
proc prepareToCommit(tid)

var t: int # index into the status table

# search transaction table for entry for tid. let t be index of entry

: : :

# write modified objects to the "non-current" copy

fa i := 1 to statusTable[t].numDataItems ->

ss.write(statusTable[t].dataAddrs[i] + (currentPointers mod 2 + 1),

sizeof(data), statusTable[t].memCopy[i])

af

free(statusTable[t].memCopy)

end prepareToCommit

proc commit(tid)

var t: int # index into the status table

# search transaction table for entry for tid, let t be index of entry

: : :

# if entry cannot be found, return---transaction has committed already

: : :

if statusTable[t].transStatus = 'A' -> # transaction hasn't committed yet

# replace current pointers of data items by new current pointers

fa i := 1 to statusTable[t].numDataItems ->

ss.write(statusTable[t].dataAddrs[i], sizeof(int),

(currentPointers mod (sizeof(data)+1) + 1))

af

statusTable[t].transStatus := 'D' # mark transaction as done

fi

if statusTable[t].transStatus = 'D' -> # cleanup

ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])

lockManager.unlock(tid, statusTable[t].dataAddrs)

statusTable[t].transStatus := 'E' # mark table slot as being empty

ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])

fi

end commit

Figure 11: prepareTocommit and commit Operations
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proc read(tid, dataAddrs, data, numDataItems);

# search transaction table for entry for tid. let t be index of entry

: : :

fa i := 1 to numDataItems ->

j = 1;

do (statusTable[t].dataAddrs[j] != dataAddrs[i] ->

j++

od

data[i] = statusTable[t].memCopy[j]

af

end read

Figure 10: read Operation

items in the stable store to point to the new version written by prepareToCommit. Following this,

the status of the transaction is changed to done (‘D’) in both the volatile and stable storage versions. The

data items are then unlocked. Finally, the transaction status is changed to empty (‘E’), with the change

being reflected onto stable store as well. Since the transaction manager that co-ordinates the various

data managers may re-issue commits when recovering from a failure, the commit operation may be re-

executed in part or in total an arbitrary number of times given inopportune failures. Our implementation

takes this into account by constructing this operation as a restartable action. The abort operation is

similar to the commit and is therefore omitted for brevity.
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Appendix B: Implementation of the Data Manager Resource

Here we present the rest of the procs exported by the data manager described in Section 4. As outlined

there, the data manager keeps track of all in-progress transactions in a status table transStatus.

proc startTransaction(tid, dataAddrs, numDataItems)

var t: int # index into the status table

P(statusTableMutex);

# find an empty slot t in the statusTable

: : :

statusTable[t].transStatus := 'A' # mark transaction as active

statusTable[t].tid := tid V(statusTableMutex);

# acquire locks on data items

lockManager.lock(tid, dataAddrs)

statusTable[t].memCopy := new(dataArray)

statusTable[t].numItems := numDataItems

fa i := 1 to numDataItems ->

statusTable[t].dataAddrs[i] := dataAddrs[i]

ss.read(objectAddrs[i], sizeof(int), currentPointer)

statusTable[t].currentPointers[i] := currentPointer

ss.read(dataAddrs[i]+currentPointer, sizeof(data), statusTable[t].memCopy[i])

af

# write status table entry onto stable store

ss.write(statusTable + t*sizeof(transInfoRec), sizeof(trans), statusTable[t])

end startTransaction

Figure 9: startTransaction Operation

Figure 9 shows startTransaction. The proc first finds an empty slot in the statusTable, i.e.

a slot with a transStatus of ‘E’, and marks it as being actively used (‘A’) by transaction tid. The

lock manager is then invoked to acquire locks on the data items. The status table entry is updated next;

specifically, the address of the data array is assigned to memCopy and the numItems field is initialized.

Information concerning each data item is then stored after being retrieved from stable storage if necessary;

this information includes the address of the data item, its value, and its currentPointer. Finally, the

appropriate status table entry on stable storage is updated. Once a transaction is started, the data items

it uses may be accessed and modified using the read and write operations. These operations use the

copy of the data items in volatile memory. Figure 10 shows read; the write operation being very

similar is not shown here.

The prepareToCommit and commit operations are shown in Figure 11. prepareToCommit

is invoked when the transaction is ready to commit; it writes all the data items from the copy in volatile

storage to the “non-current” copy in stable storage, and then discards the copies in volatile memory. The

commit operation commits the modifications by changing the offset indicators of the appropriate data
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resource buffer

op fetch() returns value: int

op deposit(val newvalue: int)

body buffer(size: int)

var first, last: int := 0, 0

var slot[0:size - 1]: int

initial

send buff loop()

end

proc buff loop()

do true ->

in deposit(newvalue) and first != (last + 1) % size ->

slot[last] := newvalue

last := (last + 1) % size

2 fetch() returns value and first != last ->

value := slot[first]

first := (first + 1) % size

ni

od

end

end

Figure 8: Bounded Buffer
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semantics, however, depending on how the proc is invoked (see below). The process terminates when

(if) either its statement list terminates or a return is executed.

An operation can also be implemented as an alternative of an input statement. An input statement

implementing a collection of operations opname1, opname2, : : :, opname
n

has the following form:

in opname1(parameters) -> op body1

2 opname2(parameters) -> op body2

: : :

2 opname

n

(parameters) -> op body

n

ni

A process executing an input statement is delayed until there is at least one alternative opname
i

for which

there is a pending invocation. When this occurs, one such alternative is selected non-deterministically,

the oldest pending invocation for the chosen alternative is selected, and the corresponding statement list

is executed. The input statement terminates when the chosen alternative terminates.

