
[Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. \The Design and

Implementation of INGRES." ACM Transactions on Database Systems, 1, No. 3, Sep.

1976, pp. 189{222.

[Vassiliou 1979] Vassiliou, Y. \Null values in database management{a denotational semantics ap-

proach," in Proceedings of ACM SIGMOD International Conference on Management of

Data. Association for Computing Machinery. New York: ACM Press, May 1979, pp.

162{169.

[Wiederhold et al. 1991] Wiederhold, G., S. Jajodia and W. Litwin. \Dealing with Granularity

of Time in Temporal Databases," in Proc. 3rd Nordic Conf. on Advanced Information

Systems Engineering. Trondheim, Norway: May 1991.

[Zaniolo 1984] Zaniolo, C. \Database Relations with Null Values." Journal of Computer and System

Sciences, 28 (1984), pp. 142{166.

[Zemankova & Kandel 1985] Zemankova, M. and A. Kandel. \Implementing Imprecision in Infor-

mation Systems." Information Sciences, 37 (1985), pp. 107{141.

33

[Kahn & Gorry 1977] Kahn, K. and G. A. Gorry. \Mechanizing Temporal Knowledge." Arti�cial

Intelligence, (1977), pp. 87{108.

[Kouramajian & Elmasri 1992] Kouramajian, V. and R. Elmasri. \A Generalized Temporal Model."

Tech. Report. University of Texas at Arlington. Feb. 1992.

[Ladkin 1987] Ladkin, P. \The Logic of Time Representation." PhD. Dissertation. University of

California, Berkeley, Nov. 1987.

[Leung & Muntz 1991] Leung, T. and R. Muntz. \Temporal Query Processing and Optimization

in Multiprocessor Database Machines." Technical Report CSD-910077. Computer Science

Department, UCLA. Nov. 1991.

[Lipski 1979] Lipski, W., Jr. \On Semantic Issues Connected with Incomplete Information Databases."

ACM Transactions on Database Systems, 4, No. 3, Sep. 1979, pp. 262{296.

[Liu & Sunderraman 1990] Liu, K.C. and R. Sunderraman. \Inde�nite and Maybe Information in

Relational Databases." ACM Transactions on Database Systems, 15, No. 1, Mar. 1990,

pp. 1{39.

[Maiocchi & Pernici 1991] Maiocchi, R. and B. Pernici. \Temporal Data Management Systems: A

Comparative View." IEEE Transactions on Knowledge and Data Engineering, 3, No. 4,

Dec. 1991, pp. 504{524.

[McKenzie & Snodgrass 1991] McKenzie, E. and R. Snodgrass. \Supporting Valid Time in an

Historical Relational Algebra: Proofs and Extensions." Technical Report TR{91{15. De-

partment of Computer Science, University of Arizona. Aug. 1991.

[Melton 1990] Melton, J. (ed.) \Solicitation of Comments: Database Language SQL2." American

National Standards Institute, Washington, DC, 1990.

[Motro 1990] Motro, A. \Imprecision and incompleteness in relational databases: survey." Infor-

mation and Software Technology, 32, No. 9, Nov. 1990, pp. 579{588.

[Ola 1992] Ola, A. \Relational Databases with Exclusive Disjunctions," in Proceedings of the Eighth

International Conference on Data Engineering. Tempe, AZ: Feb. 1992, pp. 328{336.

[Snodgrass 1982] Snodgrass, R. \Monitoring Distributed Systems: A Relational Approach." PhD.

Dissertation. Computer Science Department, Carnegie Mellon University, Dec. 1982.

[Snodgrass 1987] Snodgrass, R. \The Temporal Query Language TQuel." ACM Transactions on

Database Systems, 12, No. 2, June 1987, pp. 247{298.

[Snodgrass et al. 1989] Snodgrass, R., S. Gomez and E. McKenzie. \Aggregates in the Temporal

Query Language TQuel." Technical Report TR{89{26. Department of Computer Science,

University of Arizona. Nov. 1989.

32

Acknowledgement

This work was supported in part by NSF grant ISI-8902707.

References

[Barbar�a et al. 1990] Barbar�a, D., H. Garcia{Molina and D. Porter. \A Probabilistic Relational

Data Model," in Proceedings of the International Conference on Extending Database Tech-

nology: Advances in Database Technology | EDBT '90. Venice, Italy: Mar. 1990, pp.

60{74.

[Barton 1989] Barton, B. \Dinosaurs, Dinosaurs." New York, NY: Thomas Crowell, 1989.

[Codd 1990] Codd, E. F. \Missing Information," in The Relational Model for Database Manage-

ment: Version 2. Addison-Wesley Publishing Company, Inc., 1990. Chap. 8{9.

[Date & White 1990] Date, C. J. and C. J. White. \A Guide to DB2." Reading, MA: Addison-

Wesley, 1990. Vol. 1, 3rd edition.

[Date 1986] Date, C.J. \Null Values in Database Management," in Relational Database: Selected

Writings. Reading, MA: Addison-Wesley, 1986. Chap. 15. pp. 313{334.

[DeWitt et al. 1991] DeWitt, D., J. Naughton and D. Schneider. \An Evaluation of Non-Equijoin

Algorithms," in Proceedings of the Conference on Very Large Databases. 1991, pp. 443{452.

[Dubois & Prade 1988] Dubois, D., and H. Prade. \Handling Incomplete or Uncertain Data

and Vague Queries in Database Applications," in Possibility Theory: An Approach to

Computerized Processing of Uncertainty. New York and London: Plenum Press, 1988.

Chap. 6. pp. 217{257.

[Dutta 1989] Dutta, S. \Generalized Events in Temporal Databases," in Proceedings of the Fifth

International Conference on Data Engineering. Los Angeles, CA: Feb. 1989, pp. 118{126.

[Dyreson & Snodgrass 1992] Dyreson, C. E. and R. T. Snodgrass. \Timestamp Semantics and

Representation." TempIS TR 33. Computer Science Department, University of Arizona.

Feb. 1992.

[Gadia et al. 1991] Gadia, S.K., S. Nair and Y.-C. Poon. \Incomplete Information in Relational

Temporal Databases." Technical Report Technical Report. Department of Computer Sci-

ence, Iowa State University. Dec. 1991.

[Hsu & Snodgrass 1991] Hsu, S.H. and R.T. Snodgrass. \Optimal Block Size for Repeating At-

tributes." TempIS Technical Report No. 28. Department of Computer Science, University

of Arizona. Dec. 1991.

31

and ordering plausibility. We have augmented the create and modify statements to specify which

relations incorporate historical indeterminacy, extended the range statement with an optional with

clause to specify range credibility, extended the retrieve statement to specify ordering plausibili-

ties, and added variants to the set statement to specify default plausibilities and credibilities. The

approach is orthogonal to those proposed by others to handle value indeterminacy and general-

ized events, re�nes previously proposed techniques to handle multiple granularities of time, and is

theoretically sound.

We showed how indeterminate events with a uniform probability distribution can be repre-

sented in only two words in most cases; for user-de�ned distributions the representation is only

three words in most cases. We outlined e�cient implementations of the �ve extended functions

required by the altered semantics. The result is an expressive yet practical extension to TQuel to

support historical indeterminacy. The extension is also \transparent" to the user who does not use

the added query language support for indeterminacy. The extended semantics and implementa-

tion both reduce to the previous semantics and implementation under the default credibility and

plausibility.

One important assumption we make throughout is that tuples are row-independent, with no

information shared between indeterminate tuples. All the other approaches we are aware of that

utilize probabilities to model various avors of incompleteness make this assumption as well. We

also assume that the indeterminate events can be modeled by contiguous sets of possible events. We

do not support noncontiguous sets which could model indeterminate events such as \it happened

yesterday morning or this morning". We exploit both of these assumptions to achieve e�ciency in

representation and in query processing.

One possible problem is that plausibility and credibility values may have little intuitive mean-

ing for novice or infrequent users. A useful extension of the current work would be to provide the

user with more intuitive and exible tools to express credibility and plausibility. We are considering

using spans instead of values. For instance, the user could specify a range credibility of a \day"

or a \year", causing sets of possible events in the speci�ed relations to be shrunk to the most

probable day or year. Similarly, the ordering plausibility could make use of durations. The user

could constrain retrieval to tuples that \overlap March, 1984" to \within a year" (this has been

termed a \band join" [DeWitt et al. 1991] or a \fuzzy temporal equi-join" [Leung & Muntz 1991]).

Both possibilities can be seen as extensions of the present paper.

This paper only considers the retrieve statement. The update statements (append, delete, and

replace) can also be extended in an analogous manner. Extending temporal aggregates [Snodgrass

et al. 1989] is more challenging; the goal, shared with this paper, is to simultaneously maximize

the expressive power of the language and the e�ciency of query evaluation. Finally, when a

consensus temporal extension to SQL is available, we will apply our approach to that language to

add historical indeterminacy.

30

Generalized temporal elements are de�ned somewhat di�erently in a more recent paper

[Kouramajian & Elmasri 1992]. Generalized temporal elements combine transaction time and

valid time in the same temporal element. Since TQuel also supports transaction time, historical

indeterminacy and generalized temporal elements di�er mainly in their handling of valid time. In

their model, both the upper bound and the lower bound on a valid time interval could be a set

of noncontiguous possible events. Unlike historical indeterminacy, the upper and lower bound sets

could intersect and no probabilities are used. Since there are no probabilities, the user in general

is limited to querying for answers which are either \de�nite" or those which are \possible" (or

combinations thereof). Historically, these alternatives have a well-de�ned meaning in incomplete

information databases [Lipski 1979]. Generalized valid times are composed of valid times by the

operators of alternation (only one valid time applies) and/or union (both valid times could ap-

ply). Alternation is used to model alternative temporal scenarios. We provide no capability for

\generalizing" valid times to handle such scenarios.

