
Department of Computer Science Gould-Simpson Building
Tucson, Arizona 85721

RL-29

January 1992

Technical Report List

Abstracts of technical reports available from our department are listed below. If you would like to
receive a copy of any of these documents, return the form at the end of this list. For those reports that
are free, only one copy will be sent to one address because of the costs of printing and mailing. See
the form at the end of the list for information concerning the purchase of additional copies.

TR 91-14 Measuring the Overhead in Conservative Parallel Simulations of Multicomputer Pro-
grams: Detailed Measurements
Mary L. Bailey and Michael A. Pagels
In this paper we show that it is feasible to characterize the overheads present in conservative parallel
simulations of multicomputer programs. We use a modified version of the parallel simulator from
the Poker Programming Environment to empirically measure the overhead in two parallel algorithms
which use three different interconnection structures. We discuss the sources of overhead and qualita-
tively discuss their relative importance. (25 pages)

TR 91-15 Supporting Valid Time in an Historical Relational Algebra: Proofs and Extensions
Edwin McKenzie and Richard T. Snodgrass
We define a relational algebra for historical relations. This extension of the conventional relational
algebra supports valid time, the time when an object or relationship in the enterprise being modeled
is valid. Historical versions of the projection, selection, union, difference and cartesian product
operators are defined, and a new operator that performs a combination of historical selection and
projection, historical derivation, is introduced. Two additional operators support aggregates. The
algebra is shown to be closed, to be relationally complete, to reduce to the conventional relational
algebra, and to have the expressive power of the temporal query language TQuel. We examine query
optimization, page structure, and incremental update of materialized views, demonstrating that this
algebra may be efficiently implemented. We conclude with a comparison with other proposed his-
torical algrebras. (63 pages)

TR 91-16 The Implementation of an Optimizing Compiler for Icon
Kenneth W. Walker
There are many optimizations that can be applied while translating Icon programs. These optimiza-
tions and the analyses needed to apply them are of interest for two reasons. First, Icon’s unique
combination of characteristics requires developing new techniques for implementing them. Second,
these optimizations are useful in variety of languages and Icon can be used as a medium for extend-
ing the state of the art.

Many of these optimizations require detailed control of the generated code. Previous production
implementations of the Icon programming language have been interpreters. The virtual machine code
of an interpreter is seldom flexible enough to accommodate these optimizations and modifying the
virtual machine to add the flexibility destroys the simplicity that justified using an interpreter in the
first place. These optimizations can only reasonably be implemented in a compiler. In order to
explore these optimizations for Icon programs, a compiler was developed. This dissertation describes
the compiler and the optimizations it employs. It also describes a run-time system designed to sup-
port the analyses and optimizations. Icon variables are untyped. The compiler contains a type
inferencing system that determines what values variables and expression may take on during

- 1 -

program execution. This system is effective in the presence of values with pointer semantics and of
assignments to components of data structures.

The compiler stores intermediate results in temporary variables rather than on a stack. A simple
and efficient algorithm was developed for determining the lifetimes of intermediate results in the
presence of goal-directed evaluation. This allows an efficient allocation of temporary variables to
intermediate results.

The compiler uses information from type inferencing and liveness analysis to simplify generated
code. Performance measurements on a variety of Icon programs show these optimizations to be
effective. (118 pages)

TR 91-17 A Fragment Assembly Project Environment
Sandra Miller and Gene Myers
This document describes a prototype software environment in support of DNA sequencing projects.
The system consists of three tools for inserting sequence data into a project, naming collections of
sequences, and an X-windows based browser for viewing the assembled sequences. The underlying
algorithms for assembling the data are those packaged in the fragment assembly suite of Kececioglu
and Myers. The browser, called FAB, allows hierarchical navigation through the solution space,
permits modification of the raw data with a multi-alignment editor, and supports version control of
such modifications. (12 pages)

TR 91-18 The Jade File System
Herman Rao
File systems have long been the most important and most widely used form of shared permanent
storage. File systems in traditional time-sharing systems such as Unix support a coherent sharing
model for multiple users. Distributed file systems implement this sharing model in local area net-
works. However, most distributed file systems fail to scale from local area networks to an internet.
This dissertation recognizes four characteristics of scalability: size, wide area, autonomy, and hetero-
geneity. Owing to size and wide area, techniques such as broadcasting, central control, and central
resources, which are widely adopted by local area network file systems, are not adequate for an
internet file system. An internet file system must also support the notion of autonomy because an
internet is made up by a collection of independent organizations. Finally, heterogeneity is the nature
of an internet file system, not only because of its size, but also because of the autonomy of the
organizations in an internet.