An operation is invoked explicitly using a call or send statement, or is implicitly called by its

appearance in an expression. The explicit invocation statements are written as

call op denotation(arguments)

send op denotation(arguments)

where the operation is denoted by a capability variable or by the operation name if the statement is in the

operation’s scope. An operation can be restricted to being invoked only by a call or a send by appending

a fcallg or fsendg operation restrictor to the declaration of the operation.

Execution of a call terminates once the operation has been executed and a result, if any, returned.

Its execution is thus synchronous with respect to the operation execution. Execution of a send statement

is, on the other hand, asynchronous: a send terminates when the target process has been created (if a

proc), or when the arguments have been queued for the process implementing the operation (if an input

statement). Thus, the effects of executing the various combinations of send/call and proc/in are described

by the following table.

Invocation Implementation Effect

call proc procedure call

send proc process creation

call in rendezvous

send in asynchronous message passing

To illustrate how the individual pieces of the language fit together, consider the implementation of

a bounded buffer shown in Figure 8. Two operations are exported from this resource: deposit and

fetch; deposit places a value in the next available slot if one exists, while fetch returns the oldest

value from the buffer. A depositing process is delayed should the buffer be full. Similarly, a fetching

process is delayed whenever the buffer is empty. Note also that the resource has a parameter size; its

value determines the number of slots in the buffer. The use of resource parameters in this way allows

instances to be created from the same pattern, yet still vary to a certain degree. Finally, note the single

input statement to implement both the deposit and fetch operations, and the use of a send statement in

the initialization code to initiate the main (parameterless) proc buff loop. Creating a process in this

manner is so common that the keyword process can be used instead of proc as an abbreviation for the

send in the resource initialization code and corresponding op declaration.
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Appendix A: The SR Distributed Programming Language

An SR program consists of one or more resources. These resources can be thought of as patterns from

which resource instances are created dynamically. Each resource is composed of two parts: an interface

portion which specifies the interface of the resource and a body, which contains the code to implement

the abstract object. The specification portion contains descriptions of objects that are to be exported

from this resource—made available for use within other resources—as well as the names of resources

whose objects are to be imported. Of primary importance are the declaration of operations—actions

implemented by sequences of statements that can be invoked. These declarations specify the interface of

those operations that are available for invocation from other resources. For example,

op example1(var x: int; val y: bool)

declares an operation, example1, that takes as arguments an integer x that is passed with copy-in/copy-

out (var) semantics and a boolean y that is copy-in only (val). Result parameters (res) are also supported,

as are operations with return values.

The declaration section in the resource body together with its specification define the objects that are

global to the resource, i.e., accessible to any process within the resource. All of the usual types and

constructors are provided. In addition, there are capability variables. Such a variable functions either

as a pointer to all operations in a resource instance (a resource capability), or as a pointer to a specific

operation within an instance (an operation capability). A variable declared as a resource capability is

given a value when a resource instance is created, while an operation capability is given a value by

assigning it the name of an operation or from another capability variable. Once it has a value, such

variables can be used to invoke referenced operation(s), as described later.

The resource instances comprising a given program may be distributed over multiple virtual machines,

which are abstract processors that are mapped to physical machines in the network. A resource instance

is created and placed on a virtual machine using the following:

res cap := create res name(arguments) on virtual machine cap

Execution of this statement creates an instance of the resource res name on the virtual machine specified

by the virtual machine capability virtual machine cap and assigns a capability to the newly created

resource to the capability variable res cap.

An operation is an entry into a resource. An SR operation has a name, and can have parameters and

return a result. There are two different ways to implement an operation: as a proc or as an alternative in

an input statement. A proc is a section of code whose format resembles that of a conventional procedure:

proc opname(parameters) returns result

op body

end

The operation body op body consists of declarations and statements. Like a procedure, the declarations

define objects that are local to the operation opname. Unlike a procedure, though, a new process is

created, at least conceptually, each time opname is invoked. It is possible to get standard procedure-like
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Systems like Rajdoot [PS88] provide some support for restartable actions in the form of orphan detection

and termination, allowing the programmer to re-issue invocations to servers. These systems, however,

make no provision for replication.

We feel that FT-SR provides an appropriate level of abstractions for a systems programming language.

These abstractions are primitive enough to give the programmer the ability to build all other abstractions,

yet powerful enough to be able to do so with relative ease. Such flexibility allows FT-SR to be used for

a variety of different applications and system architectures. We also expect that the primitive nature of

these abstractions will allow them to be efficiently implemented, an important consideration for a systems

programming language.

7 Concluding Remarks

A distributed programming language designed to support the construction of fault-tolerant systems must

be flexible enough to allow a variety of structuring and redundancy techniques. FT-SR has been de-

signed to be such a language by incorporating facilities targeted at supporting the various programming

paradigms that have been proposed for such systems. These include support for encapsulation based

on SR resources, synchronous and asynchronous failure notification, resource replication with consistent

invocation ordering, and recovery. The logical basis of the language design is a programming model

centered around the notion of fail-stop atomic objects.

Future work will concentrate on the task of completing the implementation and using the language

to construct a number of different prototype systems. This process will be used to gain experience with

the language that can be used to refine and expand the design. Among the additional issues that we

expect to address are the expansion of our failure-handling mechanisms into a general exception handling

scheme oriented towards the specific nature and requirements of distributed programming languages, and

the incorporation of provisions for real-time computing.
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fault-tolerant programming. In particular, FT-SR provides the abstraction of a simple FS atomic object

and two categories of language mechanisms: those that deal with failure recovery and those that deal

with group management. A simple FS atomic object may be combined with these language mechanisms

in a variety of ways to realize the abstractions provided by the different programming paradigms. For

example, as illustrated in our banking example, an object with a recovery section can be used to implement

a restartable object. Similarly, the FT-SR create statement can be used to group objects to form a stable

object such as stable storage. In addition, FT-SR gives the programmer the ability to create groups

where the degree of replication is automatically maintained and the ability to restart entire groups after

a catastrophic failure.

