
Proposition 4 With probability tending to 1 as n tends to in�nity, a random tournament

on n nodes has an anchor of size O(log n).

XXXMoni wanted an exact statement here giving the constant in the Big Oh XXX and a

proof of the statement. I have slogged on this paper too long XXX and I am out of patience

to do that. Converting the paper from tro� to XXX latex was a very unrewarding activity.

The proof is immediate and is omitted.

5 Open Problems

The problem of proving an upper bound of bn=2c on the size of the minimum anchor in any

n node tournament is the foremost open problem arising from this paper. Other questions

include analyzing a more relaxed de�nition of anchors which allows vertices to be distin-

guished based on degree as well and using ideas such as these to come up with a tournament

isomorphism algorithm with a good bound on running time.
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have G-nodes u

T

and v

T

be able to distinguish between them. Thus the arc between (u; v)

1

and u

T

will be oriented into u

T

while the arc between (u; v)

2

and u

T

will be oriented out of

u

T

. Similarly we will have an arc from (u; v)

1

to v

T

and an arc from v

T

to (u; v)

2

. Finally

it remains to specify the arcs to the G

0

-nodes. The purpose of these nodes is to distinguish

every pair of nodes besides the twin-nodes. They correspond to "garbage collection units"

in typical NP-Completeness constructions. We know that a vertex cover in G

0

must pick

one of x

i

or y

i

for each i. We would like to claim that if a set of nodes S forms a minimum

vertex cover in G

0

the corresponding set of nodes in T will form an anchor. We will use the

G

0

-nodes of T to ensure that if one of x

i

T

and y

i

T

is picked for each i, then we would have

distinguished between all pairs of nodes in T except for the twin-nodes.

To achieve this, we create su�ciently many partitions of the nodes of T into two halves

in order that every pair of nodes aside from the twin-nodes occur in di�erent halves of some

partition. These partitions will also ensure that twin-nodes are never put in di�erent halves.

Since the number of nodes in T is O(n

2

) we need no more than about 2 log n partitions.

To be safe we will assume that we have fewer than 4 log n partitions. Let P

1

be the �rst

partition and let A

1

and B

1

be the two halves of this partition. We put in the arcs to x

1

T

and y

1

T

on the basis of P

1

. All nodes in A

1

will have arcs into x

1

T

and y

1

T

. All nodes in B

1

will have arcs out of these nodes. In general we handle partition P

i

by using nodes x

i

T

and

y

i

T

. There appears to be a small problem here since the prescription above might call for an

arc from a node to itself. However this is not really a problem because nodes in the anchor

do not have to be distinguished from any other node.

We will show that the instance of vertex cover with G

0

and k

0

is a YES-instance if and

only if the instance of anchor with T (constructed as above) and k

0

is a YES-instance.

If the instance of vertex cover is a YES-instance let S be a set of nodes in G

0

which forms

a vertex cover such that jSj < k

0

. We claim that the corresponding nodes in T form an

anchor for T . S must contain one of x

i

and y

i

for each i. Our construction ensures that the

corresponding nodes in T distinguish between every pair of nodes except for the twin-nodes.

But since S is a vertex cover in G

0

it contains at least one of the end points of each edge in

G

0

. Since twin-nodes are distinguished at their "end points", the corresponding set of nodes

also distinguishes between twin-nodes in T . Hence it is an anchor.

Now suppose that T has an anchor of cardinality less than k

0

. We will prove that G

0

has a vertex cover of cardinality less than k

0

. A pair of twin-nodes (u; v)

1

and (u; v)

2

are

distinguished by a set i� one of the four nodes: (u; v)

1

; (u; v)

2

; u; or v is in the set. So the

anchor must contain one of these nodes. The choice of (u; v)

1

or (u; v)

2

does not help in

distinguishing between other pairs of twin-nodes. Hence, if we assumed that the only nodes

to distinguish between were twin-nodes then we can assume without loss of generality that

one of u or v was picked. Since an anchor must distinguish between all pairs of nodes in T a

lower bound on the size of the anchor is the minimum cardinality of a set that distinguishes

between twin-nodes. It is clear that any such set must contain a vertex cover in G

0

. This

completes the reduction proving the NP-Completeness of the anchor problem.

