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incorporated with the network consistency, exact expansion and assignment memorization algorithms

task
delay previous task

C
1 B

D
1 C

task
duration previous tasks

A
1

B
5 A

C
3 A

D
5 A

E
2 B,C

F
1 D,E

Table 1: An example of distance constraints Table 2: An example of precedence constraints
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precedence constraints=7. Since they all are binary constraints, we can get the exact estimate for each

of them. Based on the number of solutions information, we can rearrange the execution order among

the inequalities so that the most likely failed inequalities will be executed �rst:

precedence constraints(SA; SB; SC; SD; SE; SF; SEnd) :�

SE � SB + 5; SF � SD + 5; SE � SC + 3, SF � SE + 2;

SB � SA + 1; SC � SA + 1; SC � SA + 1; SEnd � SF + 1:

Using this ordering, the predicate �/2 is executed a total of 31,703,353 times. We can use

the n-cliques algorithm to further estimate the net e�ects of the set of inequalities for predi-

cates distance constraints=3 and precedence constraints=7. The estimated number of solutions for

distance constraints=3 is 165, and it is 71 for precedence constraints=7, both are exact estimates.

These information enables us to reverse the execution order of the literals distance constraints=3 and

precedence constraints=7 in predicate schedule constraints=8. Under this ordering, the predicate �/2

is executed a total of 23,863,814 times, a signi�cant reduction from the original program.

If we are only interested in getting one solution, we can use the number of solutions information

produced for each of the variable values to plan the instantiation order of variable values. For example,

for variable SE, it will greatly reduce the execution time to try values 6 or 7 �rst instead of starting

with value 0. In parallel or distributed systems, the number of solutions information for each inequality

is needed to estimate the granularity and communication cost of predicate schedule constraints=8; and

the number of solutions information for predicate schedule constraints=8, which is 10 and can be esti-

mated exactly by n-cliques algorithm, is needed to estimate the granularity and communication cost of

predicates latest start=2 and earliest completion=2. These information can facilitate the management

of task granularity and task distribution.

7 Conclusions

Knowledge about the number of solutions of constraint satisfaction problems can be used to improve

the e�ciency of logic programs and deductive databases, e.g., to control task granularity in parallel

systems, to map predicates to processors in distributed systems, or to plan the evaluation order of

body goals and the instantiation order of variable values. Many constraint satisfaction problems are

NP-complete. Thus it is very unlikely to �nd an e�cient algorithm to compute the number of solutions

of constraint satisfaction problems. This paper has presented a greedy approximation algorithm for

estimating the number of solutions for constraint satisfaction problems on �nite domain. The time

complexity of this algorithm is O(n

3

m

3

) for a problem involving n variables and m domain values.

Based on this algorithm, a set of 
exible algorithms has also been developed. The user can choose the

appropriate algorithm according to the e�ciency and precision requirements.
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legal schedules for a project that satis�es a variety of constraints among tasks as well as to compute

the latest start time and the earliest completion time among the legal schedules [1, 22]. The constraints

may include distance constraints which specify the delay required between the start of two tasks due to

sharing of resources, precedence constraints which specify the precedence among the tasks, and several

other constraints. An example of distance constraints is shown in Table 1 and speci�ed in the following

predicate:

distance constraints(SB; SC; SD) :�

SC � SB + 1; SD � SC + 1.

The variables SB; SC and SD in the predicate denote the start time for the tasks A;B and C re-

spectively. An example of precedence constraints is shown in Table 2 and speci�ed in the following

predicate:

precedence constraints(SA; SB; SC; SD; SE; SF; SEnd) :�

SB � SA + 1; SC � SA + 1; SD � SA + 1; SE � SB + 5;

SE � SC + 3, SF � SD + 5; SF � SE + 2; SEnd � SF + 1:

A legal schedule which satis�es the above distance and precedence constraints in a given duration can

be speci�ed as follows:

schedule constraints(Duration; SA; SB; SC; SD; SE; SF; SEnd) :�

generator(Duration; SA; SB; SC; SD; SE; SF; SEnd);

distance constraints(SA; SB; SC; SD; SE; SF; SEnd);

precedence constraints(SA; SB; SC; SD; SE; SF; SEnd):

The predicate generator=8 generates all the possible time slots in the given duration for the variables.

