other, i.e., for any conceptual

relation instance r

0

,

snap to conceptual(conceptual to snap(r

0

; cover)) = r

0

:

conceptual to snap(r

0

, cover):

s ;;

for each x 2 r

0

z[A] x[A];

for each t 2 cover(x[T])

z[T

s

] min 1(t); z[T

e

] max 1(t);

z[V

s

] min 2(t); z[V

e

] max 2(t);

s s [fzg;

return s;

snap to conceptual(r):

s ;;

for each z 2 r

r r � fzg;

x[A] z[A];

x[T] bi chr(z[T];z[V]);

for each y 2 r

if z[A] = y[A]

r r � fyg;

x[T] x[T] [bi chr(y[T];y[V]);

s s [fxg;

return s;

6

Finally, a modi�cation of an existing tuple may be de�ned by a deletion followed by an

insertion as follows.

modify(r; (a

1

; : : : ; a

n

); t

v

) = delete(r; (a

1

; : : : ; a

n

)) [insert(r; (a

1

; : : : ; a

n

); t

v

) (3)

Example: The sequence of bitemporal elements shown in Figure 1 is created by the following

sequence of commands, invoked at the indicated transaction time.

Command
Transaction Time

insert(dept,("Jake","Ship"),[6/10,6/15])
6/5

modify(dept,("Jake","Ship"),[6/5,6/20])
6/10

modify(dept,("Jake","Ship"),[6/10,6/15])
6/15

delete(dept,("Jake","Ship"))
6/20

insert(dept,("Jake","Load"),[6/10,6/15])
6/20

insert(dept,("Kate","Ship"),[6/25,6/30])
6/20

ut

Valid time relations and transaction time relations are special cases of bitemporal relations

that support only valid time and transaction time, respectively. Thus an valid-time tuple has asso-

ciated a set of valid time chronons (termed a valid-time element and denoted t

v

), and a transaction-

time tuple has associated a set of transaction time chronons (termed a transaction-time element and

denoted t

t

). For clarity, we use the term snapshot relation for a conventional relation. Snapshot

relations support neither valid time nor transaction time.

3 Representation Schemes

A conceptual bitemporal relation is structurally simple|it is a set of facts, each timestamped with

a bitemporal element which is a set of bitemporal chronons. In this section we examine three repre-

sentations of bitemporal relations that have been previously proposed. For each, we briey specify

the objects de�ned in the representation, provide the mapping to and from conceptual bitemporal

relations to demonstrate that the same information is being stored, and show how updates of con-

ceptual bitemporal relations may be mapped into updates on relations in the representation. We

end by briey considering two additional representations.

3.1 A Tuple Timestamped Representation Scheme

In the conceptual model, the timestamp associated with a tuple is an arbitrary set of bitemporal

chronons. As such, a relation schema in the conceptual model is non-1NF, which represents

di�culties if directly implemented. We describe here how to represent conceptual relations by

1NF snapshot relations, allowing the use of existing, well-understood implementation techniques.

Let a bitemporal relation schema R have the attributes A

1

; : : : ; A

n

;T where T is the times-

tamp attribute de�ned on the domain of bitemporal elements. This schema is represented by a

snapshot relation schema R as follows.

R = (A

1

; : : : ; A

n

;T

s

;T

e

;V

s

;V

e

)

The additional attributes T

s

, T

e

, V

s

, V

e

are atomic-valued timestamp attributes containing a

starting and ending transaction time chronon and a starting and ending valid time chronon, re-

spectively. These four values represent the bitemporal chronons in a rectangular region, and the

5

2.2 Update

We consider the three forms of update, insertion, deletion, and modi�cation, in turn.

An insertion is issued when we want to record in bitemporal relation instance r that a currently

unrecorded fact (a

1

; : : : ; a

n

) is true for some period(s) of time. These periods of time are represented

by a valid-time element, i.e., a set of valid-time chronons, t

v

. When the fact is stored, its valid-time

element stamp is transformed into a bitemporal element stamp to capture that, from now on, the

fact is current in the relation. We indicate this with a special value in the domain of transaction

chronon identi�ers, NOW .

