
Note that I includes intervals of length 1. Also let

}

(I) be the power set of I. While I �

}

(T ),

each element of

}

(I) is a set, each of whose elements are also elements of

}

(T ).

Extend maps two times into the set of times that represents the interval between the �rst time

and the second time.

Extend : T � T ! I [ ?

Extend(t

1

; t

2

)

�

=

8

<

:

? t

1

> t

2

ft j t

1

� t � t

2

g otherwise

Interval maps a set of times into the set of intervals containing the minimum number of non-

disjoint intervals represented by the input set. Each time in the input set appears in exactly one

interval in the output set and each interval in the output set is itself represented by a set of times.

Interval partitions a set of times into its corresponding set of intervals where each interval

is itself represented by a set of times.

Interval :

}

(T )!

}

(I) [ ;

Interval(T )

�

=

8

>

>

>

>

<

>

>

>

>

:

; T = ;

fI j 8t; t 2 I; t 2 T

^ Pred(t) 2 T ! Pred(t) 2 I

^ Succ(t) 2 T ! Succ(t) 2 Ig

otherwise

Note that Interval partitions a set of times into the minimum number of non-disjoint intervals

represented by the set; each time in T appears in exactly one interval.
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B Auxiliary Functions

We used several auxiliary functions in the de�nition of the historical derivation operator. We

present here formal de�nitions for each of those auxiliary functions.

First takes a set of times from the domain

}

(T ) and maps it into the earliest time in the set.

First :

}

(T )! T [ ?

First(T )

�

=

8

<

:

? T = ;

t; t 2 T ^ 8t

0

; t

0

2 T; t � t

0

otherwise

Last takes a set of times from the domain

}

(T ) and maps it into the latest time in the set.

Last :

}

(T )! T [ ?

Last(T )

�

=

8

<

:

? T = ;

t; t 2 T ^ 8t

0

; t

0

2 T; t � t

0

otherwise

Pred is the predecessor function on the domain T. It maps a time into its immediate predecessor

in the linear ordering of all times.

Pred : T ! T [ ?

Pred(t)

�

=

8

<

:

? t = FIRST(T )

t

P

; t

P

2 T ^ t

P

< t ^ 8t

0

; t

0

2 T ^ t

0

< t; t

0

� t

P

otherwise

Succ is the successor function on the domain T. It maps a time into its immediate successor in the

linear ordering of all times.

Succ : T ! T

Succ(t)

�

=
t

S

; t

S

2 T ^ t

S

> t ^ 8t

0

; t

0

2 T ^ t

0

> t; t

0

� t

S

Let the domain I be the subset of

}

(T ) that represents all possible non-disjoint intervals of time.

I

�

=
fI j I 2

}

(T ) ^ 8t; t 2 I ! First(I) � t � Last(I)g
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t Element of T

u, v Temporary variables

V

a

Temporal function in the historical derivation operator

valid(r(N

a

)) Time-stamp of attribute N

a

of tuple r

valid(r

a

) Shorthand for valid(r(N

a

))

value(r(N

a

)) Value component of attribute N

a

of tuple r

value(r

a

) Shorthand for value(r(N

a

))

w Aggregation window function

w

^

(t) window at time t

X Set of by-list attributes in an aggregate

x, z Number of tuple variables appearing in an aggregate
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A Notational Conventions

This appendix describes the notational conventions used in this paper.

Notation Usage

^

[
Historical union operator

^

�
Historical di�erence operator

^

�
Historical cartesian product operator

�̂ Historical selection operator

�̂ Historical projection operator

^

�
Historical derivation operator

b

A
Historical aggregation function for non-unique aggregates

d

AU
Historical aggregation function for unique aggregates

F Predicate in the historical selection operator

f Scalar aggregate

G Predicate in the historical derivation operator

I Domain of intervals

I Interval

I

N

Interval from the time-stamp of attribute N

k Number of relations

m, m

i

Number of attributes in relation schemes N , N

i

N , N

R

Relation schemes

N, N

a

, N

i; a

Attribute names

n Length of target list or by-list

}

(I) Power set of I

}

(T ) Power set of T

p, y Number of attributes appearing in an aggregate

Q, R, R

i

Historical relations

q, r, r

i

Historical tuple variables

Q

0

, R

0

, R

0

i

TQuel relations

q

0

, r

0

, r

0

i

TQuel tuple variables

T Time Domain

T Subset of T
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the referenced snapshot relations to historical relations by assigning all attributes the same time-

stamp. The historical operators

^

[
,

^

�
,

^

�
, �̂, and �̂ reduce to their snapshot counterparts when

all attribute time-stamps are identical. The algebra is also consistent with the conceptual view of

historical relations as 3-dimensional, space-�lling objects and the view of operations on historical

relations as \volume" operations. In addition, the algebra supports historical queries, is closed,

includes aggregates, does not exhibit temporal data loss as an operator side-e�ect, and has a unique

representation for each historical relation. The algebra satis�es all but one of the commutative,

associative, and distributive tautologies involving union, di�erence, and cartesian product as well as

the non-conditional commutative laws involving selection and projection. Additional equivalences

involving historical derivation also hold. We discussed representations of historical relations on

secondary storage that are straightforward extensions of those of conventional relations. Finally,

we have de�ned an incremental version of the algebra that supports incrementally materialized

views of historical relations. This version has been implemented. Hence, we have demonstrated

that the algebra may be e�ciently implemented.

Secondly, the algebra is shown to have the expressive power of the calculus-based temporal

query language TQuel. As such, the algebra provides an executable equivalent of a declarative

query language. Because all but one of the equivalences that hold for the snapshot algebra also

hold for the historical algebra, most existing optimization algorithms may be naturally extended

to optimize historical queries. Conversion between historical relations and the tuple-time-stamping

assumed by TQuel is simple and e�cient.

The obvious future work is an implementation of the algebra as de�ned here and development

of optimization strategies. At this point, we feel that the formal de�nition of temporal databases

and their query languages has yielded many results (c.f., [McKenzie 1986]), while implementation

issues such as access methods, physical storage structures, and novel storage devices remain largely

unexplored.
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relations and operations, and we wished to ensure that there was a unique representation for each

relation. Retention of the set-theoretic semantics of the operators would have prevented the algebra

from satisfying these criteria. We de�ned the semantics of the historical version of each snapshot

operator to be a consistent extension of the snapshot operator's semantics. Hence, each expression

in the snapshot algebra has an equivalent counterpart in the historical algebra and expressions in

the historical algebra reduce to their snapshot counterparts when all attribute time-stamps are

the same. Also, we de�ned all operators to prevent loss of temporal information as an operator

side-e�ect.

Jones, Lorentzos, Navathe, and Sarda retain the set-theoretic semantics of the basic relational

operators (in Sarda's algebra the selection operator is the one exception). The other algebras

extend the semantics of the basic relational operators to handle time.

6.5 New Temporal Operators

We chose to handle temporal selection, projection, and aggregation by introducing new operators (

^

�
,

^

A
and

d

AU
) to perform these functions. We would have preferred separate operators for temporal

selection and projection, but were forced to include both functions in the derivation operator

because we chose to allow set-valued attribute time-stamps. We de�ned the new operators

d

SN
and

AT to convert between snapshot and historical relations. We also utilize the rollback operators (�

and �̂) to accommodate transaction time.

Ben-Zvi includes temporal selection as part of the selection operator. Cli�ord, Gadia, Navathe,

and Sadeghi proved new operators to support temporal selection. Jones, Lorentzos, and Tansel

provide temporal selection indirectly through new operators. Ben-Zvi supports a limited version

of temporal projection through the projection operator. Tansel provides three new operators to

do temporal projection. A limited capability for temporal projection is available in the remaining

algebras indirectly through new operators. Ben-Zvi, Jones, Navathe, and Tansel include new

operators to do aggregation; the rest do not.

7 Summary

The design of an historical algebra that simultaneously satis�es many desirable properties is a

surprisingly di�cult task. Since all desirable properties of historical algebras are not compatible

[McKenzie & Snodgrass 1991B], the best that can be hoped for is not an algebra with all possible

desirable properties but an algebra with a maximal subset of the most desirable properties.