Other programming languages that have been proposed for fault-tolerant programming differ from

FT-SR in that they provide support for only a limited number of these abstractions. Argus [Lis85], for

instance, provides its users with the atomic object/action abstraction. The Argus language runtime system

therefore has to implement all the other underlying abstractions except stable storage, which it assumes is

provided by the hardware. Languages with checkpointing primitives also assume the existence of stable

storage and implement in the language runtime the mechanics of checkpointing. As another example,

languages like FTCC [CGR86] provide the programmer with the ability to create and manage object

groups and, as a result, the ability to build stable objects, but lack support for building restartable objects.
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manage intra-virtual machine communication. The portion of the runtime system that manages virtual

machines and inter-virtual machine communication resides inside the kernel. Among the most significant

modules in the kernel space are the Communication Manager, the Virtual Machine Manager, and the

VMFD. The Resource Manager, the Group Manager, the Invocation Manager, and the RFD reside in

each of the virtual machines and form the bulk of the runtime system. The communication paths between

these modules are also shown in Figure 6.

6 Discussion

The various programming paradigms that have been developed for fault-tolerant distributed systems

provide the programmer with system structuring techniques and abstractions for the problem being solved.

The relationship between these abstractions can be illustrated by arranging them in a hierarchy, such

that every member of the hierarchy is built using the abstractions directly below it. This hierarchy is

shown in Figure 7, where the circles represent abstractions defined by the programming paradigms, the

rectangles represent the abstractions and mechanisms provided by FT-SR, and the labelled boxes at the

bottom represent the portion of the FT-SR runtime system that implement the language’s abstractions and

mechanisms.

From this figure, it is clear that FT-SR does indeed provide the fundamental abstractions that underlie
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has been made to keep the implementation as efficient as possible. For example, whenever possible, the

implementation takes advantage of the fact that the processors can only suffer from fail-silent failures

and that the maximum number of simultaneous failures max sf is known a priori.

Failure Detection and Notification. Failure detection and notification is the single most important

difference between FS atomic objects and SR resources. Failure detection is initiated in one of two

ways: when a resource explicitly asks to be notified of a failure using the monitor statement, or when

the communication module of the runtime system cannot complete an invocation and suspects a failure.

Depending on how the failure detection was initiated, the runtime system either notifies the user program

of the failure by generating an implicit invocation of the operation specified by the monitor statement,

or, if a backup operation has been supplied with an invocation, the invocation is forwarded to the backup

operation.

Failure detection in FT-SR is done at two levels: at the virtual machine level and at the resource level.

Every processor in the distributed system has a physical machine failure detector (PMFD) that monitors

the physical machines in the system and notifies the VM Manager of any failures. The VM Manager

monitors the virtual machines on the processor on which it is executing for termination, and can, with

the cooperation of other VM Managers and the failure notifications from the PMFD, detect the failure of

any virtual machine on the network due to processor crashes. Resource level failure detection is done

at each virtual machine by a resource failure detector or RFD. An RFD is analogous to the VMFD in

function: it monitors resources on the virtual machine and, with the help of other RFDs on other virtual

machines, can detect the failure of any resource in the system.

Replication and Recovery. FT-SR provides two mechanisms for increasing failure resilience: replica-

tion and recovery. For replication, the most interesting aspect of the implementation is managing group

communication, since messages sent to the group as a result of invocations have to be multicast and de-

livered in a consistent total order. The technique we use is similar to [CM84, KTHB89, GMS89], where

one of the replicas is a primary through which all messages are funneled. Upon receiving a message, the

primary adds a sequence number and multicasts it to the members of the group. As soon as the primary

gets max sf acknowledgements, it sends an acknowledgment to the original sender of the message; this

action is appropriate since the receipt of max sf acknowledgements guarantees that the message will

not be lost even with multiple failures. The primary is also involved when messages are sent by the

group as a whole. The runtime system suppresses group invocations from all group members except the

primary. When the primary receives acknowledgements for these invocations it multicasts them to the

group members.

Supporting recovery involves (1) restarting the resource instance, either as a result of an explicit

request or due to its declaration as persistent, (2) ensuring that the recovery code is executed, and (3)

correctly starting the delivery of new invocations. Actually implementing (1) and (2) are fairly easy

since the requirements for restarting a resource instance are very similar to creating one initially. For a

persistent resource, this is preceded by the selection of a backup virtual machine from the list supplied

during initial creation to act as the new host.

Figure 6 shows the organization of the FT-SR runtime system on a single processor. The imple-

mentation uses the x-kernel [HMPT89, PHOR90], a stand-alone operating system kernel that provides

memory and process management, as well as a flexible infrastructure for constructing communication

protocols. Each FT-SR virtual machine exists in an x-kernel address space and contains those parts of

the runtime system that create and destroy resources, route invocations to operations on resources, and
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resource main

imports transManager, dataManager, stableStore, lockManager

body main

var virtMachines[4] : cap vm # array of virtual machine capabilities

dataSS[2], tmSS: cap stableStore # capabilities to stable stores

lm: cap lockManager; dm[2]: cap dataManager # capabilities to lock and data managers

virtMachines[1] := create vm() on ``host1''

virtMachines[2] := create vm() on ``host2''

virtMachines[3] := create vm() on ``host3'' # backup machine

virtMachines[4] := null

# create stable storage for use by the data managers and the transaction manager

dataSS[1] := create (i := 1 to 2) stableStore() on virtMachines

dataSS[2] := create(i := 1 to 2) stableStore() on virtMachines

tmSS := create (i := 1 to 2) stableStore() on virtMachines

# create lock manager on ``host2''

lm := create lockManager() on virtMachines[2]

# create data managers

fa i := 1 to 2 ->

dm[i] = create dataManager(i, lm, ss1) on virtMachines[i]

af

# create transaction manager

tm = create transManager(dm[1], dm[2], ss3) on virtMachines[1]

end main

Figure 5: System startup in Resource main

The main resource that starts up the entire system is shown in Figure 5. Resource main creates a

virtual machine on each of the three physical machines available in the system. Three stable storage

objects are then created, where each such object has two replicas and uses the virtual machine on “host3”

as a backup machine. The two data managers are then created followed by the transaction manager.