De�nition 3 De�ne a random tournament as one where the directions of the arc are chosen

independently with a probability of half for either direction.

8



Proof: Consider the regular rotational tournament on 2n + 1 nodes de�ned as: The arc

between node i and node j goes from i to j i� j � i (mod 2)n+ 1 < i� j (mod 2)n+ 1.

Since 2n+1 is odd this de�nes a tournament. To distinguish between i and i+1 we need to

pick one of i; i+ 1; n + i + 1 (mod 2)n + 1. In fact each node distinguishes at most three

pairs of consecutive vertices. Since there are n such pairs we need at least n=3 nodes in the

anchor.

We make the following conjecture about anchor sizes based only on empirical evidence.

Conjecture 1 Every n node tournament has an anchor of size at most b

n

2

c.

4.2 NP-Hardness of Finding Minimum Anchors

Theorem 3 Given a tournament, T , and an integer l it is NP-Complete to determine if T

has an anchor of size less than l.

Proof: The reduction is from vertex cover. Let G = (V;E) and k be an instance of vertex

cover. We make a preliminary transformation to a new instance of vertex cover as follows. If

G has n nodes we create a graph G

0

which is obtained by adjoining 4 log n pairs of vertices,

x

i

; y

i

, i = 1; 2; : : : ; 4 log n to G. Each x

i

is connected to the corresponding y

i

by an edge.

Thus we add 4 log n disjoint components each of which is a copy of K

2

. Of course, k must be

suitably modi�ed. So we set k

0

= k + 4 log n since we know that any minimum vertex cover

will pick exactly one vertex out of each new component that was added. Now we transform

this new instance of vertex cover into an instance of the anchor problem.

We create a tournament T from G

0

as follows: For each node v

G

0
2 G

0

in G

0

we create

a corresponding node v

T

in T . For each edge (u; v) in G

0

we create two nodes (u; v)

1

and

(u; v)

2

in T . The arcs of the tournament will be so chosen as to make the two nodes (u; v)

1

and (u; v)

2

distinguishable only at u

T

and v

T

.

We now specify the arcs in T . Choose an arbitrary order for the nodes in G

0

where the

nodes in G precede the nodes added to create G

0

. Also choose an arbitrary order on the

edges of G

0

. To facilitate the description of the arcs of T we divide the nodes in T into three

classes | namely

1. Nodes in T corresponding to edges in G

0

. These will be called the edge-nodes.

2. Nodes in T corresponding to the nodes in G. These will be called the G-nodes.

3. Nodes in T corresponding to the nodes in G

0

�G. These will be called the G

0

-nodes.

Two edge-nodes which correspond to the same edge in G

0

will be called twin-nodes.

We choose an arbitrary order on the edge-nodes such that twin-nodes occur consecutively.

Similarly we choose arbitrary orders on G-nodes and on G

0

-nodes. Arcs between two nodes

within the same class will be transitively oriented according to the order chosen for that

class. Arcs between edge-nodes and G-nodes will be oriented from the edge-nodes to the

G-nodes with the following exception. For twin-nodes (u; v)

1

and (u; v)

2

we will arrange to

7



Proof: By lemma 2 we know that if w; z 2 S are both of type u then the arcs between w

and u and between z and u are oppositely oriented. Hence w and z are distinguished by u.

At this point we know that the only kinds of nodes in S that could resemble each other

over V � S are nodes of di�erent types.

Lemma 7 No three nodes in S can resemble each other over V � S.