This paper makes two contributions. First, an historical algebra is de�ned as a straightforward

extension of the conventional relational algebra. The historical algebra de�ned here has what we

consider to be the most desirable properties of an historical algebra. Speci�cally, each relation

and algebraic expression in the snapshot algebra has an equivalent counterpart in the historical

algebra. Expressions in the snapshot algebra can be converted to their historical equivalent simply

by replacing each snapshot operator with its corresponding historical operator and converting
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with the semantics of the individual snapshot algebraic operations as operations on 2-dimensional

tables, extended to account for the additional dimension represented by valid time. Simultane-

ously providing this conceptual view, presenting loss of information about temporal relationships

as an operator side-e�ect, and preserving the tautologies listed in Section 5.1 is not possible unless

time-stamps are set-valued [McKenzie & Snodgrass 1991B].

The decision to allow set-valued attribute time-stamps unfortunately prevented the algebra

from having other less desirable, but nonetheless desirable, properties. If we had not speci�ed

set-valued attribute time-stamps, we could have retained the �rst-normal-form property of the

snapshot algebra. Also, we could have replaced the single complex historical derivation operator

with two simpler operators, one performing historical selection and the other performing historical

projection.

Cli�ord and Gadia also allow set-valued time-stamps. The other algebras allow only single-

valued time-stamps.

6.3 Single-valued Attributes

We decided to restrict attributes to single values to retain in the historical algebra the commutative

properties of the selection operator found in the snapshot algebra. If we had allowed set-valued

attributes, without imposing intra-tuple restrictions on attribute time-stamps, then we would had

to have combined the functions of the selection and historical derivation operators into a single,

more complex operator. This consolidation would have been necessary to ensure that the temporal

predicate in the current historical derivation operator was considered to be true for an assignment

of intervals to attribute names only when the predicate in the current selection operator held for

the attribute values associated with those intervals (since multiple input tuples might participate in

the computation of a single result tuple). This new operator would have satis�ed the commutative

properties of the current selection operator only in restricted cases, thereby limiting the usefulness

of key optimization strategies.

A second reason for adopting single-valued attributes was to simplify the page layout. In par-

ticular, tuples that are �xed-width in a conventional relation continue to have this useful property

when time is added, and techniques such as space compression apply without change to historical

relations. Also, conversion between this representation and tuple time-stamping is easier than with

set-valued attributes.

Ben-Zvi, Jones, Lorentzos, Navathe, and Sadeghi also restrict attributes to single values. The

remaining algebras allow set-valued attribute values.

6.4 Extended Operator Semantics

We chose to extend the semantics of the conventional relational operators to handle the temporal

dimension directly, rather than de�ne new operators to deal with the temporal dimension. There

were two reasons: we wanted to support a three-dimensional conceptual visualization of historical
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and evaluation of these historical algebras can be found elsewhere [McKenzie & Snodgrass 1991B].

6.1 Time-stamping Attribute Values

We decided to time-stamp attribute values rather than tuples to support historical queries. We

wanted the algebra to allow for the derivation of information valid at a time t from information

in underlying relations valid at other times, much as the snapshot algebra allows for the deriva-

tion of information about entities or relationships from information in underlying relations about

other entities or relationships. This requirement implies that the algebra allow units of related

information, possibly valid at disjoint times, to be combined into a single related unit of infor-

mation possibly valid at some other times. Support for such a capability required that we de�ne

a cartesian product operator that concatenates tuples, independent of their valid times, and pre-

serves, in the resulting tuple, the valid-time information for each of the underlying tuples. Only

by time-stamping attribute values could we de�ne a cartesian product operator with this property

and maintain closure under cartesian product.

Lorentzos, Gadia, and Tansel also time-stamp attribute values. Only Gadia's homogeneous

model requires that a tuple's attribute time-stamps be identical; the others allow tuples with

disjoint attribute time-stamps. Cli�ord assigns a time-stamp, termed a lifespan, to each tuple in a

relation and to each attribute in the relation's scheme. The lifespan of each attribute of a tuple is

then computed as the intersection of the tuple's lifespan and the attribute's lifespan, as speci�ed

in the relation's scheme. Ben-Zvi, Jones, Navathe, Sadeghi, and Sarda all time-stamp tuples only.

6.2 Set-valued Time-stamps

There are a variety of possible representations for valid time. Time-stamps can correspond to a

single chronon, to an interval delimited by two chronons, to sets of non-contiguous intervals, or

to sets of chronons. We decided to represent valid time as a set of (not necessarily consecutive)

chronons, for two reasons. First, we wanted to ensure a unique representation for each historical

relation. If we had decided to disallow set-valued attribute time-stamps, then we would had to

have permitted value-equivalent tuples to model accurately real-world temporal relationships. Yet,

value-equivalent tuples, because they spread temporal relationships among attributes across tuples,

would have caused problems in de�ning an algebra. If value-equivalent tuples had been allowed (and

set-valued attribute time-stamps disallowed), a unique representation for each historical relation

could not have been speci�ed without imposing inter-tuple restrictions on the attribute time-stamps

of value-equivalent tuples.

Second, we wanted the algebra to support the user-oriented conceptual view of historical rela-

tions as 3-dimensional objects [Ariav 1986, Cli�ord & Tansel 1985], and each historical operator

to have an interpretation, consistent with its semantics, in accordance with this conceptual frame-

work, so that historical operators manipulate space-�lling objects. For example, the di�erence

operator should take two space-�lling objects (i.e., historical relations) and produce a object that

represents the mass (i.e., total historical information) present in the �rst object but not present in

the second object. Note that this description of operations on historical relations is also consistent
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A di�erent conclusion is reached when considering historical relations. The storage structure

may be organized in such a way that updates are more costly than those to a conventional relation

by perhaps only a constant factor. However, retrievals are more costly by a factor that is roughly

sublinear to linear in the size of the relation [Ahn & Snodgrass 1986, Ahn & Snodgrass 1989].

While update cost remains fairly constant, retrieval costs increases monotonically over time. At

some point, probably quite soon, incremental view materialization becomes bene�cial for most

temporal views.

Hence, it is desirable that the historical algebra be able to support incremental view material-

ization. We have de�ned an alternate, incremental semantics for the historical operators. In this

semantics, each operator is de�ned as a mapping from one (or two) relation states and its (their)

di�erential onto a resulting relation state and its corresponding di�erential [McKenzie 1988]. We

have also developed a prototype implementation of this algebra as an existence proof that it could

be done. The historical algebra can thus support both unmaterialized views (via query modi-

�cation [Stonebraker 1975]) and materialized views, and can support various view maintenance

strategies, such as in-line view evaluation, immediate-recomputed materialization, and immediate-

incremental materialization. In concert with techniques developed for rollback relations [Jensen et

al. 1991], it can also support these maintenance strategies for views de�ned on temporal relations

that incorporate both valid and transaction time.

In summary, we have shown that it is possible to implement the algebra e�ciently.

6 Review of Design Decisions

In de�ning the objects in the historical algebra, we were faced with three major design decisions: (i)

whether to time-stamp tuples or attribute values, (ii) whether to allow single-valued or set-valued

time-stamps, and (iii) whether to allow single-valued or set-valued attributes. To extend operations

in the snapshot algebra to handle valid time, we had tomake two subsequent design decisions. (iv) Is

the set-theoretic semantics of the basic relational operators retained and new operators introduced

to deal with the temporal dimension of the real-world phenomena being modeled, or is the semantics

of the existing relational operators extended to account for the temporal dimension directly? If the

latter, then (v) how do these operators compute the valid time of attributes in resulting tuples?