This dissertation introduces the Jade File System, which provides a uniform way to name and
access files in the internet environment. Jade is a logical system that integrates a heterogeneous col-
lection of existing file systems, where heterogeneous means that the underlying file systems support
different file access protocols. Because of autonomy, Jade is designed under the restriction that the
underlying file systems may not be modified. In order to avoid the complexity of maintaining an
internet-wide, global name space, Jade permits each user to define a private name space. In Jade’s
design, we pay careful attention to avoiding unnecessary network messages between clients and file
servers in order to achieve acceptable performance. Jade’s name space supports two novel features:
It allows multiple file systems to be mounted under one directory, and it permits one logical name
space to mount other logical name spaces.

A prototype of Jade has been implemented to examine and validate its design. The prototype
consists of interfaces to the Unix File System, the Sun Network File System, and the File Transfer
Protocol. (144 pages)

TR 91-19 A Compositional Architecture for Portable, Scalable Distributed Operating Systems
Peter Druschel
The design of an object-oriented architecture for distributed operating systems is proposed that
allows applications to dynamically compose distributed services from a mixture of system, applica-
tion, and third-party provided software components. By decoupling execution, protection and modu-
larity, the architecture supports the configuration of scalable-distributed operating systems, and
ensures portability over a wide range of hardware platforms. (12 pages)

- 2 -

TR 91-20 Improving the Running Times for some String-Matching Problems
Sun Wu, Udi Manber, and Eugene Myers
We present new algorithms for three basic string-matching problems: 1) An algorithm for approxi-
mate string matching of a pattern of size m in a text of size n in worst-case time O (n + nm / log n),
and average-case time O (n + nd / log n), where d is the number of allowed errors. 2) An algorithm
to find the edit distance between two sequences of size n and m (n > m) in time O (n + nd / log n),
where d is the edit distance. 3) An algorithm for approximate matching of a regular expression of
size m in a text of size n in time O (n + nm / logd +2n), where d is the number of allowed errors. The
last algorithm is the first o (mn) algorithm for approximate matching to regular expressions. (17
pages)

TR 91-21 A Pattern Matching System for Biosequences
Gerhard Mehldau
String pattern matching is an extensively studied area of computer science. Over the past few
decades, many important theoretical results have been discovered, and a large number of practical
algorithms have been developed for efficiently matching various classes of patterns. A variety of
general pattern matching tools and specialized proogramming languages have been implemented for
applications in areas such as lexical analysis, text editing, and database searching. Most recently,
the field of molecular biology has been added to the growing list of applicaitons that make use of
pattern matching technology.

The requirements of biological pattern matching differ from traditional applications in several
ways. First, the amount of data to be processed is very large, and hence highly efficient pattern
matching tools are required. Second, the data to be searched is obtained from biological experi-
ments, where error rates of up to 5% are not uncommon. In addition, patterns are often averaged
from several, biologially similar sequences. Therefore, to be useful, pattern matching tools must be
able to accomodate some notion of approximate matching. Third, formal language notions such as
regular expressions, which are commonly used in traditional applications, are insufficient for describ-
ing many of the patterns that are of interest to biologists. Hence, any conventional notation must be
significantly enhanced to accomodate such patterns. Taken together, these differences combine to
render most existing pattern matching tools inadquate, and have created a need for specialized pat-
tern matching systems.

This dissertation presents a pattern matching system that specifically addresses the three issues
outlined above. A notation for defining patterns is developed by extending the regular expression
syntax in a consistent way. Using this notation, virtually any pattern of interest to biologists can be
expressed in an intuitive and concise manner. The system further incorporates a very flexible notion
of approximate pattern matching that unifies most of the previously developed concepts. Last, but
not least, the system employs a novel, optimized backtracking algorithm, which enables it to
efficiently search even very large databases. (109 pages)

TR 91-22 Sabbatical in Japan: Collected Trip Reports
Richard D. Schlichting
During the course of a sabbatical in Japan in 1990, the author visited 20 universities, industrial
research laboratories, and government laboratories. This report collects together trip reports from a
number of those visits. Statements made herein represent the personal opinion of the author. (27
pages)