Another proposal intertwines support for value, temporal, and tuple incompleteness [Gadia et

al. 1991]. By combining the di�erent kinds of incomplete information, a wide spectrum of attribute

values are simultaneously modeled, including values that are completely known, values that are

unknown but are known to have occurred, values that are known if they occurred, and values that

are unknown even if they occurred. We feel that conating di�erent kinds of incompleteness in a

single temporal relational database model prevents the user from picking and choosing the kind of

incomplete information support that she desires.

In our approach, value, tuple, and temporal incompleteness are orthogonal. By combining

historical indeterminacy with other kinds of incomplete information we can support each of the

kinds of incomplete information found in Gadia et al., plus others (e.g., fuzzy value indeterminacy).

Another di�erence between our approach and theirs is that they make no use of probabilistic

information. The user cannot express his or her credibility in the underlying data nor plausibility

in the temporal relationships in the data.

We note that there is little discussion in any of the aforementioned papers of implementation

aspects. We feel that both e�cient representations and e�cient query processing algorithms are

crucial.

Finally, the approach to historical indeterminacy espoused by Kahn and Gorry [Kahn & Gorry

1977] is reminiscent of those employed by the arti�cial intelligence community [Maiocchi & Pernici

1991]. In their model, events and intervals are speci�ed relative to each other; only a subset are

actually tied to the valid time line. An event may only be known to have occurred, say, between

two other events. Their model is more general than the possible tuples model, but also exhibits

signi�cant query processing overhead.

8 Summary and Future Work

This paper has extended the syntax and formal semantics of TQuel to support historical indeter-

minacy. This support provides the user with two controls on the retrieval process, range credibility

29

1990]. In PDM, attribute values are sets with weights attached to each element. The weights are

the probabilities that the element is the attribute value. Queries use the probabilistic representation

in conjunction with a single user-given \con�dence" to compute a result. The novelty in our work

can be seen in the methods used to retrieve the incomplete information and how that information

is represented. The large number of possible events for an indeterminate event precludes storing

each possible event separately, as would be done in PDM. The encoding we developed, using sets of

possible events and event probability distributions, is space e�cient. In addition, our use of both

credibility and plausibility values permits greater exibility and �ner control in query evaluation.

These techniques are a product of the unique nature of the type of incomplete information, historical

indeterminacy, that we investigated.

Information that is historically indeterminate is also similar to disjunctive information, espe-

cially in the context of deductive databases [Liu & Sunderraman 1990]. Disjunctive information is

a collection of facts, one (or more) of which is true. A set of possible events is of the exclusive-or

variety of disjunctive information (only one disjunct is true) [Ola 1992]. Historical indeterminacy,

like PDM, di�ers from the above investigations because the alternatives are \weighted" and the

weights are integrated into the query semantics.

Recently, the issue of multiple time granularities, e.g., knowing some events to the accuracy of

seconds, other events to within a day, and yet other events to only within a year, has been examined

[Ladkin 1987, Wiederhold et al. 1991]. These approaches generally convert mixed granularities to

the coarsest granularity, taking into account the semantics of the time-varying domains. Our work

re�nes this approach in three ways: we support arbitrary starting and terminating chronons, rather

than requiring that these chronons be aligned on a set of prede�ned granularities; we support user-

de�ned probability distributions; and we support user-speci�ed range credibilities and ordering

plausibilities.

Dutta uses a fuzzy set approach to handle temporal events [Dutta 1989]. His model allows

a single event to have multiple occurrences. For example suppose that, in an employee database,

we want to record when \Margaret's salary is high." The event \Margaret's salary is high" may

occur at various times as Margaret's salary uctuates to reect promotions and demotions. The

incompleteness enters in the de�nition of what is meant by \high"; it is not a crisp predicate. In

Dutta's model all the possibilities for \high" are represented in a generalized event and the user

selects some subset according to his or her interpretation of \high".

This contrasts sharply with the task of encoding the type of information we have characterized

as historically indeterminate. We view events as having a single occurrence. The time that an

indeterminate event occurred is a set of alternatives, one and only one of which is the actual time.

Every member in a fuzzy set is always possible, to a greater or lesser extent depending on the

degree of membership, but always possible (although some fuzzy databases stipulate by �at that

only one member is possible [Dubois & Prade 1988]).

Our approach and that of Dutta's model di�erent kinds of temporal incompleteness. We feel

that a probabilistic approach is better suited to modeling historical indeterminacy as formulated

in this paper, and that fuzzy set approaches like Dutta's are better suited to modeling generalized

events. The two approaches are orthogonal, and the user may pick the one(s) most appropriate to

her application.

28

The resulting semantics for the optimized version of Adjust approximate the semantics presented

in this paper in that events are always shrunk by the maximum amount possible, i.e. (100�),

reducing the cost to 21 adds and 12 multiplies. The modi�ed semantics may result in determinate

portions that are too large; an example of this was shown in Figure 15.

Perhaps the costliest addition is the new Before relation for < 100. The algorithm for Before

�rst tests whether one event is entirely Before the other. If so, Before is satis�ed for any plausibility

value. We anticipate that it is common that the sets of possible events of two indeterminate events

do not overlap. But if they do overlap, the algorithm uses an e�cient \pivoting" technique. A

chronon that is in the set of possible events of indeterminate event � and in the set of possible

events of indeterminate event � is a pivot. The chronons in � that are before the pivot are Before

the chronons in � that are after the pivot. Thus, the starting probability of � at the pivot multiplied

by the terminating probability of � at the pivot is part of the probability that � �

prob

�. At most

N pivots must be chosen (where N is the size of the smallest set of possible events) to compute

� �

prob

�. However, the algorithm for Before performs the pivoting on the superchronons. Hence,

in the worst case, 256 pivots at a cost of 2056 multiplies and 5392 arithmetic/comparison operations

must be performed, although on average only 2 pivots are necessary at a cost of 24 multiplies and

58 arithmetic/comparison operations.

The implementation of Reduce

0

is little changed from that of the original Reduce. The indeter-

minate events with the earliest and latest extent must be computed, but this adds only two times-

tamp comparisons to each step. Of greater consequence is that Reduce

0

must deal with more tuples

that Reduce because of the nondeterminism in First and Last . But at most T�(2

jFirstj+jLastj

�1)�1

more tuples will be in the input to Reduce

0

(where jFirst j is the number of First operations in the

tuple calculus statement and T is the number of tuples in the input to Reduce). In the tuple

calculus semantics shown in section 5.5 for the query in Figure 9, at most 3T � 1 more tuples

will be produced. When evaluated on the database shown in Figure 1, no additional tuples are

produced.

7 Related Work

Despite the wealth of research in incomplete information databases, there are few e�orts that ad-

dress temporal incompleteness. Much of the previous research in incomplete information databases

has concentrated on issues related to null values [Codd 1990, Date 1986, Vassiliou 1979, Zaniolo

1984]. Another primary research thrust has studied the applicability of fuzzy set theory to relational

databases [Dubois & Prade 1988, Zemankova & Kandel 1985].

In previous work, the second author proposed modeling indeterminate events with sets of

possible events, and assumed a uniform distribution [Snodgrass 1982]. Before was extended to

possibly return the value unknown, necessitating an extension to a three-valued logic. Our current

approach allows a probability distribution to be associated with each indeterminate event, and

does not require a three-valued logic.

Our work can be seen as an extension of the Probabilistic Data Model (PDM) [Barbar�a et al.

27

6.2 Query Evaluation Algorithms

The �ve functions discussed in Section 5, Adjust , Shrink r , Shrink l , Before, and Reduce

0

, make use

of normalized probability distributions. A normalized distribution is a discrete approximation of a

user-given probability distribution. The distribution is sampled atN+1 points. Between the points,

the curve of the user's probability distribution is linearly approximated. We currently use a sample

size of N = 256. The sampled points are superchronon boundaries in the normalized distribution.

Thus, the normalized distribution is a discrete distribution of 256 values. A normalized distribution

is mapped to an indeterminate event by mapping each superchronon to a group of chronons in the

event's set of possible events.

The starting and terminating probabilities for a normalized distribution could be computed

\on the y" from the normalized distribution and the o�sets. However, this computation can be

expensive. We heavily preprocess the normalized distribution to improve the e�ciency of com-

puting the starting and terminating probabilities. In particular, the starting and terminating

superchronons for the credibilities 0 to 100 are precomputed and stored. The starting and termi-

nating probabilities for each integral superchronon value are also precomputed and stored. The

precomputation ensures that the computed approximations are within an absolute error of 2

�8

at

each point between the sampled points. The precomputation phase produces a 2:5KB table for

each normalized distribution. If there are many normalized distributions, the tables can be stored

on disk and paged into a distribution cache as needed during evaluation of a query. There are a

few other precomputed tables storing valuable constants which occupy approximately 700 bytes,

and must be pinned in main memory.

For a plausibility of 1 or 100 or a credibility of 0 or 100, the algorithms to support the new

functions do not use the precomputed information. These special, but common, credibility and

plausibility levels indicate the user has chosen either not to use any probabilistic information or to

interpret probabilistic information as determinate. For these situations, the algorithms to support

the new functions are straightforward and e�cient.