Notice how the system is created “bottom up,” with the objects at the bottom of the dependency graph

being created before the objects on which they depend. This way, each object can be given capabilities

to the objects on which it depends upon creation.

5 Implementation Strategy

There are two major aspects in which FT-SR differs from SR: the support for using resources as FS

objects, and the support for techniques that enhance failure resilience. Accordingly, we focus in this

section on describing those parts of the FT-SR language runtime system that provide this support. It is

worth keeping in mind that, since FT-SR is designed to be a systems programming language, every effort
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they can be found in Appendix B.

We now turn to implementing the stable storage assumed in the above. One way of realizing this

abstraction is by using the state machine approach, that is, by creating a storage resource and replicating

it to increase failure resilience. Figure 4 shows such a stable store resource; for simplicity, we assume

that storage is managed as an array of bytes.

persistent resource stableStore

uses globalDefs

op read(address: int; numBytes: int; buffer: charArray)

op write(address: int; numBytes: int; buffer: charArray)

op sendState(sscap: cap stableStore)

op recvState(objectStore: objList)

body stableStore

var store[MEMSIZE]: char

process ss

in read(address, numBytes, buffer) -> copy(buffer, store[address], numBytes)

2 write(address, numBytes, buffer) -> copy(store[address], buffer, numBytes)

2 sendState(rescap) -> send rescap.recvState(store)

ni

end ss

recovery

send mygroup().sendState(myresource())

receive recvState(store)

send ss

end recovery

end stableStore

Figure 4: stableStore Resource

Replica failures are dealt with by restarting the resource on another machine; this is done automatically

since stableStore is declared to be a persistent resource. The recovery code that gets executed in

this scenario starts by requesting the current state of the store from the other group members. All replicas

respond to this request by sending a copy of their storage state; the first response is received, while the

other responses remain queued at the recvState operation until the replica is either destroyed or fails.

The newly restarted replica begins processing queued messages when it is finished with recovery. Since

messages are queued from the point that its sendState message was sent to the group, the replica can

apply these subsequent messages to the state it receives to reestablish consistency with the state of the

other replicas.

The stable store may also be implemented as a primary-backup group by adding a fprimaryg re-

striction to the read and write operations. The process ss would then send the updated state to the

rest of the group at the end of each operation by invoking a recvState operation on the group. This

operation would be implemented by extending the input statement in ss to include this operation as an

additional alternative.
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body dataManager

type transInfoRec = rec(tid: int; transStatus: int

dataAddrs: addressList #address of data in stable store

currentPointers: intArray

memCopy: ptr dataArray #pointer to in-core copy of data

numItems: int)

var statusTable[1:MAX TRANS]: transInfoRec; statusTableMutex: semaphore

initial

# initialize statusTable

: : :

monitor(ss)send failHandler()

monitor(lmcap)send failHandler()

end initial

proc startTransaction(tid, dataAddrs, numDataItems)

: : :code for startTransaction: : :

end startTransaction

proc prepareToCommit(tid)

: : :code for prepareToCommit: : :

end prepareToCommit

proc commit(tid)

: : :code for commit: : :

end commit

proc abort(tid)

: : :code for abort: : :

end abort

proc read/write(tid, dataAddrs, data)

: : :code for read/write: : :

end abort

proc failHandler()

ss.read(statusTable, sizeof(statusTable), statusTable);

transManager.dmUp(dmId);

end failHandler

recovery

destroy myresource()

end recovery

end dataManager

Figure 3: Outline of the Data Manager Resource
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resource dataManager

uses globalDefs

imports lockManager, stableStore

op startTransaction(tid: int; dataAddrs: addrList; numDataItems: int)

op read(tid: int; dataAddrs: addrList; data: dataList; numDataItems: int)

op write(tid: int; dataAddrs: addressList; data: dataList; numDataItems: int)

op prepareToCommit(tid: int), commit(tid: int), abort(tid: int)

body dataManager(dmId: int; lmcap: cap lockManager; ss: cap stableStore) separate

Figure 2: Specification for resource dataManager

implemented as procs; thus, invocations result in the creation of a thread that executes the statements in

the proc concurrently with other threads. Finally, the data manager contains initial and recovery code,

as well as a failure handler proc that deals with the failure of the lockManager and stableStore

resources.

To implement the atomic commitment of the transaction, the data manager utilizes the standard

technique of maintaining two versions of each data item together with an indicator of which is current

[BHG87]. To simplify our implementation, we maintain this indicator and the two versions in contiguous

memory locations, with the indicator being an offset and the address of the indicator used as the logical

address of the item. Thus, the actual address of the current copy of the item is calculated by taking the

address of the item and adding to it the indicator offset.

The data manager keeps track of all in-progress transactions in a status table. This table contains

for each active transaction the tid, the status (transStatus), the stable storage addresses of the data

items being accessed by the transaction (dataAddrs), the value of the indicator offset of each item

(currentPointers), a pointer to an array in volatile memory containing a copy of the data items

(memCopy), and the number of data items being used in the transaction (numItems). This table can be

accessed concurrently by threads executing the procs in the body of the data manager, so the semaphore

statusTableMutex is used to achieve mutual exclusion. New entries in this table also get saved on

stable storage for recovery purposes. Reads and writes during execution of the transaction are actually

performed by the data manager on versions of the items that it has cached in its local (volatile) storage.

