
[20] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot. Sos: An object-oriented

operating system—assessment and perspectives. Computer Systems, 2(4):287–338, Dec. 1989.

[21] R. Snodgrass and K. Shannon. Supporting flexible and efficient tool integration. In Proceedings of

the International Workshop on Advanced Programming Environments, pages 290–313, Trondheim,

Norway, jun 1986. IFIP WG 2.4, Springer-Verlag.

[22] C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite. Firefly: A multiprocessor workstation. IEEE

Transactions on Computers, 37(8):909–920, Aug. 1988.

[23] M. V. Wilkes and R. M. Needham. The Cambridge model distributed system. OSR, 14(1):21–29,

Jan. 1980.

[24] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. Hydra: The kernel

of a multiprocessor operating system. Communications of the ACM, 17(6):337–345, June 1974.

[25] W. A. Wulf, R. Levin, and S. P. Harbison. Hydra/c.mmp: An experimental computer system, 1981.

[26] M. Yudkin. Resource management in a distributed system. Proceedings of the Eighth Data Commu-

nication Symposium, pages 221–226, Oct. 1983.

12



[4] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. Computing

Surveys, 17(4):472–522, Dec. 1985.

[5] E. W. Dijkstra. The structure of ”THE”-multiprogramming system. Communications of the ACM,

11(5):341–346, May 1968.

[6] P. Druschel, L. L. Peterson, and N. C. Hutchinson. Decoupling modularity and protection in Lipto.

Technical Report 91-6, Department of Computer Science, University of Arizona, Feb. 1991.

[7] A. E. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison Wesley, Reading,

MA, 1990.

[8] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, G. J. Popek, and D. Rothmeier. Implementation

of the ficus replicated file system. In Proceedings USENIX Summer ’90 Conference, pages 63–71,

June 1990.

[9] A. Habermann, L. Flon, and L. Cooprider. Modularization and hierarchy in a family of operating

systems. Communications of the ACM, 19(5):266–272, May 1976.

[10] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An architecture for implementing network

protocols. IEEE Transactions on Software Engineering, 17(1):64–76, Jan. 1991.

[11] Intel Corporation, Santa Clara, California. System 432/600 System Reference Manual, 1981.

[12] B. W. Lampson. Protection. In Proc. Fifth Princeton Symposium on Information Sciences and

Systems, pages 437–443. Princeton University, Mar. 1971.

[13] M. A. Linton, J. M. Vlissides, and P. R. Calder. Composing user interfaces with InterViews.

Computer, pages 8–22, Feb. 1989.

[14] J. Nestor, J. Newcomer, P. Giannini, and D. Stone. IDL: The Language and Its Implementation.

Prentice-Hall, Englewood Cliffs, NJ, 1990.

[15] D. L. Parnas. On the critera to be used in decomposing systems into modules. Communications of

the ACM, 15(12):1053–1058, Dec. 1972.

[16] R. K. Raj and H. M. Levy. A compositional model for software reuse. The Computer Journal,

32(4):312–322, Aug. 1989.

[17] D. M. Ritchie. A stream input-output system. AT&T Bell Laboratories Technical Journal, 63(8):311–

324, Oct. 1984.

[18] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,

S. Langlois, P. Léonard, and W. Neuhauser. Chorus distributed operating systems. Computing

Systems Journal, 1(4):305–370, Dec. 1988.

[19] M. Shapiro. Structure and encapsulation in distributed systems: The proxy principle. In Proceedings

of the Sixth International Conference on Distributed Computing Systems, pages 198–204, May 1986.

11



is similar to the approach taken by Raj and Levy [16] at the language level in the Emerald programming

language.

The mechanisms provided for this purpose are separation of interface and implementation and in-

heritance of interfaces. Together with the system directory and the module/object infrastructure, which

implements location transparence, these mechanisms provide the ability to compose a dependency graph

of modules that implement a service.

This compositional approach to software reuse has important advantages over implementation in-

heritance when applied to operating systems. First, it extends naturally into a distributed environment,

because objects interact through invocations only. Second, it simplifies language heterogeneity, because

the only externally visible attribute of an object is its procedural interface. Third, service composition

can be done at run-time and without access to a module’s source code; inheritance, on the other hand, is

a compile-time mechanism and generally requires access to source code.