The following predicate schedule=3 uses predicate bagof=3 to gather all the legal schedules in the

duration 0 � 10, then compute the latest start time and earliest completion time among the legal

schedules.

schedule(S;MaxS;MinC) :�

bagof([SA; SB; SC; SD; SE; SF; SEnd];

schedule constraints(10; SA; SB; SC; SD; SE; SF; SEnd); S);

latest start(S;MaxS),

earliest completion(S;MinC).

The predicate schedule=3 can produce 10 legal schedules, and the inequality predicate �/2 in predicates

distance constraints=3 and precedence constraints=7 will be executed a total of 32,236,567 times.

Using the domain information about the duration 0 � 10 for the variables SA; SB; : : : ; SEnd, we can

apply the n-cliques algorithm to estimate the number of solutions for each of the inequalities in predicate

9



as well as some partial assignment information such that the graph addition may take advantage of

that information.

Operationally, to memorize the most recent variable assignment, each edge of the weighted consis-

tency graph needs to maintain an array of m weights instead of a single weight. At the end of the i

th

iteration of n-cliques algorithm, the j

th

element of the weight array of an edge e, W (e)[j], corresponds

to the number of partial assignments to variables x

1

; : : : ; x

i

to which e contributes with x

i

 d

j

. There-

fore, let G

i+1

= (V;E;W ) be the graph at the end of the i

th

iteration, and Adj

G

i

(v

i;j

) = (V

j

; E

j

;W

j

)

be the j

th

adjacency graph at the i

th

iteration. For each edge e 2 E, we haveW (e)[j] =

P

m

k=1

W

j

(e)[k].

The memorization of k variable assignments will cost the entire algorithm a factor of O(m

k

) in both

time and space.

We have incorporated the network consistency, exact expansion and assignment memorization algo-

rithms into the n-cliques algorithm and applied it on n-queens problem. The result is shown in Figure

5. The 3-consistency algorithm achieves 3-consistency of a graph, the 2-expansion algorithm expands

the Formula (3) twice, and the 2-memorization algorithm memorizes the most recent two variable as-

signments, respectively. The result shows that lower order network consistency algorithms only have

e�ect on sparse graphs. That is because the graph is more likely to be consistent when the graph

density increases. However, for applications where network consistency algorithms work well for �nding

solutions, this method for estimating the number of solution will also work well. On the other hand, the

exact expansion algorithms and the assignment memorization algorithms can still signi�cantly improve

the estimation accuracy as the graph density increases. Moreover, the estimation error growth rate for

the assignment memorization algorithms is slower than for the exact expansion algorithms. The reason

is that the assignment memorization algorithms improve the accuracy evenly at every iteration of the

process, while the exact expansion algorithms improve the accuracy mainly at the beginning iterations

of the process. Because these methods can achieve any degree of accuracy by paying the price on e�-

ciency, it is also possible to construct adaptive algorithms which will adaptively decide the amount of

e�orts to invest based on the density of the graphs and the accuracy requirements.

6 Applications

The algorithms introduced in this paper are particularly useful for problems where constraints are ex-

plicitly expressed as a set of arithmetic constraints. It is very di�cult to infer nontrivial number of

solutions information for these problems without considering the net e�ects of the set of arithmetic

constraints. Estimation of the number of solutions for this class of problems has not been addressed

in previous work [5, 21, 24]. Given the domain information about the variables in the arithmetic

constraints,

2

the consistency graph corresponding to the constraints can be e�ciently built, and non-

trivial number of solutions information can be e�ciently inferred. This section gives an example to

illustrate the applications of the number of solutions information. The example problem is to �nd the

2

Domain information can be inferred at compile time [11, 15, 19, 25] or declared by user [22].

