
Approximate Matching of Network Expressions with Spacers*

Eugene W. Myers

TR 92-5

ABSTRACT

Two algorithmic results are presented that are pertinent to the matching of patterns of interest in

macromolecular sequences. The first result is an output sensitive algorithm for approximately match-

ing network expressions, i.e., regular expressions without Kleene closure. This result generalizes the

O (kn) expected-time algorithm of Ukkonen for approximately matching keywords [Ukk85]. The

second result concerns the problem of matching a pattern that is a network expression whose elements

are approximate matches to network expressions interspersed with specifiable distance ranges. For

this class of patterns, it is shown how to determine a backtracking procedure whose order of evalua-

tion is optimal in the sense that its expected time is minimal over all such procedures.

Key words: Approximate Match, Backtracking, Network Expression, Proximity Search

January 16, 1992

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported in part by the National Institutes of Health under Grant R01 LM04960-01

and the Aspen Center for Physics.

Approximate Matching of Network Expressions with Spacers

0. Introduction

Many patterns of interest to molecular biologists investigating the structure of proteins and their binding to

nucleic acid sequences, take the form of a number of "domains" or "signals" distributed at various locations along

the sequence in question (e.g., [MMK85, PBP89]). In general, the spacing between the signals varies from one

instance to the next, as do the signals themselves. This motivates a class of patterns in which one is searching for

approximate matches to a consensus pattern for each signal, separated within certain distance ranges of each other.

A software system called ANREP for recognizing such patterns [MeM91] has been built. This paper focuses on the

formal discrete pattern matching problems underpinning this system. This introduction presents the necessary back-

ground concepts and introduces an idealized version of the problem actually faced in practice.

To begin, one needs the concept of an approximate match to a pattern (say, a regular expression) R over alpha-

bet Σ. But this first requires introducing the much studied concept of an alignment and its score. Given sequences

A = a 1a 2
. . . an and B = b 1b 2

. . . bm over alphabet Σ, an alignment between them is a sequence of pairs

(i 1, j 1), (i 2, j 2), . . . (ilen , jlen) such that ik <ik +1 and jk <jk +1. This trace aligns aik
with bjk

for each k and if one ima-

gines drawing lines between aligned symbols, then the condition on indices implies the lines do not cross. Obvi-

ously, there are a tremendous number of distinct alignments between A and B . What is desired are those that are

optimal with respect to some criterion. To do so, introduce scoring scheme δ(a , b) which is a function giving a

non-negative real-valued score for each pair of symbols a and b from Σ ∪ {ε}. For a , b ∈ Σ , δ(a , b) gives the

score of aligning a with b ; δ(ε, b) is the score of leaving b unaligned in sequence B ; and δ(a , ε) is the score of

leaving a unaligned in sequence A . The score of an alignment is the sum of the scores assigned by δ to its aligned

pairs and unaligned symbols. An optimal alignment is one of minimal score. Finding an optimal alignment and its

cost, δ(A , B), is a much studied problem solvable with a dynamic programming algorithm in O (mn) time [Lev66,

NeW70, WaF74].

A pattern R , such as a regular expression, is formally a specification of a set (potentially infinite) of sequences,

i.e., the language L (R). From another perspective these are the sequences exactly matched by the pattern. With

this view one can think of a sequence that aligns particularly well with a sequence exactly matched by R , as approx-

imately matching R . Formally, the set of sequences approximately matching R within threshold T under scoring

scheme δ is Lδ(R , T) = { A : ∃ B ∈ L (R), δ(A , B) ≤ T }. The problem of approximately matching patterns arises

naturally in the context of pattern matching for biological sequences because evolutionary pressures mutate any

given precursor over time. Myers and Miller presented an O (np) algorithm for approximately matching sequence

A to regular expression R where p is the length of R [MyM89]. However, in most applications in molecular biol-

ogy the Kleene closure operator is not useful, thus motivating the definition of a network expression as a regular

expression not containing a Kleene closure. Directly, a network expression is any pattern built up from concatena-

tion and union operations. Approximately matching networks is particularly easy (as will be seen momentarily) and

the first algorithm is attributable to Sankoff and Kruskal [SaK83]. Hereafter, a network expression when coupled

with a threshold will be termed a motif.

Now consider the composite problem of matching a pattern consisting of several motifs separated by specifiable

distance ranges or spacers. Formally, let a net N be a network expression over the (infinite) alphabet of motifs,

(R :T), and spacers, [l , r]. The pair (R :T) denotes an approximate match within threshold T of network expression

R where an implied alphabet Σ and scoring scheme δ will be assumed to apply to all motifs for simplicity. The

spacer [l , r] matches any sequence of between l and r symbols. The integers may be negative in which case the

- 1 -

spacer indicates that the left end of the item after it must begin so many characters to the left of the right end of the

preceding item. For example, the pattern (A :2) ([0, 20] (B :4) | [−5, 5] (C :1)), matches an approximate match to

network A , either followed zero to twenty symbols later by a fairly loose match to B , or followed within five sym-

bols to the left or right by a more stringent match to C . The bar denotes union (alternation), juxtaposition denotes

concatenation, and parentheses may be used to enforce an arbitrary order of precedence. Proceeding more formally,

sequence A = a 1a 2
. . . an over alphabet Σ is said to match net N , written A ∼ N , if and only if there exists index

sequence i 0, i 1, . . . ip and sequence W = w 1w 2
. . . wp over the alphabet of motifs and spacers such that (1)

W ∈ L (N), (2) i 0 =0 and ip =n , and (3) if wk is motif (R :T) then aik −1+1aik −1+2
. . . aik

∈ Lδ(R , T), and if wk is spacer

[l , r] then ik −ik −1 ∈ [l , r]. This two-tiered problem of matching network expressions of motifs and spacers is a for-

mal embodiment of the pattern matching capability built into our ANREP software system for the analysis of biose-

quences [MeM91].

In this paper, two results of algorithmic interest for the problem of matching nets are presented. The first is an

output sensitive algorithm for matching motifs that generalizes Ukkonen’s O (kn) algorithm for approximately

matching keywords [Ukk85]. This is presented in Section 2, after Section 1 which reviews the traditional solution

to this problem cast in an automatic-theoretic form relevant to the second result presented in Section 3. There, a

backtracking algorithm for matching net patterns is presented that picks a backtracking order that minimizes the

expected time spent finding a match.

1. A Review of Approximately Matching Network Expressions.

A network expression over alphabet Σ is any expression built up from the symbols in Σ ∪ {ε} with the operations

of concatenation (juxtaposition) and alternation (|). The symbol ε matches the empty string. For example,

a (bc | ε) d denotes the set {ad , abcd }. While an expression is a convenient textual representation of a network, a

graph theoretic, finite automaton formulation is better suited to our purpose of approximately matching networks.