Proof: Let if possible three nodes in S resemble each other over V � S. Let v

1

and v

2

be

two such nodes. We know that v

1

and v

2

are of di�erent types. Let v

1

be of type u

1

and v

2

be of type u

2

. Without loss of generality assume that we have an arc from v

1

to u

1

. Since

v

1

and v

2

resemble each other over V � S there must be an arc from v

2

to u

1

. Since v

1

is

of type u

1

there is also an arc from v

2

to v

1

. Since v

2

is of type u

2

there is an arc from u

2

to v

1

. Finally, since v

1

and v

2

resemble each other over V � S there is an arc from u

2

to v

2

.

This proves that if v

1

and v

2

resemble each other the arcs to their type nodes are oppositely

oriented. Hence, at most two nodes in S can resemble each other over V � S.

Now we are ready to complete the proof of the upper bound.

Theorem 2 In any n-node tournament there is an anchor of size at most 2n=3.

Proof: Construct an arbitrary minimal anchor S and suppose that jSj > 2n=3. We will

create a new anchor S

0

as follows. S

0

will consist of all the nodes of V �S and one node out

of every pair of nodes in S which resemble each other over V � S. By the previous lemmas

the size of S

0

is no more than jV �Sj+ jSj=2. If jSj = k, jS

0

j � n� k+ k=2. jS

0

j � n� k=2.

Since k > 2n=3 by assumption jS

0

j � 2n=3.

In fact our proof of theorem 2 gives us an e�cient algorithm for constructing such an

anchor.

The next proposition shows that the upper bound in Theorem 2 is not too far o�. There

are tournaments with no anchors of smaller size than 
(n). This means that the notion of

anchor cannot be used directly to solve tournament isomorphism for all tournaments.

Proposition 2 There exists a tournament on n nodes where the size of the minimum anchor

is bn=2c.

Proof: let T be the transitive tournament on n nodes, i.e. a tournament where the vertices

are ordered from 1 to n and all the arcs are directed from the lower numbered vertices to the

higher numbered ones. It follows from the de�nition of an anchor that no two consecutive

vertices can be left out of any anchor. This proves that any anchor must include at least

bn=2c vertices.

A slightly more interesting fact is that even regular tournaments can have large anchors.

Proposition 3 There are regular n-node tournaments where the minimum anchor is of size

n=3.
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Proof: With each pair-node, u, in S we can asssociate a pair of nodes in V �S such that u

is the unique node in S distinguishing this pair. If no such pair exists u would be redundant

and the anchor would not be minimal. These associations naturally induce a graph on the

nodes in V �S, with edges going between every pair associated with a pair-node. We claim

that this graph is acyclic. Suppose to the contrary that u

1

, u

2

, : : : , u

l

is a cycle in the graph.

Let v

1

; v

2

; : : : ; v

l

be the pair-nodes in S such that v

i

is the unique node distinguishing u

i

from

u

i+1

and v

l

is the unique node distinguishing u

l

from u

1

. At v

l�1

, u

l�1

resembles u

l�2

for

otherwise v

l�2

would not be a pair-node. Similarly u

l�2

resembles u

l�3

since otherwise v

l�3

would not be a pair-node. Continuing thus and using transitivity we �nd that u

1

resembles

u

l�1

at v

l�1

. Since v

l�1

distinguishes u

l�1

from u

l

it follows that it distinguishes u

1

from u

l

and thus v

l

is not a pair-node. Thus we have a contradiction proving our claim.

The two previous lemmas immediately imply the following lemma:

Lemma 4 Every minimal anchor in an n-node tournament is of size < 3n=4.

Proof:

Let jV � Sj = k. Then there are at most 2k type-nodes and at most k � 1 pair-nodes.

Thus the anchor is of size less than 3k and this implies that the size of every minimal anchor

in an n-node tournament is less than 3n=4.

Remark: The largest minimal anchor we have been able to �nd in an n-node tournament

is of size 2n=3. The tournament is the transitive tournament (de�ned later in this paper).

