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consequence, reduces unnecessary interference among them; and (3) it allows the application to select

exactly the right combination of building blocks to provide the required functionality. We believe that the

importance of these advantages will increase as fault-tolerant systems become more prevelant in critical

applications.
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7.3 Fault-tolerant Systems

We compare the system design of Consul with some of the recent fault-tolerant systems being developed.

These include MARS [28, 26], AAS [12], DELTA-4 [39], and ISIS [6]. Both MARS and AAS are

distributed real-time systems that employ synchronized clocks to implement various fault-tolerant services

provided by the system. MARS is a system designed for distributed real-time process control applications,

while AAS is designed to replace the present en-route and terminal approach U.S. air traffic control

computer systems. Because these systems use synchronized clocks, the algorithms for various protocols

in these systems cannot make use of the partial order among various events in the distributed system and

hence they resort to more expensive total order. On the other hand, in Consul, partial order has been

used to provide more efficient algorithms for these protocols, but no real time guarantees are made.

Isis and Delta-4 do not make use of the synchronized clocks for implementing various fault-tolerant

protocols. The Delta-4 project seeks to define a dependable distributed, real-time operating system

that allows integration of heterogeneous computing elements, while Isis is a distributed programming

environment that provides tools for building fault-tolerant applications. Both of these systems provide

causal ordering but they do not preserve the context graph and present it to the application. As a result,

these systems cannot provide fault-tolerant algorithms that make use of the communication history of

the system. In particular, weaker orderings such as semantic dependent ordering, that make use of the

communication history, cannot be implemented in these systems.

A final advantage of Consul is that it provides a configurable architecture in which an application

designer can build a system around a given collection of protocols with minimum effort. As a result, the

system can satisfy the diverse needs of many different applications with little overhead and in a way that

forces an application to pay for only the functionality that it needs. The use of reconfiguration protocols

makes it easy to modify the system architecture or add new protocols to the substrate without affecting

existing components.

8 Conclusions

This paper describes the design of Consul, a communication substrate for fault-tolerant, distributed pro-

grams. Consul consists of a suite of fault-tolerant communication protocols that together provide various

fault-tolerant services such as broadcast, membership, and recovery. These protocols together form a

substrate that can be used to build fault-tolerant applications. Specifically, the fault-tolerance support

includes process failure detection, restart of failed processes, and reliable communication between pro-

cesses. The support for distributed processing includes interprocess communication within a group of

processes and different kinds of orderings among messages exchanged in the system.

This paper makes two major contributions. First, it gives novel algorithms for exploiting the partial

ordering among the messages exchanged in the system. In particular, algorithms are given for semantic

dependent ordering, membership, and recovery. Second, it suggests a decomposition of a fault-tolerant

distributed system into a set of primitive building blocks. Decomposing a system into its fundamental

building blocks has three advantages: (1) it simplifies the process of implementing, debugging, and

optimizing each piece; (2) it aids in finding the inherent dependencies among the pieces, and as a
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they involve a collection of different kinds of operations, some requiring total ordering and some requiring

partial ordering with respect to one another. Our approach performs much better in a case such as this

when mixture of these different operations needs to be applied to an object. The approach proposed in

[29] must resort to a total ordering in such a case.

7.2 Membership

Membership protocols have been proposed for both synchronous and asynchronous environment. Mem-

bership protocols in synchronous systems include [10 , 16, 27, 33, 43]. All these protocols make use of

synchronized clocks to maintain a consistent view of which processes are functioning at every clock tick.

Because the concepts of asynchrony and membership are incompatible, the membership problem is

more difficult in asynchronous systems than in synchronous systems. The protocols proposed in [3 , 8, 9,

34, 40] and the one proposed in this paper assume an asynchronous environment. The protocol proposed in

[8] communicates failure information by diffusion. This algorithm, however, does not attempt to maintain

a consensus view of the configuration. The protocols proposed in [3, 9, 40] do maintain a consistent

view. However, in all of these approaches, the complete protocol has to be restarted when a process fails

while the protocol is in progress. On the other hand, our protocol manages such failures differently—

failures or recoveries detected while the protocol is in progress are taken into account incrementally

by updating SuspectUpList or SuspectDownList appropriately. Moreover, the protocol proposed in [40]

only establishes a consistent time when a failed process is to be removed. In particular, it assumes that

detecting and establishing the failure of a process is implemented elsewhere. Since in asynchronous

systems it is impossible to distinguish with certainty between a failed processor and one that is merely

slow, the best that can be done is reaching a tentative conclusion about a process that is suspected to

have failed. Such a conclusion is reached by using some heuristics that typically involve communication

among all the processes, for example, by using ack and nack messages, as we do above.