In particular, how does the algebra handle temporal selection (i.e., tuple selection based on valid

times), temporal projection (i.e., computation of new valid times for a tuple's attributes from their

current valid times), and temporal aggregation (i.e., computation of a distribution of aggregate

values over time); operations that are unique to a historical algebra? We discuss here our choices

and the importance of those choices in determining the properties of the algebra. We also mention

the choices to these design decisions made by the developers of ten other historical algebras: Ben-

Zvi's Time Relational Model [Ben-Zvi 1982], Cli�ord's proposed extension to the snapshot algebra

[Cli�ord & Croker 1987], Gadia's historical algebras [Bhargava & Gadia 1989, Bhargava & Gadia

1991, Gadia 1986, Gadia 1988], Jones' extension to the snapshot algebra to support time-oriented

operations for LEGOL [Jones et al. 1979], Lorentzos' Temporal Relational Algebra [Lorentzos &

Johnson 1988], Navathe's historical algebra [Navathe & Ahmed 1989], Sadeghi's algebra [Sadeghi

1987], Sarda's algebra [Sarda 1990], and Tansel's historical algebra [Tansel 1986]. A detailed review
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There are a variety of ways to e�ect this transformation. The brute-force method is to �rst cluster

the relation on a key, perhaps by sorting the relation, so that all of the versions are collected on

the same page, then link up the intervals, distributing them to the attributes. Since redundant

attribute values occur in a tuple time-stamped representation, the space requirements will decrease

during this conversion, guaranteeing that no new overow pages will result. If we record in the

schema that all attributes contain the same time-stamp, then we need not duplicate interval lists

for each attribute. The conversion can even be done in parallel with any of the historical operators.

When the operator fetches another tuple, the interval list can be constructed and passed to the

operator, assuming that the underlying relation was clustered on the key.

Once an algebraic expression has computed a result relation, it must be converted back into

a tuple time-stamped representation. This step is even easier than the other direction. The

TQuel semantics presented in Section 4.2 ensures that the time-stamps of all of the attributes

are identical within a tuple. So all that is necessary is to make a duplicate each tuple for each

interval in the interval list. This expansion also can be done within any of the historical operators.

The conversion is similar to the Unpack operation (also termed unnest) in non-1NF relations. It

has been shown that applying the Pack operation followed by Unpack operation, i.e., performing

the empty algebraic expression on a tuple-time-stamped relation, produces the original relation

[Jaeschke & Schek 1982].

Finally, there is no reason why a relation logically time-stamped on a tuple basis with single

intervals can't be stored physically as time-stamped with a set (linked list) of intervals, in concert

with the space optimization of utilizing only one interval pointer for the entire tuple. This storage

structure requires conversion only on display, which is much less time-critical than conversion on

access and on storage.

5.3 Incremental Execution

A promising approach to achieve greater e�ciency in temporal DBMS's is that of incremental view

materialization [Blakeley et al. 1986, Hanson 1987A, Hanson 1987B, Horwitz & Teitelbaum 1986,

Roussopoulos91 1991]. This process brings the view up-to-date following the update of one of its

underlying relations by identifying the tuples that must be inserted into, and the tuples that must

be deleted from, the view's old state for the view's new state to be consistent with the new states

of its underlying relations, without having to recompute the view itself. The net changes that an

update operation makes to a stored relation, either a base relation or a materialized view, is termed

the relation's di�erential.

Incremental view materialization is more e�cient than processing without views if four condi-

tions are satis�ed simultaneously: (1) the number of queries against a view is su�ciently higher

than the number of updates to its underlying relations, (2) the sizes of the underlying relations

are su�ciently large, (3) the selectivity factor of the view predicate is su�ciently low, and (4) the

percentage of the view retrieved by queries is su�ciently high [Roussopoulos91 1991]. Since these

conditions are rather restrictive in practice, commercial DBMS's do not support incremental view

materialization.
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snapshot algebra also hold for the historical algebra, the search space of equivalent query plans for

a historical query should be comparable in size to that for an analogous snapshot query. Hence, the

historical algebra does not limit the practical use of query plan transformation as an optimization

technique for historical queries. Also, most algorithms for optimization of snapshot queries may be

extended to optimize historical queries by taking into account the possible presence of historical

derivation operators in query plans.

5.2 Page Structure

An historical tuple is more complex than a conventional tuple, because time-stamps are sets. As

�rst normal form (1NF) dictates that each value of a tuple be atomic [Elmasri & Navathe 1989],

historical relations cannot be considered to be in 1NF. However, they are close, in that the value

component of an attribute is atomic. One simple means of retaining much of the simplicity of

conventional relations is to implement the set of chronons forming the time-stamp of an attribute

as a linked list of intervals, each represented with an interval cell containing a starting time-stamp,

an ending time-stamp, and a pointer to the next interval. An attribute's time-stamp then becomes

a �xed-length pointer �eld. For page sizes under 4K bytes, a single byte su�cies for a pointer;

if overow pages are permitted then two bytes are required for the pointer. Using interval lists,

�xed-length tuples remain of �xed length even when time-stamps are added, and conventional

techniques, e.g., of attribute-value space compression and null value representation, still apply.

Various space management approaches are available to contend with the interval lists now

present. If tuples are �xed-length, then the page may be partitioned into �xed-length slots, each to

be occupied either by a tuple or by several interval cells. Variable-length tuples are often handled

by placing the tuples at the top of the page growing down and tuple headers at the bottom of the

page growing up, with free space in the middle [Stonebraker et al. 1976]. The interval lists also

vary in size. They can either be allocated in the same space as the tuples, or the tuple headers can

be pre-allocated (since they are short, 1{2 bytes, preallocation will not waste much space), and

the intervals can start at the bottom of the page and grow up. In all cases, compaction will be

necessary upon deallocation of an interval [Knuth 1973].

The time-stamps for time-invariant attributes may be either stored as a special value, distin-

guishable from an interval pointer, that represents the set containing all chronons, or not stored

at all, but instead indicated as time-invariant in the schema. Several attributes often share the

same time-stamp; again, this can be indicated in the schema, with only one interval pointer al-

located for the group (this implementation shares some aspects with Gadia's multi-homogeneous

data model [Gadia 1986]), or can be represented at the extension level by having multiple interval

pointers pointing to the same interval list head cell (though care must be taken when modifying

such shared interval lists).

If the algebra is used to implement TQuel, then a conversion will be necessary between tuple

time-stamping, where each tuple is associated with a single interval, and attribute-value time-

stamping, in which each attribute is associated with potentially multiple intervals. This conversion

is formalized in the transformation function T discussed in Section 4.2; it is similar to the Pack

operation (also termed nest) proposed for non-1NF relations [Tansel 1986,

�

Ozsoyo�glu et al. 1987].
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These conditional equivalences involving historical derivation are important because they can

be used to move temporal selection before cartesian product in a query plan transformation. The

above equivalences imply that if G can be expressed asG

1

^G

2

, where G

1

references only attributes

of Q and G

2

references only attributes of R, then
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(R)).

Performing the temporal selection function twice may be cost e�ective, depending on the size

of Q and R and the selectivity of the predicates G

1

and G

2

. Note that no equivalences are

presented that involve historical derivation and union, di�erence, or projection: historical derivation

doesn't commute with projection or distribute over union or di�erence, even conditionally, as these

operators may change attribute time-stamps.

In summary, all the above non-conditional and conditional equivalences may be used, along

with statistical descriptions of historical databases and cost models for query plan execution, to

optimize individual historical queries. Because all but one of the equivalences that hold for the
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Ullman identi�es several conditional equivalences involving selection and projection that can

be used in optimizing snapshot queries [Ullman 1988]. These conditional equivalences also hold

in the historical algebra (again, the proofs are cumbersome and unenlightening). We list these

equivalences here, along with their accompanying conditions.
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In addition to the conditional equivalences involving selection and projection, several conditional

equivalences involving historical derivation, which have no snapshot counterparts, hold for the

historical algebra. For these equivalences, recall from the de�nition of historical derivation on

page 10 that

^

�

G; I

1

; :::; I

m

q

(Q)

is a special form of the derivation operator that performs only the temporal selection function.

Because this special form of historical derivation has properties analogous to those of non-temporal

selection, the following equivalences involving historical derivation hold.
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argue elsewhere that this equivalence is not a desirable property of historical algebras [McKenzie &

Snodgrass 1991B]). The algebra also supports all the non-conditional commutative and distributive

laws involving selection and projection presented by Ullman [Ullman 1988]. Finally, the algebra

supports the commutative law of historical selection and historical derivation.

For the theorems that follow assume that Q, R, and S are historical relations.