The data manager depends on the stable storage and lock manager to correctly implement its op-

erations. As a result, it needs to be informed when they fail in such a way that the abstraction they

implement is destroyed. The data manager does this by establishing an asynchronous failure handler

failHandler for both of these events in the initial code by using the monitor statement. When in-

voked, failHandler terminates the data manager resource, thereby causing the failure to be propagated

to the transaction manager.

The failure of the data manager itself is handled by recovery code that retrieves the current contents

of the status table from the stable store. It is the responsibility of the transaction manager to deal with

transactions that were in progress at the time of the failure; those for which commit had not yet been

invoked are aborted, while commit is reissued for the others. To handle this, the recovery code sends a

message to the transaction manager notifying it of the recovery.

The procs implementing the other data manager operations do not use any of the FT-SR primitives

specifically designed for fault-tolerant programming and are therefore not shown here. For completeness,
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a new instance. This means, for example, that other resource instances can invoke its operations using

any capability values for it that they possessed prior to the failure.

Implicit restarting of failed resource instances is also supported. This is designed to allow a resource

group to automatically regain its original level of redundancy following a failure. Automatic restart is

indicated by the presence of the keyword persistent on the resource declaration and the inclusion of more

virtual machines in the vm list of the original create statement than the number of replicas actually

created. Then, should a virtual machine executing one of the instances of the resource group fail, the

system will select one of these backup virtual machines and recreate the failed instance automatically.

The arguments supplied during the recreation are the same as those used for the original creation.

The one remaining issue concerning restart is determining when the runtime of the recovering resource

instance begins accepting invocations from other instances. In general, the resource is in an indeterminate

state while performing recovery, so we choose to begin accepting messages only after the recovery code

has completed. The one exception to this is if the recovering instance itself initiates an invocation during

recovery; in this case, invocations are accepted starting at the point that invocation terminates. This is

to facilitate a system organization in which the recovering instance retrieves state variables from other

resources during recovery.

4 Programming with FT-SR

In this section, we present an example program that illustrates how FT-SR can be used to program a

simple fault-tolerant system that uses multiple programming paradigms. The example consists of the

data manager and stable storage objects from the banking system described in Section 2. As outlined

there, the data manager implements a collection of operations that provide transactional access to data

items located on a stable store. The organization of the manager itself is based on the restartable action

paradigm, with key items in the internal state being saved on stable storage for later recovery in the

event of failure. After describing portions of the data manager, we then show how stable storage can be

built by replicating a storage resource, with the replicas being configured using either the replicated state

machine approach or a primary-backup scheme.

The data manager controls concurrent accesses and provides atomicity for access to data items on

stable storage. For simplicity, we assume that all data items are of the same type and are referred to by

a logical address. The stable store is read by invoking its read operation, which takes as arguments the

address of the block to be read, the number of bytes to be read, and a buffer in which the values read

are to be returned. Data is written to the stable store by invoking an analogous write operation, which

takes as arguments the starting address of the block being written, the number of bytes in the block, and

a buffer containing the values to be written.

Figures 2 and 3 show the specification and an outline of the body of such a data manager. As can be

seen in its specification, the data manager imports a stable store and lock manager resource and exports

six operations: startTransaction, read, write, prepareToCommit, commit, and abort.

The operation startTransaction is invoked by the transaction manager to access data held by the

data manager; its arguments are a transaction identifier tid and a list of addresses of the data items used

during the transaction. read and write are used to access and modify objects. The two operations

prepareToCommit and commit are invoked in succession upon completion to, first, commit any

modifications made to the data items by the transaction, and, second, terminate the transaction. abort

is used to abandon any modifications and terminate the transaction; it can be invoked at any time up to

the time commit is first invoked. Note that all of these operations exported by the data manager are
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atomically, so that either all replicas receive the invocation or none do. This property is guaranteed by

the runtime given no greater than max sf simultaneous failures, where max sf is a parameter set by the

user at compile time. The combination of the atomicity and consistent ordering properties means that an

invocation using a resource group capability is equivalent to an atomic broadcast [CAS85 , MSMA90].

In addition to this facility of dealing with invocations coming into a resource group, provisions are

also made for coordinating invocations generated within the group. There are two kinds of invocations

that can be generated by a group member. In some cases, a group member may wish to communicate

with a resource instance as an individual even though it happens to be in a group. For example, this

would be the situation if each replica has its own set of private resources with which it communicates.

At other times, the group members might want to cooperate to generate a single outgoing invocation on

behalf of the entire group. To distinguish between these two kinds of communication, FT-SR provides an

owns clause that can be used in a resource specification to specify private resources. The owns clause

is similar to the imports clause and is meaningful only in the context of replicated groups (when used

by a non-replicated resource, owns is identical to imports). All invocations from a group member to

its “owned” resources are considered private communication and not co-ordinated with other invocations

from group members. However, invocations to “imported” resources are considered to be invocations

from the entire group, so exactly one invocation is generated in this case. The invocation is actually

transmitted when one of the group members reaches the statement, with later instances of the same

invocation being suppressed by the language runtime system. Note, however, that this invocation could,

in fact, be a multicast-type invocation as described above if the operation being invoked is within another

resource group (i.e., if the capability used in the statement is a resource group capability).

In an analogous manner, if an “owned” resource is created by a member of a group, the resource

instance created is completely independent of any created by other replicas. On the other hand, the

creation of an “imported” resource causes only one resource to be created with all replicas getting the

same capability as the return value.

A resource group can also be configured to work according to a primary-backup scheme [Dim85].

In this scenario, invocations to the group are delivered only to a replica designated as the primary by

the language runtime, with the other replicas being passive. This type of configuration is achieved by

placing the op restrictor fprimaryg on the declaration of operations in the group members that are to be

invoked only if the replica is the primary.