8



all three methods, full application will lead to exact estimation and exponential time. Therefore, we

will examine the tradeo� between e�ciency and accuracy of these methods.

5.1 Network Consistency

CSPs are usually solved by backtracking algorithm. Since basic backtracking algorithm may incur

signi�cant ine�ciency [2], a class of network consistency algorithms has been proposed to improve

the e�ciency of backtracking algorithm [8, 9, 10, 13, 16, 17, 23]. The basic idea behind the network

consistency algorithms is as follows. Each constraint in the problem only makes the local consistency

between assignments explicit. Through exploiting some global consistency (i.e., consistency involving

more than two variables) between assignments, we may remove beforehand some of the domain values

from testing at every stage of the backtracking algorithm.

We can use the same idea to reduce the consistency graph by removing the edges which are unable

to satisfy global consistency. For example, a vertex v in an assignment set must be adjacent to a vertex

in every other assignment set so that the assignment corresponding to v may be in a potential solution;

otherwise, we can remove all the edges incident on v. A graph is said to be 2-consistent if all its

vertices satisfy the above condition. More generally, a consistency graph G is said to be k-consistent

if for every (k � 1)-clique H = (V;E;W ) in G, there exists at least one vertex v in every assignment

set, apart from those containing the vertices in V , such that the subgraph induced by V [ fvg is a

k-clique. To incorporate an algorithm k-consistency, which achieves k-consistency of a graph, into n-

cliques algorithm, we can just replace the formula

L

m

j=1

Adj

G

(v

i;j

) in n-cliques algorithm by formula

L

m

j=1

k-consistency(Adj

G

(v

i;j

)). The time complexity for the network consistency algorithms which

achieve 2-consistency and 3-consistency are O(n

2

m

3

) and O(n

3

m

5

) respectively [14].

5.2 Exact Expansion

Exact expansion method tries to balance the accuracy of Formula (3) and the e�ciency of Formula

(4). The intention is to �rst expand the Formula (3) some number of times to exactly generate some

subproblems, then use the Formula (4) to approximately solve the expanded subproblems. Each time

the Formula (3) is used, the time complexity of the entire algorithm will increase by a factor of O(m).

5.3 Assignment Memorization

In n-cliques algorithm, the weight of an edge e at the end of the i

th

iteration denotes the number of

component graph sequences A

1

; : : : ; A

i

in which the edge e occurs, where A

j

is the component graph

in which the edge e occurs at the j

th

iteration; or the number of partial assignments to variables

x

1

; : : : ; x

i

with which the two assignments corresponding to the edge e are consistent. Due to the lack

of partial assignment information, the graph addition is performed without knowing to which partial

assignments the weight contributes. The assignment memorization method tries to memorize the weight

7



4 An Approximation Algorithm

We are now ready to present a simple greedy approximation algorithm for computing an upper bound

on K(G;n) for a weighted consistency graph G of order (n;m). The basic idea is to apply Theorem 3.3

repeatedly to a sequence of consecutively smaller graphs. By starting with the graphG, at each iteration,

one assignment set is removed from the graph, and a smaller graph is constructed by performing graph

addition on the set of adjacency graphs corresponding to the vertices in the removed assignment set.

This assignment set elimination process continues until there are only two assignment sets left. The

resultant graph is now a bipartite graph. By de�nition, the number of 2-cliques in a bipartite weighted

consistency graph is the sum of the weights of the edges (2-cliques) in the graph. The algorithm is

shown as follows:

Algorithm n-cliques(G = (V;E;W ); n;m)

1. begin

2. G

1

:= G;

3. for i := 1 to n� 2 do

4. G

i+1

:=

L

m

j=1

Adj

G

i

(v

i;j

);

5. od

6. return

P

e E

n

W

n 1

(e);

7. end

Let us consider the time complexity of n-cliques algorithm. Each adjacency graph can be constructed

in time O(n

2

m

2

); and each graph addition can be performed in time O(n

2

m

2

). Therefore, the total

time required for Line 4 is O(n

2

m

3

). Taking the loop into account, Lines 3-5 require time O(n

3

m

3

).