Theorem 9 The following equivalences hold for the historical algebra.
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PROOF. The proofs of the �rst two equivalences follow directly from the de�nitions of historical

union and historical cartesian product. For the third equivalence, consider the left-hand side of

the equivalence. From the de�nition of historical selection on page 6, we have that a tuple q is

in �̂
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from the de�nition of historical selection, we have that a tuple q is in �̂
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Hence, the two expressions are shown to denote the same relation. Proofs for the other equivalences,

although more notationally cumbersome, can be constructed in a similar fashion.

Theorem 10 The distributive property of cartesian product over di�erence does not hold for the

historical algebra.

Q

^

�
(R

^

�
S) 6� (Q

^

�
R)

^

�
(Q

^

�
S)

PROOF. We give an example when the equality does not hold.
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used in Theorem 4.

Theorem 7 The language formed by embedding the historical algebra in the commands used to

support transaction time has the expressive power of TQuel.

This follows directly from the correspondence theorems presented above.

Theorem 8 The historical algebra de�ned here is strictly more powerful than TQuel.

PROOF. For two historical relations R

0

1

and R

0

2

with at least two tuples that di�er in their

time-stamps, consider the algebraic expression T(R

0

1

)

^

�
T(R

0

2

). Because the semantics of TQuel

requires that all attributes within a tuple be associated with identical valid times, this algebraic

expression has no counterpart in TQuel.

5 Implementing the Algebra

An historical algebra is a critical part of a DBMS that supports time-varying information. Such

an algebra can serve as (1) an appropriate target for a temporal query language processor, (2)

an appropriate structure on which to perform optimization, and (3) an appropriate executable

formalism for the DBMS to interpret to execute queries. The previous section showed that the

historical algebra has the expressive power of TQuel, thus satisfying the �rst objective just listed.

In this section we discuss the other two objectives, focusing in turn on query optimization, page

structure, and incremental update of materialized views.

5.1 Query Optimization

Query optimization concerns the problem of selecting the most e�cient query plan for a query

from the set of all its possible query plans. This problem for snapshot queries has been studied

extensively and heuristic algorithms have been proposed for selection of a near optimal query plan

based on a statistical description of the database and a cost model for query plan execution [Hall

1976, Jarke & Koch 1984, Krishnamurthy et al. 1986, Selinger et al. 1979, Smith & Chang 1975,

Stonebraker et al. 1976, Wong & Yousse� 1976, Yao 1979].

One important aspect of local query optimization is the transformation of one query plan into

an equivalent, but more e�cient, query plan. The size of the search space of equivalent query plans

for a snapshot query is determined in part by the algebraic equivalences available in the snapshot

algebra. Both Ullman and Maier identify equivalences that are available in the snapshot algebra for

query plan transformation and describe their usefulness to query optimization [Maier 1983, Ullman

1988]. The historical algebra supports all but one of the commutative, associative, and distributive

equivalences involving only union, di�erence, and cartesian product in set theory [Enderton 1977].

The algebra does not support the distributive property of cartesian product over di�erence. (We
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where the reference to f

0

1

in � is replaced by a reference to N

agg

1

; p+1

. If the aggregate f

0

1

is in � or

� rather than � , analogous changes would be required.

4.3.6 Nested Aggregation

The approach described above for handling aggregates in the inner where and when clauses can be

used to handle aggregates in a qualifying where or when clause of an aggregate in the outer where,

when, or valid clauses. This method of converting TQuel aggregates to their algebraic equivalents,

when there is an aggregate in a qualifying clause, can also handle an arbitrary level of nesting of

aggregates.

4.4 Correspondence Theorems

Now that all possible locations for aggregates in a TQuel retrieve statement have been dealt with,

we have provided algebraic equivalents for all possible TQuel retrieve statements.

Theorem 5 Every TQuel retrieve statement has an equivalent expression in the historical histor-

ical algebra.

PROOF OUTLINE. Induct on the number of aggregates appearing in the statement to arrive at

an equivalent algebraic expression, applying the replacements discussed above in Sections 4.2 and

4.3, as appropriate. Incorporate the handling of transaction time via the rollback operator (�̂) as

discussed elsewhere [McKenzie & Snodgrass 1990]. Construct a tuple calculus expression for the

retrieve statement and the algebraic expression, then demonstrate equivalence using the technique

used in the proof of Theorem 4. While the proof is aided by the presence of auxiliary relations

in the tuple calculus semantics for aggregates [Snodgrass et al. 1989], it is still cumbersome and

o�ers little additional insight.

In a similar fashion, by also using the modify state and modify scheme commands described

elsewhere [McKenzie & Snodgrass 1990], one can construct equivalent algebraic statements for the

TQuel create, delete, append, replace, and destroy statements, as are given elsewhere [McKenzie

1988].

Theorem 6 Every TQuel modi�cation statement has an equivalent transaction in the augmented

algebra.

PROOFOUTLINE. Construct a tuple calculus expression for eachmodi�cation statement [McKen-

zie 1988] and for its corresponding algebraic expression. Then prove equivalence using the technique
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Expression (14), while structurally equivalent to expression (8) on page 36, is considerably

more complex because of the presence of by, when, and where clauses in the nested aggregate.

The attributes of

b

A
's �rst argument now include the attributes appearing in the by clause and the

attributes of

b

A
's second argument include the attributes of relations associated with tuple variables

appearing in the aggregate. Also, tuples in the second argument are now required to satisfy the

where predicate and, for some interval in the time-stamp of attribute N

g

1

; d

1

, the when predicate.

Finally, because TQuel assumes earliest and latest return T for an empty partition of R

0

, the

tuple h (0; T ) i is added to R

position

so that T will be considered the earliest interval at those times

when the partition of

b

A
's second argument is empty. Recall that smallest, de�ned on page 36,

returns zero when passed an empty relation.

4.3.4 The Outer Where Clause

Assume that the TQuel aggregate f

0

1

appears in  in (10) rather than in the target list. Then, the

algebraic equivalent of the TQuel retrieve statement is

R = �̂

N

i

1

; a

1

; :::; N

i

n

; a

n

(

^

�

�

�

; Extend(�

�

;Pred(�

�

)) \ N

�|

1

; 1

\ ��� \ N

�|

x

; 1

\ N

agg

1

; p

(

�̂

	

 

^N

j

2

; c

2

=N

agg

1

; 1

^���^N

j

p

; c

p

=N

agg

1

; p�1

(T(R

0

1

)

^

�
� � �

^

�
T(R

0

k

)

^

�
R

agg

1

)))

where the reference to f

0

1

in  is replaced by a reference to N

agg

1

; p

. Note that the only other

change from expression (11) is the elimination of attribute N

agg

1

; p

from the projection, since the

aggregate does not appear in the target list.

4.3.5 The Outer When Clause

Assume now that the aggregate f

0

1

appears in � in (10). Then, the algebraic equivalent of the

TQuel retrieve statement is
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R

agg

1

= �̂

N

j

2

; c

2

; :::; N

j

p

; c

p

; N

agg

1

(

b

A

f

1

; 


!

1

; N

j

1

; c

1

; fN

j

1

; m

j

1

+1

; N

j

2

; c

2

; :::; N

j

p

; c

p

g

(

�̂

N

�|

1

; 1

; :::; N

�|

1

; m

�|+1

; N

�|

2

; 1

; :::; N

�|

x

;m

�|

x

(

^

�

�

�

1

; N

�|

1

; 1

; :::;
N

�|

1

; m

�|

1

; N

�|

1

; m

�|

1

+1

\ N

agg

2

; y

; N

�|

2

; 1

; :::; N

�|

x

; m

�|

x

; N

agg

2

; 1

; :::; N

agg

2

; y

(

�̂

	

 

1

^N

g

2

; d

2

=N

agg

2

; 1

^ ���^N

g

y

; d

y

=N

agg

2

; y�1

(

T(R

0

�|

1

)

^

�
f h (1; T ) i g

^

�
� � �

^

�
T(R

0

�|

x

)

^

�
R

agg

2

)))) ;

�̂

N

j

1

; c

1

; N

j

1

; m

j

1

+1

; N

j

2

; c

2

; :::; N

j

p

; c

p

(T(R

0

�|

1

)

^

�
f h (1; T ) i g

^

�
� � �

^

�
T(R

0

�|

x

)))

(13)

where the attribute name N

agg

1

here refers to the aggregate produced in

b

A
by f

1

, the reference to

the aggregate f

0

2

in  

1

is replaced by a reference to N

agg

2

; y

, and

R

agg

2

=

b

A

f

2

; 


!