FT-SR also provides the programmer with the ability to restart resource instances that were executing

on failed virtual machines. The recovery code to be executed upon restart is denoted by placing it

between the keywords recovery and end in the resource text. This syntax is analogous to the provisions

for initialization and finalization code in the standard version of SR. A resource instance may be restarted

either explicitly or implicitly. Explicitly, it is done by the following statement:

restart rescap(args) on vm list

This restarts the resource indicated by the capability rescap and executes the specified recovery code;

if no recovery code has been given, a run-time error is raised. To restart an entire resource group,

restart (i:=1 to N) groupcap(args) on vm list

is used. The size of the reconstituted group can be different from the original. In both cases, it is

important to note that the restarted resource instance is, in fact, a recreation of the failed instance and not
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invocation if the resource implementing the operation fails. Both call and send invocations are guaranteed

to succeed in the absence of failures.

FT-SR also provides the programmer with asynchronous failure notification, which can be requested

by using the monitor statement. The statement

monitor(res cap) send fail handler(args)

enables monitoring of the resource instance specified by the resource capability res cap. If that resource

should subsequently fail, the operation fail handler will be implicitly invoked with the specified

arguments by the language runtime system. The expressions provided for argument values are evaluated at

the time the monitor statement is executed and not when the failure occurs. Monitoring can be terminated

by the monitorend function, which also takes a resource capability as its argument or by another monitor

statement that specifies the same resource. The ability to request asynchronous notification has proven to

be convenient and is in keeping with the inherently asynchronous nature of failures themselves [SCP91].

3.2 Increasing Failure Resilience

FT-SR provides mechanisms for supporting the construction of more resilient, higher-level FS atomic

objects using replication, and for increasing the resilience of objects using recovery techniques. The

replication facilities allow multiple copies of an FT-SR resource to be created, with the language and

runtime providing the illusion that the collection is a single resource instance exporting the same set of

operations. The SR create statement has been generalized to allow for the creation of such replicated

resources, which we call a resource group. The statement

rescap := create (i := 1 to N) res(args) on vm caps

creates a resource group with N identical instances of the resource res on the virtual machines specified

by the array of virtual machine capabilities vm caps. Both the quantifier (i := 1 to N) and on

clauses are optional. If the quantifier is omitted, the statement reverts to the semantics of the normal

SR statement, which creates one instance of the named resource; if the on clause is omitted, all of the

instances are created on the current virtual machine.1

The value returned from executing the create statement is a resource capability that provides access to

the operations implemented by the new resource(s). If a single resource instance is created, the capability

allows the holder to invoke any of the exported operations in that instance as provided for in normal SR.

If, on the other hand, multiple identical instances are created, the capability is a resource group capability

that allows multicast invocation of any of the group’s exported operations. In other words, using this

capability in a call or a send statement causes the invocation to be multicast to each of the individual

resource instances that make up the group. All such invocations are guaranteed to be delivered to the

runtime of each instance in a consistent total order, although the program may vary this if desired. This

means, for example, that if two operations implemented by alternatives of an input statement are enabled

simultaneously, the order in which they will be executed is consistent across all functioning replicas unless

a scheduling expression by the programmer overrides this explicitly. Moreover, the multicast is also done

1This is the natural generalization of the standard SR semantics, although obviously not especially useful for increasing

failure resilience to processor crashes.
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3 FT-SR Language Description

The goal of FT-SR is to support the building of systems based on the FS atomic object model, and thus,

by implication, the building of systems using any of the existing programming paradigms. Given the

need for flexibility, we do not provide these objects directly in the language, but rather include features

that allow them to be easily implemented. To this end, the language has provisions for encapsulation

based on SR resources, resource replication, recovery protocols, synchronous failure notification when

performing interprocess communication, and a mechanism for asynchronous failure notification based on

a previous scheme for SR [SCP91]. Since our extensions are based on existing SR mechanisms, a short

overview of the language is provided in Appendix A; for further details, see [AOC+88].

3.1 Simple FS Atomic Objects

Realizing much of the functionality of a simple FS atomic object—i.e., one not composed of other objects

or using any other failure resilience techniques—in SR is straightforward since a resource instance is

essentially an object in its own right. For example, it has the appropriate encapsulation properties, and

is populated by a varying number of processes that can function as threads in the FS atomic object

model. SR operations are also very similar to the operations defined by the model; they are implemented

by processes and can be exported for invocation by processes in other resource instances. Moreover,

the execution semantics of SR operations are already close to those desired for FS atomic objects; the

only additional property required is atomicity in the absence of failures, that is, atomicity with respect to

concurrent execution. This can easily be programmed in SR by, for example, implementing each exported

operation as a separate alternative in an input statement repeatedly executed by a single process. Standard

locking-based solutions that allow more concurrency while maintaining the semantics of atomicity are

also easy to implement in SR.

The one aspect of simple FS atomic objects that SR does not support directly—and hence the focus

of our extensions in this area—is generation of a failure notification upon failure of the abstraction. For

simple objects, this occurs when the virtual machine on which the resource instance is executing is lost

due to a processor failure or network partition, or if it is explicitly destroyed from within the program. In

Section 5, we discuss how this failure is detected by the language runtime code, so here we concentrate

on describing the mechanisms that are provided to field this notification in other resource instances. These

facilities allow an abstract object to react to the failure of other objects on which it depends.