5.4 Service Composition

Composition of building blocks has been used in toolkit-based programming environments [14 , 21], for

the construction of user interfaces [13], and other similarly specific application domains. In System V

Unix, device drivers and protocols can be composed using the Streams I/O system [17]. In all these

cases, composition is restricted to a specific application domain. The Unix shell allows the composition

of naive utility programs to form a chain of filters connected by pipes. However, filters can only interact

in a trivial, unidirectional fashion.

Lipto’s architecture provides a unifying architectural framework for building composable subsystems

like the ones mentioned above, allowing the definition of many interfaces. However, Lipto goes beyond

this level of flexibility. First, it allows the composition of basic operating system services. Second,

applications can compose services using a mixture of their own modules, system-provided modules, and

modules provided by third parties. Moreover, system and third-party modules can be composed to depend

on application-provided modules. This facilitates the separation of policy and mechanism; in particular,

it allows applications to provide policy modules for system-provided mechanisms. Third, the modules

that constitute a composed service can be distributed across machines and protection domains. As far as

I can determine from available literature, this aspect of Lipto’s architecture is new.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A

new kernel foundation for Unix development. In Proceedings of Summer Usenix, July 1986.

[2] T. Anderson, H. Levy, B. Bershad, and E. Lazowska. The interaction of architecture and operat-

ing system design. In Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, Apr. 1991.

[3] R. H. Campbell, V. Russo, and G. Johnston. Choices: The design of a multiprocessor operating

system. In Proceedings of the USENIC C++ Workshop, pages 109–123, Nov. 1987.

10



such as the ioctl and fcntl system calls.

The BSD Unix socket interface, on the other hand, was designed as a general interface for the access

of network services at different levels. Its generality, however, not only makes it difficult to use, but also

leads to paradoxical cases where the use of a lower level network service is more expensive than the use

of a higher level service. For example, in SunOS 4.0 the protocol suite UDP/IP/ETH performs better

than the suite IP/ETH [10].

Lipto’s architecture encourages the modular decomposition of system services, allowing and requiring

the definition of many more interfaces. Each kind of service (File service, Network communication

service), and each level of service of the same kind (Datagram, Stream, Remote procedure call) define

their own set of interfaces in the form of a service class. An application simply accesses a service

at the desired level, using the appropriate service class. Thus, a naive application with a very general

requirement for the type of services it needs uses a general, high-level service class. A sophisticated

application, on the other hand, accesses its services using a lower-level, more specific service class.

5.3 Object-Orientation

While Lipto’s architecture is object-oriented, application programmers and, more generally, module im-

plementors can use any implementation language, i.e., Lipto is language independent from the module

implementor’s perspective. In the case where an object-oriented application language is used, Lipto does

not impose an object model for application level objects. Moreover, Lipto does not provide an object

management layer that supports the creation, migration and storage of such objects. It is my view that

these services should be provided at the level of a language run-time system or by an object support layer

on top of the basic system services. This and other features distinguish Lipto from other object-oriented

systems, such as Choices and SOS [3, 20].

Choices is a truly object-oriented operating system in that its architecture is object-oriented, it exposes

an object interface to applications and it is implemented using an object-oriented language. Since the

system is structured using the inheritance mechanism and the object model of its implementation language,

C++ [7], its architecture is tightly coupled with this language. The system’s services can be extended

through the inheritance mechanisms of C++, however, only applications written in C++ can take advantage

of this feature. Moreover, Choices is not a distributed system, and since its architecture uses inheritance

of implementations, it does not readily generalize into a distributed environment.

SOS is a distributed object-oriented operating system that emphasizes the support of object-oriented

application environments. It provides support for object migration and persistence based on a system-

defined object model. Application level objects that want to use the system’s services must conform to

this model. The necessary translation between the representation of language-level objects and the system

object representation can cause inefficiencies. Since the system object model is too heavy-weight for fine-

grained objects, applications have to deal with two kinds of objects, those that are system-supported and

those that are not.

The traditional approach to software reuse in object-oriented software systems is to support inher-

itance of implementation. Both Choices and SOS take this approach. Lipto’s architecture abandons

implementation inheritance and supports instead a model for software reuse through composition. This

9



Topaz, and Version 3 of Mach [1, 18, 22]. Server-based systems attempt to find a balance between

modularity and performance by supporting coarse-grained protection and modularity, with the granularity

at the level of the protection domain. Each service is allowed to define its own interface. The interfaces

are implemented on top of a small, fixed set of interfaces to the kernel’s primitive communication services.