2

; N

g

1

; d

1

; fN

g

2

; d

2

; :::; N

g

y

; d

y

g

(

^

�

�

�

2

; N

�g

1

; 1

; :::; N

�g

z

; m

�g

z

(�̂

	

 

2

(T(R

0

�g

1

)

^

�
� � �

^

�
T(R

0

�g

z

))) ;

�̂

N

g

1

; d

1

; :::; N

g

y

; d

y

(T(R

0

�g

1

)

^

�
� � �

^

�
T(R

0

�g

z

)))

over the scheme N

agg

2

= fN

agg

2

; 1

; : : : ; N

agg

2

; y

g, and f

2

is the family of scalar aggregates corre-

sponding to the family of TQuel aggregates f

0

2

.

f h (1; T ) i g is a constant relation containing a single tuple whose value component may be an

arbitrary value from an arbitrary domain. Here, we e�ectively add an additional attribute to R

�|

1

and then use the attribute as an implicit by-list attribute to restrict tuples in the partition of

T(R

0

�|

1

)

^

�
� � �

^

�
T(R

0

�|

x

) at time t to only those tuples that satisfy the predicate in  

1

involving the

aggregate f

0

2

at time t.

4.3.3 The Inner When Clause

Assume now that the aggregate f

0

2

appears in �

1

in (11) rather than in  

1

. The only aggregates

that can appear in �

1

are earliest and latest. Therefore, if we let R

agg

2

be the two-attribute

algebraic equivalent of f

0

2

, then the algebraic equivalent of f

0

1

would be the same as that given in

(13) for an aggregate in the inner where clause, with one exception. The reference to f

0

2

in �

1

is

replaced by a reference to N

agg

2

; y+1

, not N

agg

2

; y

. The valid component of N

agg

2

; y

is the time when

the valid component of N

agg

2

; y+1

was the oldest interval, hence N

agg

2

; y+1

is used in evaluating �

1

.

If we assume that f

0

2

is earliest, then R

agg

2

is
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of the

^

�
operator. Also, if �|

1

appears neither outside the aggregate f

0

1

in (10) nor in its by clause,

then R

agg

1

is replaced by

R

agg

1

^

[
f h (NULLVALUE(N

�|

1

;1

); ft j 8r 2 R

agg

1

(r 62 valid(r(N

agg

1

; p

)))g) ig.

The �rst change removes the restriction that the valid time of a tuple in the derived relation must

intersect the valid time of at least one tuple in the base relation associated with tuple variable �|

u

.

The second change, ensures that a value (possibly a distinguished null value) for the aggregate is

speci�ed at each time t 2 T.

4.3.2 The Inner Where Clause

Aggregates may also appear in the where, when, and valid clauses of a TQuel retrieve statement.

We now show the algebraic equivalents of TQuel retrieve statements with aggregates in these

clauses, �rst presenting the algebraic equivalent of a TQuel retrieve statement with an aggregate

in an inner where clause. Assume that a TQuel aggregate f

0

2

appears in  

1

in (10) and let

g

1

; g

2

; : : : ; g

y

be integers, not necessarily distinct, in the range 1 to k, indicating the (possibly

repeated) tuple variables appearing in the nested aggregate where 8g

u

; 1 � u � y; 9j

v

; 1 �

v � p; g

u

= j

v

;

d

l

; 1 � l � y, be an integer in the range 1 to m

g

l

, indicating the attribute names appearing in

the nested aggregate where (8u)(8v); (1 � u � y ^ 1 � v � y ^ u 6= v ^ g

u

= g

v

), d

u

6= d

v

; and

�g

1

; �g

2

; : : : ; �g

z

be the distinct integers in g

1

; g

2

; : : : ; g

y

where �g

1

= g

1

, indicating the z (non-

repeated) tuple variables in the aggregate.

Then, f

0

2

in  

1

has the following syntax

f

0

2

(r

0

g

1

:N

g

1

; d

1

by r

0

g

2

:N

g

2

; d

2

, : : :, r

0

g

y

:N

g

y

; d

y

for !

2

where  

2

when �

2

)

As this TQuel retrieve statement is complicated, containing a nested aggregate with a full com-

plement of by, for, where, and when clauses, we should expect a somewhat complicated algebraic

equivalent.

When modi�ed to account for f

0

2

in  

1

, the algebraic equivalent of f

0

1

, given in (12), becomes,
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The for clause speci�es an aggregation window function for the aggregate f

0

1

. !

1

contains one

or more keywords that determine, along with the time granularity of R

0

1

; : : : ; R

0

k

; the length of

the aggregation window at each time t. The keywords each instant represent the aggregation

window function w(t) = 0 (i.e., an instantaneous aggregate) and the keyword ever represents

the aggregation window function w(t) = 1 (i.e., a cumulative aggregate). The length of the

aggregation window speci�ed by other keywords (e.g., each day, each week, each year) is a

function of the underlying time granularity of the database. For example, if the time granularity

is a day, then ! = each week translates to the aggregation window function w(t) = 6. Also, the

aggregation window function need not be a constant function. For example, if the time granularity

is a day, then ! = each month translates to the aggregation window function w, where w(t) = 31

if t corresponds to January 31 and w(t) = 28 if t corresponds to February 28. We let 


!

1

be the

function denoted by !

1

and the time granularity of R

0

1

; : : : ; R

0

k

.

Every TQuel retrieve statement of the form of (10) is equivalent to an expression in the historical

algebra of the form

R = �̂

N

i

1

; a

1

; :::; N

i

n

; a

n

; N

agg

1

; p

(

^

�

�

�

; Extend(�

�

;Pred(�

�

)) \ N

�|

1

; 1

\ ��� \ N

�|

x

; 1

\ N

agg

1

; p

(

�̂

	

 

^N

j

2

; c

2

=N

agg

1

; 1

^��� ^N

j

p

; c

p

=N

agg

1

; p�1

(T(R

0

1

)

^

�
� � �

^

�
T(R

0

k

)

^

�
R

agg

1

)))

(11)

where

R

agg

1

=

b

A

f

1

; 


!

1

; N

j

1

; c

1

; fN

j

2

; c

2

; :::; N

j

p

; c

p

g

(

^

�

�

�

1

; N

�|

1

; 1

; :::; N

�|

x

; m

�|

x

(�̂

	

 

1

(T(R

0

�|

1

)

^

�
� � �

^

�
T(R

0

�|

x

))) ;

�̂

N

j

1

; c

1

; :::; N

j

p

; c

p

(T(R

0

�|

1

)

^

�
� � �

^

�
T(R

0

�|

x

)))

(12)

over the scheme N

agg

1

= fN

agg

1

; 1

; : : : ; N

agg

1

; p

g, where 8u; 1 � u � p � 1; N

agg

1

; u

= N

j

u+1

; c

u+1

and N

agg

1

;p

is the attribute name associated with the aggregate value. Here we assume that f

1

is

the family of scalar aggregates (e.g., countint) corresponding to the family of TQuel aggregates f

0

1

(e.g., count). Expression (12) applies the where and when predicates to the cartesian product of

the relations associated with tuples variables appearing in the aggregate, and applies the aggregate

operator to the result. Expression (11) di�ers only slightly from the expression (3) on page 30 for

a retrieve statement without aggregates. The expanded selection operator provides the necessary

linkage between the attributes in the aggregate's by-list and corresponding attributes in the base

relations. The expanded derivation operator imposes the TQuel restriction that the valid time of

tuples in the derived relation be the intersection of the valid time speci�ed in the valid clause, the

valid times of the tuples in the base relations participating in the aggregation, and the valid time

of the aggregate itself. Of course, if f

0

1

is a unique aggregate, then

d

AU
should be used instead of

b

A
in (12).