If the nodes of the tournament are numbered 1 .. n in transitive order, the minimal anchor

consists of all nodes whose numbers are 1 or 0 mod 3.

We now show that there exists an e�ciently constructible minimal anchor of size at most

2n=3.

The construction works as follows: We �rst construct an arbitrary minimal anchor S.

If jSj � 2n=3 we are done. Therefore we will assume that jSj > 2n=3. In this case, we

construct a superset of V � S which will be an anchor of size at most 2n=3.

The following lemmas establish how far V � S deviates from being an anchor.

Lemma 5 Every pair-node in S is distinguished from every other node in S by some node

in V � S.

Proof: Each pair-node w 2 S is the unique node distinguishing a pair of nodes, u; v 2 V �S.

Thus the arcs between w and u and between w and v are oppositely oriented, while for every

other node z 2 S these arcs are similarly oriented. Hence, 8z 2 S w is distinguished from z

at one of u or v.

Lemma 6 Two nodes of the same type are distinguished from each other at some node in

V � S.

5



Proof: If x

1

; x

2

; : : : ; x

k

is the list of k nodes that form an anchor we can associate a k-bit

vector with each node outside the anchor. For node u this k-bit vector has 1 in the i

th

place

if the arc between u and x

i

is directed into x

i

and 0 otherwise. By de�nition of anchors

these k-bit vectors are distinct for distinct nodes outside the anchor. Hence, there must be

at least n� k k-bit vectors. This implies the required bound.

4.1 An Upper Bound on Anchor Size

We will prove in this subsection that every tournament on n nodes has an anchor of size at

most 2n=3.

We make the following de�nitions. Two nodes u and v are said to resemble each other at

node w if (u;w) is an arc i� (v;w) is an arc. If two nodes do not resemble each other at w

we say that they are distinguished at w. Two nodes are distinguished by a set A if 9w 2 A

which distinguishes them.

Let T = (V;E) be a tournament on n nodes and let S be a minimal anchor in T . Since

S is minimal whenever we consider S� v for any v 2 S one of the following two things must

happen:

1. Two nodes u

1

; u

2

2 V � S resemble each other at every node in S � v. In this case v

was crucial in distinguishing between u

1

and u

2

. Such a node v will be designated a

pair-node.

2. v resembles u

1

2 V � S at every node in S � v. In this case removing v from S makes

u

1

and v indistinguishable. Such a node v will be designated a type-node of type u

1

.

Note that it is possible for a node to be both a type-node and a pair-node.

We prove the main theorem by proving various facts about type-nodes and pair-nodes.

Lemma 2 There are at most two type-nodes of any one type in S.

Proof: Let u be a node in V � S and suppose there are more than 2 nodes of type u in S.

Let v

1

and v

2

be two such nodes. Suppose, without loss of generality that the arc between u

and v

1

is directed from u to v

1

. Then because v

2

is of type u we must have an arc directed

from v

2

to v

1

. Now, since v

1

is also of type u we must have an arc directed from v

2

to u.

Thus we have proved that if two nodes are of type u they must have oppositely oriented arcs

between u and themselves. This proves also that there can be at most two nodes of type u.

Lemma 3 For any minimal anchor S, if there are r nodes in V �S there are at most r� 1

pair-nodes in S.

4



guarantees that at the end we will have the required size bound on the label classes; all we

have to do is bound the number of nodes that we pick.

We represent the selection process above by a tree, H. H represents how the label classes

are split as more and more nodes of T

1

are selected. The internal nodes of H correspond to

label classes of T

1

at various stages of re�nement. Thus for example, the root of H represents

all the nodes of T

1

since all nodes are in one label class initially. The internal nodes of H

also stand for the node of T

1

that is selected at a particular stage. Thus if the �rst node

selected by our selection process is v in T

1

, then the root of H also represents the node v.

