
mental model, his current interests and changing data

sets.

Using interactive graph layout algorithms to format

the interface provides a exible mechanism that empow-

ers the end-user with the tools to customize the struc-

ture of the interface. In addition, graph layout algo-

rithms can handle interfaces to applications with dy-

namic data sets.

The result is that the end-user can create interfaces

that more closely match his expectations. This reduces

the gap between the user and the actual data and in-

creases the directness of the interface.

There are two main directions of future work. The

�rst is to develop new layout and selection algorithms

that are especially well suited for interfaces. This will

provide the end-user with additional power to customize

interfaces. The second direction is to develop a means

by which the end-user can specify layout and selection

algorithms. Once the user can create arbitrary algo-

rithms, he will be able to create interfaces that meet his

exact interests.

References

[1] Apple computer Company, Inside Macintosh,

Addison-Wesley Publishing Company, Inc., (1982).

[2] Asente, P. J., Editing Graphical Objects Using Pro-

cedural Representations, Digital Equipment Corpo-

ration Western Research Laboratory Research Re-

port, 87/6, (November 1987).

[3] Brooks, K. P., A Two-view Document Editor with

User-de�nable Document Structure, Ph. D. Disser-

tation, Department of Computer Science, Stanford

University, (May 1988).

[4] Card, S. K., Robertson, G. G.,Mackinlay, J. D. The

Information Visualizer, an Information Workspace,

Proceedings of ACM/SIGCHI, pp. 181-188, (April

1991).

[5] Cardelli, L., Building User Interfaces by Direct Ma-

nipulation, Proceedings of the ACM/SIGGRAPH

Symposium on User Interface Software and Tech-

nology, pp. 152-166, (October 1988).

[6] Henderson, D. A. Jr., Card, S. K., Rooms: The use

of Multiple Virtual Workspaces to Reduce Space

Contention in a Window-Based Graphical User In-

terface, ACM Transactions of Graphics, vol. 5 No.

3, (July 1986).

[7] Henry, T. R., Interactive Graph Layout: the Explo-

ration of Large Graphs, Ph. D. Dissertation, De-

partment of Computer Science, University of Ari-

zona, in preparation.

[8] Henry, T. R., Hudson, S. E., Interactive

Graph Layout, to appear in Proceedings of the

ACM/SIGGRAPH Symposium on User Interface

Software and Technology, (November 1991).

[9] Hutchins, E. L., Holland, J. D., Norman, D. A., Di-

rect Manipulation Interfaces, in User Centered Sys-

tems Design, Norman, D. A., Draper, S. W. (eds.),

Lawrence Erlbaum Associates, Hillsdale, New Jer-

sey, pp. 87-124, (1986).

[10] Myers, B. A., Creating User Interfaces by Demon-

stration, University of Toronto Technical Report,

Ph.D. Thesis CSRI-196 (May 1987).

[11] Myers, B. A., et. al. The Garnet Toolkit Reference

Manuals: Support for Highly{Interactive, Graphi-

cal User Interface in Lisp. Technical Report CMU-

CS-98-196, School of Computer Science, Carnegie

Mellon University, (November 1989).

[12] Linton, M. A., Vlissides, J. M., Calder, P. R.,

Composing User Interfaces with InterViews, IEEE

Computer, vol. 22, no. 2, pp. 8-22, (February 1989).

[13] Olsen, D. MIKE: The Menu Interaction Kontrol

Environment.ACM Transactions on Graphics, vol.

17, no. 3, pp. 43-50, (1986).

[14] Robertson, G. G., Mackinlay, J. D., Card, S. K.,

Cone Trees: Animated 3D Visualizations of Hier-

archical Information Proceedings of ACM/SIGCHI,

pp. 189-194, (April 1991).

[15] Shneiderman, B., The Future of Interaction Sys-

tems and the Emergence of Direct Manipulation,

Behaviour and Information Technology, vol. 1, pp.

57-69, (1982).

[16] Singh, G., Green, M. Chisel: A system for Creating

Highly Interactive Screen Layouts, Proceedings of

the ACM/SIGGRAPH Symposium on User Inter-

face Software and Technology, pp. 86-94, (Novem-

ber 1989).