For other credibility and plausibility values, the algorithms to support the new functions make

intensive use of the precomputed information. The shrink functions use table lookup to �nd the

precomputed starting and terminating superchronons for a given credibility (with the appropriate

scaling by the left and right o�sets). The computed superchronon must then be mapped to a

particular chronon value. The Shrink l and Shrink r functions each cost 5 16-bit multiplies and 11

other arithmetic/comparison operations (one addition and one subtraction are on 64-bit quantities;

the remaining nine operations are on 8-bit and 16-bit integers).

The Adjust function constructs an interval from two indeterminate events by shrinking the

events as needed. The test to determine if shrinking is needed is a single comparison operation

(Before(100; �; �) may be implemented by comparing the last chronon in � to the �rst chronon in

�). If shrinking is needed, then each event is shrunk by (100�) to determine if the maximum

amount of shrinking constructs a valid interval. If a valid interval can be constructed, then Adjust

uses binary search to �nd the minimum amount, �, by which it should shrink each event. The binary

search identi�es � in dlog

2

(100 �)e steps. Each step costs one Shrink l and one Shrink r . The

total cost is 147 adds and 84 multiplies. As an optimization, the search for � could be eliminated.

26

example, Shrink l must compute the new probability for each chronon in the shrunken set of

possible events in the terminating indeterminate event, which can span a large number of chronons.

We employ a representation that makes the shrink operators very fast, e�ectively by delaying the

computation of the new probability distribution.

6.1 Representing Indeterminacy

The historical algebra is attribute-value timestamped; each timestamp a set of chronons termed a

temporal element. This representation must be augmented to allow storage of a set of indeterminate

events or intervals, each comprised of a set of possible events or intervals [Hsu & Snodgrass 1991].

A temporal element is thus essentially a set of sets of chronons. We can store temporal elements as

linked lists of indeterminate events or intervals. An indeterminate event is represented by a set of

possible events and an event probability distribution [Dyreson & Snodgrass 1992]. The set of pos-

sible events representation occupies either two or four 32-bit words. The four word representation

uses 64-bit timestamps for both the starting and terminating chronons in the interval. The 64-bit

timestamp can model times that range over the age of the universe to a granularity of a second or

times that range over 28,000 years to the granularity of a microsecond. The two word representation

is a compact version adequate for most sets of possible events commonly encountered.

The representation of a probability distribution has three parts, the name of a normalized

distribution (including identifying parameters), a left o�set , and a right o�set ; occupying somewhat

less than 32 bits in toto. For relations with the distribution or duration stored in the schema as

discussed in Section 4.2, this additional word may not be necessary. The probability distribution of

events that have the same normalized distribution are distinguished by howmuch of the distribution

has been chopped o� by the shrink functions. The left o�set is the percentage of the normalized

distribution from the left that has been eliminated by Shrink l . The right o�set is the percentage

of the normalized distribution from the right that has been eliminated by Shrink r . If part of the

distribution is eliminated, the rest of the distribution must be scaled by the eliminated portion to

keep the sum of the probabilities over every chronon at 1. Since we expect that most indeterminate

events will use the uniform probability distribution, we optimized representation of this distribution.

The representation of the uniform distribution uses a single ag bit. It is unnecessary to record

either o�set with the uniform distribution because the starting and terminating probabilities are

linear functions regardless of the o�set values.

In summary, an indeterminate event data structure occupies, at worst, �ve words. We expect,

however, that a compact representation of three words for nonuniform distributions and two words

for uniform distributions and for intensional distributions will be su�cient for most applications.

As a comparison, the current DB2 timestamp representation is 2.5 words ([Date & White 1990]),

the commercial Ingres ([Stonebraker et al. 1976]) representation is three words, and the proposed

SQL2 ([Melton 1990]) representation is six words, all with a signi�cantly shorter extent and without

any historical indeterminacy.

25

PROOF. The outline of what to prove is illustrated in Figure 18. The only di�erences between

C and C

0

are the new and rede�ned functions Adjust , Before, Shrink l , Shrink r , and Reduce

0

. In

the evaluation of C

0

, the Shrink functions are applied �rst. For the default range credibility of

100, Shrink l and Shrink r reduce each bounding event's set of possible events to a singleton set.

Thus, the default range credibility for the Shrink functions essentially removes all historical inde-

terminacy from a database with indeterminate interval relations. The reduced database contains

only determinate events and intervals.

Determinate events have a well-de�ned ordering, hence the new Before relation is almost

equivalent to the previous relation. For determinate events � and �, evaluation of Before(�; �; �)

for any plausibility value � will be satis�ed only if the chronon for � is less than the chronon for � or

if � and � are the same determinate event. If � and � are equivalent (they span the same chronon)

but are not the same determinate event, then both are Before each other under the de�nition of

Before in the extended semantics. This will cause the First and Last temporal constructors (which

use Before) to generate two equivalent events. Each may contribute to a tuple that is a candidate

for the target relation. But since the events di�er in neither their set of possible events nor their

probability distribution, two equivalent events can only contribute to tuples which are duplicates

of each other. Two duplicate tuples are pared to one unique tuple by the Reduce

0

function since

duplicate determinate tuples are value-equivalent and overlap in determinate valid time.

In the previous semantics, the Adjust function simply returned the interval if the starting

chronon was Before the ending chronon. With determinate events, the extended semantics for

Adjust reduce to the previous semantics, because the shrink functions in the de�nition have no e�ect

on determinate bounding events and Before(100; �; �) is equivalent to the previous Before(�; �).

Finally, the new de�nition of Reduce

0

coalesces value-equivalent tuples that are adjacent or

overlap in determinate time exactly as the old de�nition.

6 Implementation

The foundation for implementing historical indeterminacy is the historical algebra [McKenzie &

Snodgrass 1991]. Changes to the historical algebra to support historical indeterminacy are isolated

to the representation of temporal elements and to the derivation operator (which performs temporal

selection and projection, i.e., the when and valid clauses) and the rollback operator (which retrieves

the tuples from the appropriate historical state, implementing the interval function described in

Section 5.2). The derivation operator already uses Adjust , Before, and Reduce. However, the new

de�nition of each of these operators must be implemented. Finally, the Shrink l and Shrink r must

be added to the processing of the rollback operator to e�ect range credibility.

Each of these changes necessitates the construction of new algorithms and new data structures.

Our goal in developing these algorithms is to meet the e�ciency challenge. The rollback and

derivation operators are executed in the \inner loop" of query processing. Signi�cant slowdown

of these operators would have a dramatic e�ect on the overall speed of query evaluation. Yet

to support historical indeterminacy, implementing the new functions appears to be costly. For

24

Q TQuel query without indeterminacy phrases

�

�

��

A

A

AU

C

?

(previous semantics)

C

0

?

(extended semantics)

A

(evaluated on interval reduced relations)

A

0

=

?

(evaluated on indeterminate interval relations)

Figure 18: Does the evaluation of C produce the same answers as the evaluation of C

0

?

a � of 76, which is greater than 100� = 50.

For the Early Jurassic tuple, the valid clause will result in an event. Last(50; T; EJ

s

) gener-

ates just one event, T, while First(50; T; EJ

t

) also generates the single event T. Adjust(50; T; T)

detects that it is really trying to adjust an event (an event is always Before(100; ;) itself), so it

succeeds and returns the interval hT; Ti. The beginof function strips the starting event from the

interval because the result is an event relation. Hence, the query will result in one tuple, shown in

Figure 9 on page 12. If the ordering plausibility in the when clause were to be set to 50 instead of

05, the query would generate the same result.

5.6 Query Reducibility

An important feature of the extended syntax and semantics is that evaluation of a retrieve state-

ment using the default plausibility and credibility (both are 100) on an historical database with

indeterminate or determinate interval relations and determinate event relations is equivalent to

evaluation of the retrieve statement with the previous semantics (which has no support for histori-

cal indeterminacy) on the corresponding \reduced" database without historical indeterminacy. We

will call this property query reducibility. By an interval reduced database, we mean an historical

database in which the interval indeterminacy has been removed by replacing each indeterminate

interval with its determinate portion (every indeterminate interval has a determinate portion of

at least one chronon). Query reducibility shows that the meaning of all extant TQuel queries and

relations is preserved under the new semantics. It also shows that even if there is some indeter-

minacy in the database (i.e., if there are indeterminate interval relations), the user can choose to

ignore it (this is her default choice).

More speci�cally, under the extended semantics, a retrieve statement without credibility or

plausibility phrases, Q , will be translated to a tuple calculus statement, C , of the form described

earlier in this paper. Under the previous semantics, Q will be translated to a tuple calculus

statement,C

0

, of the form discussed in Section 5. We claim that if every event relation participating

in Q is determinate (but every interval relation need not be), then C is query reducible to C

0

, that

is, evaluation of C is equivalent to evaluation of C

0

.

Theorem The extended semantics is query reducible to the previous, historically determinate,

semantics.

23

Trilobite

209 202

Middle Triassic

250 245 227

Early Jurassic

213 204 189 181

Late Triassic

235 218 215 206

Middle Jurassic

188 182 170 156

Figure 16: The overlap relationships among the \shrunken" epochs and the Trilobite

�

prob

T LT

s

LT

t

EJ

s

EJ

t

T 0 13 26 100

LT

s

100 100 100 100

LT

t

91 0 72 100

EJ

s

77 0 36 100

EJ

t

0 0 0 0

Figure 17: Table of � �

prob

� for the relevant events in Fossils and Classifications

that is possible, then an additional conjunct is required: ^ :(u[r + 1] is u[r + 2]).