Two changes to (11) are required to handle special cases. First, if a tuple variable �|

u

; 1 � u � x;

does not appear outside the aggregate f

0

1

in (10), then N

�|

u

;1

does not appear in the second subscript
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N

1

= fN

1;1

; : : : ; N

1;m

1

; From

1

; To

1

g

� � �

N

k

= fN

k;1

; : : : ; N

k;m

k

; From

k

; To

k

g

where, for notational convenience, we assume that N

11

; : : : ; N

k;m

k

are unique. Also, let

i

1

; i

2

; : : : ; i

n

and j

1

; j

2

; : : : ; j

p

be integers, not necessarily distinct, in the range 1 to k,

indicating the tuple variables (possibly repeated) appearing in the target list and aggregate,

respectively;

a

l

; 1 � l � n, be an integer in the range 1 to m

i

l

, indicating the attribute names appearing in

the target list where (8u)(8v); (1 � u � n ^ 1 � v � n ^ u 6= v ^ i

u

= i

v

), a

u

6= a

v

;

c

h

; 1 � h � p, be an integer in the range 1 to m

j

h

, indicating the attribute names appearing in

the aggregate where (8u)(8v); (1 � u � p ^ 1 � v � p ^ u 6= v ^ j

u

= j

v

), c

u

6= c

v

; and

�|

1

; �|

2

; : : : ; �|

x

be the distinct integers in j

1

; j

2

; : : : ; j

p

where �|

1

= j

1

, indicating the x (non-

repeated) tuple variables appearing in the aggregate.

Then, the TQuel retrieve statement with the aggregate f

0

1

in the target list has the following syntax

range of r

0

1

is R

0

1

� � �

range of r

0

k

is R

0

k

retrieve into R

0

k+1

(N

k+1;1

= r

0

i

1

:N

i

1

; a

1

, : : :,N

k+1; n

= r

0

i

n

:N

i

n

; a

n

,

N

k+1; n+1

= f

0

1

(r

0

j

1

:N

j

1

; c

1

by r

0

j

2

:N

j

2

; c

2

, : : :, r

0

j

p

:N

j

p

; c

p

for !

1

where  

1

when �

1

)) (10)

valid from � to �

where  

when �

This statement computes a new relation R

0

k+1

over the relational scheme

N

k+1

= fN

k+1;1

; : : : ; N

k+1; n

; N

k+1; n+1

; From

k+1

; To

k+1

g
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over the scheme N

position

= fN

position

g.

EXAMPLE. If we assume an aggregation window function w(t) = 0 and an empty set of by-clause

attributes, then earliest for attribute State of relation S

3

is

�̂

N

earliest; 1

=N

earliest; 2

(

b

A

smallest; 0; N

position

; ;

(R

position

; R

position

)

^

�
R

position

) =

f h(1; f1; 2g); (1; f1; 2g)i,

h(2; f3g); (2; f1; 2; 3g)i,

h(3; f4; 5; 6g); (3; f4; 5; 6g)i,

h(5; f7; 8g); (5; f7; 8g)i g

where R

position

= �̂

N

position

6=0

(

b

A

position; 1; State; ;

(S

3

; S

3

)) =

f h(1; f1; 2g)i,

h(2; f1; 2; 3g)i,

h(3; f4; 5; 6g)i,

h(4; f5; 6g)i,

h(5; f7; 8g)i g

The interval f1; 2g results at times 1 and 2; the interval f1; 2; 3g results at time 3; the interval

f4; 5; 6g results at times 4, 5, and 6; and the interval f7; 8g results at times 7 and 8. The resulting

value components can be e�ectively ignored.

As illustrated in this example, the algebraic equivalent of earliest is a two-attribute historical

relation. The valid component of the �rst attribute is the time when the valid component of the

second attribute was the earliest interval. Also note that the value component of both attributes

is the position of the valid component of the second attribute in ORDERINT

N

(R).

4.3.1 TQuel Aggregates in the Target List

In Section 4.2 we showed the algebraic equivalent of the TQuel retrieve statement without aggre-

gates. We now show the algebraic equivalent of a TQuel retrieve statement with aggregates in its

target list. We consider changes to the algebraic expression to support one non-unique aggregate

in the target list only; similar changes would be needed for each additional aggregate in the target

list.

Once again assume that we are given the k snapshot relations R

0

1

; : : : ; R

0

k

whose schemes are

respectively,
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The �rst clause states that each interval in the time-stamp of attribute N of a tuple in R appears

in S, the second clause states that no additional intervals are present, and the third clause provides

the ordering conditions.

Now, we can de�ne a family of scalar aggregate functions position

N

a

, 1 � a � m, where

position

N

�rst identi�es, for a tuple q and time t, the interval in the valid component of attribute

N in q that overlaps t and then calculates the position of that interval in ORDERINT

N

(R), for

an historical relation R. If no interval in the valid component of attribute N overlaps t or the

interval is not in ORDERINT

N

(R), position

N

returns zero.

position

N

(q; t; R) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

v; S[v] = I if 9I 2 Interval(valid(q

N

))

^ 1 � v � jORDERINT

N

(R)j

^ S[v] 2 ORDERINT

N

(R)

^ t 2 S[v]

0 Otherwise

Note that position, unlike countint and firstvalue, requires parameters q and t, as well as R.

Now assume that we are given a family of scalar aggregate functions smallest

N

a

, 1 � a � m,

where smallest

N

produces the smallest value of numeric attribute N . That is,

smallest

N

(q; t; R) =

8

>

>

<

>

>

:

value(r

N

); if R 6= 0

8r

0

2 R (value(r

N

) � value(r

0

(N)))

0 Otherwise

The families of scalar aggregates position and smallest are both needed to de�ne the algebraic

equivalent of the TQuel aggregate earliest for attributeN of relation R

0

. First, position is used to

assign each interval in the time-stamp of attribute N of a tuple in T(R

0

) to an integer representing

the interval's relative position in the chronological ordering of intervals. Then, smallest is used to

determine, from this assignment of intervals to integers, the times, if any, when each interval was

the earliest interval. We encode the required information in the valid component of the attributes.

The second attribute will indicate the interval returned by the aggregate, and the �rst attribute

will indicate when that interval is the correct result of earliest. The valid components will be used

only during processing of the aggregate. If we assume an aggregation window function w(t) = 0

and an empty set of by-clause attributes, the algebraic equivalent of the TQuel aggregate earliest

for attribute N of relation R

0

is

�̂

N

earliest;1

=N

earliest; 2

(

b

A

smallest; 0; N

position

; ;

(R

position

; R

position

)

^

�
R

position

) (8)

over the scheme N

earliest

= fN

earliest;1

; N

earliest; 2

g where

R

position

= �̂

N

position

6=0

(

b

A

position; 1; N

a

; ;

(R; R)) (9)
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function. They were used, however, in the computation of the subset of the original relation(s)

passed to the function as the value of the third parameter, R. These �rst two parameters are used

for the temporal constructor aggregates earliest and latest.

Next, we consider the TQuel aggregate first, which computes the oldest value. This aggregate

requires a family of scalar aggregate functions firstvalue

N

a

, 1 � a � m.

firstvalue

N

(q; t; R) 2fu j R 6= ; ! 9r2 R ( 8r

0

2 R (First(r

N

) � First(r

0

N

))

^ u = value(r

N

)

)

^ R = ; ! u = NULLVALUE(N)

g

where NULLVALUE is an auxiliary function that returns a special null value for the domain

associated with its argument. Note that the set fu j : : :g need not be a singleton set. If there are

two or more elements in the set, firstvalue returns only one element, that element being selected

arbitrarily. This procedure is the same as that used by the TQuel aggregate first to select the

oldest value of an attribute when there are multiple values that satisfy the selection criteria. If R

is empty, firstvalue returns a special null value for the domain associated with attribute N .