The summation of weights for a bipartite graph in Line 6 can be performed in time O(m

2

). Thus the

time complexity for the entire n-cliques algorithm is O(n

3

m

3

).

We have applied n-cliques algorithm on n-queens and inverse n-queens problems. The results are

shown in Figures 3 and 4. The results show that the estimates for the inverse n-queens problem are

very good, apart from 4-queens, all the estimates are exact; on the other hand, the estimation error for

n-queens problem grows quickly as the graph density increases. The reason for the di�erence is that the

graph density and the number of solutions for inverse n-queens problem are linearly increasing, while

the graph density and the number of solutions for n-queens problem are exponentially increasing. In

practice, we can anticipate very few problems will generate as ample solutions as the n-queens problem

does.

5 Improving Estimation Accuracy

In this section we investigate three methods for improving the estimation accuracy of n-cliques algo-

rithm: (1) network consistency; (2) exact expansion; and (3) assignment memorization. For

6



G is that for each n-clique H of G, K(H;n) = k implies that H appears in at most k component

graphs of G. For instance, for the consistency graph G

1

� G

2

in Figure 2, G

1

� G

2

has 3 3-cliques

h11; 23; 32i, h12; 21; 33i and h13; 22; 31i, and 3-clique h12; 21; 33i appears in both G

1

and G

2

. Thus

K(G

1

�G

2

; 3) = 1+2+1 = 4. The following theorem shows the e�ect of graph addition on the number

of n-cliques in the graphs.

Theorem 3.1 Let G

1

= (V;E

1

;W

1

) and G

2

= (V;E

2

;W

2

) be two weighted consistency graphs of order

(n;m). Then

K(G

1

� G

2

; n) � K(G

1

; n) +K(G

2

; n): (2)

Proof Let S; S

1

and S

2

be the sets of n-cliques of G

1

�G

2

; G

1

and G

2

respectively. Then S = S

1

[S

2

.

Let H = (V

H

; E

H

;W

H

) 2 S be an n-clique. Then W

H

(e) = W

1

(e) +W

2

(e), for all e 2 E

H

. If H is

in both G

1

and G

2

, then min

e2E

H

fW

H

(e)g � min

e2E

H

fW

1

(e)g +min

e2E

H

fW

2

(e)g. If H is in either

G

1

or G

2

, but not both, then min

e2E

H

fW

H

(e)g � min

e2E

H

fW

1

(e)g and min

e2E

H

fW

2

(e)g = 0, or

min

e2E

H

fW

H

(e)g � min

e2E

H

fW

2

(e)g and min

e2E

H

fW

1

(e)g = 0. If H is in neither G

1

nor G

2

, then

min

e2E

H

fW

H

(e)g > 0, and min

e2E

H

fW

1

(e)g = min

e2E

H

fW

2

(e)g = 0. 2

Theorem 3.1 veri�es that graph addition is a way to combine the set of adjacency graphs such

that the upper bound condition holds. We now de�ne the weight of an edge in a weighted ad-

jacency graph as follows: let Adj

G

(v) = (V

A

; E

A

;W

A

) be the weighted adjacent graph of v in a

weighted consistency graph G = (V;E;W ). For every edge hu;wi 2 E

A

, we de�ne W

A

(hu;wi) =

min(W (hv; ui);W (hv; wi);W (hu;wi)). This de�nition will lead to the same result for weighted consis-

tency graph as Theorem 2.1 for consistency graph.