[17] Sugiyama, K., Tagawa, S., Mitsuhiko, T., Methods

for Visual Understanding of Hierarchical System

Structures, IEEE Transactions on Systems, Man,

and Cybernetics, vol. SMC-11, No. 2, (February

1980).

[18] Szekely, P., Template{Based Mapping of Applica-

tion Data to Interactive Displays,Proceedings of the

ACM/SIGGRAPH Symposium on User Interface

Software and Technology, pp. 1-9, (October 1990).

8

Figure 7: Interface Formatted by Hierarchy of Layout Algorithms

and increase the spacing to make the interface easier to

read.

The main drawback of using layout algorithms to for-

mat the interface is that the user is constrained to using

existing algorithms. Even if a large set of algorithms

were introduced to the system, situations would arise

in which the system could not format the interface in

the manner the user desired. This problem is partially

solved by allowing end-user to compose new layout al-

gorithms out of existing algorithms [8].

New custom layout algorithms can be created by hi-

erarchically combining existing algorithms. The basic

idea is to standardize all layout algorithms so they can

lay out a set of nodes and a set of layouts generated

by other layout algorithms.. For example, consider the

interface shown in Figure 7. It is formatted by a hier-

archical collection of layout algorithms. Each group of

cells is formatted by either a row, column or grid layout

algorithm. All the groups of cells are in turn laid out by

a hierarchical layout algorithm. The result is that the

interface is laid out by a two level hierarchy of layout

algorithms. The end-user creates new layout algorithms

through the use of a direct manipulation editor.

5 Implementation

The example interfaces shown in this paper were built

on top of the Vivid graph layout system [7]. Vivid is

a general system that provides a direct manipulation

interface to any given set of layout algorithms and in-

teractor de�nitions.

No changes were made to Vivid to enable it to lay out

interfaces|interaction objects are just a special case of

Vivid graph objects. However, the spreadsheet interface

did required the speci�cation of the cell interactor. Each

cell de�nition included functions for handling changes

to the three text �elds and included a general equation

solving system for was accessed calculating and updat-

ing the value �elds. The algorithms used to lay out the

all the examples are basic Vivid layout algorithms.

6 Conclusion

The structure of a user interface serves as a presentation

model of the underlying data set. While this model is

often adequate, it forces the user to view the data in a

particular form. Providing the user with the power to

directly manipulate the structure of the interface allows

him to create an interface that matches his individual

7

Figure 6: Selecting all Cells Reachable from \c4"

selection|is to select individual objects or groups of ob-

jects with the mouse. The second method|algorithmic

selection|is to apply a selection algorithm to all the

interaction objects in the interface. A visual program-

ming language allows the user to combine multiple in-

stantiations of selection algorithms. Figure 6 shows the

selection interface and the selection programs used to

select the cells pasted into the interfaces shown in Fig-

ures 4 and 5. (These cells were copied from the interface

shown in Figure 3.)

The �rst program selects all the cells reachable from

cell \c4." The object labeled \1" represents a manual

selection set. These objects allow the user to manually

select a set of nodes. In this example, the �rst manual

selection set contains the single cell \c4." The next ob-

ject represents a selection algorithm that selects all the

cells within a given distance of the input set. Since the

manual selection object is connected to the \reachable"

object, its elements act as the parameters to the reach-

able algorithm. (The maximum traversal distance of

the reachable algorithm can be set interactively through

the distance slider. For this example is has been set to a

value larger than any path in the spreadsheet). The user

can now copy all the cells reachable by \c4" by selecting

the \reachable" object (it and all the cells it represents

are drawn highlighted when it is selected as shown in

Figure 6) and then dragging the \Copy Selected Nodes

w/Drag" button into the new view.

The second program calculates the paths between

\c4" and \f6" as shown in Figure 5. This visual pro-

gram consists of three objects. The �rst two are manual

selection set objects labeled \3" and \4." In this exam-

ple, the �rst manually selected set contains the single

cell \c4." The second manual selection set contains the

single cell \f6." The next object represents a selection

algorithm that selects all paths between its input param-

eters. Figure 5 was created by selecting the \path(s)"

object and dragging the \Copy Selected Nodes w/Drag"

button into an empty view.