However, crossing an interface always requires crossing a protection boundary.

Lipto’s architecture decouples modularity and protection by providing explicit support for modules

independent of protection domains. Consequently, large software systems can be decomposed into mod-

ules without concern for inter-domain communication costs. The right tradeoff between protection and

performance can be determined along a broad scale according to the hardware characteristics and applica-

tion requirements by grouping modules into protection domains at configuration time. At one end of the

scale, the system can be configured to behave like a capability-system with fine-grained protection; at the

other extreme, it can be configured as a highly efficient system without protection at all. Moreover, the

configuration can change during the software life cycle of the system. During debugging and validation,

the system could be configured with fine-grained protection, i.e., with each object in a separate protection

domain. Later, the system can be reconfigured according to the needs for protection and efficiency in

a particular installation. The same ideas may be used separately for a new subsystem that is added to

an existing system. Location transparence also makes certain performance improvements possible. For

example, frequently called system services can be hoisted into the user-level domains of certain trusted

applications. Also, certain objects or subsystems normally implemented in user-level domains can be

placed into the kernel address space for performance if that is acceptable from the standpoint of protection.

5.2 Service Access

In traditional operating system architectures, all operating system services are accessed through a single,

general, static system call interface. I believe that the traditional system call interface designs have

three major flaws. First, they are only available at protection boundaries. This implies that it is difficult

to layer new services atop existing ones. Second, it is difficult to modify the interface as the system

evolves. Additions to the interface can be handled in a backwards compatible way, but modifications to

the interface, or the introduction of alternate implementations of a service are problematic. Furthermore,

the addition of new hardware to the system, which would most naturally be expressed by the addition

of a new service interface, must be handled by less structured means such as the Unix ioctl call. Third,

it is difficult to provide direct access to lower level services. Naive applications require insulation from

the details of the hardware on which they are executing, but sophisticated applications (such as databases

and real-time audio and video) require low level access to the hardware in order to achieve acceptable

performance.

One of the innovations of the Unix operating system is its uniform treatment of files and devices; a

general, uniform interface (open, close, read, write, seek) is provided for such access. Together with the

convention for the usage of the file descriptors stdin, stdout and stderr, it is the key to the composability

of naive applications such as filters. This Unix file interface is in fact an example of what would be

called a service class in Lipto. The problem is that in Unix access to lower level file system features and

features that are specific to certain devices are only accessible through awkward, unstructured interfaces

8



can be efficiently passed as arguments. In the case of a remote invocation, the proxy object converts the

reference to one that is valid in the callee’s domain. This is entirely transparent to both caller and callee

and requires additional overhead only in the remote case.

Note that Lipto’s object invocation mechanism is optimized for the local, i.e., intra-domain case. In

this respect, it differs from existing location-transparent object invocation mechanisms. The resulting

efficiency of local object invocation encourages a fine-grained decomposition of software subsystems,

both at the system and the application level. b

5 Related Work

In this section I will discuss my proposal in the light of related work in the literature.

5.1 Modularity and Protection

Modularization as a technique to decompose and structure operating systems has been known for a long

time [15, 5, 9]. Protection provides for isolation so that a failure or malice in one component of a system

cannot adversely affect the operation and integrity of another component [12]. Such failure isolation is

desirable whenever two components of a system enjoy different levels of trust, such as between two user

components or between user and system components of a general purpose operating system. Protection

requires implementing domains that are separate from each other, as well as safe mechanisms for cross-

domain communication.

A review of previous operating system architectures indicates that modularity and protection have been

implemented by a single mechanism, that is, they have been tightly coupled. At one end of the spectrum,

several systems have employed capabilities as their modularity/protection mechanism. Capabilities may

either be implemented in hardware as in the Cambridge Cap [23, 26] and the Intel iAPX432 [11],

or in software on top of standard paged virtual memory hardware as in Hydra on C.mmp [24, 25].

Whether implemented by hardware or software, such systems offer fine grained modularity/protection,

but limited flexibility since a single mechanism is used for both functions. Interfaces may be defined

by the programmer, but every invocation through an interface requires crossing a protection boundary as

well, resulting in poor performance.