The children of the root in H are the label classes that result from the creation of a singleton

class for v and stabilization. (This tree does not capture the full extent of stabilization. It

does not represent splits in label classes resulting from selection of a node in another label

class. However, it will do for our purpose.) Finally, the leaves of H correspond to label

classes whose size is bounded by 2n=k.

In order to bound the number of nodes selected, we can bound the number of internal

nodes of H. We will use the fact that if some internal node a represents a label class of size

l, each of its children represents a label class of size at most l=2. We adopt the following

system of accounting. Each internal node v of H corresponds to a set of nodes S of the

tournament. If x 2 S we charge x an amount of 1=jSj towards v. Thus the total charge

towards v is jSj � 1=jSj which is 1. Thus to count the total number of internal nodes we can

add up all the charges. For each node x in the tournament its charge towards its lowest level

internal node is < k=2n (since each internal node corresponds to a label class of size greater

than 2n=k). Subsequent charges on x drop at least by a factor of two for each step up in the

tree. Thus the total charge accruing to x is at most k=n and thus the total over all nodes

in the tournament of the charges is at most k. This establishes that the number of internal

nodes is at most k.

The following theorem now follows easily.

Theorem 1 The above algorithm works in O(n

4

p

n
+O(1)

) time.

Proof: For the case where the label classes are of size bounded by l the running time of

the deterministic algorithm in [3] is O((nl!)

4

). There is also a Las Vegas version in [3] which

runs in time O((nl!)

2

). For the purpose of this analysis we assume we are using the Las

Vegas algorithm. With appropriate bounds for the factorial, the overall running time of the

algorithm is in O(n

k+2

l

2l

). We choose k so as to minimize this running time. The choice of

k = 2

p

n
gives us the best time bound of n

4

p

n
+O(1)

.

The sequence of nodes found in the course of this algorithm is like an anchor except

that we also allow distinctions between nodes based on (in and out) degrees to already

distinguished nodes.

4 Results on Anchors

Proposition 1 Any anchor in a tournament with n nodes must have size at least dlog ne�1.
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Intuitively an anchor is a subset of the nodes such that for all pairs of nodes outside it

there is some node in it which "distinguishes" the pair. However the notion of `distinguishing'

here is very restrictive | we only consider two nodes v and w distinguished by a node u if

(v; u) 2 E , (u;w) 2 E.

3 An Algorithm for Tournament Isomorphism

We present a very elementary algorithm for tournament isomorphism which runs in n

O(

p

n)

time. The algorithm is presented mainly as a way of motivating notions such as anchors.

Let T

1

= (V

1

; E

1

) and T

2

= (V

2

; E

2

) be the two tournaments for which we want to test

isomorphism. Let n = jV

1

j = jV

2

j.

The algorithm works by choosing an appropriate sequence S

1

of k vertices (k to be spec-

i�ed later) in T

1

as distinguished vertices and using the asymmetry introduced to partition

V

1

into an ordered set of equivalence classes of size no more than 2n=k. We will let l = 2n=k.

We will refer to these equivalence classes as label classes to emphasize the order on these

classes. Any automorphism of T

1

that �xes S

1

pointwise must respect the label classes. If

T

1

and T

2

are isomorphic and S

1

and S

2

are chosen so that there is an isomorphism between

T

1

and T

2

that maps the sequence S

1

to S

2

, then the i

th

label class in T

1

must map to the

i

th

label class in T

2

. In order to �nd S

2

the algorithm tries all possible sequences of vertices

of T

2

of cardinality jS

1

j.

Once we have a partition into label classes we apply the algorithm due to Babai[3] for

isomorphism of graphs where the vertices have been partitioned into label classes.

We now describe the process by which the partition is obtained. This process will be

called stabilization. Stabilization works as follows: Initially all nodes are in one label class.