The arguments to the insert routine are the relation into which a fact is to be inserted,

the explicit values of the fact, and the set of valid-time chronons, t

v

, during which the fact was

true in reality. Insert returns the new, updated version of the relation. There are three cases

to consider. First, if (a

1

; : : : ; a

n

) was never recorded in the relation, a completely new tuple is

appended. Second, if (a

1

; : : : ; a

n

) was part of some previously current state, the tuple recording

this is updated with the new valid time information. Third, if (a

1

; : : : ; a

n

) is already current in

the relation, a modi�cation is required, and the insertion is rejected. (In the following, we denote

valid-time chronons with c

v

and transaction-time chronons with c

t

.)

insert(r; (a

1

; : : : ; a

n

); t

v

) =

8

>

>

>

<

>

>

>

:

r [f(a

1

; : : : ; a

n

; fNOW g � t

v

)g if :9 t ((a

1

; : : : ; a

n

; t) 2 r)

r � f(a

1

; : : : ; a

n

; t

b

)g

[f(a

1

; : : : ; a

n

; t

b

[fNOW g � t

v

)g if 9 t

b

((a

1

; : : : ; a

n

; t

b

) 2 r ^ :9 (NOW ; c

v

) 2 t

b

)

r otherwise

(1)

The insert routine adds bitemporal chronons with a transaction time of NOW .

As time passes, new chronons must be added. We assume that a special routine ts update

is applied to all bitemporal relations at each clock tick. We also assume that the transaction-

time granularity is su�ciently small that only one transaction can execute within a transaction-

time chronon. This function simply updates the timestamps to include the new transaction time

value. The timestamp of each tuple is examined in turn. When a bitemporal chronon of the type

(NOW ; c

v

) is encountered in the timestamp, a new bitemporal chronon (c

t

; c

v

), where time c

t

is

the new transaction-time value, is made part of the timestamp.

ts update(r; c

t

) :

for each x 2 r

for each (NOW ; c

v

) 2 x[T]

x[T] x[T][f(c

t

; c

v

)g;

Deletion concerns the (logical) removal of a complete tuple from the current valid-time state

of the bitemporal relation. We distinguish between the case when there is a tuple to delete and

the case when no tuple matching the one to be deleted exists.

delete(r; (a

1

; : : : ; a

n

)) =

(

r � f(a

1

; : : : ; a

n

; t

b

)g [f(a

1

; : : : ; a

n

; t

b

� now ts(t

b

))g if 9 t ((a

1

; : : : ; a

n

; t

b

) 2 r)

r otherwise

(2)

where now ts is de�ned as follows.

now ts(t

b

) = f(NOW ; c

v

) j (NOW ; c

v

) 2 t

b

g

4

result of three updates to the relation, all of which take place on June 20th. While the the period

of validity was correct, it was discovered that Jake was not in the shipping department, but in the

loading department. Consequently, the fact (Jake, Ship) is removed from the current state and the

fact (Jake, Load) is inserted. A new employee, Kate, is hired for the shipping department for the

interval from June 25th to June 30th.

-

-

6

-

6

-

-

-

-

-

-

-

6

-

-

-

6

-

(Jake,Ship)(Jake,Ship)

(Jake,Ship)

(Jake,Load)

(Kate,Ship)

(Jake,Ship)

30

0

0 10

10

15

20

5

5

15 20

(a)

25 30

(b)

2015

5

5

20

15

10

100

0

25

(c)

0

0 10

10

15

20

5

5

15 20 25

25

30

30

30

25

5

20

15

10

(d)

0

0 105 15 20 25 30

Figure 1: Bitemporal Elements

We note that the number of bitemporal chronons in a given bitemporal element is the area en-

closed by the bitemporal element. The bitemporal element for (Jake, Ship) contains 140 bitemporal

chronons.

The example illustrates how transaction time and valid time are handled. As time passes, i.e.,

as the computer's internal clock advances, the bitemporal elements associated with current facts

are updated. For example, when (Jake, Ship) was �rst inserted, the six valid time chronons from

10 to 15 had associated the transaction time chronon NOW . At time 5, the six new bitemporal

chronons, (5; 10); : : : ; (5; 15), were appended. This continued until time 9, after which the valid

time was updated. Thus, starting at time 10, 16 bitemporal chronons are added at every clock

tick.

The actual bitemporal relation corresponding to the graphical representation in Figure 1(d) is

shown below. This relation contains three facts. The timestamp attribute T shows each transaction

time chronon associated with each valid time chronon as a set of ordered pairs.

Emp
Dept

T

Jake Ship f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : : ; (9; 15);

(10; 5); : : : ; (10; 20); : : : ; (14; 5); : : : ; (14; 20);

(15; 10); : : : ; (15; 15) : : : ; (19; 10); : : : ; (19; 15)g

Jake
Load f(NOW ; 10); : : : ; (NOW ; 15)g

Kate
Ship f(NOW ; 25); : : : ; (NOW ; 30)g

ut

3

to integrate existing temporal data models. Proofs of all theorems may be found in the appendix.