Another advantage of our protocol relative to the other approaches is that it relaxes the requirement

that removal of a failed process from the membership list be totally ordered with respect to all other

events. In particular, a process waits to update its membership list only until it has determined the last

message sent by the failed process; it need not wait for other processes to update their membership lists.

In contrast, other protocols force a process to wait until all functioning processes have confirmed the

failure.

A final advantage is that removal of failed processes from the membership list need not be done at

the same time at all the processes. This results from the fact that sf-groups are created dynamically at

each process, and these groups need not be the same at all processes. Thus, a process that does not have

to merge two sf-groups will be able to remove the members of the first group before another process

that does have to merge the two groups. This improves the efficiency of the application and simplifies

the design of the protocol. In contrast, other protocols wait until all the processes have formed their

sf-groups before removing the failed process.
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for this is that the system performs fewer operations per unit time when the rate of issue of operations

is lower, leading to more idle time to do the checkpointing. As a result, its effect on the time to process

an operation is less.

The second observation is that the overhead of checkpointing increases as the checkpoint interval is

reduced. Thus, this overhead is 0.1 sec per 100 operations when operations are issued at 50 ops/sec and

the checkpointing is done every 5 sec, while this overhead increases to 0.35 sec per 100 operations when

the logging is done every 1 sec. This is expected, as the time spent to do the checkpointing per unit

time increases as the checkpoint interval is reduced. The effect of checkpointing is almost negligible for

checkpoint intervals of 5.0 sec or higher for the observed operation rates.

7 Related Work

Considerable attention has been given to the design of various fault-tolerant protocols and systems. In

this section, we compare our work with some of the recent work being done in this area. As explained

before, we have presented novel algorithms for semantic dependent ordering and membership in Consul,

and therefore, in the following we compare these two functions to the related approaches in the literature.

Finally, we compare the overall system design of Consul with some other fault-tolerant systems that also

provide these fault-tolerant services.

7.1 Message Ordering

Our approach in managing replicated objects is similar in many respects to approaches taken elsewhere.

These approaches may be classified into two categories. The first category includes those protocols where

the semantics of the operations are not exploited and a total order is imposed to implement replicated

objects or a related constructs. Examples of this approach include [1, 4, 2, 7, 18, 20, 31, 37, 36]

In the second category, the semantics of the application have been exploited to come up with a

solution. In [13], semantic information has been used to implement a replicated directory, while in

[14], the authors use semantic information to implement replicated files. Our approach differs from

these two in that we maximize the concurrency by dividing different operations into op-groups, and

our approach generalizes easily beyond files and directories. In [21], semantic information is used to

efficiently implement multiversion timestamping protocol for atomic transactions. While this work is

similar to ours, the two approaches differ in two aspects. First, we efficiently implement operations on an

object instead of atomic transactions. Second, we deal with objects replicated over multiple sites. That

is, our emphasis is on increasing concurrency of independent operations over multiple sites rather than

increasing concurrency among transactions on a single site.

Finally, we compare our work with [29]. Here, lazy replication has been proposed as a way to

preserve consistency by exploiting the semantics of the service’s operations to relax the constraints on

ordering. Three kinds of operations are supported: operations for which the clients define the required

order dynamically during the execution, operations for which the service defines the order, and operations

that must be globally ordered with respect to both client-ordered and service-ordered operations. While

this approach is best suited for client-defined ordering, many applications do not fit in this model. Rather,
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protocol demultiplexes every message to the Failure Detection protocol and the Order protocol.

6.4 Checkpointing Overhead

An experiment to measure the checkpointing overhead is done as follows. Two clients at different proces-

sors issue operations at a known, fixed rate, and the elapsed time for every 100 operations is measured.

In the experiment, 5,000 operations were issued by each client. Note that the time measured in this

experiment cannot be used to calculate the response time since it is dominated by the time taken to issue

the operations. However, since the operations are issued at a fixed rate, the effect of the checkpointing

overhead is uniform over all the operations. This experiment includes both the asynchronous message

logging done by Psync and the checkpointing done by the order protocol. For the former, a given

message’s identifier, dependencies, and contents are stored. For the latter, the message identifiers of all

the messages in the participant’s view are checkpointed; this is done atomically when a wave becomes

complete.

The time measured is for four different rates of operations issued by the clients. For each rate, the

elapsed time for 100 operations is measured under different checkpointing intervals. The results are

shown in Table 4. All the operations issued were commutative operations, with the semantic dependent

ordering protocol being used throughout.