FT-SR provides the programmer with two different kinds of failure notification and consequently, two

different ways of fielding a notification. The first kind is notification that is synchronous with respect to

a call to a resource; it is fielded by an optional backup operation specified in the calling statement. The

following program fragment illustrates the use of such a backup operation:

call <operation, backupOp>(arg1, arg2, : : :, argN)

The operation backupOp is invoked should the call to operation fail, where a call is defined to

fail if the resource instance implementing the operation being invoked fails before it can reply to the

call. The backup operation is called with the same arguments as the original operation and, hence,

must be type compatible with the original operation. Execution is blocked if a call fails and there is no

associated backup operation. Note that such backup operations can only be specified with call invocations;

send invocations are non-blocking and no guarantees can be made about the success or failure of such an
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failures of objects upon which they depend. If such a failure cannot be tolerated, it may, in turn, cause

subsequent failures to be propagated up the dependency graph. At the top level, this would be viewed

by the user as the catastrophic failure of the transaction manager and hence, the system. Such a situation

might occur, for example, should the redundancy being used to implement stable storage be exhausted

by an untimely series of failures. In Section 4, we illustrate how the data manager and stable storage FS

atomic objects from this example might be implemented using FT-SR.

Fail-stop atomic objects and the associated techniques for increasing failure resilience form, in our

view, a “lowest common denominator” that can be conveniently used to realize the seemingly disparate

programming paradigms proposed for fault-tolerant programming. For example, consider the object/action

model. In this model, there are two types of components, objects and actions. Objects are passive entities

that export operations, whereas actions are active entities akin to threads that invoke a series of operations

from potentially different objects to carry out their tasks. An action has the following properties related

to execution atomicity [Lam81]. First, it is unitary, that is, it is either executed completely or not at all,

despite failures; second, it is serializable, that is, the effect of executing multiple actions concurrently

is equivalent to some serial schedule. These properties have also been called totality and serializability

[Wei89], and recoverability and indivisibility [Lis85]. In the database literature, atomic actions are known

as transactions [BHG87].

A system using the atomic object/action paradigm may be implemented using FS atomic objects.

Objects in the system correspond to FS atomic objects. An action corresponds to an abstract thread

realized by the combination of concrete threads in the FS atomic objects. This abstract thread may span

multiple FS atomic objects as a result of invocations made by concrete threads that are serviced by

concrete threads in other objects. Standard locking and commit protocols are used to ensure the unitary

and serializable nature of these actions across multiple objects. Viewed as a whole, this system appears

to the user as one FS atomic object exporting the set of operations required by the application.

As a second example, consider the replicated state machine paradigm. In this paradigm, a system is

implemented as a collection of interacting state machines. Each such machine consists of state variables,

which encode its state, and commands, which transform its state. Each command is implemented by a

deterministic program that modifies the state variables and/or produces some output. Command executions

are atomic and any outputs produced are determined solely by the sequence of commands processed by

the state machine. A fault-tolerant version of a state machine can be implemented by replicating that

state machine and running each replica on a different processor in a distributed system. All available

replicas must receive all commands sent to the replicated state machine (the agreement property) and

must process them in the same sequence (the order property).

State machines map directly to FS atomic objects. Commands to the state machine correspond to

invocations on an FS atomic object, with locking techniques being used to ensure that the operation

executions are atomic. A replicated state machine can be implemented by replicating FS atomic objects

and ensuring that all commands to the state machine result in invocations on all replicas in a consistent

order. Each ensemble of replicated FS atomic objects forms a higher-level FS atomic object representing

the fault-tolerant version of a given state machine. The entire collection of such FS atomic objects can

then be viewed as a single FS atomic object that implements the entire system.

The system shown in Figure 1 is an example of a system in which FS atomic objects are used to

implement different programming paradigms in different parts of the system. Specifically, the transaction

and data managers are built using the restartable action paradigm, while the stable storage objects are

built using the replicated state machine approach. The user of the banking system sees the system as one

implementing the atomic object/action paradigm and interacts with it accordingly.
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Figure 1: Fault-tolerant system structured using FS atomic objects

its machine.

The user interacts with the transaction manager, which in turn uses the data managers and a stable

storage object to implement transactions. The role of the transaction manager is to be the coordinator,

deciding if and when a transaction is to be committed; it uses the stable storage object to log the progress

of transactions in the system. The data managers export operations that are used by the transaction

manager to deal with transactions on that host. The stable storage associated with each data manager is

used to store the actual data corresponding to user accounts, and to maintain key values that can be used

to restore the state of the data manager should a failure occur. The lock managers are used to control

concurrent access.

To increase the overall dependability of the system, the constituent FS atomic objects would typically

be constructed using fault-tolerance techniques to increase their failure resilience. For example, the

transaction and data managers might use recovery protocols to ensure that data in the system is restored

to a consistent state following failure. Similarly, stable storage might be replicated to increase its failure

resilience. The failure notification aspect of FS atomic objects is used to allow objects to react to the
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and describes how its features facilitate the implementation of fail-stop atomic objects using commonly

accepted techniques. The use of the language is illustrated in Section 4 with the presentation of a data

manager and associated stable storage. Section 5 provides an overview of the implementation strategy

currently being used to construct the language, while Section 6 discusses the features that distinguish it

from other languages proposed for fault-tolerant programming. Section 7 offers some conclusions.

2 Fail-Stop Atomic Objects

As mentioned, our programming model is based on the abstraction of a fail-stop (or FS) atomic object.

Such an object contains one or more threads of execution, which implement a collection of operations that

are exported and made available for invocation by other FS atomic objects. Higher-level FS atomic objects

may, in turn, be constructed by composition. When invoked, an operation exported by an FS atomic

object executes as an atomic action as long as no failures occur. In the event of a failure that results in the

loss of the object’s ability to implement operation atomicity, a detectable failure notification is generated;

the status of an operation being executed when such a failure notification occurs is indeterminate. This

notification could be generated, for example, if the processor on which the object is executing crashes,

or if a lower-level constituent object fails. This notification aspect, which is one of the properties that

distinguishes FS atomic objects from regular atomic objects [Lis85], is intended to allow for the possibility

that the abstraction might, in fact, fail to hold under certain circumstances. This reflects the reality that

there is always some non-zero probability that an abstraction may not be maintained should, for example,

multiple failures occur simultaneously. Hence, the analogy to fail-stop processors implied by the term

“fail-stop atomic objects” is strong: in both cases, either the abstraction is maintained (atomic object or

processors) or notification is provided.