TR 91-23 Adapting AVS to Support Scientific Applications as Heterogeneous, Distributed Pro-
grams
Patrick T. Homer and Richard D. Schlichting
Most scientific applications are currently structured as a series of computational steps, each of which
is implemented by a separate program with files being used to transmit data between the steps. For
example, a vectorized computation with graphical output may involve executing the computation on
a remote supercomputer, transferring the output file over the Internet, and then viewing the results
on a local workstation. Here, an alternative model is described in which the application is con-
structed as a heterogeneous, distributed program in order to improve facilities for user interaction.
In this model, the application is structured as a collection of interacting processes (tasks) in which

- 3 -

distribution and heterogeneity of machine architecture and programming language are handled tran-
sparently by a remote procedure call (RPC) mechanism. The specific focus here is on describing
how AVS (Application Visualization System) from Stardent Computer, Inc. has been adapted to
support this type of application using the Schooner RPC system. An example involving self-
organizing neural nets is used to illustrate the details of this approach. (16 pages)

TR 91-24aA Multi-Paradigm Programming Language for Constructing Fault-Tolerant, Distri-
buted Systems
Richard D. Schlichting and Vicraj Thomas
The design of FT-SR, a programming language oriented towards constructing fault-tolerant distri-
buted systems, is presented. The language, which is based on the existing SR language, is unique in
that it has been designed to be a multi-paradigm language that can support equally well any of the
various programming paradigms that have been developed for this type of system. These paradigms
include the object/action model, the restartable action paradigm, and the replicated state machine
approach. The programming model underlying the design of the language is based on the concept of
fail-stop atomic objects; such objects either execute operations as atomic actions, or fail in a detect-
able way. It is argued that this model forms a common link among the various paradigms and
hence, is a realistic basis for a multi-paradigm language. An example program consisting of a data
manager and its associated stable storage is also given; the manager is built using the restartable
action paradigm, while the stable storage is structured using the replicated state machine approach.
Finally, the implementation strategy for the language runtime system is discussed. (20 pages)

TR 91-25 Temporal Specialization and Generalization
Christian S. Jensen and Richard Snodgrass
A standard relation is two-dimensional with attributes and tuples as dimensions. A temporal relation
contains two additional, orthogonal time dimensions, namely valid time and transaction time. Valid
time records when facts are true in the modeled reality, and transaction time records when facts are
stored in the temporal relation.

While, in general, there are no restrictions between the valid time and transaction time associ-
ated with each fact, in many practical applications the valid and transaction times exhibit more or
less restricted interrelationships which define several types of specialized temporal relations. The
paper examines five different areas where a variety of types of specialized temporal relations are
present.

In application systems with multiple, interconnected temporal relations, multiple time dimensions
may be associated with facts as they flow from one temporal relation to another. For example, a fact
may have associated multiple transaction times telling when it was stored in previous temporal rela-
tions. The paper investigates several aspects of the resulting generalized temporal relations, including
the ability to query a predecessor relation from a successor relation.

The presented framework for generalization and specialization allows researchers as well as
database and system designers to precisely characterize, compare, and thus better understand tem-
poral relations and the application systems in which they are embedded. The framework’s
comprehensiveness and its use in understanding temporal relations is demonstrated by placing previ-
ously proposed temporal data models within the framework. The practical relevance of the defined
specializations and generalizations is illustrated by sample realistic applications in which they occur.
The additional semantics of specialized relations are especially useful for improving the performance
of query processing. (38 pages)

TR 91-26 Exact and Approximation Algorithms for DNA Sequence Reconstruction
John Dimitri Kececioglu
The DNA sequence in every human being is a text of three billion characters from a four letter alpha-
bet; determining this sequence is a major project in molecular biology. The fundamental task biolo-
gists face is to reconstruct a long sequence given short fragments from unknown locations. These
fragments contain errors, and may represent the sequence on one strand of the double-helix, or the
reverse complement sequence on the other strand. The Sequence Reconstruction Problem is, given a
collection F of fragment sequences and an error rate 0 ≤ ε < 1, find a shortest sequence S such that
every fragment F ∈ F, or its reverse complement, matches a substring of S with at most ε|F | errors.