Ops/sec Checkpoint interval Time for 100 Ops

(in sec) (in sec)

10 No Checkpointing 10.0

10 5.0 10.0

10 2.0 10.0

10 1.0 10.01

20 No Checkpointing 5.99

20 5.0 6.0

20 2.0 6.035

20 1.0 6.07

40 No Checkpointing 4.0

40 5.0 4.05

40 2.0 4.15

40 1.0 4.25

50 No Checkpointing 2.0

50 5.0 2.1

50 2.0 2.3

50 1.0 2.35

Table 4: Measure of Checkpointing Overheads

Two observations can be made from these measurements. First, the checkpointing overhead increases

with the increase in the rate at which clients issue operations. For example, the overhead is 0.35 sec per

100 operations when the clients issue operations at 50 ops/sec and the checkpointing interval is 1 sec,

while the overhead is 0.01 sec per 100 operations when operations are issued at 10 ops/sec. The reason
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protocol when all the operations are noncommutative. That is, the overhead of the protocol is negligible,

leading to minimal effect on system performance. Similar improvement was observed for the 3-replica

and 4-replica systems. These results are shown in Table 2.

% of comm. operations Semantic Dep. Order Total Order

0 3.7 3.6

50 3.55 3.6

75 3.2 3.6

90 2.9 3.6

99 2.7 3.6

100 2.7 3.6

Table 1: System Response Time (in msec) for a 2-replica system

% of comm. Semantic Dep. Order Total Order

operations 3-replica 4-replica 3-replica 4-replica

0 4.1 4.45 4.0 4.3

100 2.75 2.8 4.0 4.3

Table 2: System Response Time (in msec) for a 3-replica and 4-replica system

6.3 Membership and Recovery Protocols

The overhead of the failure handling protocols in the absence of failures is measured by extending the

configuration to include the Membership, Failure Detection, and Recovery protocols. The code size for

these protocols is only about 1500 lines, mainly because of the inherent support Psync provides for such

activity by maintaining a replicated context graph. Once again, none of the protocols do any logging or

checkpointing in this experiment. The response time was measured in the same way as described above

for various mixes of commutative and noncommutative operations. The results are shown in Table 3.

The overhead imposed by the failure handling protocols is about 0.6 msec per operation. This

overhead is due to two factors. First, since the communication substrate includes more protocols, the

Divider protocol has a larger set of protocols to which to demultiplex incoming messages. Second, the

Failure Detection protocol needs to receive every message exchanged in the system. Thus, the Divider

% of comm. operations Response Time

0 4.2

50 4.1

75 3.8

90 3.6

99 3.3

100 3.2

Table 3: Response Time with Failure Handling Protocols (in mesc)
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for two, three and four replicas. These configurations differ in several ways. One is the type of ordering

protocol used; some use semantic dependent ordering, while others use total ordering. Another is whether

or not they contain various failure handling protocols. A third is whether checkpointing is performed

and at what interval. Our experience has been that it is easy to move from one configuration to another

without any modifications to the substrate.

This section reports on the performance of various protocols in Consul and the overheads they impose

on the overall performance of the system. All of the numbers reported here have been taken from the

replicated directory application running on a collection of diskless Sun 3/75 workstations connected by a

lightly loaded 10Mbs Ethernet; stable storage is simulated by a process executing on another Sun 3/75.

Various experiments were designed to measure the performance of Psync and the semantic dependent

ordering protocol, as well as the overhead of the various failure handling protocols.

6.1 Psync Timings

To measure the performance of Psync, one byte messages were exchanged between a pair of user processes

directly on top of Psync. In this test, the resulting average round trip delay was measured as 2.9 msec.

This number is derived by exchanging messages for 10,000 trips (20,000 total messages) and reporting

the elapsed time for every 1,000 round trips. Each of these measurements was then divided by 1,000 to

produce the average.

6.2 Performance Using Semantic Dependent Ordering

To determine how well the semantic dependent ordering protocol performs, we compared the performance

of the replicated directory using the semantic dependent protocol with the same application using a total

ordering protocol. In this experiment, we focused on measuring the average response time of the system,

i.e., the elapsed time between the time an operation is issued by the client and the time that operation

is applied to the local copy of the directory. The time needed to actually perform the operation is not

included.

For this experiment, the communication substrate was configured to include Psync, the Divider pro-

tocol, and the appropriate order protocol. There was no logging or checkpointing done by any of these

protocols. The system was configured to run on two, three and four processors respectively. In the case

of the semantic dependent ordering protocol, the average response time depends heavily on the overall

mix of the commutative and the noncommutative operations, so the mix was varied across different runs.

In each case, the response time is derived by having clients on each processor apply 10,000 operations,

with a varying percentage of commutative operations uniformly distributed, and reporting the elapsed

time for every 1,000 operations. Each of these measurements was then divided by 1,000 to produce the

average response time.

The results for the system configured for two replicas are shown in Table 1. As expected, the semantic

dependent ordering protocol improves the response time of the system as the percentage of commutative

operations increase. The response time is 2.7 msec when all the operations applied are commutative,

giving an improvement of about 25% over the use of a total ordering protocol. Another important point

to note is that the semantic dependent ordering protocol performs almost as well as the total ordering
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