Finally, we de�ne the algebraic equivalent of the TQuel aggregate earliest, which computes

the interval with the earliest starting time-stamp. earliest may be used in the when or valid

clauses of TQuel. Unlike other TQuel aggregates, which produce a distribution of scalar values

over time, earliest produces a distribution of intervals over time. De�ning an algebraic equiv-

alent for this aggregate is slightly more complicated owing to this distinction. We �rst introduce

a family of auxiliary functions ORDERINT

N

a

; 1 � a � m, which orders chronologically all

distinguishable intervals in the time-stamp of attribute N

a

for tuples of historical relation R. Eval-

uating ORDERINT

N

(R) results in a sequence of the intervals appearing in the time-stamp of

attribute N of tuples in R. The intervals are ordered from earliest starting time to latest starting

time. When two or more intervals have the same starting time, they are ordered from the earliest

stopping time to the latest stopping time. Let S denote a sequence of length jSj and S[v] denote

the v

th

element of S.

S

�

=
ORDERINT

N

(R)$ 8r 2 R 8I 2 Interval(valid(r

N

)) 9v; 1 � v � jSj (S[v] = I)

^ 8v; 1 � v � jSj 9r 2 R 9I 2 Interval (valid(r

N

)) (S[v] = I))

^ 8v; 2 � v � jSj (

First(S[v � 1]) < First(S[v])

_ (First(S[v � 1]) = FIRST(S[v])

^ Last(S[v� 1]) < Last(S[v])))
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signi�cant di�erence. Because an historical relation represents the changing value of its attributes

and aggregates are computed from the entire relation, aggregates in TQuel return a distribution

of values over time. Hence, while in Quel an aggregate with no by-list returns a single value, in

TQuel the same aggregate returns a sequence of values, each assigned its valid times. When there

is a by-list, an aggregate in TQuel returns a sequence of values for each value of the attributes in

the by-list.

Several aggregates are only unique to TQuel: standard deviation (stdev and stdevU), average

time increment (avgti), the variability of time spacing (varts), oldest value (first), newest value

(last), From -To interval with the earliest From time (earliest), and From -To interval with the

latest From time (latest).

Each TQuel aggregate has a counterpart in the historical algebra. The algebraic equivalents of

TQuel aggregates are de�ned in terms of the historical aggregate functions

b

A
and

d

AU
, which were

de�ned in Section 3.4.Before de�ning the algebraic equivalents of TQuel aggregates in the context

of a TQuel retrieve statement however, we consider the families of scalar aggregates that appear

as parameters to

b

A
and

d

AU
in the algebraic equivalents of TQuel aggregates. Each aggregate in

one of these families of scalar aggregates returns, for a partition of historical relation R at time t,

the same value returned by its analogous TQuel scalar aggregate for a partition of relation R

0

at

time t, where R = T(R

0

).

We de�ne here the families of scalar aggregates that appear as parameters to

b

A
and

d

AU
in the

algebraic equivalents of the TQuel aggregates count, countU, first, and earliest. The count

and countU aggregates illustrate how conventional aggregate operators, now applied to historical

relations, can be handled. The first aggregate is an example of an aggregate that evaluates to a

non-temporal domain such as character but uses an attribute's valid time in a way di�erent from

the conventional aggregate operators. Finally, earliest illustrates an aggregate that evaluates to

an interval.

For the de�nitions that follow, let R be an historical relation of m-tuples over the relation

scheme N = fN

1

; : : : ; N

m

g and Q be an historical relation over an arbitrary subscheme of N .

The scalar aggregate family count, introduced on page 13, is su�cient only to de�ne the

algebraic equivalent of the TQuel aggregates count and countU for an aggregation window of

length zero (i.e., an instantaneous aggregate). Hence, we de�ne another family of scalar aggregates

countint

N

a

; 1 � a � m; that accommodates aggregation windows of arbitrary length by counting

intervals rather than values.

countint

N

(q; t; R) =

X

r2R

jInterval(valid(r

A

))j

where N is an attribute of both Q and R, q 2 Q, and t 2 T . Recall that Interval, formally

de�ned in Appendix B, returns the set of intervals contained in its argument. Hence, countint

N

simply sums the number of intervals in the time-stamp of attribute N of each tuple in R. Note

that the �rst two parameters to this function, q, the tuple providing the partitioning attributes,

and t, the time at which the aggregate is being evaluated, are not used in the de�nition of the
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8j; 1 � j � n 9r

0

1

2 R

0

1

� � � 9r

0

k

2 R

0

k

(

value(r(N

j

)) = r

0

i

j

(N

i

j

; a

j

)

^ 	

0

 

(r

0

1

(N

1;1

); : : : ; r

0

k

(N

k;m

k

)) (6)

^ �

0

�

((r

0

1

(From

1

); r

0

1

(To

1

)); : : : ; (r

0

k

(From

k

); r

0

k

(To

k

)))

^ 8t 2 valid(r(N

j

)) (

t 2 EXTEND(�

0

�

((r

0

1

(From

1

); r

0

1

(To

1

)); : : : ; (r

0

k

(From

k

); r

0

k

(To

k

)));

PRED(�

0

�

((r

0

1

(From

1

); r

0

1

(To

1

)); : : : ; (r

0

k

(From

k

); r

0

k

(To

k

))))

)))

)

This is P

3

in the proof outline.

The third clause of (4) on page 32 (i.e., the NotNull predicate) implies that

8r 2 R

k+1

; 9c 1 � c � n 9t; t 2 valid(r(N

c

))

Applying the tuple calculus statement for R

0

k+1

in (1) on page 26 to (6) results in

9r

0

2 R

0

k+1

( 8l; 1 � l � n (value(r(N

l

)) = r

0

(N

k+1; l

))

^ 8l; 1 � l � n 8t 2 valid(r(N

l

)) (t 2 EXTEND(r

0

(From); PRED(r

0

(To))))

)

This is P

5

in the proof outline.

Thus, the �rst clause in the de�nition of T(R

0

k+1

) is shown to hold. A similar argument can be

made, starting with the second main clause of (4), to show that the second clause ofT holds, thereby

demonstrating that R

k+1

and R

0

k+1

are equivalent, and hence the historical algebra expression is

equivalent to the indicated TQuel retrieve statement.

So far we have dealt only with the core of TQuel, the retrieve statement without aggregates.

The next two sections consider the full language, examining aggregates in some detail and the other

statements and transaction time briey.

4.3 TQuel Aggregates

TQuel aggregates [Snodgrass et al. 1989] are a superset of the Quel aggregates. Hence, each

of Quel's six non-unique aggregates (i.e., count, any, sum, avg, min, and max) and three unique

aggregates (i.e., countU, sumU, and avgU) has a TQuel counterpart. The TQuel version of each

of these aggregates performs the same fundamental operation as its Quel counterpart, with one
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10 ^8r

1

2 T(R

0

1

) � � � 8r

k

2 T(R

0

k

) (4)

11 8I

1

2 INTERVAL(valid(r

1

(N

1;1

))) � � �

12 8I

k

2 INTERVAL(valid(r

k

(N

k;1

))) (

13 ( 8l; 1 � l � n (value(r

i

l

(N

i

l

; a

l

)) = value(r(N

l

)))

14 ^ 	

 

(value(r

1

(N

1;1

)); : : : ; value(r

k

(N

k;m

k

)))

15 ^ �

�

(I

1

; : : : ; I

k

))

16 ) 8j; 1 � j � n (

17 EXTEND(�

�

(I

1

; : : : ; I

k

); PRED(�

�

(I

1

; : : : ; I

k

))) � valid(r(N

j

))))

18 ^9l; 1 � l � n (valid(r(N

l

) 6= ;)

19 g

The �rst twomain clauses (lines 1{9 and lines 10{17) in the above calculus statement correspond

to the two clauses in the de�nition of Reduce. The

^

�
operator contributes the phrase r

1

2

T(R

0

1

) � � � r

k

2 T(R

0

k

) that appears in lines 1 and 10 of the calculus statement. The �̂ operator

contributes the predicate found on lines 5 and 14 and the

^

�
operator contributes the predicates

found on lines 6{8, and 15{17. The �̂ operator contributes lines 4 and 13 and the NotNull

predicate, line 18. Lines 1{18 correspond to the P

1

predicate in the proof outline.