2 Conceptual Bitemporal Relations

The primary reason behind the success of the relational model is its simplicity. A bitemporal

relation is necessary more complex. Not only must it associate values with facts, as does the

relational model, it must also specify when the facts were valid in reality, as well as when the

facts were current in the database. Since our emphasis is on semantic clarity, we will extend the

conventional relational model as small an extent as necessary to capture this additional information.

2.1 De�nition

Tuples in a conceptual bitemporal relation instance are associated with time values from two

orthogonal time domains, namely valid time and transaction time. Valid time is used for capturing

the time-varying nature of the part of reality being modeled, and transaction time models the

update activity of the relation. For both domains, we assume that the database system has limited

precision, and we term the smallest time unit a chronon. As we can number the chronons, the

domains are isomorphic to the domain of natural numbers.

In general, the schema of a conceptual bitemporal relation, R, consists of an arbitrary number

of explicit attributes, A

1

, A

2

, : : : , A

n

, encoding some fact (possibly composite) and an implicit

timestamp attribute, T. Thus, a tuple, x = (a

1

; a

2

; : : : ; a

n

; t), in a conceptual bitemporal relation

instance, r(R), consists of a number of attribute values associated with a timestamp value.

An arbitrary subset of the domain of valid times is associated with each tuple, meaning that

the fact recorded by the tuple is true in the modeled reality during each valid time chronon in the

subset. Each individual valid time chronon of a single tuple has associated an arbitrary subset

of the domain of transaction times, meaning that the fact, valid during the particular chronon, is

current in the relation during each of the transaction time chronons in the subset.

Associated with a tuple is a set of so-called bitemporal chronons (tiny rectangles) in the two-

dimensional space spanned by valid time and transaction time. Such a set is termed a bitemporal

element

1

, denoted t

b

. Because no two tuples with mutually identical explicit attribute values

(termed value-equivalent) are allowed in a bitemporal relation instance, the full time history of a

fact is contained in a single tuple.

Example: Consider a relation recording employee/department information, such as \Jake works

for the shipping department." We assume that the granularity of chronons is one day for both

valid time and transaction time, and the period of interest is the month of June 1992.

Figure 1 shows how the bitemporal element in an employee's department tuple changes. The

x-axis denotes transaction time, and the y-axis denotes valid time. Employee Jake was hired by

the company as temporary help in the shipping department for the interval from June 10th to

June 15th, and this fact is recorded in the database proactively on June 5th. This is shown in

Figure 1(a). The arrows pointing to the right signify that the tuple has not been logically deleted;

it continues through to the transaction time NOW . On June 10th, the personnel department

discovers an error. Jake had really been hired for the valid time interval from June 5th to June

20th. The database is corrected on June 10th, and the updated bitemporal element is shown in

Figure 1(b). On June 15th, the personnel department is informed that the correction was itself

incorrect; Jake really was hired for the original time interval, June 10th to June 15th, and the

database is corrected the same day. This is shown in Figure 1(c). Lastly, Figure 1(d) shows the

1

This term is a generalization of temporal element, used to denotes a set of single dimensional chronons [Gad88].

An alternative, equally desirable term is bitemporal lifespan [CC87].

2

1 Introduction

Adding time to the relational model has been a daunting task [BADW82, McK86, SS88, Soo91].

More than a dozen extended data models have been proposed over the last decade [Sno90]. Most

of these models support valid time, that is, the time a fact was valid in the modeled reality. A few,

notably [BZ82, BG89, Sno87, Sno93], have also supported transaction time, the time a fact was

recorded in the database; such models are termed bitemporal, because they support both kinds of

time.

While these data models di�er on many dimensions, perhaps the basic distinction that has

been oft stated is between �rst normal form (1NF) and non-1NF. A related distinction is between

tuple timestamping and attribute value timestamping. Each has associated di�culties. Remaining

within 1NF (an example being the timestamping of tuples with valid and transaction start and end

times [Sno87]) may introduce redundancy because attribute values that change at di�erent times

are repeated in multiple tuples. The non-1NF models, one being timestamping attribute values

with sets of intervals [Gad88], may not be capable of directly using existing relational storage

structures or query evaluation techniques that depend on atomic attribute values.

It is our contention that focusing on data presentation (how temporal data is displayed to

the user), on data storage, with its requisite demands of regular structure, and on e�cient query

evaluation has complicated the primary task of capturing the time-varying semantics. The result

has been a plethora of incompatible data models and query languages, and a corresponding surfeit

of database design and implementation strategies that may be employed across these models.

We advocate instead a very simple conceptual data model that captures the essential semantics

of time-varying relations, but has no illusions of being suitable for presentation, storage, or query

evaluation. We instead rely on existing data model(s) for these tasks, by demonstrating equivalence

mappings between the conceptual model and several representational models. This equivalence is

based on snapshot equivalence, which says that two relation instances are equivalent if all their

snapshots, taken at all times (valid and transaction), are identical. Snapshot equivalence provides

a natural means of comparing rather disparate representations. Finally, while not addressed here,

we feel that the conceptual data model is the appropriate location for database design and query

optimization.