There are several different models of finite automata to choose from [HoU79]. The non-deterministic, state-

labeled, finite automaton model is used here and will be referred to as an ε-NFA. Formally, an ε-NFA, F =

< V , E , λ, θ, φ>, consists of: (1) a set, V , of vertices, called states; (2) a set, E , of directed edges between states; (3)

a function, λ, assigning a "label" λs ∈ Σ ∪ {ε} to each state s ; (4) a designated "source" state, θ; and (5) a designated

"sink" state, φ. Intuitively, F is a vertex-labeled directed graph with distinguished source and sink vertices. A

directed path through F spells the sequence obtained by concatenating the non-ε state labels along the path. LF (s),

the language accepted at s ∈ V , is the set of sequences spelled on paths from θ to s . The language accepted by F

is LF (φ).

Figure 1: Constructing the ε-NFA for network expression R .

- 2 -

Any network expression, R , can be converted into an equivalent finite automaton F with the inductive construc-

tion depicted in Figure 1. For example, the figure shows that FRS is obtained by constructing FR and FS , adding an

edge from φR to θS , and designating θR and φS as its source and sink states. After inductively constructing FR , an

ε-labeled start state is added as shown in the figure to arrive at F . This last step guarantees that the sequence spelled

by a path is the sequence of symbols at the head of each edge, and together with the choice of finite automaton

model is essential for the upcoming alignment graph construction.

A straightforward induction shows that automata constructed for network expressions by the above process have

the following properties: (1) every state has an in-degree and an out-degree of 2 or less; and (2) |V | ≤ 2 |R | , i.e.,

the number of states in F is less than twice R ’s length. That is, for any network expression, there is an equivalent

ε-NFA whose size, measured in vertices or edges, is linear in the length of R . Another property of F’s graph is that

it is acyclic and so its states can be topologically ordered. Finally, of essential importance to the output-sensitive

algorithm of Section 2, is the fact that F is a series/parallel graph.

To arrive at the basic dynamic programming algorithm for approximately matching network expression R with

sequence A , it is easiest to reduce the problem to one of finding a shortest source-to-sink path in a weighted and

directed alignment graph constructed from R and A [MyM89]. The vertices of the alignment graph consist of n +1

copies of F , the ε-NFA for R , arranged one on top of another as shown in Figure 2. Formally, the vertices are the

pairs (i , s) where i ∈ [0, n] and s ∈ V . For every vertex (i , s) there are up to five edges directed into it. (1) If i > 0,

then there is a deletion edge from (i −1, s) that models leaving ai unaligned and its weight is δ(ai , ε). (2) If s ≠ θ,

then for each state t such that t → s , there is a insertion edge from (i , t) that models leaving λs unaligned (in what-

ever sequence of L (R) that is being spelled) and its weight is δ(ε, λs). (3) If i > 0 and s ≠ θ, then, for each state t

such that t → s , there is a substitution edge from (i −1, t) that models aligning ai with λs and its weight is δ(ai , λs).

An exercise in induction reveals that the construction is such that every path from (i , t) to (j , s) models an align-

ment between ai +1ai +2
. . . aj and the sequence spelled on the heads of the edges in the path from t to s in F that is

the "projection" of the alignment graph path. The mapping of paths to alignments is not one-to-one since substitu-

tions into ε-labeled states have the redundant effect of leaving ai unaligned, and insertion edges into ε-states redun-

dantly align ε with ε. However, as long as one defines δ(ε, ε) =0, then the cost of paths and their alignments coin-

cide. Moreover, every alignment is modeled by at least one path. Thus the problem of approximately matching A

to R is equivalent to finding a least cost path between source vertex (0, θ) and sink vertex (n , φ). It can be further

shown that all substitution and deletion edges entering ε-labeled vertices except θ can be removed without destroy-

ing the property of there being a path corresponding to every alignment. These edges are removed in the example

of Figure 2 to avoid cluttering the graph.

Figure 2: The alignment graph for A =ab versus R = (a | b) ab .

- 3 -

Any alignment graph is easily seen to be acyclic since F is acyclic. Thus one can readily formulate the follow-

ing recurrence for the least path cost, C (i , s), to vertex (i , s):

C (i , s) = min {
t → s
min {C (i −1, t) + δ(ai , λs)},

t → s
min {C (i , t) + δ(ε, λs)}, C (i −1, s) + δ(ai , ε) }

When i =0 or s = θ, the terms that are undefined should be omitted and for the source vertex, C (0, θ) =0. By con-

struction of the alignment graph, C (i , s) = min { δ(Ai , B) : B ∈ LF (s) }, the score of the best alignment between a

sequence in LF (s) and the prefix Ai = a 1a 2
. . . ai of A . Assuming the length of R is p then there are O (np) ver-

tices in the alignment graph and the in-degree of each is less than 5. Thus by applying the dynamic programming

paradigm one can compute C (i , s) for every vertex in increasing order of i and any topological order of s . Com-

puting the value of each vertex using the recurrence above takes O (1) time given the value of its immediate prede-

cessors in the graph. Thus C (n , φ) = min { δ(A , B) : B ∈ L (R) }, the score of the best alignment between A and a

sequence in L (R), can be computed in O (np) time.

Thus far the problem under consideration has been that of determining the score of the best alignment between

A and R . Certainly this is sufficient to determine if A ∈ Lδ(R , T) since it simply suffices to check if C (m , φ) ≤ T .

But in general, one is faced with a very large text — n a million or more — and one is interested in finding those

substrings of A that approximately match motif M = (R :T). As Sellers noticed a decade ago [Sel80], it suffices to

simply modify the boundary of the recurrence so that C (i , θ) = 0 for all i . This is tantamount to making every θ-

vertex a source vertex as opposed to just (0, θ), and has the consequence that now C (i , s) =

min { δ(Aj..i , B) : j ≤ i and B ∈ LF (s) } where Aj..i denotes the substring aj +1aj +2
. . . ai of A (ε if j = i). It then fol-

lows that there exists a suffix of Ai matching R within threshold T if and only if C (i , φ) ≤ T . In such an instance the

index i is termed the right end of a match.