Since interfaces are formatted using general layout al-

gorithms the user can change the format of the interface

by using a di�erent algorithm. In the example shown in

Figures 3 and 4, each view uses a di�erent layout al-

gorithm. The interface in Figure 3 uses a grid layout

algorithm that positions all the objects in a rectangular

grid and the interface shown in Figure 4 uses a hierar-

chical layout algorithm based on ideas presented in [17]

to position the interaction objects.

When the cells in this example were selected and

copied into the new interface, they were automatically

formatted using the grid layout algorithm. In general,

when objects are pasted into a new interface, the algo-

rithm that formatted them in the original interface is

also pasted into the new interface. The user had to ex-

plicitly choose the hierarchical layout algorithm to cre-

ate the interface shown in Figure 4.

In addition to creating new interfaces, the user can

interact directly with the interaction objects and layout

algorithms. Each layout algorithm has a set of param-

eters used during the layout process. A control panel

is associated with each instantiation of a layout algo-

rithm. This allows the user to �ne tune the interface.

For example, the orientation and spacing for the inter-

face shown in Figure 4 was interactively changed|the

default orientation is to draw the hierarchy horizontally

as in Figure 2. It was changed to draw the tree vertically

6

Figure 5: Pruned Dependency Graph

user interface management systems. However, it does

empower the user with the tools to customize the inter-

face.

The prototype interface layout system is built on top

of the Vivid interactive graph layout system [7, 8]. Vivid

extends traditional automatic graph layout algorithms

to accept interactive parameters, thus allowing the user

to interactively control the layout process. A direct ma-

nipulation interface allows the user to interactively cre-

ate multiple custom views of a given graph.

As an example of end-user control, consider the

spreadsheet shown in Figure 3. The cells in this example

were interactively formatted to be drawn without their

equations to save screen space. Since the layout of the

interface is done algorithmically, when the interaction

objects change their size|as in this example in which

cells are drawn without their equation|the entire inter-

face automatically adjusts. Thus when the user chooses

a drawing options for a cell that changes its size, the

layout algorithm automatically repositions all the cells.

Assume the user has discovered that when the value

for cell \f6" is changed, the value in cell \c4" changes

unexpectedly|these cells have been highlighted in Fig-

ure 3. The dependency graph for the spreadsheet would

help the user examine the dependencies between the

two cells of interest. However, the complete dependency

graph is quite large and would not �t well on the screen.

The solution is to allow the user to specify the portion

of the spreadsheet he is currently interested in.

Figure 4 is an interface that includes only a portion of

the original interface. It includes all cells in the spread-

sheet that the cell \c4" depends on. Even this graph

is a bit large and contains some information that does

pertain to the user's current interest. Figure 5 shows

another interface that includes only the cells that de-

pend on \f6" and that \c4" depends on|all the paths

between these cells. Since there is more space available,

cells have been expanded in Figures 4 and 5 to include

the equations allowing the user to interpret the depen-

dency graph. Several of the cells have longer equations

have been enlarged to show the entire equation. The

resulting interface, while no longer general purpose, is

dramatically better for the particular task at hand (de-

bugging the connection between cells \f6" and \c4").

There are three basic mechanisms in Vivid that em-

power the user with the tools to customize the inter-

face: creating multiple views, using di�erent algorithms

to format the interface, and interacting with parameters

to the interactor objects and the layout algorithms.

Additional views can be constructed by �rst creating

a new interface with a menu selection. When a new view

is created, it is an empty interface without any interac-

tion objects. The user must select interaction objects to

be copied into the new interface. There are two meth-

ods for selecting interaction objects. The �rst|manual

5

Figure 3: Spreadsheet with two Cells of Interest Highlighted

Figure 4: Dependency Graph for Cell \c4" in Figure 3

4

Figure 2: Spreadsheet Interface Depicting Cell Dependencies for Example in Figure 1

Figure 1: Traditional Spreadsheet Interface

spreadsheet shown in Figure 1. The cells in this interface

are positioned in such a way as to reveal the equation

dependencies between cells. The algorithm used to po-

sition the cells in this interface uses the equation in each

cell to determine the dependency ordering of all the cells

in the spreadsheet. It then positions the cells in a pat-

tern that represents the dependency dag. In addition to

positioning the cells, the algorithm creates dependency

edges between cells (drawn as arrows in Figure 2).