At the other end of the spectrum, Unix is a classic example of a monolithic system. Both modularity

and protection are supported only at a very coarse grain by the distinction of kernel and user contexts,

where a single fixed invocation interface provides access to all system services. All services provided

by the operating system are implemented in a single protection domain, and cannot be protected from

each other. Moreover, the code contained in this single address space uses shared/global data, and thus

provides almost no encapsulation. In such systems, both modularity and protection are sacrificed for

speed.

In reaction to the maintenance problems caused by monolithic systems, and in order to provide more

flexibility for implementing new kinds of services, several server-based systems are being implemented.

These systems are characterized by a small kernel or micro-kernel that provides only basic communication

services, and multiple servers providing all other services. Examples of such systems include Chorus,

7



The set of modules that participate in the implementation of a service form a dependency graph. The

module at the root presents the service to its clients; the modules at the leaves are special in that they

do not depend on any lower-level services. A service is composed by building the graph of modules

bottom-up. In the case of a module that provides multiple instances of a service, a different graph can be

composed for every instance of the service. Consider for example a module that implements a network

file system and assume that the module depends on a suite of network protocols. The module can be

composed to use a different suite of protocols for each file or directory, depending on the location and

type of the file server that backs the file/ directory.

The architecture explicitly separates interface and implementation. A service class defines abstract

interfaces for objects types; modules provide various implementations for these object types. Service

classes form a hierarchy according to a conformity relation. The architecture supports inheritance of in-

terfaces but not inheritance of implementations. This approach has several important advantages. In the

absence of implementation inheritance, the only interaction between objects defined in different modules

is through the invocation of each other’s operations. Note that any two objects that are implemented

in different modules may at run-time reside in different protection domains, and possibly on different

machines. Lipto can support location independence merely through location-transparent invocation be-

tween objects. It implements this mechanism using the technique of proxy objects [19]. The lack of

implementation inheritance also makes it easier to provide language heterogeneity for module implemen-

tations, because the external knowledge about modules is restricted to its set of interfaces. Also, Lipto’s

architecture allows the reuse of a module without access to its source code.

Polymorphism, or more specifically, inclusion polymorphism [4] is supported through the separation

of interface and implementation, and additionally through inheritance of interfaces. A client that expects

a service in a service class S can use any module that implements either S itself or any service class that

is a descendant of S in the hierarchy of service classes. The formal parameters defined in an interface’s

operations can specify object types in terms of their interfaces. Any object type with the appropriate

interface can serve as an actual argument.

Available services may be located by clients using the system directory. Services register with the

system directory using a unique service id. A client inquires about a service by presenting a service id

and the expected service class to the system directory. If the requested server object can be located and

it is in the appropriate service class, then a reference for the server object is returned. Depending on the

location of the server object, this reference refers either to the server object itself, or to a proxy object

that represents the server object in the client’s address space. The tasks of locating the server object,

authentication and binding happen at the time when the object reference is obtained from the system

directory.

The use of proxy objects and the implied implementation of object references as pointers is one

of the keys to Lipto’s performance. Object invocations are implemented by simply fetching a function

pointer from a table indexed by the operation number, and calling the function. If the client and the

server object are in the same domain, then this is the cost of an object invocation. In the cross-domain

case, the proxy object forwards the invocation to the server object using the underlying communication

mechanism. Since authentication and binding are performed when the reference is created, the invocation

can be as fast as the communication facility permits. Because object references are simple pointers, they

6



adjusted at configuration time.

First, if modules can be implemented regardless of the protection domain in which they will eventu-

ally reside, i.e., their implementation is location-transparent, then the assignment of modules to protection

domains becomes a matter of configuration. That is, protection, failure isolation, access control and per-

formance can be traded off according to the needs of the application at module configuration time. What

is necessary to achieve this degree of flexibility is architectural support for modularity that is independent

of protection domains. The architecture must provide interfaces and communication mechanisms that al-

low the location-independent interaction of objects. Thus, interfaces and communication endpoints must

be provided independently of protection domains. In terms of the fundamental abstractions, this means

that communication endpoints and interfaces must not be coupled with protection domains; instead, these

abstractions must be associated with modules.

Second, if modules are implemented as passive, procedural code that is executed by independent

threads of control, then the level of concurrency can be controlled by the number of threads allowed to

execute the code concurrently, which can also be established at module configuration time. What this

means in terms of the fundamental abstractions is that threads and protection domains must be orthogonal

abstractions, and that communication endpoints must not be tied to threads.