In applications where n is very large, it is prohibitive to use O (np) space for the quantities C (i , s). Let Ci

denote the "row" of entries {C (i , s)}s ∈ V and observe from the central recurrence that row Ci can be computed

given just Ci −1 and ai . Thus it is possible using only O (p) space to scan A from left-to-right computing Ci at each

index and asking if i is the right end of an approximate match. In direct analogy with the state-set simulation of an

ε-NFA on a text string, one can think of the Ci ’s as modeling the states of a deterministic automaton where on sym-

bol ai the machine transits from state Ci −1 to state Ci . It is impractical to actually build the automaton since it has

an exponential number of states (infinite if δ is irrational). However, it is useful to think in terms of scanning A

with a finite automaton recognizing motif M , for then the issues of how to report matches (e.g., left-most longest) is

identical to that already studied for the matching of regular expressions. This issue will be explored further in Sec-

tion 3.

Consider the following final problem: given a set of indices J ⊆ [0, n] of potential left ends, determine the set

Scan (M , J) = { i : ∃ j ∈ J s.t. Aj..i ∈ Lδ(R , T) } of right ends of approximate matches to M having a left end in J .

Figure 3 gives pseudo-code for solving this problem and within it all attributes for motif M are prefixed by "M.",

e.g., M.V is the set of states of M’s ε-NFA, M. θ is its start state, etc. Generalizing from the previous paragraph,

what needs to be done is to set C (j , θ) to be 0 for exactly those j ∈ J and none others. Assuming the indices in J

are sorted, it suffices to place the "machine" in the start state (by calling Start (M)) and then scanning A from left-

to-right starting with symbol aJ [1]+1. The state of the machine, M.C , is advanced over each character with a call to

Advance (M , a , inject) where a 0 is "injected" into the θ-state whenever an index in J is traversed. The routine

Advance returns a scalar value yes , no , or never according to whether the φ-vertex of the new state is within the

threshold M.T , above it, or will always be above it unless another inject occurs. This last condition is true iff every

vertex in the current state has value above the threshold because δ is non-negative. Knowing the never status is

useful because once the largest index in J has been passed and never is returned, one can safely stop the search.

- 4 -

Start (M)
{ M.C [M. θ] ← 0

for s ∈ M.V −M. θ in topological order do
M.C [s] ←

t → s
min {M.C [t] + δ(ε, λs)}

}

Advance (M , a , inject): (yes , no , never)
{ M. D [M. θ] ← M.C [M. θ] + δ(a , ε)

if inject then
M. D [M. θ] ← 0

for s ∈ M.V −M. θ in topological order do
M. D [s] ← min {

t → s
min {M.C [t] + δ(a , λs)},

t → s
min {M. D [t] + δ(ε, λs)}, M.C [s] + δ(a , ε) }

M.C ← M. D
if ∀ s , M.C [s] > M.T then

return never
else if M.C [M. φ] > M.T then

return no
else

return yes
}

Scan (M , J): set of [1..n]
{ I ← ∅

k ← 2
Start (M)
for i ← J [1]+1 to n do

{ answer ← Advance (M , ai , i =J [k])
if k ≤ |J | and i =J [k] then k ← k +1
if answer = yes then I ← I ∪ {i }
if answer = never and k > |J | then break

}
}

Figure 3: Scanning Routines for Matching Motifs.

2. An Output Sensitive Motif Matching Algorithm.

Several authors have observed that in the case of a thresholded problem such as matching a motif, one need not

compute every value C (i , s), but simply those that are within the threshold T in question. Generally a few more

entries than just those desired must be computed in order to ensure that none are missed, but this is acceptable pro-

vided the "zone" examined is on the order of the number of vertices whose least path cost is not greater than T .

Fickett presented such an algorithm for sequence versus sequence comparison under non-negative δ [Fic84].

Ukkonen [Ukk85] presented an O (kn) expected-time algorithm for approximate keyword matching where T =k

errors are allowed under the unit cost model: δ(x , y) ≡ if x =y then 0 else 1. Note that approximate keyword

matching is just a special case of network matching where F is a line graph or chain. The complexity of Ukkonen’s

algorithm depends on the fact that the expected number of vertices in each row Ci whose value is within threshold

T is O (T). Because performance depends on the parameter T , the algorithm can be considered to be output sensi-

tive. The tighter (smaller) the threshold, the faster the algorithm performs. Ukkonen’s algorithm easily generalizes

to any non-negative δ, but it becomes difficult to characterize the expected size of the zone computed in each row.

Nontheless, this treatment will continue to adhere to the output sensitive characterization since performance depends

primarily on the stringency of the required match and not on the size of the pattern. In this section a zone or output

sensitive algorithm for approximate network expression matching under non-negative δ is developed.

Let Ci (s) be the value of vertex (i , s) in whatever row, Ci , a motif recognizer finds itself in after scanning ai .

Let Ti = { s : Ci (s) ≤ T } be the set of values in row Ci that are within the threshold T . Suppose at this point that one

has somehow managed to arrive at a set Zi ⊇ Ti and values Ci
*(s) for s ∈ Zi such that if Ci (s) ≤ T then

Ci
*(s) = Ci (s) and Ci

*(s) > T otherwise. Such a set and its values is called a zone and it correctly models all the

- 5 -

values of Ci within T . The goal is to advance the motif recognizer over symbol ai +1 to its next state, Ci +1, but only

computing enough of this new row to arrive at a new zone, Zi +1/Ci +1
* , encompassing the values within threshold T .

Of course the challenge is to keep the zone as small as possible (a trivial solution would be to let Z =V). Our algo-

rithm requires that the subgraph of F induced by Zi be connected. It would be desirable for the zone to be as small

as possible with respect to this criterion, but this is not possible. However, Zi is guaranteed to be minimal in that the

removal of any vertex in Zi −Ti destroys connectedness.

Given a connected zone Zi −1/Ci −1
* and symbol ai our problem is to compute a connected zone Zi /Ci

* modeling

Ci . From the structure of the alignment graph it follows that the least cost path to a vertex in Ci within threshold T

must consist of a deletion or substitution edge from a vertex (i −1, s) where s ∈ Zi −1 followed by a possibly empty

series of insertion edges in row i . More formally, the zone Ui = Zi −1 ∪ Inserts (Zi −1) is guaranteed to be a superset

of Ti where Inserts (X) = { s : ∃ t ∈ X , t →s or ∃ t ∈ Inserts (X), (t →s and Ci (t) ≤ T) }. Certainly Ui is connected

and if one computes Ci
* over the edges in the subgraph of the alignment graph induced by Zi −1 ∪ Ui , then it will

properly model Ci over this zone. After computing Ui all that remains to arrive at Zi is to remove states in Ui −Ti

until a set that is minimal with respect to connectedness is reached. This two step process generalizes Ukkonen’s

algorithm for approximate keyword matching in that it maps into exactly that algorithm when the network expres-

sion is a single keyword.