Theorem 3.2 Let G be a weighted consistency graph of order (n;m). Then for each assignment set

V = fv

1

; : : : ; v

m

g,

K(G;n) =

m

X

i=1

K(Adj

G

(v

i

); n� 1): (3)

Proof Let G

i

= (V

G

i

; E

G

i

;W

G

i

) be the subgraph of G induced by N

G

(v

i

) [ fv

i

g. Since no pair of

vertices in V are adjacent, K(G;n) =

P

m

i=1

K(G

i

; n). Let Adj

G

(v

i

) = (V

A

i

; E

A

i

;W

A

i

). Because v

i

is

adjacent to every vertex in N

G

(v

i

), min

e2E

G

i

fW

G

i

(e)g = min

e2E

A

i

fW

A

i

(e)g. Therefore, K(G

i

; n) =

K(Adj

G

(v

i

); n� 1). 2

Theorem 3.3 Let G be a weighted consistency graph of order (n;m). Then for each assignment set

V = fv

1

; : : : ; v

m

g,

K(G;n) � K(

m

M

i=1

Adj

G

(v

i

); n� 1): (4)

Proof By Theorems 3.1 and 3.2. 2
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fv

1

; : : : ; v

m

g,

K(G;n) =

m

X

i=1

K(Adj

G

(v

i

); n� 1): (1)

Proof Let G

i

be the subgraph of G induced by N

G

(v

i

) [ fv

i

g. Since no pair of vertices in V are

adjacent, K(G;n) =

P

m

i=1

K(G

i

; n). Because v

i

is adjacent to every vertex in N

G

(v

i

), K(G

i

; n) =

K(Adj

G

(v

i

); n� 1). 2

Theorem 2.1 says that the problem of computing the number of n-cliques in a consistency graph of

order (n;m) can be transformed into m subproblems of computing the number of (n � 1)-cliques in a

consistency graph of order (n� 1;m). However, when m is larger than 1, the computation will require

exponential time O(m

n

). To make it practical, therefore, we need to �nd a way to combine the set of

subgraphs Adj

G

(v

1

); : : : ; Adj

G

(v

m

) in Formula (1) into a graph H such that K(H;n� 1) is an upper

bound on K(G;n).

3 An Upper Bound on Number of N-cliques

To derive an upper bound on K(G;n) for a consistency graph G of order (n;m), we extend the rep-

resentation of a consistency graph to a weighted consistency graph. A weighted consistency graph

G = (V;E;W ) is a consistency graph with each edge e 2 E associated with a weight, W (e), where

W : V � V ! N is a function that assigns a positive integer to an edge hu; vi if hu; vi 2 E, and assigns

0 to hu; vi if hu; vi 62 E. The intention is to use the weights to accumulate the number of n-cliques

information.

The number of n-cliques, K(G;n), in a weighted consistency graph G of order (n;m) is de�ned as

follows: let S be the set of n-cliques of G and H = (V

H

; E

H

;W

H

) 2 S be an n-clique. We de�ne

K(H;n) = min

e2E

H

fW

H

(e)g, and K(G;n) =

P

H2S

K(H;n). The intuition behind this formulation

will shortly become clear. Let the weighted consistency graph corresponding to a consistency graph

G = (V;E) be G

0

= (V;E;W ), where W (e) = 1, for all e 2 E. We then have K(G;n) = K(G

0

; n) by

de�nition, and can concentrate on weighted consistency graph from now on.

We de�ne a binary operator �, called graph addition, on two weighted consistency graphs. Let

G

1

= (V;E

1

;W

1

) and G

2

= (V;E

2

;W

2

) be two weighted consistency graphs with the same set of

vertices. Then G

1

�G

2

= (V;E

1�2

;W

1�2

), where E

1�2

= E

1

[E

2

, and W

1�2

(e) =W

1

(e) +W

2

(e), for

all e 2 E

1�2

. Graphs G

1

and G

2

are said to be the component graphs of G

1

� G

2

. An example of

graph addition is shown in Figure 2. We use the same notation as the one in Figure 1. Suppose every

edge in the graphs G

1

and G

2

has weight 1. We can easily verify that every edge in the graph G

1

�G

2

has weight 1 except for edges h12; 21i, h12; 33i and h21; 33i which have weight 2, where edge hij; ghi

joins the vertices denoting x

i

 d

j

and x

g

 d

h

.