Let's trace this expression on the database given in Figure 1 on page 2. First, the extent of

the intervals in Classifications is changed. A schematic of the overlap relationships among the

Trilobite fossil and the shrunken indeterminate intervals of Classifications is shown in Figure 16.

The where clause eliminates every tuple from Fossils except the Trilobite fossil.

Both the Middle Triassic and Middle Jurassic tuples from Classifications are immediately

eliminated by f (05) c in the when clause because they do not overlap the Trilobite fossil

at all.

That leaves both the Late Triassic and Early Jurassic tuples. For the sake of brevity we

will use abbreviations for events throughout the rest of this example (i.e. the terminating event

of the Late Triassic is abbreviated LT

t

while the starting event is abbreviated LT

s

). To help

us unravel what happens during query processing, Figure 17 shows a table of the relevant �

prob

relationships between the event in the Trilobite tuple and the events in the Late Triassic and

Early Jurassic tuples. The Late Triassic tuple satis�es the overlap in the when clause because

Before(05; T; LT

t

) is true. Similarly, the Early Jurassic tuple satis�es the overlap in the when

clause because Before(05; EJ

s

; T) is also true.

However the valid clause for the Late Triassic tuple will not result in an event because Adjust

is unable to construct a plausible interval. Last(50;T;LT

s

) generates only the event T (T is always

Before LT

s

) while First(50;T; LT

t

) generates only the event LT

t

. But Adjust(50; T; LT

t

) requires

22

that overlap in determinate time are coalesced. It also stipulates that the extent of the resulting

coalesced indeterminate interval is maximal. The coalesced interval extends from the earliest to the

latest indeterminate event in the set of value-equivalent tuples that contribute to the coalescing.

The second conjunct ensures that the starting event is constructed from an actual indeterminate

event in the set of value-equivalent tuples that contribute to the coalescing. Finally, the third

conjunct ensures that the terminating event is also manufactured from an actual indeterminate

event in the set of value-equivalent tuples that contribute to the coalescing.

One feature of Reduce

0

is that it, rather arbitrarily, selects one particular history as the

history of an historical object. For example, if two indeterminate events for value-equivalent tuples

overlap, one event will be selected for inclusion in the history and the other will be discarded.

Alternatively, we could have de�ned Reduce

0

to construct a new indeterminate event that would

contain every possible event in both of the overlapping indeterminate events and a combined

probability distribution. We did not adopt this approach because it is unclear whether or not

probabilities from overlapping indeterminate events in value-equivalent tuples should be pooled

in the construction of a new event. Through projection, initially unrelated tuples may become

value-equivalent. There is no reason to pool the indeterminate event probabilities for such tuples

because such probabilities are also unrelated.

5.5 Semantics of the Example Query

At this point, the semantics of the retrieve statement have been speci�ed. As a review, the following

is the tuple calculus semantics of the query in Figure 9, using a default range credibility of 25 and

a default ordering plausibility of 50, as speci�ed using a set statement, and chosen for illustrative

purposes.

Reduce

0

(fu

3+1

j (9f) (9c) (Fossils(f) ^ Classi�cations(c)

^ u[1] = f [1] ^ u[2] = c[1] ^ u[3] = c[2]

^ u[4] = beginof (Adjust(50; Last(50; f [2]; Shrink l(25; c[3]));

First(50; f [2]; Shrink r(25; c[4]))))

^ f [1] = \Trilobite"

^ Before(05; f [2]; Shrink r(25; c[4]))^ Before(05; Shrink l(25; c[3]); f [2])

We have chosen this example because it illustrates both a temporal constructor and a temporal

predicate. The overlap appearing in the valid clause (a constructor) generates the Adjust on lines

three and four. The overlap in the when clause (a predicate) generates line six. The default range

credibility generates the Shrink function invocations.

There is one subtlety that should be mentioned. If the valid during variant is used, then

the valid clause for some queries might evaluate to an event h�; �i rather than to an interval. If

21

overlap(; h�; �i; h�; �i) = Adjust(; Last(; �; �); First(; �; �))

extend(; h�; �i; h�; �i) = Adjust(; First(; �; �); Last(; �; �))

First(; �; �) =

(

� if Before(; �; �)

� if Before(; �; �)

Last(; �; �) =

(

� if Before(; �; �)

� if Before(; �; �)

beginof (�; �) = h�; �i

endof (�; �) = h�; �i

Note that some of the temporal constructors are nondeterministic. For example First takes two

indeterminate events and determines which probably occurs �rst. Both events (or neither) could

occur �rst. If neither occurs �rst, then those events do not participate in the computation of an

output tuple. In the actual implementation, the \neither" event raises an exception that terminates

the evaluation of the temporal constructor. The last two temporal constructors do not depend on

, and so retain their original de�nitions.

5.4 Coalescing

Tuples in TQuel relations are assumed to be coalesced, in that tuples with identical values for the

explicit attributes (termed value-equivalent tuples [McKenzie & Snodgrass 1991]) neither overlap

nor are adjacent in determinate valid time. However, the tuples could overlap in indeterminate

valid time. The tuples produced by the retrieve statement are coalesced by the Reduce function.

Reduce

0

(R) = ft j 8r 2 R [(t � r ^ overlap(100; valid(r); valid(t))) !

(beginof (r) = ([�

1

; �

m

]; P

�

)

^ endof (r) = ([�

1

; �

n

]; P

�

)

^ beginof (t) = ([�

1

; �

k

]; P

�

)

^ endof (t) = ([�

1

; �

j

]; P

�

)

^ �

k

� �

m

^ �

1

� �

1

^ �

1

� �

1

^ �

n

� �

j

)]

^ 9u 2 R [t � u ^ overlap(100; valid(u); valid(t))

^ 9�(Shrink r(�; beginof (u)) = beginof (t))]

^ 9v 2 R [t � v ^ overlap(100; valid(v); valid(t)) ^

^ 9(Shrink l(; endof (v)) = endof (t))]g

Reduce

0

computes the minimal set of value-equivalent tuples, i.e., the set for which there are no

such tuples. The �rst conjunct ensures that valid time intervals of value-equivalent tuples in R

20

(a) Initially

1 20

12 31

(b) Shrinks for � = 25 and (100�) = 75

�

�

Shrink r(25,)

Shrink r(75,)

16

6

-

Shrink l(25,)

16

-

Shrink l(75,)

26

(c) Constructed Interval

1 16 31

Figure 15: The steps for Adjust(25; ([1; 20];Uniform); ([12; 31];Uniform)) from (a) to (c)

If the sets of possible events of the starting and terminating events overlap, the function will

shrink the sets of possible events so that they do not overlap. The shrinking process eliminates

some possible intervals. Thus the constructed indeterminate interval represents only a subset of all

the possible overlap intervals. The maximum amount that Adjust can shrink the sets of possible

events by is dictated by the value of .

The de�nition of Adjust(; �; �) is as follows.

Adjust(; �; �) =

8

>

>

>

<

>

>

>

:

h�; �i if Before(100; �; �)

hShrink r(�; �); Shrink l(�; �)i if Before(100; Shrink r(�; �); Shrink l(�; �))

^ :Before(100; �; �)

where � � (100�) satis�es

Before(100; Shrink r(�; �); Shrink l(�; �)) ^ :(9� < �)(Before(100; Shrink r(�; �); Shrink l(�; �))):

When the starting event is entirely before the terminating event, this function simply returns the

interval as is. If this is not the case, it attempts to isolate a plausibility, �, that is the minimum

amount each set of possible events needs to be shrunk by in order to construct a valid interval.

The maximum amount each event is allowed to be shrunk is given by (100�) (if = 100, the

Before should be true without any shrinking). If no such � exists, then no interval is constructed

because the construction would exceed the user chosen plausibility of the answer. Figure 15 shows

two events, how they overlap, and the interval the Adjust function constructs from those events.

As shown in the �gure, shrinking by the maximum possible amount, 100� or 75, could yield a

bigger determinate interval than is needed.

With Adjust one can de�ne the semantics of the temporal constructors.

19

s

3

s

4

s

2

s

1

�

100

�

�

��

@

100

@

@

@I

100

6

'

%�

100

%

' -

100

&

$

6

100

&

$

?

100

76

-

32

�

�

26

�

�

�	

�

78

�

�

��

@

70

@

@

@I

@

34

@

@

@R

�

0

�

�

�	

@

0

@

@

@R

0

?

Figure 13: Orderings of the events in Fossils by Before for several values of

 = 01

s

3

s

4

s

2

s

1

�

��

@

@I

6

� �

��

� �

�-

� �

�

6

�

�

�

?

-

�

�

�	

�

��

@

@I

@

@R

 = 33

s

3

s

4

s

2

s

1

�

��

@

@I

6

� �

��

� �

�-

� �

�

6

�

�

�

?

-

�

��

@

@I

@

@R

 = 50

s

3

s

4

s

2

s

1

�

��

@

@I

6

� �

��

� �

�-

� �

�

6

�

�

�

?

-

�

��

@

@I

 = 75

s

3

s

4

s

2

s

1

�

��

@

@I

6

� �

��

� �

�-

� �

�

6

�

�

�

?