Algorithmically, the first step involves computing Ci
* for the vertices in row i whose states are in Zi −1. If any

vertex is discovered to have a value not greater than T , then recursively its successors in row i are evaluated. The

difficulty is that this closure computation of Inserts (Zi −1) must be interwoven with the correct computation of Ci
* at

each vertex and this requires that the closure be discovered in topological order of F ’s states. For example, suppose

s and t are in Zi −1 and that there are paths from both states to another u ∈/ Zi −1. If all three states are in Ui then the

correct value at (i , u) may come from either (i , s) or (i , t). Thus in order to guarantee the correct value all prede-

cessors of u on both paths must have their values computed first. This difficulty does not arise in the case of a key-

word.

Figure 4: Type and Link Definitions for Series/Parallel F .

Figure 5 gives the pseudo code for our output sensitive algorithm for Advance (M , a , inject). For simplicity, M

is implied and the inject option is assumed to be false. The algorithm assumes that every state s has a type, s.type ,

and links s.succ , s.other , and s.mate to immediate successors and other operationally important states as defined

inductively in Figure 4. Our method for handling the ordering problem depends critically on the fact that F is a

series/parallel digraph as reflected in the definition of mate , and the categorization of state types into the classes

CAT , SPLIT , LOWER , UPPER , and FINAL . The algorithm further assumes that the vertices in F are numbered in

the topological ordering uniquely mandated by the requirement that the states in the automaton FR have higher

number than those in FS in the machine for FR | S . For example, this order implies s.succ comes before s.other for

- 6 -

s of type SPLIT . The key to visiting the states in Ui in topological order will be to have available for each state s ,

the largest (with respect to the topological order) state in Zi −1 that is "dominated" by s . A state is dominated by s if

and only if every path from θ to it passes through s . Formally, for a set Z ⊆ V , let DomZ (s) = max { t : t ∈ Z and s

dominates t }. As an example of how this dominator information will be used, consider states x = s.succ and

y = s.other where s is a state of type SPLIT . Suppose that x is in a list Z of states of F in topological order, y is

not in the list, and y needs to be inserted into its correct place in the list. This place is exactly after the element

DomZ (x).

Z ≡Zi −1 in topological order, C [s] ≡Ci −1
* (s), In [s] ≡ s ∈ Zi −1, Dom [s] ≡DomZ

i
(s) #

U ← ∅
while Z ≠ ∅ do

{ s ← pop Z
D [s] ← min {

t → s
min {C [t] + δ(a , λs)},

t → s
min {D [t] + δ(ε, λs)}, C [s] + δ(a , ε) }

if In [s] or D [s] ≤ T then
{ if s.type =SPLIT then

if not In [s.other] then
if In [s.succ] then

insert s.other after Dom [s.succ]
else

push s.other onto Z
if s.type ∈ {SPLIT , CAT , UPPER } then

if top(Z) ≠ s.succ then
push s.succ onto Z

else if s.type =LOWER then
if not In [s.succ] then

if In [s.mate] then
insert s.succ after Dom [s.mate]

else
insert s.succ after s.mate

}
In [s] ← true
push s onto U

}

U ≡Ui in reverse topological order, D [s] ≡Ci
*(s), In [s] ≡ s ∈ Ui #

while U ≠ ∅ do
{ s ← pop U

C [s] ← D [s]
In [s] ← C [s] ≤ T or s.type ∈ {LOWER , UPPER } and In [s.succ] and not In [s.other]

or s.type =CAT and In [s.succ]
or s.type =SPLIT and (In [s.succ] or In [s.other])

if In [s] then
{ push s onto Z

if s.type =SPLIT then
if In [s.mate] then Dom [s] ← Dom [s.mate]
else if In [s.other] then Dom [s] ← Dom [s.other]
else if In [s.succ] then Dom [s] ← Dom [s.succ]
else Dom [s] ← s

else if s.type =CAT then
if In [s.succ] then Dom [s] ← Dom [s.succ]
else Dom [s] ← s

else
Dom [s] ← s

}
}

Z ≡Zi in topological order, C [s] ≡Ci
*(s), In [s] ≡ s ∈ Zi , Dom [s] ≡DomZ

i
(s) #

Figure 5: An Output Sensitive Algorithm for Advance (M , ai , false).

- 7 -

At the start of the algorithm of Figure 5, Z is a linked list of the states in Zi −1 in topological order, C [s] contains

the value Ci −1
* (s) for every s ∈ Zi −1, the boolean indicator In [s] is true iff s ∈ Zi −1, and Dom [s] = DomZi −1

(s). The

first half of the algorithm builds a list U of Ui in reverse topological order and simultaneously computes D [s] =

Ci
*(s) for every s ∈ Ui . This is accomplished by "spilling" states, s , from the top of list/stack Z into the top of stack

U , and at that instant evaluating D [s] with the central recurrence, and adding s ’s immediate successors to their

appropriate place in list Z if they are in Ui −Zi −1. Such a state’s successors belong in Ui if either the state is in Zi or

Ci (s) ≤ T (the predicate ‘In [s] or D [s] ≤ T ’ in Figure 5). The tricky part is putting the successor states into the

right place in Z . The case where s.type =SPLIT is treated as an example; the remaining cases are left to the reader.

Let x = s.succ and y = s.other . If x and y are both in Zi −1 then neither needs to added since they are already in Z .

If x is not in Zi −1 then regardless of y , it should be added immediately after s since it is s’s immediate successor in

the topological ordering of V . But s was just popped from Z , so it is correct to push x onto the front of Z . If y is

not in Zi −1 then where it goes depends on x : if x is not in Zi −1 then it should be placed immediately after x because

none of the states dominated by x are on the list; otherwise it should be inserted immediately after DomZi −1
(x) =

Dom [x]. The reader should observe that the pseudo-code of Figure 5 has exactly the effect above, but the logic is

rearranged to minimize the length of the algorithm.

After the first half of the algorithm of Figure 5 has completed, the list U contains the states in Ui in reverse

topological order, D [s] contains the value Ci
*(s) for every s ∈ Ui , and the boolean indicator In [s] is true iff s ∈ Ui .

In the second half of the algorithm, states are spilled from the stack U onto the now empty stack Z with some ele-

ments being dropped if they are not needed to maintain the connectedness property of Zi . At the same time, the new

dominator information for Zi is computed, D -values are transferred to C , and In is established for Zi . A state s in

U is transferred to Z only if (1) D [s] ≤ T , (2) s has at least one successor already placed in Z and that successor has

s as its sole predecessor, or (3) s has a successor in Z and all other predecessors of that successor were not

transferred to Z . The minimal connectedness of the Zi that results follows. Dominators are easily computed as a

function of the dominators of immediate successors also in Zi as given in Figure 5.