The intuition behind the de�nition of the number of n-cliques in a weighted consistency graph

4



as a CSP as follows: let x

i

denote the queen placed in i

th

row and the domain of values 1; : : : ; n be

the column indices. Then the constraints are x

j

6= x

i

and x

j

6= x

i

� (j � i), for 1 � i < j � n. The

inverse n-queens problem, on the other hand, requires the placement of queens such that every pair of

queens are in the same column, or diagonals [18]. Using the same notations as the n-queens problem,

the constraints for inverse n-queens problem are x

j

= x

i

or x

j

= x

i

� (j � i), for 1 � i < j � n.

2 Number of Solutions and Number of N-cliques

In this paper we consider the following class of binary CSPs: a CSP involves a �nite set of variables

x

1

; : : : ; x

n

, a �nite domain of discrete values d

1

; : : : ; d

m

, and a set of unary or binary constraints on

variables, namely, constraints involving only one or two variables.

1

A solution of a CSP is an n-tuple

of assignments of domain values to variables such that all the constraints in the problem are satis�ed.

The set of constraints on variables can be represented as a graph G = (V;E), called a consistency

graph. Each vertex v

i;j

in V denotes the assignment of a value d

j

to a variable x

i

, x

i

 d

j

, for

1 � i � n and 1 � j � m. There is an edge hv

p;g

; v

q;h

i between two vertices v

p;g

and v

q;h

if the two

assignments x

p

 d

g

and x

q

 d

h

satisfy all the constraints involving variables x

p

and x

q

. The two

assignments are then said to be consistent. The set of vertices V

i

= fv

i;1

; : : : ; v

i;m

g corresponding to

a variable x

i

is called the assignment set of x

i

. The order of a consistency graph G is (n;m) if G

corresponds to a CSP involving n variables and m domain values. Because two distinct values cannot

be assigned to the same variable simultaneously, no pair of vertices in an assignment set are adjacent.

Therefore, the consistency graph of a CSP involving n variables is an n-partite graph. As an example,

the consistency graph of 3-queens problem is shown in Figure 1.

An n-clique of a graph G is a subgraph of G such that it has n vertices and its vertices are pairwise

adjacent. Since a solution s of a CSP p involving n variables is an n-tuple of assignments of domain

values to variables such that all the constraints are satis�ed, every pair of assignments in s is consistent.

Thus s corresponds to an n-clique of the consistency graph of p, and the number of solutions of p is

equal to the number of n-cliques in the consistency graph of p. We will use K(G;n) to denote the

number of n-cliques in a consistency graph G. Since there is no 3-clique in the consistency graph of

3-queens problem, as shown in Figure 1, there is no solution for 3-queens problem.

Let G = (V;E) be a graph and N

G

(v) = fw 2 V j hv; wi 2 Eg be the neighbors of a vertex

v. The adjacency graph of v, Adj

G

(v), is the subgraph of G induced by N

G

(v), i.e., Adj

G

(v) =

(N

G

(v); E

G

(v)), where E

G

(v) is the set of edges in E that join the vertices in N

G

(v). The following

theorem shows that the number of n-cliques in a consistency graph can be represented in terms of the

number of (n� 1)-cliques in the adjacency graphs corresponding to the vertices in an assignment set.

Theorem 2.1 Let G be a consistency graph of order (n;m). Then for each assignment set V =

1

refer to [17] for relationship with n-ary constraints.

3



given two graphs, deciding whether one graph is isomorphic to a subgraph of the other one, and so on.

For a survey on the algorithms for solving CSPs, the reader is referred to [18].