The interfaces in Figures 1 and 2 are live interfaces;

they provide di�erent views of the spreadsheet. Both are

concurrently shown on the screen and the user can in-

teract with either to change the spreadsheet data. This

allows the user to look at both interfaces to understand

the data and to interact with the interface that best

�ts his current task. In the example above, if the user

wanted to edit all the cells that a given cell depends on,

he might use the dependency oriented interface. On the

other hand, if the user wanted to change all the cells

grouped in a column, he would use the interface orga-

nized as a matrix.

4 Giving the User Control

Traditional user interface management systems have

concentrated on providing the interface designer with

very general tools for specify the interface. These tools

provide the interface designer with the ability to pre-

cisely specify exact interfaces. The cost for this power

is that the speci�cation must be very exact|each inter-

action object must be considered.

The main goal of end-user controlled interfaces is to

empower the user so he can customize the interface to

match his current interests|which may in turn rely on

the current data set and his mental model of the data.

The solution is to provide the user with tools to cre-

ate new views of the interface and to provide tools to

customize these views.

The proposed mechanism is to format the interface us-

ing a general graph layout system that allows the user

to customize the layout. Since general graph layout al-

gorithms do not generally generate precise layouts, this

approach does not provide the accuracy of traditional

3

useful.

Unfortunately, presenting a small �xed set of views

has limitations|particularly for exploratory tasks in

which the user's focus may change as the interaction pro-

gresses. To address these issues, this paper considers a

more general approach to multiple view interfaces. This

approach does not simply de�ne a �xed set of views but

provides the end-user with the capability to construct

additional custom views. Clearly, not all end-users want

or need to construct custom views. However, by giving

sophisticated end-users the ability to create new views,

the interface becomes more exible and can be expanded

to meet very speci�c needs or particular focuses.

The basic idea behind this approach is to use a exi-

ble layout mechanism to position the interaction objects

within the interface. Providing the user with an inter-

face to the layout mechanism allows him to create new

views of the interface and customize them to meet their

mental model and current interests. There are three ba-

sic mechanisms with which the user can customize the

interface: choosing a specialized algorithm, adjusting

parameters to the layout algorithm, and building a new

algorithm.

This approach stems from the authors' previous work

in interactive graph layout systems [7, 8]. In these sys-

tems, a visual programming interface allows the user to

interactively compose and manipulate custom graph lay-

outs. This framework has been extended to include gen-

eral layout composition of the kind found in a number of

user interface toolkits [12] (although the examples used

here still make heavy use of graph layout compositions

since these are the most powerful and well developed).

The next section presents related work on exible lay-

out and multiple view interfaces. Section 3 will illustrate

the use of multiple views in a spreadsheet application

and Section 4 will demonstrate how views can be cus-

tomized by the user to achieve a better interface for a

very speci�c task. Finally, Section 5 will consider the the

prototype implementation being used to explore these

concepts, and Section 6 will provide a brief conclusion.

2 Related work

Most user interfaces provide a static presentation of the

interface|they don't provide the end-user with any con-

trol over the structure of the interface. However, there

are a few systems that allow the end-user to interactively

control the structure. A few of these systems provided

the basis for this research and are thus presented in this

section.

An example of an interface in which the structure of

the display can be modi�ed is the Cone Tree [14]. This

system is designed to visualize hierarchical data struc-

tures. It uses a 3D representation of the data that can

be interactively animated. Interactive animation allows

the user to not only modify the display but to create an

animation sequence to display the data. Several exam-

ple applications have been built in which the cone tree

acts as both a visualization tool for the data set and as

an interface to the data.

As mentioned in the introduction, the Macintosh

Finder interface allows the user to choose between an

iconic and a textual representation of �les. In addition

to providing these two formats, the interface allows the

user to reorganize the �les based on one of several key

�elds. When in iconic mode, a clean-up utility automat-

ically arranges the icons to prevent overlapping.

While the Macintosh directory interface and the cone

tree allow the user to modify the appearance of the inter-

face to change focus, they do not provide general tools

for interacting with the structure of the interface.