The time complexity of our algorithm is hard to characterize in terms of simple parameters. Certainly, the time

spent in expectation is O (tn) where t is the average number of entries in a minimally connected zone with respect

to threshold T . Certainly the two t’s are correlated. In the event that T is stringent, our output sensitive algorithm is

significantly faster than the straightforward dynamic programming algorithm. Specifically, in our computing

environment if t ≤ 1⁄2V then our algorithm is faster in practice. Moreover, our algorithm reduces to exactly

Ukkonen’s algorithm when the network expression is a single keyword. That is, our algorithm is O (kn) for approx-

imate keyword matching under the unit cost model with k errors. Under this cost model, our algorithm can also be

shown to take no more than O (min { | Σ |k , kw } n) expected time where Σ is the input alphabet and w is the width of

the network expression, i.e., the maximum cardinality of a cut-set of F .

3. An Optimized Backtracking Net Matching Algorithm

Faced with the problem of matching a net pattern, one has several choices. For one, when spacers are restricted

to be positive it can be shown that the class of net patterns is a regular language and thus one could attack the prob-

lem in a "monolithic" fashion. But such an approach for large nets seems artificial and is potentially quite costly

because the amount of time spent on a spacer is proportional to the value of its integers. Given the desire for nega-

tive spacers and the fact that scanner-based routines such as those in Figure 3 are available for recognizing motifs,

our approach considers the problem as a composite one of finding net matches given subroutines for matching

motifs. It is worth noting that this problem reduces to "proximity search" when motifs are exact matches to key-

words [MaB91].

It is a fairly simple exercise to extend the development of the algorithm in Section 2, so that the routines Start

and Advance of Section 1 may be replaced with output sensitive versions. The performance of these algorithms can

be estimated via Monte Carlo simulation over a random text whose stochastic properties model the text to be

- 8 -

scanned up to some appropriate level, say a first- or second-order Markov model. By starting a motif, M , and then

advancing it always with inject set to true, one can estimate the expected time, t , for each advance of the recog-

nizer. That is, one can with some precision assert that the expected time to scan A with M will be tn . Via simula-

tion one can also estimate the expected amount of time, x , it will take for a recognizer in an "average" row

configuration to be advanced without injection until it returns never . With these two parameters one may then esti-

mate that a call to Scan (M , {j 1
. . . jk }) will consume (jk −j 1)t +x time. During the simulation one can also get a

rough estimate of f , the frequency with which M is found within a random text. If n is very large, then simulating

each motif in a net over a random text of length, say, 1% or less of n to estimate the parameters above is not an

unduly high overhead to pay for the ability to optimize the search for the net as shown below.

3.1. Optimizing the Backtrack Order

To illustrate the optimized backtracking idea, consider a "linear" net M 0 S 1M 1S 2M 2
. . . Sp Mp where the Mk are

motifs and the Sk are spacers [lk , rk]. Let ∆k = rk −lk be the variance of each spacer. Suppose that searching for a

match to motif Mk on a substring of A of length m takes tk m +xk where the parameters tk and xk have been deter-

mined as above. Further suppose that one finds a match to Mk on a random string with frequency f k . Given these

parameters, the time that a particular backtracking order will take can be accurately estimated. For example, con-

sider the strategy of looking for M 0, whenever a match to it is found, search S 1 symbols downstream for M 1, if an

instance of it is found, search S 2 symbols downstream for M 2, and so on, backtracking if one fails to find a match at

any point. For this particular order, the time to perform a search of A is expected to be:

nt 0 + nf 0 k =1
Σ
p

(
c =1
Π

k −1
∆c f c)(∆k tk +xk) †

However, this order is particularly bad if M 0 is very frequent and/or expensive to search for. A much better

order would be to start by first searching for a motif or subset of motifs that are fairly rare and inexpensive to search

for. All possible consecutive orders are considered as candidates for the order in which to perform a backtracking

search for the linear net. An order is consecutive, if at each stage in the search, a consecutive range, say Mk through

Mh of motifs has been matched and the next one searched for is Mk −1 or Mh +1. For example, if p =4 then the possi-

ble orders are 1-2-3-4, 2-1-3-4, 2-3-1-4, 2-3-4-1, 3-2-4-1, 3-2-1-4, 3-4-2-1, 4-3-2-1. Other orders are prohibited

since in general one does not have a range estimate on the substring matched by a motif (e.g. if M 2 were matched

then in what range would one search for M 4 if M 3 has not yet been found?). Over this set of orders a simple

dynamic programming calculation can determine an optimal order. Let Best (k , h) be the minimum time to match

all other motifs conditioned on motifs Mk through Mh already being matched. These O (p 2) quantities can be com-

puted using the recurrence:

Best (k +1, h −1) = min { ∆k +1f k Best (k , h −1) + tk ∆k +1 +xk , ∆h f h Best (k +1, h) + th ∆h +xh } ‡

It then follows that the best time for a consecutive backtracking order that starts with motif Mk , Opt (k) is

ntk +nf k Best (k , k). Taking the best time over all choices of k gives us a backtracking order that is optimal in

expectation. The first motif to be searched for is called the seed of the search.

The treatment above can be generalized to finding optimal backtracking orders over arbitrary nets as opposed to

just linear nets. This non-trivial extension is sketched here. Let F be the ε-NFA for the net in question; its states

are labeled with spacers, motifs, and ε. The seed of a backtracking search now consists of any cut-set for F all of

whose states are labeled with motifs. That is, one searches in parallel for a match to one of the motifs in this seed
hhhhhhhhhhhhhhhhhh
† It takes nt 0 time to search A for instances of M 0 and a match will be found at nf 0 locations. For each of these, ∆1t 1 +x 1 time is
spent looking for matches to M 1 and of the ∆1 potential left ends, ∆1f 1 will be matches. Thus at nf 0∆1f 1 locations, one will proceed
to search for matches to M 2. Continuing in this fashion gives the formula.
‡ If Mk +1 to Mh −1 are matched then the next step must be to either match Mk or Mh . The two terms in the minimum are the times to
do the respective extensions.

- 9 -

cut-set, and whenever one is found, one trys extending the match in an optimal consecutive order. However, the

extension of the match is no longer along a linear network. A match involving motif Ms , where s is the seed state,

can correspond to any path from θ to φ through s , and the subgraph of these vertices and edges can be a network.