- 4 -

Sequence Reconstruction is NP-complete. We decompose the problem into (1) constructing a
graph of approximate overlaps between pairs of fragments, (2) selecting a set of overlaps of max-
imum total weight that induce a consistent layout of the fragments, (3) merging the overlaps into a
multiple sequence alignment and voting on a consensus. A solution to (1) through (3) yields a
reconstructed sequence feasible at error rate 2ε/(1-ε) and at most a factor 1/(1-ε) longer than the
shortest reconstruction, given some assumptions on fragment error. We define a measure of the
overlap in a reconstruction, show that maximizing the overlap minimizes the length, and that approx-
imating (2) within a factor of α approximates Sequence Reconstruction within a factor of (1−ε)α
under the overlap measure.

We construct the overlap graph for (1) in O (εN 2) time given fragments of total length N at error
rate ε. We develop two exact and two approximation algorithms for (2). Our best exact algorithm
computes an optimal layout for a graph of E overlaps and V fragments in O(K(E + V log V)) time,
where K ≤ 2E is the size of the branch-and-bound search tree. Our best approximation algorithm
computes a layout with overlap at least 1⁄2 the maximum in O(V (E + V log V) log V) time. We
construct the multiple sequence alignment and consensus sequence for (3) in O (H 2L+M+N) time
given a layout with at most H mutually overlapping fragments, where L is the length of the align-
ment and M is the number of pairs of aligned characters in the overlaps.

We evaluate an implementation by comparing the computed reconstruction to the sampled
sequence. For a random sequence of length 50,000 sampled at 10% error with 500 fragments of
length 500, the software reconstructed the correct layout. For a human DNA sequence of length
50,000 containing 18 repeated elements of length 300 to 2,000 sampled as above at 5% error, the
software found a shorter layout, though over 95% of the layout was correct. When covered by three
or more fragments, the reconstructed sequence had less than 1 error in 5,000 characters, given input
with 1 error in 10.

This is the first treatment of Sequence Reconstruction with inexact data and unknown com-
plementarity. (137 pages)

TR 91-27 On the Complexity of Dataflow Analysis of Logic Programs
Saumya Debray
It is widely held that there is a correlation between complexity and precision in dataflow analysis, in
the sense that the more precise an analysis algorithm, the more computationally expensive it must
be. The details of this correspondence, however, appear to not have been explored extensively.
This paper reports some results on this tradeoff in the context of Horn logic programs. A formal
notion of the ‘‘precision’’ of an analysis algorithm is proposed, and this is used to characterize the
worst case computational complexity of a number of dataflow analysis algorithms with different
degrees of precision. (27 pages)

TR 91-28 Compiler Optimizations for Low-level Redundancy Elimination: An Application of
Meta-level Prolog Primitives
Saumya Debray
Much of the work on applications of meta-level primitives in logic programs focusses on high-level
aspects such as source-level program transformation, interpretation, and partial evaluation. In this
paper, we show how meta-level primitives can be used in a very simple way for low-level code
optimization in compilers. The resulting code optimizer is small, simple, efficient, and easy to
modify and retarget. An optimizer based on these ideas is currently being used in a compiler that
we have developed for Janus. (14 pages)

TR 91-29 An Overview of Sequence Comparison Algorithms in Molecular Biology
Eugene W. Myers
Molecular biologists frequently compare biosequences to see if any similarities can be found in the
hope that what is true of one sequence either physically or functionally is true of its analogue. Such
comparisons are made in a variety of ways, some via rigorous algorithms, others by manual means,
and others by a combination of these two extremes. The topic of sequence comparison now has a
rich history dating back over two decades. In this survey we review the now classic and most esta-
blished technique: dynamic programming. Then a number of interesting variations of this basic
problem are examined that are specifically motivated by applications in molecular biology. Finally,

- 5 -

we close with a discussion of some of the most recent and future trends. (23 pages)

TR 91-30 Temporal Indeterminacy
Curtis E. Dyreson and Richard T. Snodgrass
In temporal indeterminacy, it is known that an event stored in a temporal database did in fact occur,
but it is not known exactly when the event occurred. We present the "possible tuples" data model, in
which each indeterminate event is represented with an interval that delimits when the event might
have occurred, and a probability distribution over that interval. We extend the TQuel query language
with constructs that specify the user’s confidence in the underlying temporal data and in the relation-
ships among that data. We provide a formal tuple calculus semantics, and show that this semantics
reduces to the determinate semantics. We outline an efficient representation of temporal indeter-
minacy, and efficient query processing algorithms, demonstrating the practicality of our proposed
approach. (35 pages)