-

�

��

 = 100

s

3

s

4

s

2

s

1

�

��

@

@I

6

� �

��

� �

�-

� �

�

6

�

�

�

?

Figure 14: Orderings of the events in Fossils by Before for several values of

18

�

prob

s

1

s

2

s

3

s

4

s

1

32 70 0

s

2

76 78 0

s

3

34 26 0

s

4

100 100 100

Figure 12: Table of � �

prob

� for the events in Fossils

1 (after scaling by 100) as 0. That is, it treats two events that have a small chance of occurring

before each other as well-ordered in time. To distinguish the well-ordered case from this other case,

we will de�ne the ordering probability to be 1 whenever its value as de�ned above, prior to taking

the oor, is between 0 and 1. Hence, to evaluate every possible ordering, however improbable, an

ordering plausibility of 1 su�ces.

The probabilistic ordering operator also assumes that there are no dependencies between the

probabilities associated with indeterminate events. It cannot be used to accurately compute the

probability of orderings such as (� �

prob

� �

prob

�).

Figure 12 shows the value of �

prob

for each pair of events in the relation Fossils. For instance,

s

1

�

prob

s

3

= 70. The table is graphically depicted in Figure 13. Each directed edge in a graph

indicates that the originating event is Before the terminating event. The label on the edge is the

plausibility in the relationship. The ordering relation for the events in Fossils depends on the

value of . The orderings given by di�ering values of are graphically depicted in Figure 14. Each

directed edge in a graph indicates that the originating event is Before the terminating event. Some

pairs of events are \indistinguishable"; that is each occurs Before the other. If no edge connects

two events, the events are \incomparable", neither occurs Before the other. Note that Before, for

 6= 100, is not a typical ordering relation in that it is neither transitive nor asymmetric, although

it is always reexive (Before for = 100 is transitive, asymmetric, and reexive for nonequivalent

events).

The new ordering relation is used to rede�ne the temporal predicates.

precede(; h�; �i; h�; �i) = Before(; �; �)

overlap(; h�; �i; h�; �i) = Before(; �; �) ^ Before(; �; �)

equal(; h�; �i; h�; �i) = Before(; �; �) ^ Before(; �; �)

^ Before(; �; �) ^ Before(; �; �)

To de�ne the temporal constructors, we need a new function, Adjust. Adjust is used to

construct \good" intervals. In a database of determinate events, the only constraint that an interval

must satisfy is that the starting event precede the terminating event. That is, the determinate

interval h�; �i must satisfy the relationship Before(�; �). With indeterminate events, however,

this constraint by itself is insu�cient. An indeterminate interval is valid only if the sets of possible

events do not overlap (or overlap on at most a single chronon). But the sets of possible events of

two indeterminate events that are in the relationship Before(; �; �) might overlap on more than

a single chronon. The Adjust function ensures that this condition is not violated by constructing

a valid indeterminate interval from a pair of indeterminate events if it is plausible to do so.

17

indeterminacy will be eliminated. The function then constructs an interval consisting of the pair

of the starting event and the ending event, each perhaps indeterminate.

As mentioned in Section 4.2 the semantics of the temporal constructor consisting solely of

a tuple variable associated with an event relation is unchanged. To simplify the semantics of the

temporal constructors and predicates to be presented shortly, we represent the event � (determinate

or indeterminate) as the pair h�; �i.

event(t) = ht

at

; t

at

i

This function extracts the at timestamp from the tuple and constructs an interval consisting of

two copies of the resulting event.

5.3 Supporting Ordering Plausibility

To support ordering plausibility we introduce a new ordering relation. The semantics of retrieve

without indeterminacy are based in part on a well-de�ned ordering of the valid time events in

the underlying relations [Snodgrass 1987]. The ordering is given by the Before relation (Before

is the \�" relation on the event times). In particular, the semantics of the temporal predicates

and constructors are all de�ned in terms of Before. We modify Before to include an additional

initial parameter, the ordering plausibility . The value of can be any integer between 1 and 100

(inclusive). The membership property for the relation Before is de�ned as follows.

Before(; �; �) =

8

<

:

TRUE (� is �) _ ((� �

prob

�) �)

FALSE otherwise

An event is de�ned to be Before itself, for all values of . Two events are said to be equivalent if

their sets of possible events span the same chronons and they have the same probability distribution.

Two equivalent, but not identical, events may or may not be Before one another, depending on .

Since each event appearing as an argument to Before originates in an underlying tuple, we can tag

these timestamps with their origin, and compare the tags in the Before function.

If the tags do not match, the binary in�x operator �

prob

determines the discrete probability

of one event occurring \before" another. For any two independent indeterminate events, � =

([�

1

; �

m

]; P

�

) and � = ([�

1

; �

n

]; P

�

),

� �

prob

� = b100� (

�

m

X

E

i

=�

1

�

n

X

E

j

=�

1

(if E

i

� E

j

then P

�

(E

i

)� P

�

(E

j

) else 0))c

where the possible events are ordered by the \�" operator on the integers. This formulation of

the probabilistic less than or equal to operator treats ordering probabilities that are between 0 and

16

Shrink l(01; �)

1 20

Shrink l(25; �)

5 20

Shrink l(50; �)

10 20

Shrink l(75; �)

15 20

Shrink l(100; �)

20

Figure 11: Shrink l(; ([1; 20]; Uniform)) for several values o f

that repeated shrinks will make progress. The new density function scales the probability of

each of the remaining chronons by the cumulative probability of the chopped chronons, so that

the probabilities sum to one. The new function is a conditional density function. That is, the

proabilities are conditioned by the fact that the set of possible events was shrunk. The de�nition

is complicated by the fact that both the representation and the probability distribution function

are discrete.

Shrink l is similar to Shrink r , but it removes the \early" members from an event's set of

possible events. Figure 11 shows the result of Shrink l for several values of applied to the same

indeterminate event as the previous �gure. Shrink l(; �) is de�ned as follows.

Shrink l(; ([�

1

; �

n

]; P

�

)) = ([�

l

; �

n

]; P

0

�

)

where

(9�

l

)[(�

1

� �

l

� �

n

^ SP

�

(�

l

) �)

^ :(9�

i

)(�

i

> �

l

^ SP

�

(�

i

) = SP

�

(�

l

))

^ :(9�

j

)(�

l

> �

j

^ SP

�

(�

l

) 6= SP

�

(�

j

) �)]

and P

0

�

is density function over [�

k

; �

n

] : P

0

�

(�

i

) = P

�

(�

i

)� 100=(100� SP

�

(�

l�1

)).

The intuitive meaning of this function is similar to that of Shrink r .

With these two functions, it is possible to de�ne the temporal constructor consisting entirely

of a tuple variable associated with an interval relation.

interval(; t) = hShrink l(; t

from

); Shrink r (; t

to

)i

This function extracts the from timestamp from the tuple, shrinks it by to create a \later"

set of possible events, extracts the to timestamp from the tuple, and shrinks it by to create an

\earlier" set of possible events, thereby e�ecting the range credibility. If = 100, then all historical

15

Shrink r(01; �)

1 20

Shrink r(25; �)

1 16

Shrink r(50; �)

1 11

Shrink r(75; �)

1 6

Shrink r(100; �)

1

Figure 10: Shrink r(; �) for event � = ([1; 20]; Uniform) and for several values of

5.2 Supporting Range Credibility

Range credibility changes the data that is available for query evaluation. In general, range cred-

ibility is used to eliminate some possible intervals from an indeterminate interval. It does so by

eliminating some possible events from both the starting and terminating events' set of possible

events. To support range credibility we introduce two \shrink" functions: Shrink r and Shrink l .

In general, the shrink functions compute a \shortened" version of an indeterminate event by shrink-

ing its set of possible events and modifying its probability distribution.

Shrink r computes an \earlier" set of possible events by removing some of the \late" members

from the set of possible events. How many members to remove is governed by the �rst argument, ,

the range credibility. Every possible event whose terminating probability fails to match or exceed

the level of credibility is removed. Higher values (closer to 100) of will remove more members

from the set. Shrink r(100; �) will remove every member except the earliest possible event in �.

Shrink r(0; �) will leave � unchanged. Figure 10 shows the result of Shrink r for several values of

 on an indeterminate event � = ([1; 20];Uniform). The function is de�ned as follows.

Shrink r(; ([�

1

; �

n

]; P

�

)) = ([�

1

; �

r

]; P

0

�

)

where

(9�

r

)[(�

1

� �

r

� �

n

^ TP

�

(�

r

) �)

^ :(9�

i

)(�

i

< �

r

^ TP

�

(�

i

) = TP

�

(�

r

))

^ :(9�

j

)(�

r

< �

j

^ TP

�

(�

r

) 6= TP

�

(�

j

) �)]

and P

0

�

is the new density function over [�

1

; �

r

]: P

0

�

(�

i

) = P

�

(�

i

)�100=(100�TP

�

(�

r+1

)).

Intuitively, the conditions on the function stipulate that the desired chronon is in a group of

chronons with the same terminating probabilities. This group is the latest group such that the

terminating probability of all the chronons later than the group falls below while the terminating

probability of the each chronon within the group matches or exceeds . The desired chronon

is the earliest chronon within this group. It is the earliest rather than an arbitrary chronon so

14

5 Semantic Extensions

We now turn to the semantics of the extensions; Section 6 will discuss their implementation.