So extending a match in both directions from s can follow any of the paths in this network and there can be an

exponential number of such paths. Nonetheless, in expectation the extension process quickly fails on many of the

possible extension pathways so that the time for the backtracking process is still reasonable. The following formula

computes Best (u , v), the minimum time to complete searching for an extension to a match to Mu through Mv on a

path through s under the assumption that the matching of motifs is an independent event (which it is not):

Best (u , v) = min {
w ∈ Pred (u)

Σ (∆w →u f w Best (w , v) + tw ∆w →u +xw) ,
w ∈ Succ (v)

Σ (∆v →w f w Best (u , w) + tw ∆v →w +xw) }

In the formula above, Pred (u) is the set of states immediately preceding u that are labeled with motifs, i.e., states w

such that there is a path from w to u whose interior vertices (if any) are labeled with either ε or a space. Succ (u) is

analogously defined, and ∆w →u denotes the aggregate variance of the spacers on the interior of the path from w to

u . Assuming that now p is the length of net N , one can compute Best (u , v) for the O (p 2) pairs of motif-labeled

states that are on some source-to-sink path in N’s automaton, and then estimate Opt (s), the best time for a backtrack

procedure that starts at s , as nts +nf s Best (s , s). Given these estimates, a minimal seed cut-set can be found in

O (p) time† over the series-parallel automaton of net N where the cost a cut-set is the sum of Opt (s) for s in the set.

Thus in O (p 2) time one can compute an optimal backtracking order that works well in practice as the interdepen-

dence of motif matches is generally a small effect in expectation.

3.2. Finding and Reporting Matches

To finish the treatment of nets, consider the problem of finding and reporting a match to the linear net,

M −p S −p M −(p −1)
. . . M −1S −1M 0 S 1M 1

. . . Mq −1Sq Mq , given an optimal backtracking order over [−p , q] that begins

with seed motif M 0. It will be left as a straightforward exercise for the interested reader to extend our treatment to

arbitrary nets. From the preceeding sections, assume a routine that determines Scan (M , J) for a subset J of [0, n].

Further observe that by building an automaton for the reverse, R r , of network expression R ‡ and scanning A in

reverse, one obtains an analogous routine that computes Scan r (M , J) = { i : ∃ j ∈ J s.t. Ai..j ∈ Lδ(R , T) }. That is, by

scanning right-to-left with the reverse of R , one can find left ends as opposed to right ends of matches. This is

essential since match extension must proceed right-to-left from M 0 to M −1 to M −2 and so on. Also recall from the

introduction, that the notation A ∼ N denotes that string A matches net N so that, for example, one could have

defined Scan (M , J) = { i : ∃ j ∈ J s.t. Ai..j ∼ M }. Finally assume the functions Spacek (J) = ∪ j ∈ J [j +lk , j +rk] and

Spacek
r(J) = ∪ j ∈ J [j −lk , j −rk] for spacer Sk = [lk , rk]. For sets J that are in sorted order, these simple functions are

easily computed "on-the-fly" in time linear in the size of J .

With these primitives, finding a match to the linear net seems quite straightforward at first glance. Search for the

right ends of matches to M 0 in a forward scan. Such endpoints tend to cluster in small intervals R 0 = [a , b] when

there is a tight match to the motif because extending the match a few characters in either direction yields approxi-

mate matches that are still within threshold, albeit of greater score. For this set of right ends, determine the set of

potential left ends, L 0 via a call to Scan r (M 0, R 0). Next in back track order from this seed set, begin extending the

match in both directions until one either fails or completes the extension. The invariant for this process is that if at

some point M −k through Mh have been matched, then the set Lk = { i : ∃ j ∈ [a , b] s.t Ai..j ∼ M −k
. . . M 0 } and the set

Rh = { i : ∃ j ∈ [a , b] s.t Aj..i ∼ S 1
. . . Mh }. That is, Lk contains the left ends of matches to the subnet M −k

. . . M 0
hhhhhhhhhhhhhhhhhh
† The cost of the best cut set for expression R , Opt (R) is easily computed using the following recurrence. Opt (a) is ∞ if a is ε or a
spacer, and Opt (s) of the state s modeling a otherwise. Inductively, Opt (RS) = min {Opt (R), Opt (S)} and Opt (R |S) =
Opt (R) +Opt (S). A cut-set delivering the optimal value is easily recovered.
‡ The reverse of a network expression R is the expression R r that matches the reverse of every word matched by R . It is easily ob-
tained by inductively applying the rules (RS)r = S r R r and (R |S)r = R r |S r top-down. For example, (a (b |cd)e)r = e (b |dc)a .

- 10 -

whose right ends are in [a , b], and Rh contains the right ends of matches to the subnet S 1M 2
. . . Mh whose left ends

are in [a , b]. To extend the match to Lk +1 it suffices to compute Scan r (M −(k +1), Space −(k +1)
r (Lk)) and, similarly,

Rh +1 = Scan (Mh +1, Spaceh +1(Rh)). If at any point a set of ends is found to be empty, the process quits prematurely

and the main scan for seed matches continues. This outward extension process is "Sweep 1" of the algorithm of

Figure 6. Note that the extension of several endpoints is pursued in parallel whereas the formula driving the choice

of back track order assumed the back tracking proceeded endpoint by endpoint. For approximate matching, where

endpoints tend to cluster in the vicinity of matches, our approach is essential for efficiency in regions preconditioned

to match the net.

for [a , b], a maximal interval s.t. [a , b] ⊆ Scan (M 0, [0,n]), in left-to-right order do

{ R 0 ← [a , b]
X ← L 0 ← Scan r (M 0, R 0) # Sweep 1 #
for k in backtrack order of [−p ,−1] ∪ [1,q] do

{ if X = ∅ then break
if k < 0 then

X ← L |k | ← Scan r (Mk , Spacek
r(L |k | −1))

else
X ← Rk ← Scan (Mk , Spacek (Rk −1))

}
if X = ∅ then continue

for k ← p −1 downto 0 do # Sweep 2 #
Lk ← Lk ∩ Space−(k +1)(Scan (M −(k +1), Lk +1))

for k ← q −1 downto 0 do
Rk ← Rk ∩ Spacek +1

r (Scan r (Mk +1, Rk +1))
if Scan (M 0, L 0) ∩ R 0 = ∅ then continue

L 0 ← L 0 ∩ Scan r (M 0, R 0) # Sweep 3 #
R 0 ← R 0 ∩ Scan (M 0, L 0)
for k ← 1 to p do

Lk ← Lk ∩ Scan r (M −k , Space−k
r (Lk −1))

for k ← 1 to q do
Rk ← Rk ∩ Scan (Mk , Spacek (Rk −1))

for k ← p downto 1 do # Sweep 4 #
The range of M −k is min{ j : j ∈ Lk } to max{ j : j ∈ Scan (M −k , Lk) ∩ Space−k

r (Lk −1) }
The range of M 0 is min{ j : j ∈ L 0 } to max{ j : j ∈ R 0 }
for k ← 1 to q do

The range of Mk is min{ j : j ∈ Scan r (Mk , Rk) ∩ Spacek (Rk −1) } to max{ j : j ∈ Lk }
}

Figure 6: Finding and Reporting a Match to a Linear Net.