I conclude that execution, protection, and modularity are orthogonal and therefore an operating system

should provide support for modules independent of threads and protection domains. Lipto supports

modularity through the abstraction of a module, which is the unit of composability and configurability. A

module/object infrastructure provides services to dynamically load and locate modules and implements

location-transparent invocation based on communication endpoints provided by the nugget.

4 Architecture

This section presents an overview of Lipto’s architecture. A more detailed description is given in [6].

Lipto’s architecture is object-oriented. Its objects encapsulate state, and export a set of operations.

Although the architecture is object-oriented, the implementor of individual modules can use the program-

ming methodology and language of her choice, as long as the interfaces defined in the module’s service

class can be supported. All of the infrastructure necessary for the communication between objects and

the composition of services is defined by the architecture.

A module provides the implementation or behavior for one or more types of objects. The object types

defined by a module collectively provide a service. All objects are passive, i.e., they export procedural

interfaces and their operations are executed by independent threads of control.

The composition of services from modules is governed by abstract interface definitions called service

classes. When a module’s object types implement the interfaces defined in a certain service class it is said

to implement that service class. Each module implements exactly one service class, but many modules

can implement the same service class, i.e., the same interface can be supported by many modules. In

fact, when many modules implement the same service class, a high degree of composability results. The

implementation of a module will generally depend on a set of lower-level services. A module specifies

the lower-level services it needs in terms of a set of service classes. The module can be composed on

top of any set of modules that are in the appropriate service classes.

5



argue that execution, protection and modularity are also orthogonal, and therefore modularity should be

supported through a mechanism that is independent of protection and execution.

A thread is the unit of execution. The level of concurrency in the execution of a program can be

controlled by the number of threads allowed to execute that program concurrently. The appropriate level

of concurrency depends on the nature of the program as well as the characteristics of the hardware

platform on which the program executes, for example the number of processors. A protection domain is

the unit of resource allocation, protection and accounting. Protection domains are used to isolate modules

of a program from each other. Such isolation may be necessary if the program modules do not trust

each other, if the failure of one module must not affect other modules, or if the modules need to be

treated differently with respect to resource access rights or accounting. The unit of communication is

a communication endpoint. Communication endpoints allow run-time entities or objects that reside in

different protection domains to communicate with each other.

Assuming that these basic abstractions are provided by a nugget, and given the goal of a modular ar-

chitecture built on top of this nugget, let us consider how one would map modules onto these abstractions.

One approach is to map modules onto protection domains. This seems like a natural mapping, because

modules are protected from each other and access rights can be given to individual modules. Further-

more, it seems natural to define communication endpoints and interfaces at protection boundaries. With

this approach, however, all module interaction involves inter-process communication, and thus imposes

communication overhead proportional to the number of modules that constitute a service. Communication

between different protection domains is inherently more costly than communication within a protection

domain [2]. Consequently, there is a tradeoff between protection, failure isolation and fine-grained access

control on one hand and performance on the other hand. The right tradeoff depends on the requirements

of the program’s users with respect to protection and failure isolation, the stability of the program code

(debugging vs. post-release phase) and the characteristics of the hardware platform (distribution, IPC

performance). If modules are mapped onto protection domains, then software designers are faced with a

choice: They can either decompose at a fine grain, thereby gaining modularity at the cost of performance;

or they can decompose at a coarse grain for good performance at the cost of modularity. This tradeoff

is part of an early design decision, and cannot be adapted according to the needs of the users and the

characteristics of the hardware.

Another possibility is to map modules onto threads. Here, multiple modules can share a protection

domain, and the tradeoff between protection and performance can be delayed until module configuration

time. The implementation of modules is simplified, because their code is executed exclusively by a single

thread. However, each invocation of a module involves at least a context-switch among threads, which

is a relatively expensive operation compared to a procedure call. Even worse, the level of concurrency

in the execution of a module’s code cannot be adapted to the characteristics of the hardware.