5.1 Determinate TQuel semantics

The semantics for TQuel associates a tuple calculus statement with each TQuel retrieve statement,

ensuring that each construct has clear and unambiguous meaning [Snodgrass 1987]. Tuple relational

calculus statements are of the form ft

i

j 	(t)g, where the variable t denotes a tuple of arity i and

	(t) is a �rst-order predicate calculus expression containing only one free tuple variable t . The

tuple calculus statement for the skeletal TQuel retrieve statement

range of t

1

is R

1

� � �

range of t

k

is R

k

retrieve (t

i

1

:D

i

j

, : : :, t

i

r

:D

j

r

)

valid during �

where

when �

is

Reduce(fu

n+2

j (9t

1

) � � � (9t

k

) (R

1

(t

1

) ^ � � � ^ R

k

(t

k

)

^ u[1] = t

i

1

[j

1

] ^ � � � ^ u[r] = t

i

r

[j

r

]

^ u[r + 1] = beginof (�

�

) ^ u[r+ 2] = endof (�

�

)

^ 	

0

^ �

�

)

g)

Line 1 comes from the range statements. Line 2 is constructed from the target list. �

�

, appearing

in line 3, is a function over the valid time attributes of a subset of the tuple variables. The function

constructs a valid time interval using the temporal constructors given in the valid clause. Line 4

is constructed from the where clause. �

�

, appearing in line 5, is a predicate over the valid time

attributes of a subset of the tuple variables; it uses the temporal predicates and constructors given

in the when clause. The Reduce function ensures that tuples with identical values for all explicit

attributes that overlap in valid time or are contiguous are coalesced into a single resulting tuple.

For a retrieve statement that speci�es an event relation (valid at), the superscript on u in line 1

is n+ 1 and the endof in line 3 is omitted.

13

set default range credibility = 50

set default ordering plausibility = 50

retrieve (Name = f.Creature, Period = c.Period, Epoch = c.Epoch) with plausibility 83

valid at f overlap c with plausibility 65

where f.Name = "Trilobite"

when f overlap(05) c and c(100) precede(100) |175 million years ago|

with plausibility 75

Figure 8: Expressing ordering plausibility

retrieve (Name = f.Creature, Period = c.Period, Epoch = c.Epoch)

valid at f overlap c

where f.Name = "Trilobite"

when f overlap(05) c

Valid time

Name Period Epoch (at) Distribution

Trilobite Jurassic Early 209{202 Uniform

Figure 9: A sample query and its result

clauses are provided for those infrequent queries in which the default range or ordering plausibility

is not appropriate. If a plausibility phrase appears after the target list, it overrides the default

plausibility for that query only. The when clause ordering plausibility phrase applies to the entire

when clause unless superseded by a constructor or predicate plausibility. The valid clause ordering

plausibility phrase applies to the entire valid clause unless superseded by a constructor or predicate

plausibility. The temporal constructor and temporal predicate ordering plausibilities phrases apply

only to that predicate or constructor.

The retrieve statement in Figure 9 shows a plausibility value (05) for the temporal predicate

overlap. When this query is applied to the database shown in Figure 1, the relation shown in Fig-

ure 9 is computed. Intuitively, the query will determine, within certain plausibility and credibility

levels, the geologic epochs during which the Trilobite was formed. The where clause selects the

tuples from Fossils that are Trilobites (there is only one). The when clause selects those tuples

from Classifications that overlap the Trilobite fossil with a plausibility of 05 (in this example

the Late Triassic tuple and Early Jurassic tuple both qualify). Finally, the valid clause determines

when, within plausibility, the Trilobite fossil overlapped the geologic epoch. It turns out that only

the Early Jurassic epoch results in a valid event, as computed by the valid clause. We will discuss

in detail in Section 5.5 how this query is evaluated to obtain this result.

12

speci�cation of distributions is particularly helpful in optimizing both the representation and query

processing, and is also of intuitive value to the user.

The default range credibility and ordering plausibility are each 100. The defaults can be

changed using the set statement.

set default range credibility = 50

set default ordering plausibility = 33

This is very useful when a group of queries is to be made at a particular credibility level, or when

the credibility is to be speci�ed for a novice.

Range credibility appears (optionally) in the range statement. Below are two TQuel range

statements with range credibilities.

range of f is Fossils with credibility 50

range of c is Classifications with credibility 25

The range credibility is the credibility in each valid time in the speci�ed interval relation. The

credibility applies independently to the starting and terminating events in the interval. It can be

any integer value between 0 and 100 (inclusive). The credibility phrases are optional, in which case

the default credibility is used.

The range credibility initially ascribed to a tuple variable in a range statement for an interval

relation with indeterminacy may be overridden for a particular use of the tuple variable by following

the tuple variable name with the new range credibility in parentheses. An example will be given

shortly.

Range credibility is not applicable to event relations because removing indeterminacy from

an indeterminate event might require partitioning the event.

We extend the syntax of the retrieve statement to allow the user to express a level of plau-

sibility in the answer constructed by retrieve. The ordering plausibility may be speci�ed either

for the entire when predicate and valid constructor or for a particular temporal predicate or con-

structor, in which case it appears in parentheses immediately after the operator. The ordering

plausibility is speci�ed with an integer between 1 and 100 (inclusive). The credibility phrases are

optional. The two (not extremely useful) statements in Figure 8 use all possible variants, as well

as an override of c's range credibility to 100, originally speci�ed as 50. The constant event |175

million years ago| is also indeterminate; the starting and terminating chronons, as well as the

probability distribution function, are inferred from the speci�ed constant.

If no ordering plausibility phrase appears, the default plausibility, speci�ed by the most recent

set statement, is used. We anticipate that this will be the case most of the time; the multiple with

11

may be composed of logical connectives, temporal constructors, and temporal predicate operators.

Temporal constructors are unary or binary operators that take one event, two events, or two

intervals as arguments and return an event or an interval. The unary constructors are begin of

and end of. They return the starting and ending event of an interval, respectively. The binary

constructors are overlap and extend. overlap returns the period when two intervals intersect in

time while extend is analogous to the temporal union of two intervals. Temporal predicate operators

are binary in�x operators that take events or intervals as arguments and return a Boolean value.

The three temporal predicate operators are precede, overlap and equal. Note that overlap is

overloaded; it is both a predicate and a constructor.

In the example query, pairs of Trilobite tuples and the Classifications with which they

overlap are candidates for the target relation. The valid clause constructs the valid time for the

tuples in the target relation. In this case, the valid time of each target tuple is the overlap between

the Trilobite fossils and the geologic classi�cations. The other attributes in the target relation are

speci�ed by the target list: the Name, the Period and the Epoch. The valid clause speci�es either a

tuple variable or a temporal constructor; valid at speci�es that an event relation is being derived,

and valid during speci�es a derived interval relation. An as of clause is not required when the

query is evaluated on historical relations.

4.2 Extensions for Historical Indeterminacy

We make four extensions to TQuel, one to indicate that a relation is indeterminate, one to specify

the range credibility, one to specify the ordering plausibility, and one to specify defaults.

Our �rst extension to TQuel involves the schema speci�cation statements. In the create state-

ment we add the modi�er indeterminate before the keywords event and interval to indicate

that the (valid time) timestamps may be indeterminate; the distribution is initially assumed to be

uniform. In the modify statement we provide clauses that allow either the starting or ending time

(or both) to be speci�ed as either determinate or indeterminate, and in the latter case to specify a

distribution that applies to all tuples in the relation. The following statements might be used for

the historical database shown in Figure 1.

create indeterminate event Fossils (Creature: string)

create indeterminate interval Classifications (Period: string; Epoch: string)

modify Fossils to Uniform distribution

With the modify statement, it is also possible to specify the duration of the indeterminate event

intensionally. In that case, the terminating chronon need not be stored; it can be computed from

the starting chronon and this duration.

The semantics of these extensions are straightforward. The intensional information con-

cerning the determinacy of the timestamps is recorded in the system catalogue. The intensional

10

Valid time

Creature (at) Distribution

s

5

Unidenti�ed 185{195 Uniform

s

6

Carnivorous 185{195 Uniform

s

7

fSpinosaurus,

Kentrosaurusg

185{195 Uniform

Figure 7: Examples of value indeterminacy

that is most appropriate for their application.

4 Retrieving Possible Tuples in TQuel

This section describes the syntax for retrieving information from databases with historical indeter-

minacy; the next section provides a formal semantics for these constructs. The proposed syntax

and semantics are an extension of the syntax and semantics of the retrieve statement in the TQuel

temporal query language [Snodgrass 1987]. A primary design goal in extending TQuel to support

historical indeterminacy was to make a minimal extension. It will be shown in Section 5.6 that the

new syntax and semantics preserves the meaning of all extant TQuel retrieve statements.

4.1 Review of TQuel

We assume that the reader is familiar with TQuel and the tuple calculus; we provide a quick review

of TQuel's retrieve statement. The interested reader will �nd many examples as well as a complete

description of the syntax and semantics elsewhere [Snodgrass 1987]. An example retrieve statement

that determines the geologic epoch of Trilobite fossil is shown in Figure 9. The retrieve statement

has several components: the target list , specifying how the attributes of the relation being derived

are computed from the attributes of the underlying relations; a valid clause, specifying the valid

time of tuples in the target relation; a where clause, specifying a relationship that must be satis�ed

among the explicit attributes (those visible to the user) of the participating tuples; a when clause,

specifying a relationship among the valid time attributes of the participating tuples; and an as of

clause that performs a rollback on the temporal database.