The surprise is that the extension process can succeed even though there is no match to the net. If the sets Lp

and Rq are non-empty, what this implies is that there are matches to the subnet M −p
. . . M 0 and the subnet

S 1
. . . Mq whose right and left ends are in [a , b], respectively. However, by an extremely unlikely coincidence, it

may arise that there is not a pair of these matches, one from each "half", that share the same end in [a , b]. This

problem is a result of the choice to extend sets of match endpoints in parallel and would not have arisen if efficiency

considerations hadn’t precluded the application of the extension process to each index in Scan ([0, n], M 0)

separately. This difficulty is rectified by proceeding with an additional inward sweep, "Sweep 2", that determines

the set of right ends of matches to M −p
. . . M 0 that are in [a , b], and similarly, the set of left ends of matches to

S 1
. . . Mq that are in [a , b]. Clearly, if these two sets intersect then there is a match to the net with a right-end

match to M 0 in [a , b]. With Scan and Space the sweep finds, for progressively smaller values of k , the set of right

ends of matches to Mp
. . . S −(k +1) whose left end is in Lp , and then subtracts this set from Lk computed in the first

sweep. Since Lp is the set of left ends of matches to Mp
. . . M 0 whose right-end is in [a , b], it follows by induction

- 11 -

that at the end of the sweep, Lk = { i : ∃ j ∈ [a , b] and l ≤ i s.t Al..i ∼ M −k
. . . S −(k +1) and Ai..j ∼ M −k

. . . M 0 }.

Proceeding from the other end with Scan r and Space r , the sweep refines the R-sets so that Rh = { i : ∃ j ∈ [a , b] and

r ≥ i s.t Aj..i ∼ S 1
. . . Mh and Ai..r ∼ Sh +1

. . . Mq } at the end of the sweep. The sweep concludes by determining if

the set of desired left ends, R 0, intersects the desired set of right ends, Scan (M 0, L 0).

Having now found a match, the next question is what to report. In the case of approximate matching this is a

non-trivial question. To illustrate, suppose that there is a match to motif M well-within its threshold. Then the sub-

strings of A obtained by extending the stringent match a few characters at either end are also matches within thres-

hold. Does one wish to see the longest match, the lowest scoring, or some indication of the range of possible

matches? This reporting problem is further compounded in the case of a match to a net where each motif match is

well within threshold and hence where there are a number of choices for each motif. Two algorithms are presented

here: (1) a range algorithm that determines the range of left and right ends possible for each motif in some match to

the entire net, and (2) an optimum algorithm that selects a net match for which the sum of the scores of its motif

matches is minimal.

The range algorithm is presented as Sweeps 3 and 4 in the algorithm of Figure 6. The third sweep proceeds out-

ward further refining the sets Lk and Rh computed in Sweeps 1 and 2. At the start of Sweep 3, R 0 contains the left

ends of matches to S 1
. . . Mq that are in [a , b]. By extending this match set to the left with Scan r and Space r , and

intersecting the results with the sets Lk from the previous two sweeps, one arrives at the end of the sweep with Lk =

{ i : ∃ j ∈ [a , b], l ≤ i , and r ≥ j s.t Al..i ∼ M −k
. . . S −(k +1), Ai..j ∼ M −k

. . . M 0, and Aj..r ∼ S 1
. . . Mq }. Similarly, tak-

ing the match endpoint set L 0 and extending it to the right produces the sets Rh = { i : ∃ j ∈ [a , b], l ≤ i , and

r ≥ j s.t Al..j ∼ M −p
. . . M 0, Aj..i ∼ S 1

. . . Mh and Ai..r ∼ Sh +1
. . . Mq }. Thus at the end of Sweep 3, the set Lk gives

the set of all possible left-end matches to motif Mk that are part of overall matches to the net N whose right-end

match to M 0 is in [a , b]. Similarly, Rh gives the set of all possible right ends for motifs Mh for h from 0 to q . Thus

after completing Sweep 3 the only missing information is the possible right ends of motifs M −k for k ∈ [1, p] and

the possible left ends of motifs Mh for h ∈ [1, q]. But the former are readily computed "on-the-fly" by determining

Scan (M −k , Lk) ∩ Space −k
r (Lk −1) and the later by Scan r (Mh , Rh) ∩ Spacek (Rh −1). Thus, by computing these missing

endpoint sets on the fly when needed, Sweep 4 can proceed left-to-right outputing the minimum left end and max-

imum right end for each motif in the net. This treatment should suffice to convince the reader that one can effec-

tively compute useful information about the degrees of freedom in "a" match to net N .

The second match-reporting algorithm attempts to select a specific match to the net that is in some sense best,

and failing that, at least representative. The simple optimality criterion used is that the sum of the scores of the

motif matches forming a match to the net is mimimal. Notice that because of spacing contraints this is not

equivalent to picking the lowest scoring match for each motif (as this may not form a match to the net). This

optimal match algorithm, like the range algorithm, begins after Sweeps 1 and 2 above have determined that a match

exists. It further decomposes into symmetric left and right halves, so it suffices to focus on the left half. The

essense of the algorithm is a dynamic programming computation that for each Lk , in decreasing order of k , deter-

mines ScoreLk
[j], the minimum sum over matches to M −p

. . . S −(k +1) whose left end is j is in Lk . In order that a

match acheiving this score can be output, the algorithm simultaneously records the traceback information, Lef tLk
[j]

and RightLk
[j], the left and right ends of a match to M −(k +1) involved in a match acheiving score ScoreLk

[j].