The right approach is to map a module onto a communication endpoint. In terms of the basic

abstractions, a communication endpoint is all that is needed to support modularity. The architectural

infrastructure implements the necessary conversion between the passive, procedural interface supported by

the module and the communication facility, which is provided by the nugget. If modules are mapped onto

communication endpoints in a system where threads, protection domains and communication endpoints

are provided as orthogonal abstractions by the nugget, then both protection and concurrency can be

4



designed service classes (module interfaces) must be defined that allows a high degree of composability of

modules. Third, large operating system services must be decomposed into modules in such a way that their

decomposed implementation compares well with a monolithic implementation in terms of performance.

The dynamic composition of services from modules raises two other issues. In any composition

where a module depends on another module that it does not trust, care must be taken that the failure

of the untrusted module does not cause the failure of the client module. Furthermore, since dependency

relations among modules change dynamically due to composition, the deadlock problem must be addressed

accordingly. I will not cover these issues in this proposal.

As stated earlier, the primary goals of my architecture are dynamic composition of services and

portability. A vital requirement for the feasibility of my approach is overall efficiency. Of particular

importance is the efficiency of module interaction in the case where modules are in the same protection

domain. If communication costs between modules in this case were significant, system and application

designers would be discouraged from decomposing their systems, thereby defeating the purpose of the

architecture. In other words, it must be possible to implement a decomposed system that performs as well

as a monolithic implementation when its modules are configured to reside in a single protection domain.

The most important assumption underlying Lipto’s architecture is that complex software systems can

be decomposed into small reusable modules. Currently, no methods exist for the mechanical decompo-

sition of large software systems, and the process remains somewhat of an art. However, previous work

exists that strongly suggests that decomposition into relatively small, composable modules is feasible and

can be efficient, given a suitable architecture and communications infrastructure. The goal of Lipto is to

provide just that. Examples of work in the area of decomposition are the x-kernel [10] in the case of

the communication subsystem and Ficus [8] in the case of the file system. Note that Lipto’s architecture

does not impose a particular granularity of decomposition. The granularity used is up to the designers

of a particular set of modules. However, it is clear that composability will increase with the number of

modules and the generality of the abstractions that the modules implement.

The architecture is designed to be independent of the implementation language used; in fact, individual

modules can be implemented in different languages. The only constraint on the implementation language

used is that it allows the expression of external interfaces as defined in a module’s service class.

3 Decoupling Modularity, Protection, and Execution

In this section, I will argue that an operating system should provide explicit support for modularity that

is independent of protection and execution. This idea, which I call the decoupling principle, underlies

the design of Lipto’s architecture and is the key to its flexibility. In its most general form, the decou-

pling principle states that orthogonal concepts arising in an operating system should be provided through

orthogonal abstractions. Stated differently, orthogonal concepts should not be coupled in a single ab-

straction. The principle applies to many levels of an operating system. At the level of the fundamental

services of a general-purpose operating system, it states that execution, protection and communication

(which are clearly orthogonal) should be provided through orthogonal abstractions. This aspect of the

principle has been observed by others. Consequently, several recent operating systems provide separate

abstractions for these services, e.g. threads, tasks/actors, and ports [1, 18]. In the following, I will

3



management, file system and communication facilities, the goal of this research is to design and experi-

ment with a new operating system architecture. In other words, this work focuses on the structure of an

operating system and the interaction of its components rather than the design and implementation of its

components.

The rest of this paper is organized as follows. Section 2 discusses motivation, goals and issues that

need to be addressed. Section 3 justifies the decoupling of modularity, protection, and execution, an idea

that underlies Lipto’s architecture. Section 4 gives a brief overview of Lipto’s architecture, and Section

5 discusses related work.

2 Motivation, Goals and Issues

The ever-increasing demand of applications for more specialized services calls for a new approach to the

way an operating system provides services to applications.

The traditional approach is for an operating system to provide a fixed set of services. Demands

for specialized services are satisfied by adding options to the existing services. This approach has

several significant drawbacks. First, it obscures the interfaces to the system’s services, making their use

awkward and error-prone. Second, the never-ending addition of options leads to excessive complexity in

the implementation of the operating system. Consequently, it becomes increasingly difficult to modify,

debug and maintain the system’s code. Moreover, the addition of options and thus complexity often leads

to a degradation of overall performance, which also affects applications that do not make use of the new

functionality. Third, the degree of flexibility in the use of the system’s services is restricted to the set of

options that the designer decided to provide.