In the example, the default rollback was used, referring to the current state of the database.

Since rollback concerns transaction time while historical indeterminacy only concerns valid time,

the as of clause will not be discussed further; its syntax and semantics are unchanged in TQuel

with historical indeterminacy.

The where clause in this example speci�es that the only kind of Fossils to be considered

are Trilobites. The where clause is also una�ected by historical indeterminacy and will not be

discussed further. The when clause matches Trilobites with geologic classi�cations by testing for

overlap (overlap can be thought of as temporal intersection). The predicate in the when clause

9

3.4 Indeterminate Tuples

The data model we propose is an extension of the TQuel data model [Snodgrass 1987]. The

TQuel data model supports temporal relations. A temporal relation may be thought of as a

sequence of historical states, each of which is a complete historical relation. The rollback operation

on a temporal relation selects a particular historical state, on which an historical query may be

performed. For the purposes of this paper, we will assume that a temporal relation is embedded

in a snapshot relation by adding two implicit attributes. The value of the �rst attribute speci�es

a valid time while the value of the second attribute speci�es a transaction time. Thus, tuples in

relations in the database are timestamped with both transaction and valid times.

The granularity of a transaction time timestamp is the smallest inter-transaction time, the

chronon during which a transaction takes place is always known. Hence transaction times are

always determinate; historical indeterminacy occurs only in valid time. We will largely ignore

transaction time in this paper. The example database (Figure 1) shows two historical relations

with implicit valid time attributes only.

A valid time timestamp can either be an event or an interval. An indeterminate tuple is

timestamped with either an indeterminate event or an indeterminate interval. Since the model

assumes tuple rather than attribute-value timestamping, each indeterminate tuple represents a set

of possible tuples . A possible tuple is a tuple in which the indeterminate event (interval) is replaced

with a possible event (interval). Like a possible event and a possible interval, a possible tuple has

no historical indeterminacy.

One consequence of tuple timestamping is that tuples in relations are \row-independent",

that is, no information is shared between indeterminate tuples. An anticipated use of historical

indeterminacy is to represent approximate changes in the historical state of a relation. For example,

in the Classifications relation shown in Figure 1, the event representing the transition from the

Early Jurassic to the Middle Jurassic is present in two tuples, one as the terminating event and

one as the starting event. The set of possible events 189{182 million years ago is conceptually

shared between the two tuples. However, the possible tuples model makes no overt provisions for

sharing indeterminate information between tuples because such provisions signi�cantly increase

the computational complexity of query processing. Instead, each tuple is independent of the other

tuples in the relation, and no inter-tuple temporal requirements, such as the probabilities of the

sets of possible events associated with a key must sum to one, are imposed or ensured.

3.5 Other Kinds of Indeterminacy

In the possible tuples model, historical indeterminacy is orthogonal to other sources of incomplete-

ness [Motro 1990]. In particular, it can peacefully coexist with value indeterminacy, where the

value of an attribute (as opposed to a timestamp) is not fully known [Dubois & Prade 1988]. For

example, in the Fossils relation, we may have a fossilized tooth that has not yet been identi�ed

(s

5

in Figure 7), has been partially identi�ed (s

6

restricts the fossilized tooth to belong to the spec-

i�ed class of animals), or has been narrowed down to a set of possibilities (s

7

) [Barton 1989]. We

advocate separating the various kinds of indeterminacy, so that users can choose the combination

8

Terminating Event

 Possible
 Intervals

Starting Event

1 642 3 50 7

Figure 6: The possible intervals implicit in an indeterminate interval

An indeterminate interval represents a set of possible intervals , one of which is the \real"

interval, but which is unknown. A single possible interval is obtained by replacing each bounding

indeterminate event with a possible event (see Figure 6). Every combination of possible events in

the starting and terminating events for an indeterminate interval is in the set of possible intervals.

For every indeterminate interval, every member of the set of possible events for the starting

event must be before every member in the set of possible events in the terminating event. This

ensures that every possible interval in an indeterminate interval is a valid interval. That is, a

possible interval cannot terminate before it starts, as might happen if the sets of possible events

overlapped. There is one exception to this maxim; the sets of possible events in the bounding

events can overlap on a single chronon. As a result, each possible interval must span at least one

chronon, and some possible intervals might span only that single chronon.

Thus far we have only considered indeterminate intervals bounded by indeterminate events.

What of indeterminate intervals that have determinate events as one or both bounding events?

Since indeterminate events can be used to model determinate events, no special provisions are

needed to handle determinate bounding events.

7

0

100

50

2 3 40 1
Time Line

Probability

5

0

100

50

2 3 40 1
Time Line

Probability

5

Figure 5: The starting and terminating probabilities

given in Figure 3. The starting probability is de�ned to be:

SP

�

(�

k

) = b100�

k

X

i= �1

P

�

(�

i

)c

Note that the starting probability is expressed as an integral percentage. For each chronon in

a set of possible events the cumulative probability that the event occurs on or after it is called

the terminating probability for that chronon. Figure 5 shows the terminating probabilities for

the distribution given in Figure 3. The terminating probability is also expressed as an integral

percentage:

TP

�

(�

k

) = b100�

1

X

i=k

P

�

(�

i

)c

In the terminology of probability theory, the function that computes the starting probability is the

cumulative density function for the event random variable, scaled by 100, while the terminating

probability is the (scaled) cumulative density function computed for the \reversed" set of possible

events and density function. Note that for all indeterminate events � = [�

1

; �

n

], SP

�

(�

n

) = 100

and TP

�

(�

1

) = 100.

While the terminology used in the possible tuples model suggests a di�erence between inde-

terminate and determinate events, it is instructive to note that indeterminate events can be used

to model determinate events. A determinate event is modeled by an indeterminate event with a

set of possible events that contains a single chronon. In this case, the starting and terminating

probabilities for that chronon are 100.

3.3 Indeterminate Intervals

An interval bounded by indeterminate events (called the starting and terminating events) is termed

an indeterminate interval . An indeterminate interval could start during any chronon in the set

of possible events of the starting event. Likewise, the indeterminate interval could end during

any chronon in the set of possible events of the terminating event. Since it is unknown precisely

when the starting or terminating events happen, it follows that it is unknown precisely when an

indeterminate interval begins or ends.

6

0

1

.5

2 3 40 1
Time Line

Probability

5

Figure 3: A probability distribution for an indeterminate event

Time Line

Probability

(b)

Probability

(a)

Figure 4: Example application-speci�c probability distribution functions

The event probability distribution could be a continuous or a discrete function. Recall, how-

ever, that chronons are the smallest unit of time. Therefore a discrete distribution that has a

probability for each chronon is su�cient. Figure 3 depicts a \probably early" distribution, de�ned

over chronons �

1

through �

n

; P

�

(�

i

) is the value of this function for chronon �

i

. The dashed line in

the �gure shows the discrete probabilities. The event probability distribution for an indeterminate

event is supplied by the user; the default distribution is uniform probability. As shown in Section

4.2, we allow users to provide probability distributions relevant to their application. For example,

Figure 3 might illustrate the probability that a performer is \gonged" on The Gong Show (the per-

formance is likely to end early). The time of occurrence of a reported heart attack might have the

\probably late" distribution shown in Figure 4.a (most heart attacks are reported soon after they

occur). A promotion event in a personnel relation might have the distribution shown in Figure 4.b

(promotions occur during the business day, except at lunch; they occur at a higher probability in

the afternoon, and at a much-reduced probability after the mail is picked up at 4:15pm).

For each chronon in a set of possible events the cumulative probability that the event occurs on

or before it is called the starting probability (SP

�

(�

i

)) for that chronon. Figure 5 shows the starting

probabilities for each chronon in the indeterminate event with the event probability distribution

5

Fuzzy Interval

 Possible
 Events

2 3 410 5
Chronons

Figure 2: The possible events represented by an indeterminate event

3.2 Indeterminate Events

The duration of events in the real world is between \instantaneous" and \inde�nite." But in the

possible tuples model, events that have durations of less than a chronon cannot be accurately

represented, since a chronon is the smallest representable unit of time. Nor can real world events

that last more than a chronon (although use of an interval may su�ce in such cases). The model

treats real world events as though they have a duration of a single chronon.

An event is determinate if it is known when (i.e., during which chronon) it occurred. A

determinate event cannot overlap two chronons. If it is unknown when an event occurred, but

known that it did occur, then the event is indeterminate. Two pieces of information completely

describe an indeterminate event: a set of possible events and an event probability distribution.

A set of possible events is a set of contiguous chronons. The set is well-ordered. A single

chronon from this set denotes when the indeterminate event actually occurred. Each chronon in

a set of possible events represents a possible event . A possible event is a determinate event that

might have occurred. Figure 2 illustrates a set of possible events. Here, there are �ve possible

events shown: the one occurring during chronon 0, the one occurring during chronon 1, the one

during chronon 2, the one during chronon 3, and the �nal one occurring during chronon 4. One

of the possible events is determinate, but which is unknown. In this paper, we will represent a set

of possible events that extends from chronon c

1

to chronon c

n

using the notation [c

1

; c

n

]. The

indeterminate event shown in Figure 2 is associated with the set of possible events [0; 4].