In essence, we advocate moving the distinction between the various existing temporal data

models from a semantic basis to a physical, performance-relevant basis, utilizing our proposed

conceptual data model to capture the time-varying semantics.

The paper has the following outline. In the next section we de�ne the conceptual model.

We then examine three representational data models that have been previously proposed: tuple

timestamping (e.g., [BZ82, NA89, Sad87, Sar90, Sno87, Sno93]), backlogs (e.g., [Kim78, JMRS92]),

and attribute value timestamping (e.g., [CC87, Tan86, Gad88, LJ88, MS91]). We provide map-

pings between the conceptual model and these representational models. We also discuss covering

functions that trade o� space e�ciency with operator simplicity and execution time e�ciency.

Having presented both the conceptual data model and the representational data models,

Section 4 presents an overview of the interaction among the data models. Snapshot equivalence

is the subject of Section 5. Ironically, while de�nitions of snapshot equivalence are particular to

individual data models, the de�nitions rely on model-speci�c operations, the notion of snapshot

equivalence allows us to relate relation instances, as well as operators, of di�erent representations,

and also allows us to relate representations to the semantics ascribed to the conceptual model.

Section 6 is devoted to generalizing algebraic operators of the relational model to apply to objects

in the conceptual bitemporal model as well as the timestamped tuple representational model. As

with data instances, we demonstrate correspondence of these operators.

After summarizing, we outline the next steps to be taken in utilizing the conceptual model

1

Contents

1 Introduction 1

2 Conceptual Bitemporal Relations 2

2.1 De�nition : 2

2.2 Update : 4

3 Representation Schemes 5

3.1 A Tuple Timestamped Representation Scheme : 5

3.2 A Backlog-Based Representation Scheme : 7

3.3 An Attribute Value Timestamped Representation Scheme : : : : : : : : : : : : : : 9

3.4 Covering Functions : 11

3.5 Other Representations : 12

4 Data Model Interaction 12

5 Semantic Equivalence 13

5.1 The Rollback and Timeslice Operators : 13

5.2 Snapshot Equivalence : 15

6 An Algebra for Conceptual Bitemporal Relations 15

6.1 De�nition : 16

6.2 Mapping the Algebra to a Representation Scheme : : : : : : : : : : : : : : : : : : : 17

6.3 Equivalence Properties : 17

6.4 Covering Transformations : 19

7 Summary and Future Research 20

i

Uni�cation of Temporal Data Models

Copyright
c
 Christian S. Jensen, Michael D. Soo, and Richard T. Snodgrass 1992

Uni�cation of Temporal Data

Models

Christian S. Jensen

1

,

Michael D. Soo

2

, and Richard T. Snodgrass

2

TR 92-15

July 2, 1992

Abstract

To add time support to the relational model, both �rst normal form (1NF) and non-1NF

approaches have been proposed. Each has associated di�culties. Remaining within 1NF when

time support is added may introduce data redundancy. The non-1NF models may not be

capable of directly using existing relational storage structures or query evaluation technologies.

This paper describes a new, conceptual temporal data model that better captures the time-

dependent semantics of the data while permitting multiple data models at the representation

level. This conceptual model e�ectively moves the distinction between the various existing data

models from a semantic basis to a physical, performance-relevant basis.

We de�ne a conceptual notion of a bitemporal relation where tuples are stamped with sets

of two-dimensional chronons in transaction-time/valid-time space. Next, we describe three rep-

resentation schemes: a tuple-timestamped 1NF representation, a backlog relation composed of

1NF timestamped change requests, and a non-1NF attribute value-timestamped representation.

We further investigate several variants of these representations. We use snapshot equivalence

to relate the three representational data models with the conceptual bitemporal data model.

We then consider querying within the two-level framework. To do so, we de�ne �rst an

algebra at the conceptual level. We proceed to map this algebra to the representation level in

such a way that new operators compute equivalent results for di�erent representations of the

same conceptual bitemporal relation. This demonstrates that all of these representations are

faithful to the semantics of the conceptual data model, with many choices available that may

be exploited to gain improved performance.

1

Department of Mathematics and Computer Science

Aalborg University

Fredrik Bajers Vej 7E

DK-9220 Aalborg �, DENMARK

csj@iesd.auc.dk

2

Department of Computer Science

University of Arizona

Tucson, AZ 85721

fsoo,rtsg@cs.arizona.edu