Another problem with the traditional approach is that it provides services at a single, high level of

abstraction. While a high-level view of the system’s services is appropriate for many applications, there

are applications that want to access services and devices at a lower, more specific level. For example, it

does not make sense for a full-screen editor to open its input terminal as if it were a file, because the editor

wants to make use of the special characteristics of a terminal, such as the ability to position the cursor. In

Unix, an editor is forced to open the terminal as if it were a file. To access terminal-specific functionality,

the editor has to use the ioctl system call with its highly unstructured, poorly defined interface, which is

a major source of portability problems.

The approach I am proposing is to provide a collection of building block modules that can be used

to compose a variety of services. New functionality can be provided by adding new modules. Such

additions do not increase the complexity of existing modules, neither do they have adverse effects on

the performance of existing services. Applications can access services at the most appropriate level of

abstraction, thus eliminating the need for unstructured interfaces. Finally, the building block approach

offers a potentially much higher degree of flexibility, because existing modules can be composed with

new modules to provide arbitrary services, services that the designers of the existing building blocks have

not intended or even imagined.

On the downside, there are challenges in realizing this approach. First, an infrastructure is needed

that provides the necessary flexibility for the dynamic composition of services and still allows for an

efficient implementation. This is the main subject of the work I am proposing. Second, a set of well-

2



1 Overview

In this paper I propose the design of an object-oriented architecture for a family of portable, distributed

operating systems, and the implementation of an experimental prototype called Lipto. Lipto’s architecture

facilitates the dynamic composition of distributed services and applications from a set of building blocks

or modules. My approach is based on two fundamental premises. The first premise is that a modern

operating system should allow applications to dynamically compose higher-level services from a set of

primitive building blocks. Some of these modules can be system-provided and others may be supplied

by applications and third parties. This idea is motivated by the fact that many sophisticated applications

have their own specific requirements with regard to the operating system services they need. Because of

the diversity of requirements it has become impractical to define a fixed set of operating systems services

that can satisfy all needs.

For example, applications may need to use different protocol suites depending on the remote entity

with which they want to communicate; some applications require various levels of fault-tolerance support

and others do not; a naive application is satisfied with the illusion of infinite virtual memory, while a

more sophisticated application may need control over page replacement policies for its virtual memory;

some applications are satisfied with simple, Unix-like sequential files, while others need database support

and/or control over file caching policies. It is my view that applications should be offered exactly the

services they need and should not have to pay a performance penalty for additional functionality for

which they have not asked. Likewise, they should not be exposed to complexity that is not relevant to

the service they need.

The second premise reads that a modern operating system must be readily portable across a variety of

hardware architectures. In particular, the system must be able to exploit the potential of a multiprocessor

as well as a uniprocessor, and that of a distributed system as well as a centralized system.

The solution I am proposing is to implement the system as a distributed collection of composable

modules. Applications may add to, delete from, and replace modules in the pool of available modules

and can compose arbitrary services from this pool, subject only to protection and security constraints.

This enables sophisticated applications to compose services that exactly fit their needs from their own

and/or system provided modules. Lipto employs a model of computation where execution, protection and

modularity are orthogonal. Consequently, modules can be implemented without regard to their location

and the level of concurrency in their execution. In this paper, I use the term configuration to refer to the

assignment of modules to machines and protection domains. The term composition stands for the process

of associating a set of modules so that they collectively provide a service.

Users can configure their applications, i.e., load their modules into protection domains on different

machines, according to the application’s needs for protection, concurrency and fault-tolerance. Likewise,

system and application modules can be distributed across machines and protection domains to match

the characteristics of the underlying computer system with respect to its parallelism, distribution and

communication costs. The architecture defines an infrastructure that provides location transparence at the

granularity of modules. That way, services can be composed dynamically regardless of the configuration

of the system, that is, the assignment of modules to machines and protection domains.

Instead of proposing a new operating system with a specific design of its virtual memory, process

1



A Compositional Architecture for Portable, Scalable Distributed

Operating Systems

Dissertation Proposal

Peter Druschel

TR 91-19

Abstract

The design of an object-oriented architecture for distributed operating systems is proposed

that allows applications to dynamically compose distributed services from a mixture of sys-

tem, application, and third-party provided software components. By decoupling execution,

protection and modularity, the architecture supports the configuration of scalable, distributed

operating systems, and ensures portability over a wide range of hardware platforms.

December 17, 1991

Department of Computer Science

The University of Arizona

Tucson, AZ 85721