Although an indeterminate event represents a set of possible events, not all the possibilities

are equally likely. For instance, it could be that the event most likely happened earlier than the

median of the set of possible events. In this case, the possible events that lie in the early half of

the set of possible events are more probable. An event probability distribution gives the probability

that the event occurred during each member in the set of possible events. In the terminology of

probability theory, this distribution is the density function for the event random variable. We

represent an event probability distribution for an event � with the notation P

�

. Also, we denote

the indeterminate event � by the ordered pair ([�

1

; �

n

]; P

�

), where [�

1

; �

n

] is the set of possible

events for � and P

�

is the event probability distribution for �; P

�

(�

i

) is zero if �

i

< �

1

or �

n

< �

i

.

4

likely that it started between 238{236 million years ago (the normal distribution favors ages near

the mean possible age). A typical user might only be interested in those Late Triassic intervals that

started between 238{236 million years ago, ignoring those that began earlier. In the possible tuples

data model, the user can express this preference by selecting an appropriate range credibility value.

The chosen range credibility changes each valid time interval in an historical relation, restricting

the range of the interval. E�ectively, non-credible starting and terminating times are eliminated

to the chosen level of credibility during query processing, allowing the user to control the quality

of the information used in the query.

Ordering plausibility controls the construction of an answer to the query using the pool of

credible information. For instance, a paleontologist might query during which epochs it is plau-

sible that the Trilobite fossil was formed. Intuitively such a query relaxes the constraints on the

relationship between the epoch intervals and the age of the fossil sample from \absolutely sure of

overlap?" to \is it plausible that they overlap?". It is plausible that the Trilobite could have been

formed during the Late Triassic or the Early Jurassic, but it is impossible to be absolutely sure of

either. It turns out that the Early Jurassic is more plausible.

In part, ordering plausibility allows the user to express a level of plausibility in a temporal

relationship (e.g., how plausible is it that the formation of the Trilobite preceded the start of the

Early Jurassic?). But since queries can contain temporal constructors, ordering plausibility also

controls construction of the answer to the query.

We believe that there is a natural division between indeterminacy in the data and indetermi-

nacy in the query. The possible tuples model allows the user to control both kinds of indeterminacy.

Range credibility and ordering plausibility are not orthogonal controls. Range credibility massages

the information from which a plausible answer to the query is constructed.

3 Extending the Data Model with Indeterminacy

In this section, we discuss how historically indeterminate events and intervals are represented. We

make some concessions to practicality by employing discrete representations of time and probability.

In Section 6, we make a few additional approximations to achieve e�ciency.

3.1 Time

The possible tuples model quantizes a continuous time-line into discrete chronons . The chronons

are contiguous, well-ordered, and in a one-to-one correspondence with the integers. A chronon is

the smallest representable unit of time. We do not assume a speci�c granularity or chronon size;

a chronon may be of any duration (e.g., nanoseconds, years, Chinese imperial dynasties). This

feature allows the implementation to choose the necessary granularity. The granularity should not

be dictated by the data model. We also assume that the implementation supports only a single

chronon size; multiple granularities will be handled by representing the indeterminacy explicitly.

3

Fossils(Creature)

Valid time

Creature (at) Distribution

s

1

Pleliasauras 211{204 Uniform

s

2

Trilobite 209{202 Uniform

s

3

Clamshell 224{200 Uniform

s

4

Stegasauras 180{170 Uniform

Classi�cations(Period, Epoch)

Valid time

Period Epoch (from) Distribution (to) Distribution

Triassic Middle 250{250 Normal 245{218 Normal

Triassic Late 245{218 Normal 215{204 Uniform

Jurassic Early 215{204 Uniform 189{182 Uniform

Jurassic Middle 189{182 Uniform 170{156 Normal

Figure 1: An historical database

age in the interval of recorded ages is equally likely. The equal likelyhood assumption is actually

encoded in the tuple, it is the \Uniform" value in the Distribution attribute of each tuple in

Fossils. Since all of the distributions are the same, this information could be encoded in the

schema, as will be discussed in Section 4.2. In general, though, each valid time event might

have a di�erent distribution. Because radioactive dating is one method of determining geologic

epochs, it is also imprecisely known when each epoch began or ended. Some of the distributions

associated with the valid time events are \Normal" (bell-shaped curve) distributions. We assume

that the normal distributions in this example are parameterized by values that specify their mean

and standard deviation; we do not include these parameters here. We also do not claim that the

speci�c distributions used in this example are realistic; ours were chosen purely for expository

purposes.

A typical user might be interested in retrieving the geologic epoch corresponding to the age

of the Trilobite fossil (we give such a query in Section 5.5). In TQuel, she could query to determine

which geologic epochs \overlap" the valid time of the Trilobite fossil. Overlap is the operation of

temporal intersection. Note that some fossils could have been formed in more than one epoch. For

example, the Trilobite could have been formed during the Late Triassic or Early Jurassic.

There are two stages to determining an answer to a query. The �rst stage retrieves the data

that is relevant to the query. The second stage constructs an answer that satis�es the constraints

speci�ed in the query. We provide separate controls for each stage.

Range credibility changes the information available to query processing. For instance, it is

very unlikely that the Late Triassic started between 245{243 million years ago; it is much more

2

1 Overview

An historical database records the history of an enterprise. It associates with each event a times-

tamp indicating when that event occurred. Often a user knows only approximately when an event

happened. For instance, she may know that it happened \between 2 PM and 4 PM", \on Friday",

\sometime last week", or \around the middle of the month". These are examples of historical

indeterminacy . Information that is historically indeterminate can be characterized as \don't know

when" information, or more precisely, \don't know exactly when" information. We believe that

this type of knowledge is prevalent.

Temporal databases should provide support for historical indeterminacy. In particular, times-

tamps should include a representation for historical indeterminacy; users should be able to control,

via query language constructs, the amount of indeterminacy present in derived information, and

the query evaluator should accommodate historical indeterminacy in its processing. Query evalua-

tion e�ciency should remain high in the presence of historical indeterminacy, and it should not be

a�ected at all in its absence. E�cient query evaluation is especially challenging, since timestamp

manipulation is in the \inner loop" of query evaluation; it is performed several times for each

participating tuple.

This document describes the possible tuples data model. The model adds valid time historical

indeterminacy to TQuel [Snodgrass 1987]. TQuel is a strict superset of Quel, the query language

for Ingres [Stonebraker et al. 1976]. TQuel has a complete, formal semantics which we extend to

support historical indeterminacy. We could have extended SQL [Melton 1990]. While there are

numerous proposed temporal extensions of SQL, none of these extensions have a complete, formal

semantics. In addition, the temporal database research community has yet to adopt a common

model for research purposes. Since Quel is theoretically equivalent to SQL, our ideas can be applied

to both languages.

The next section introduces the example that will be used throughout the paper. We then

examine the representation of historical indeterminacy, and explore what it means to retrieve

information from a database with historical indeterminacy. Emphasis is placed on providing a

simple and intuitive retrieval method. Next we outline syntactic extensions to TQuel, followed by

a formal tuple calculus semantics for the retrieve statement. The sixth section is a discussion of

implementation issues. We show speci�cally how to represent historical indeterminacy in minimal

space, and how to e�ciently implement the ideas presented in the previous sections. The �nal

sections trace related work, summarize our approach, and discuss future work.

2 Motivating Example

An historical geological database is shown in Figure 1. The database consists of the relation

Fossils, a collection of fossil samples that have been dated using a radioactive dating technique,

and the relation Classifications, a history of geologic epochs. The valid time for each tuple

is on a scale of millions of years in the past. Since radioactive dating techniques are inherently

imprecise, the age of each fossil is indeterminate. For instance, the Trilobite fossil was formed

sometime between 209{202 million years ago. For this relation we will assume that each possible

1

8 Summary and Future Work 29

ii

Contents

1 Overview 1

2 Motivating Example 1

3 Extending the Data Model with Indeterminacy 3

3.1 Time : 3

3.2 Indeterminate Events : 4

3.3 Indeterminate Intervals : 6

3.4 Indeterminate Tuples : 8

3.5 Other Kinds of Indeterminacy : 8

4 Retrieving Possible Tuples in TQuel 9

4.1 Review of TQuel : 9

4.2 Extensions for Historical Indeterminacy : 10

5 Semantic Extensions 13

5.1 Determinate TQuel semantics : 13

5.2 Supporting Range Credibility : 14

5.3 Supporting Ordering Plausibility : 16

5.4 Coalescing : 20

5.5 Semantics of the Example Query : 21

5.6 Query Reducibility : 23

6 Implementation 24

6.1 Representing Indeterminacy : 25

6.2 Query Evaluation Algorithms : 26

7 Related Work 27

i

Copyright
c
 Curtis E. Dyreson and Richard T. Snodgrass 1992

Historical Indeterminacy

1

Historical Indeterminacy

Curtis E. Dyreson

1

Richard T. Snodgrass

1

TR 91-30a

Revised April 21, 1992

Abstract

In historical indeterminacy, it is known that an event stored in a temporal database did in

fact occur, but it is not known exactly when the event occurred. We present the possible tuples

data model, in which each indeterminate event is represented with a set of possible events

that delimits when the event might have occurred, and a probability distribution over that set.

We extend the TQuel query language with constructs that specify the user's credibility in the

underlying historical data and in the user's plausibility in the relationships among that data.

We provide a formal tuple calculus semantics, and show that this semantics reduces to the

determinate semantics. We outline an e�cient representation of historical indeterminacy, and

e�cient query processing algorithms, demonstrating the practicality of our proposed approach.

1

Department of Computer Science

University of Arizona

Tucson, AZ 85721

fcurtis,rtsg@cs.arizona.edu