A fault-tolerant, distributed system can be realized by a collection of FS atomic objects organized

along the lines of functional dependencies. For example, an FS atomic object implementing the services

of a transaction manager may use the operations exported by another FS atomic object implementing

the abstraction of stable storage [Lam81]. These dependencies can be defined more formally using the

depends relation given in [Cri91]. In particular, an FS atomic object u is said to depend on another

object v if the correctness of u’s behavior depends on the correctness of v’s behavior. Thus, the failure

of v may result in the failure of u, which in turn can lead to the failure of other objects that depend

on u. Increasing the dependability of a distributed system organized in this way is done by decreasing

the probability of failure of the FS atomic objects out of which it is composed. We informally call this

measure the failure resilience of an object.

The failure resilience of an FS atomic object can be increased using standard fault-tolerance techniques

based on the exploitation of redundancy. For example, an object can be replicated to create a new FS

atomic object with greater failure resilience. This replication can either be active, where the states of

all replicas remain consistent, or passive, where one replica is a primary and others remain quiescent

until a failure occurs. Or, an FS atomic object can contain a recovery protocol that would be executed

upon restart following a failure to complete the state transformation that was in effect when the failure

occurred. The applicability of each of these techniques depends on the details of the system or the

application being implemented.

As an example of how a typical fault-tolerant system might be structured using FS atomic objects,

consider the simple distributed banking system shown in Figure 1. Each box represents an FS atomic

object, with the dependencies between objects represented by arrows. User accounts are assumed to be

partitioned across two processors, with each data manager object managing the collection of accounts on
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1 Introduction

Ensuring the dependability of computer systems—that is, that the system delivers services on which

people can rely [Lap91]—is an increasingly important issue. One key aspect of this problem is the

development of techniques and support systems for constructing fault-tolerant, distributed programs that

can continue to execute despite the failure of one or more processors in a distributed system. Such

programs are intimately tied to the problem of increasing dependability, since many systems in a variety

of areas ranging from databases to process control are, in fact, fault-tolerant distributed programs of one

kind or another.

Constructing programs of this type is undeniably difficult, which has led to research in a variety of

areas aimed at systematizing and simplifying various aspects of the task. For instance, failure models have

been developed as a means for precisely specifying assumptions made about the possible effect of failures.

Examples of popular failure models include fail-stop [SS83], timing [Cri91], fail-silent [PVB+88], and

Byzantine [LSP82]. Another area has been the development of programming paradigms, which simplify

the development of certain types of fault-tolerant, distributed programs by providing canonical system

organization techniques and abstractions for that type of problem. Examples of popular programming

paradigms include the object/action model [Gra86], the restartable action paradigm [Lam81], and the

replicated state machine approach [Sch90].

In this paper, we focus on a third area related to simplifying the construction of fault-tolerant dis-

tributed programs, that of providing adequate programming language support. Specifically, we present

the design of FT-SR, a programming language based on SR [AOC+88] that is designed for writing

fault-tolerant, distributed systems. FT-SR is unique in that it has been designed to be a multi-paradigm

language, that is, a language that can support equally well any of the multiple programming paradigms

that have been developed for this type of system. This is done by providing support for constructing

fail-stop atomic objects. Like an atomic object, execution of operations implemented by these objects

is atomic, i.e., all or nothing. However, unlike standard definitions of atomic objects, we allow the

possibility that the atomicity abstraction may fail, for example, should the redundancy being used in its

implementation be exhausted. In this case, the object stops executing in a detectable way. This new type

of object is a common link between paradigms since each of their fundamental abstractions is actually

a fail-stop atomic object, with apparent differences being due to either varying failure assumptions or

implementation techniques. Here, we concentrate on processors with fail-silent semantics, although the

approach generalizes to other failure models as well.

The orientation towards a multi-paradigm approach distinguishes FT-SR from other languages [Lis85 ,

EFH82, LW85], language extensions [SCP91, CGR86, KU87] and language libraries [BSS91, Coo85,

PS88, HW87] related to fault-tolerance, which are typically oriented around a particular paradigm. Sup-

port for a single paradigm has been shown to be constraining in many situations [Bal91 ], and is particularly

inappropriate for constructing systems, where different paradigms may be used at different levels of ab-

straction. Moreover, the development of such a multi-paradigm language for fault-tolerant programming

can be viewed as analogous to the evolution of standard distributed programming languages, which have

progressed from languages such as CSP [Hoa78] and Concurrent Pascal [BH75] that support only a single

synchronization paradigm to those such as Ada [DoD83] and SR that support multiple approaches.

This paper is organized as follows. In Section 2, we first describe fail-stop atomic objects and the

programming model that results from considering these as the primary abstraction. We also argue that

this model is a “lowest common denominator” for the various programming paradigms, and hence, a

realistic basis for the design of a multi-paradigm language. Section 3 then outlines the design of FT-SR
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Abstract

The design of FT-SR, a programming language oriented towards constructing fault-tolerant distributed

systems, is presented. The language, which is based on the existing SR language, is unique in that it

has been designed to be a multi-paradigm language that can support equally well any of the various

programming paradigms that have been developed for this type of system. These paradigms include

the object/action model, the restartable action paradigm, and the replicated state machine approach.

To do this, the language is designed to support the implementation of systems modeled as collections

of fail-stop atomic objects; such objects either execute operations as atomic actions, or fail in a

detectable way. It is argued that this model forms a common link among the various paradigms and

hence, is a realistic basis for a multi-paradigm language. An example program consisting of a data

manager and its associated stable storage is also given; the manager is built using the restartable action

paradigm, while the stable storage is structured using the replicated state machine approach. Finally,

the implementation strategy for the language runtime system is discussed.
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