The basis for the induction of the algorithm is that ScoreLp
[j] = 0 for all j ∈ Lp . Lef tLp

and RightLp
are

superfluous. So the induction step, acheived by the code fragment in Figure 7, is given ScoreLk +1
[j] for all j ∈ Lk +1,

determine ScoreLk
[j], Lef tLk

[j], and RightLk
[j] for j ∈ Lk . The first step of the code fragment computes for each

i ∈ Scan (M −(k +1),Lk +1), B [i] = min { ScoreLk +1
[j] + δ(Aj..i , R −(k +1)) : j ∈ Lk +1 } and I [i], an index j giving the

minimum value for B [i]. Recall that Rk is the net expression for motif Mk and that δ(A , R) is the score of the best

alignment between A and a sequence in L (R). By the induction hypothesis on ScoreLk +1
it follows that B [i] is the

best scoring match to M −p
. . . M −(k +1) whose right end is i . This minimum is computed by running the scanner for

- 12 -

M −(k +1) once for each j ∈ Lk +1, letting that j be the only potential left end for the scan. As the scan proceeds, the

scanner not only reports whether i is the right end of a match to the motif, but also, Value (i) the score of the match

given by C (i , φ). If Value (i) +ScoreLk +1
[j] improves the current minimum recorded at B [i], then it is updated and

the j for the scan is recorded in I [i]. The second step completes the induction step by computing ScoreLk
[j] =

min { B [i] : i ∈ Space −(k +1)
r (j) } and for the i giving the minimum, recording Lef tLk

[j] =O [i] and RightLk
[j] = i . To

compute the minimum efficiently, ScoreLk
[j] is computed in increasing order of j , which implies that the minimum

is needed over a series of intervals [j −l−(k +1), j −r−(k +1)] whose endpoints increase. The trick is to maintain a heap of

the B -values in the current interval, and then incrementally update the heap for the next interval by deleting and

adding positions as necessary. Given the heap, each minimum can be extracted in O (log ∆−(k +1)) time.

low ← min { j : j ∈ Scan (M −(k +1), Lk +1) }
hgh ← max { j : j ∈ Scan (M −(k +1), Lk +1) }
for i ← low to hgh do

B [i] ← ∞
for j ∈ Lk +1 do

for i ∈ Scan (M −(k +1), {j }) do
if ScoreL

k +1
[j] +Value (i) < B [i] then

{ B [i] ← ScoreL
k +1

[j] +Value (i)

I [i] ← j
}

Heap ← ∅
rgt ← low −1
lf t ← ∞
for j ∈ Lk in increasing order do

{ for i ← max {lf t , low } to j − l −(k +1)−1 do
if B [i] < ∞ then

delete i from Heap
for i ← rgt +1 to min {j − r −(k +1), hgh } do

if B [i] < ∞ then
add i to Heap with priority B [i]

lf t ← j − l −(k +1)

rgt ← j − r −(k +1)

i ← extract min from Heap
ScoreL

k
[j] ← B [i]

Lef tL
k
[j] ← I [i]

RightL
k
[j] ← i

}

Figure 7: Determining an optimal match.

Given that the analogous computation for the R-sets has been performed, the score of the optimum match is

easily found by computing the best of ScoreL 0
[j] + δ(Aj..i , R 0) +ScoreR0

[i] over j ∈ L 0 and i ∈ R 0. The i and j giv-

ing the minimum delimit the match to M 0 in an optimum match. The left and right indices of the other matches are

obtained by following the traceback information in the Lef t and Right arrays in the obvious manner. For example,

Lef tL 2
[Lef tL 1

[Lef tL 0
[j]]] and RightL 2

[Lef tL 1
[Lef tL 0

[j]]] give the left and right ends of the match to motif M −2 in an

optimum scoring match (provided j is the index giving the minimum above). If it is desired, one can also deliver

for each motif, an alignment between one of its sequences and the substring of A it matches that realizes the score

of the optimal match using a linear space algorithm like the one presented in [MyM89].

To conclude consider the worst-case time complexity for reporting matches in the case that a match does occur

in a given region. In regions that are essentially random with respect to the pattern, the expected amount of time

taken is described by the calculation of Section 3.1. Observe that the algorithm of Figure 6, which includes the

range reporting sub-algorithm, makes a number of scans that together span a range of symbols approximately as

long as the match to the net. More precisely, one can assert that a sweep of the algorithm scans no more than

Σk (setk +motk +∆k) symbols, where motk is the length of the longest word matched by Mk , and setk =

- 13 -

max{j :j ∈ X } −min{j :j ∈ X } where X is L |k | or Rk depending on whether k is positive or negative. Scanning each

symbol takes an amount of time depending on the motif involved in the scan, but letting p be the maximum length

of a motif network expression in net N , the worst case complexity of the algorithm is certainly proportional to p

times the sum above. In expectation, seti is a small constant and moti is on the order of the size of its network

expression. Thus more coarsely one may estimate the algorithm to take O (mp (p +∆)) time for a net with m motifs

and average spacer variance ∆. Finally, Figure 7 takes O (|Lk +1 |mot −(k +1) p + (setk +∆−(k +1)) log ∆−(k +1)) worst-case

time. Using the approximations about seti , etc., a "back-of-the-envelope" estimate for the additional overhead of

the optimum match algorithm is O (m (p 2+∆log ∆)).

References

[Fic84] Fickett, J.W., "Fast optimal alignment," Nucleic Acids Research 12 (1984), 175-179.

[HoU79] Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, 1979), 13-76.

[Lev66] Levenshtein, V. I., "Binary codes capable of correcting deletions, insertions, and reversals," Cybernet-

ics and Control Theory 10 (1966), 707-710.

[MaB91] U. Manber and R. Baeza-Yates, "An algorithm for string matching with a sequence of don’t cares,"

Information Processing Letters 37 (1991), 133-136.

[MeM91] Mehldau, G. and E.W. Myers, "A system for pattern matching applications on biosequences," Technical

Report TR91-31, Dept. of Computer Science, U. of Arizona, Tucson, AZ 85721.

[MMK85] Miller, J., A.D. McLachlan and A. Klug, "Repetitive zinc-binding domains in the protein transcription

factor IIIA from Xenopus oocytes," EMBO Journal 4 (1985), 1609-1614.

[MyM89] Myers, E.W. and W. Miller, "Approximate matching of regular expressions," Bull. of Math. Biol. 51
(1989), 5-37.

[NeW70] Needleman, S.B. and C.D. Wunsch, "A general method applicable to the search for similarities in the

amino-acid sequence of two proteins," J. Molecular Biology 48 (1970), 443-453.

[PBP89] Posfai, J., A.S. Bhagwat, G. Posfai, and R.J. Roberts, "Predictive motifs derived from cytosine methyl-

transferases," Nucleic Acids Research 17 (1989), 2421-2435.

[SaK83] Sankoff, D. and J. B. Kruskal, Time Warps, String Edits and Macromolecules: The Theory and Practice

of Sequence Comparison (Addison-Wesley, 1983), 265-310.

[Sel80] Sellers, P.H., "The theory and computation of evolutionary distances: pattern recognition," J. Algo-

rithms 1 (1980), 359-373.

[Ukk85] Ukkonen, E., "Finding approximate patterns in strings," J. of Algorithms 6 (1985), 132-137.

[WaF74] Wagner, R.A. and Fischer, M.J., "The String-to-String Correction Problem," Journal of ACM 21

(1974), 168-173.

- 14 -