Most interface building toolkits provide the inter-

face designer with a collection of tools for positioning

a given static set of interaction objects on the screen

[5, 10, 11, 13, 16]. These systems provide support for

creating interfaces with �xed structures but they cannot

create interfaces the end-user can restructure at run-

time. They also cannot produce interfaces for dynamic

data sets.

The Humanoid system [18] creates interfaces for dy-

namic data sets by using templates to position inter-

action objects. While the templates in Humanoid are

�xed, a dynamic template selection algorithm examines

the data set at run time and chooses an appropriate set

of templates. While the Humanoid system provides a

mechanism that handles dynamic data sets, it does not

provide the end-user with the power to directly interact

with the interface structure.

This work builds on the concepts in Humanoid by al-

lowing the end-user to select and modify the equivalent

of the Humanoid positioning templates. Unlike the Hu-

manoid project, this work only deals with the task of

positioning interaction objects within an interface and

does not provide a general interface management sys-

tem.

3 Multiple View Interfaces

As a sample interface, consider a spreadsheet. Each

cell in a spreadsheet is an interaction object that al-

lows the user to manipulate part of the data|usually a

name, an equation and a value. Traditional spreadsheet

interfaces are structured in a rectangular matrix|all

the cells are positioned on the screen in a rectangular

grid|as shown in the sample spreadsheet in Figure 1.

The position of each cell is permanent and cannot be

changed by the user.

Figure 2 shows an alternative interface to the sample

2

End User Controlled Interfaces:

Creating Multiple View Interfaces for Data-Rich Applications

�

Tyson R. Henry

Department of Computer Science

University of Arizona, Tucson AZ 85721

Scott E. Hudson

College of Computing

Georgia Institute of Technology, Atlanta, GA 30332-0280

University of Arizona Technical Report 92-04

Abstract

Direct manipulation interfaces give the user the feeling

that he is interacting directly with the data. This feeling

is achieved by designing the interface to closely resemble

the user's mental model of the data. Thus the success

of the interface depends on how closely it matches the

user's mental model: how closely the interface objects

match and how closely the structure of the interface

objects matches. Since the user's mental model may de-

pend on his current interests and the current data set,

there is not always a single \best" structure for the inter-

face. This is especially true in interfaces to applications

with many data objects|data-rich applications. This

paper presents techniques for creating exible interfaces

that allow the user to customize the structure of the in-

terface. These techniques allow the user to restructure

the interface so it matches his current interests and his

current mental model of the data.

Keywords: direct manipulation, interface layout,

user controlled interface structure.

1 Introduction

Direct manipulation interfaces provide the illusion of di-

rectly manipulating data objects [9, 15]. This illusion

is most often created by representing the data objects

with graphical interaction objects that can be directly

manipulated by the user. One of the main goals of direct

manipulation interfaces is to increase the directness felt

by the user|so the user feels he is interacting directly

with the data and not with an interface.

�

This work was supported in part by the National Science

Foundation under grants CDA{8822652, and IRI{9015407.

There are two important aspects of a user interface

that contribute to its directness; how closely the inter-

face objects and the interface structure match the user's

mentalmodel. However, all users do not always have the

same mental model. Mental models may vary from user

to user and may even depend on the user's current inter-

ests and the current data set. Thus there is not always

a single \best" structure for any given interface.

The importance of the structure increases in interfaces

that concentrate on the manipulation and exploration of

large data sets|data-rich interfaces|because the data

begins to predominate the interface. Not only does the

structure become more important, the large number of

interaction objects are more di�cult to lay out on the

screen.

Unlike many interfaces, a data-rich interface may be

used for the general exploration of data or for other

poorly structured tasks that cannot be well character-

ized in advance. In addition, multiple aspects of the

data may need to be addressed simultaneously and mul-

tiple relationships between individual data items to be

depicted. Finally, data-rich applications normally can-

not control the number and properties of most of the

user interface components in advance|since these are

derived from a dynamic data set.

One approach to this di�culty is to present di�erent

views of the data for di�erent purposes [2, 3, 4, 6]. As

a simple example, the Macintosh Finder interface nor-

mally depicts �les as icons on the desktop. However, the

user can optionally select from a small set of alternative

textual views. Each of these views has advantages and

disadvantages, and each supports some tasks better than

others. By providing alternative views, the supported

range of tasks increases and the interface becomes more

1