The motivation for this work is to infer useful information to support various optimization techniques

for improving the e�ciency of logic programs and deductive databases. Since CSPs appear frequently

in logic programs and deductive databases, knowledge about the number of solutions of CSPs can be

applied in a variety of ways. For example, the e�ciency of parallel logic programs can be improved

by suitable process granularity control [4]. Because of nondeterminism, to compute the granularity of

a process, we need to know the number of solutions generated by each procedure [6]. In distributed

environment, the performance of a system is a�ected by the amount of communication in the system,

which usually corresponds to the number of solutions generated by each distributed task. The number

of solutions information can be used to properly map tasks to processors. The e�ciency of query

evaluation in deductive databases depends on the evaluation order of subgoals [21, 24]. Knowledge about

the number of solutions generated by each subgoal can be applied to plan the appropriate evaluation

order among subgoals. For systems where the instantiation order of variable values can be controlled,

the estimates for the number of solutions generated for each value instantiation can be employed to

determine the instantiation order of values so that the �rst solution can be e�ciently produced [7].

Many CSPs which decide whether there exists a solution satisfying all the constraints in the problem

are NP-complete, such as boolean satis�ability, graph k-colorability and subgraph isomorphism [3, 12].

Thus it is very unlikely to �nd an e�cient algorithm to compute the number of solutions for CSPs. Rivin

and Zabih have proposed an algorithm for computing the number of solutions for CSPs by transforming

a CSP into an integer linear programming problem [20]. If the CSP has n variables and m domain

values, and if the equivalent programming problem involvesM equations, then the number of solutions

can be determined in time O(nm2

M�n

).

We are interested in �nding approximation algorithms for estimating the number of solutions for

CSPs on �nite domain of discrete values. This paper presents an O(n

3

m

3

) approximation algorithm for

a problem involving n variables and m domain values based on the greedy method. The basic idea of

this algorithm is recursively reducing a CSP involving n variables to a CSP involving n � 1 variables.

Through the reduction, the number of solutions of the CSP involving n� 1 variables is made to be an

upper bound on the number of solutions of the CSP involving n variables. Based on this algorithm,

a set of 
exible polynomial time approximation algorithms is also developed. The user can choose

the appropriate algorithm according to the e�ciency and precision requirements. These algorithms

are particularly useful for problems where constraints are explicitly expressed as a set of arithmetic

constraints. It is very di�cult to infer nontrivial number of solutions information for these problems

without considering the net e�ects of the set of arithmetic constraints. Estimation of the number of

solutions for this class of problems has not been addressed in previous work [5, 21, 24].

We will use n-queens and inverse n-queens problems as our running examples. The n-queens problem

requires the placement of n `queens' on an n�n chessboard such that each queen is placed in a di�erent

row and no pair of queens are in the same column, or diagonals. The n-queens problem can be formulated

2
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Abstract

Knowledge about the number of solutions of constraint satisfaction problems can be used to im-

prove the e�ciency of logic programs and deductive databases, e.g., to control task granularity in

parallel systems, to map predicates to processors in distributed systems, or to plan the evaluation

order of body goals and the instantiation order of variable values. Many constraint satisfaction

problems are NP-complete. Thus it is very unlikely to �nd an e�cient algorithm to compute the

number of solutions for constraint satisfaction problems. This paper presents a greedy approxima-

tion algorithm for estimating the number of solutions for constraint satisfaction problems on �nite

domain. The time complexity of this algorithm is O(n

3

m

3

) for a problem involving n variables and

m domain values. Based on this algorithm, a set of 
exible algorithms is also developed. The user

can choose the appropriate algorithm according to the e�ciency and precision requirements.

1 Introduction

Many problems arising in arti�cial intelligence and operations research can be formulated as a constraint

satisfaction problem (CSP). A CSP involves a set of n variables, a domain of values, and a set of

constraints on the variables. A solution of a CSP is an n-tuple of assignments of domain values to

variables such that all the constraints in the problem are satis�ed. Familiar problems which can be

formulated as a CSP include boolean satis�ability: deciding whether a boolean formula is satis�able;

graph coloring: coloring a graph so that adjacent vertices have di�erent colors; subgraph isomorphism:

�
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