TR 91-31 A System for Pattern Matching Applications on Biosequences
Gerhard Mehldau and Gene Myers
This paper presents the design and implementation of ANREP, a system for finding matches to net-
work expressions composed of ‘‘spacers’’ and approximate matches to network expressions. A user
specifies such patterns via a declarative, free-format, and strongly typed language called A that is
presented here in a tutorial style through a series of progressively more complex examples. The
sample patterns are for protein and DNA sequence motifs, the application domain for which ANREP
was specifically created. ANREP provides a unified framework for almost all previously proposed
motif patterns and extends them by providing approximate matching, a feature heretofore unavailable
except for the limited case of individual sequences. The performance of ANREP is discussed and
an appendix gives a concise specification of syntax and semantics. A portable C software package
implementing ANREP is available via anonymous remote file transfer. (21 pages)

TR 91-32 Consul: A Communication Substrate for Fault-Tolerant Distributed Programs
Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting
This paper describes a communication substrate, called Consul, upon which fault-tolerant distributed
systems can be built. Consul facilitates the development of such systems by providing various
fault-tolerant services for constructing programs based on the replicated state machine approach.
These services include a broadcast service, a membership service, and a recovery service. Consul is
unique in two respects. First, its services are implemented using a collection of algorithms that
exploit the partial ordering of messages exchanged in the system. Such algorithms are generally
more efficient than those that depend on a total ordering of events. Second, its underlying architec-
ture is configurable. That is, the application configures Consul from a collection of building block
protocols, including protocols for ordering messages, detecting failure, agreeing on membership, and
restoring the state of a failed process. The paper sketches Consul’s architecture, presents the algo-
rithms used by its protocols, and reports on the performance of an implementation in the x-Kernel.
(33 pages)

TR 92-33 On the Query Complexity of Learning and a Technique for Lower Bounds on Mono-
tone Formulae
Sampath Kannan
We consider the problem of learning parametrized concept classes with membership and equivalence
queries. If Cn is the concept class being learned, we show that if equivalence queries can be made
from a larger but still ‘reasonable’ hypothesis class, then there exist O (nlog | Cn |) queries that
exactly learn the target concept c∈Cn. For example, for any fixed polynomial p (n), the concept
class consisting of all boolean n-input circuits of size p (n) can be learnt with polynomially many
queries if equivalence queries are allowed to ask about circuits of size O (q (n)p (n)), where q (n) is
another polynomial in n. We also show that our results are best possible in terms of how big the
hypothesis class needs to be and thereby give a way of deriving a lower bound of Ω(n 2) on the size
of monotone formulae for majority and other boolean functions. This matches the best known lower
bounds for majority. (10 pages)

- 6 -

Icon Newsletter
This newsletter contains information about the Icon programming language. Typical topics include reports on
language design, implementation, and notices of new publications. It is issued aperiodically, two or three times
a year.

Software Distributions
The Department distributes a variety of software in machine-readable form. Examples are the Icon program-
ming language, SB-Prolog, SR, x-Kernel, and the Scorpion System. Information about the contents and availabil-
ity of specific distributions can be obtained by checking the boxes listed on the next page. Most distributions
are available for a nominal fee, which includes media and the associated documentation, or via anonymous FTP
from cs.arizona.edu.

First copies of reports are free. Additional copies may be purchased for the amount indicated.
Requests that require payment must be accompanied by a check or a prepaid purchase order in U.S.
dollars for the proper amount payable to The University of Arizona. Free copies may be ordered by
electronic mail to tr_libr@cs.arizona.edu.

Please send me the reports checked below: (RL-29)

report additional
copies

` TR 91-14 2.50
` TR 91-15 4.50
` TR 91-16 6.00
` TR 91-17 2.00
` TR 91-18 6.50
` TR 91-19 2.00
` TR 91-20 2.00
` TR 91-21 5.50
` TR 91-22 2.50
` TR 91-23 2.00
` TR 91-24a 2.00
` TR 91-25 3.00
` TR 91-26 6.50
` TR 91-27 2.50
` TR 91-28 2.00
` TR 91-29 2.50
` TR 91-30 3.00
` TR 91-31 2.50
` TR 91-32 3.00
` TR 91-33 1.50

` Please add my name to the distribution list for the Icon Newsletter

Please send me information on the following software distributions:

` The Icon programming language
` The SR programming language
` The SB-Prolog System
` The x-Kernel
` The Scorpion System

- 7 -

R H

Q P

Technical Librarian
Department of Computer Science
The University of Arizona
Gould-Simpson 721
Tucson, Arizona 85721
USA