If there are two nodes, u and v in a label class L such that they have di�erent outdegrees (or

indegrees) to some label class (possibly L itself), then we break up L into two or more classes

based on this di�erence. This process must recursively be applied to each of the new label

classes we create and in fact to the old label classes as well. We have a stabilized labeling

if no further splitting is possible. In this case, if some of the label classes are too large we

create a further asymmetry by picking a suitable node to be in a label class by itself and

stabilizing again.

Lemma 1 For any k such that 1 � k � n, there are k nodes in a tournament which when

picked to form individual classes, split the other nodes into classes no bigger than 2n=k.

Proof: We will give a constructive proof of the lemma. By de�nition of stabilization above,

after stabilization each label class is a regular tournament, i.e one where all the nodes have

the same indegree and outdegree. Thus selecting any one node v, in a label class to be a

singleton class causes that label class to be broken up into classes no one of which is more

than half the size of the original class.

We will pick the nodes by the following simple strategy: As long as there are label classes

whose size is greater than 2n=k, pick a node in one such class and stabilize. This strategy

2



1 Introduction

The complexity of tournament isomorphism was shown to be n

O(logn)

by Luks[4]. However,

the proof in [4] depends on non-elementary theorems about �nite groups such as the fact that

groups of odd order are solvable. In this paper we are motivated by the question, `Are there

algorithms that run in time n

O(logn)

or better whose running time bounds can be obtained

purely combinatorially?'

In a paper on graph isomorphism, Babai[1] describes a technique of Zemlyachenko which

attempts to break the `symmetry' between vertices of a graph by picking a subset, S, of

distinguished vertices and partitioning the rest of the vertices based on degree to the distin-

guished vertices and recursively on degrees to sets in the partition. If we can partition the

vertex set into constant sized classes using a set S then we have an O(n

jSj

) algorithm for the

isomorphism question since we simply try all possible sets of size upto jSj in both graphs and

try to establish an isomorphism based on a 1{1 correspondence between vertices in the two

sets. For the case of arbitrary graphs the technique in [1] yields a bound of exp(n

2=3+o(1)

)

for the isomorphism of n-node graphs. (Subsequent papers have improved upon this time

bound using other techniques. See for example [2].)

In this paper we show that a very simple algorithm for tournament isomorphism along

the lines of [1] has an n

O(

p

n
)

time bound. We also de�ne the notion of an anchor in a

tournament to be a set of nodes which distinguishes every other pair of nodes at distance

1. This is a major strengthening of the requirements on a distinguishing set of vertices as

in [1] and we cannot expect to be able to prove very good upper bounds on the sizes of

anchors. However anchors are a clean combinatorial notion and their study seems to be of

interest in its own right. An understanding of anchors might lead to appropriate relaxations

of the de�nition which are tractable and useful with respect to algorithms for tournament

isomorphism. Our results about anchors in n-node tournaments are the following:

1. Every tournament has an anchor of size at most 2n=3.

2. There are tournaments that require n=2 nodes in any anchor.

3. Every anchor in every tournament must be of size 
(log n).

4. Determining an anchor of minimum size is NP-Complete.

2 De�nitions

De�nition 1 A tournament, T = (V;E) is a directed graph such that for every pair of

vertices u; v; (u; v) 2 E , (v; u) 62 E.

De�nition 2 An anchor in a tournament, T = (V;E) is a subset S � V such that 8u; v 2

V � S 9w 2 S such that exactly one of (u;w) and (v;w) is an arc of T .

1



Anchors in Tournaments
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Abstract

We de�ne and study the graph-theoretic notion of an anchor in a tournament.

An anchor in a tournament is a subset of the nodes of the tournament such that

every pair of nodes outside the anchor is `distinguished' at one of the nodes in

the anchor. We show that every n-node tournament has an anchor of size at

most 2n=3 and that there are n-node tournaments where the anchor size is at

least n=2. We also show that �nding a minimum-sized anchor in a tournament is

NP-Complete. Finally we point out potential applications of anchors and related

concepts to the design of e�cient algorithms for tournament isomorphism.
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