We now use the de�nitions and lemmas presented earlier, along with set theory, to reduce the

tuple calculus for R

k+1

to T(R

0

k+1

). The �rst clause in (4), along with Lemma 2, implies that

8j; 1 � j � n 9r

0

1

2 R

0

1

� � � 9r

0

k

2 R

0

k

(

value(r(N

j

)) = r

0

i

j

(N

i

j

; a

j

)

^ 	

 

(r

0

1

(N

1;1

); : : : ; r

0

k

(N

k;m

k

)) (5)

^ �

�

(EXTEND(r

0

1

(From

1

); PRED(r

0

1

(To

1

))); : : : ;

EXTEND(r

0

k

(From

k

); PRED(r

0

k

(To

k

))))

^ 8t 2 valid(r(N

j

)) (

t 2 EXTEND(�

�

(EXTEND(r

0

1

(From

1

); PRED(r

0

1

(To

1

))); : : : ;

EXTEND(r

0

k

(From

k

); PRED(r

0

k

(To

k

))));

PRED(�

�

(EXTEND(r

0

1

(From

1

); PRED(r

0

1

(To

1

))); : : : ;

EXTEND(r

0

k

(From

k

); PRED(r

0

k

(To

k

)))))

))))

This is P

2

in the proof outline.

Applying Lemma 1 to (5) results in
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R

k+1

= fr j P

1

(r; T(R

0

1

); : : : ; T(R

0

k

); 	

 

; �

�

; �

�

; �

�

)g

We successively transform the predicate. Applying the de�nition of T yields a predicate over R

0

i

rather than T(R

i

).

P

2

(r; R

0

1

; : : : ; R

0

k

; 	

 

; �

�

; �

�

; �

�

)

The syntactic to semantic mappings 	

 

, �

�

, �

�

, and �

�

, which assume attribute-value time-

stamps, are analogous to the mappings 	

0

 

, �

0

�

, �

0

�

, and �

0

�

, which assume tuple time-stamps.

Exploit this similarity to yield a predicate over the primed versions of the mappings.

P

3

(r; R

0

1

; : : : ; R

0

k

; 	

0

 

; �

0

�

; �

0

�

; �

0

�

)

The tuple calculus semantics for TQuel for the query (1) yields the following, which is the predicate

in (2).

r 2 R

0

k+1

$ P

4

(r; R

0

1

; : : : ; R

0

k

; 	

0

 

; �

0

�

; �

0

�

; �

0

�

)

Applying this to P

3

yields a predicate over r and R

0

k+1

.

P

5

(r; R

0

k+1

)

which is then shown to imply the predicate in T. Hence

R

k+1

= T(R

0

k+1

)

We now go down a level of detail and specify each of the predicates present in the proof outline.

The tuple calculus statement for R

k+1

is as follows.

R

k+1

= �̂

N

i

1

; a

1

; :::; N

i

n

; a

n

(

^

�

�

�

; EXTEND(�

�

;PRED(�

�

))

(�̂

	

 

(T(R

0

1

)

^

�
� � �

^

�
T(R

0

k

))))

�

=

1 fr

n

j 8j; 1 � j � n (9r

1

2 T(R

0

1

) � � � 9r

k

2 T(R

0

k

)

2 9I

1

2 INTERVAL(valid(r

1

(N

1;1

))) � � �

3 9I

k

2 INTERVAL(valid(r

k

(N

k;1

))) (

4 8l; 1 � l � n; value(r(N

l

)) = value(r

i

l

(N

i

l

; a

l

)))

5 ^ 	

 

(value(r

1

(N

1;1

)); : : : ; value(r

k

(N

k;m

k

)))

6 ^ �

�

(I

1

; : : : ; I

k

)

7 ^ 8t 2 valid(r(N

j

))

8 (t 2 EXTEND(�

�

(I

1

; : : : ; I

k

); PRED(�

�

(I

1

; : : : ; I

k

))))

9 )
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represents cartesian product of the relations associated with tuple variables, followed by selection

by the where-clause predicate, and then projection on the attributes in the target list. Similarly,

every TQuel retrieve statement is equivalent to an algebraic expression that represents cartesian

product of the referenced relations, followed by selection by the where-clause predicate, historical

derivation as speci�ed by the when and valid clauses, and then projection on the attributes in the

target list. In particular, the derivation operator applies the predicate �

�

to each tuple, evaluates

�

�

and �

�

to get the starting and ending events for the interval, and then constructs an interval

bounded by these events.

EXAMPLE. List the state of residence for the periods when each student was enrolled.

range of C is Courses

range of H is Home

retrieve into HomeWhenEnrolled (Name = H.Name, State = H.State)

valid from begin of (C overlap H) to end of (C overlap H)

where C.Name = H.Name

when C overlap H

This translates into the HomeWhenEnrolled relation given on page 8, with the following de�nition.

�̂

Home:Name; Home:State

(

^

�

�; EXTEND(�

�

;PRED(�

�

))

(�̂

Courses:Name=Home:Name

(Courses

^

�
Home))

where � � (Last(First(SName);First(State)) < First(Last(SName);Last(State)))

�

�

� (Last(First(SName);First(State)))

�

�

� (First(Last(SName);Last(State)))

Theorem 4 Every TQuel retrieve statement of the form of (1) found on page 26 is equivalent to

an expression in the historical algebra of the form

R

k+1

= �̂

N

i

1

; a

1

; :::; N

i

n

; a

n

(

^

�

�

�

; Extend(�

�

;Pred(�

�

))

(�̂

	

 

(T(R

0

1

)

^

�
: : :

^

�
T(R

0

k

)))): (3)

PROOF. To prove that R

k+1

and R

0

k+1

are equivalent, we must show that R

k+1

= T(R

0

k+1

). We

provide an overview of the proof, then delve into the details.

First, construct the tuple calculus statement for R

k+1

from the de�nitions of the historical

operators

^

�
, �̂,

^

�
, and �̂, using straightforward substitution, change of variable, and simpli�cation

(i.e., the de�nition of T(R

0

1

)

^

�
� � �

^

�
T(R

0

k

) obtained from the

^

�
operator is substituted for references

to the historical relation in the de�nition of �̂, etc.). The resulting statement includes a predicate

over the input relations and the semantic equivalents of the various TQuel clauses.
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Also let �

�

be the denotation in the historical algebra of � . �

�

is obtained by replacing each

occurrence of an ordered pair (r

0

i

(From

i

); r

0

i

(To

i

)i and each occurrence of a TQuel function in �

0

�

with its algebraic equivalent according to the rules above and each occurrence of the predicates

precede, overlay , and equal with its algebraic equivalent. That is,

I

1

precede I

2

! Last(I

1

) < First(I

2

) _ Last(I

1

) = First(I

2

),

I

1

overlap I

2

! I

1

\ I

2

6= ;, and

I

1

equal I

2

! I

1

= I

2

.

Note from the de�nition ofT(R

0

) that a tuple in T(R

0

) has the same time-stamp for each of its at-

tributes. Hence, although we require that each occurrences of an ordered pair (r

0

i

(From

i

); r

0

i

(To

i

))

in �

0

�

, �

0

�

, and �

0

�

be replaced with the same attribute name (i.e., N

i;1

), we could have speci�ed

any attribute of relation R

i

.

We will need the following two lemmas in the equivalence proof to be presented shortly. The

�rst relates the semantic functions used to formalize TQuel and those used in the historical algebra.

Lemma 1 �

�

, �

�

, and �

�

are semantically equivalent to �

0

�

, �

0

�

, and �

0

�

respectively. That is,

the result of evaluating �

0

�

, �

0

�

, and �

0

�

for tuples r

0

i

2 R

0

i

; 1 � i � k; is the same as the result of

evaluating �

�

, �

�

, and �

�

for the intervals I

i

; I

i

= Extend(r

0

i

(From

i

); Pred(r

0

i

(To

i

))) substituted

for the attribute name N

i; 1

.

PROOF. The semantic equivalence follows directly from the de�nitions of the functions used in

�

0

�

, �

0

�

, and �

0

�

[Snodgrass 1987].

Finally, because TQuel assumes that value-equivalent tuples are coalesced, the valid times as-

signed value-equivalent tuples in R

0

are disjoint, non-adjacent intervals. Hence, the following lemma

holds.

Lemma 2 Each distinguishable interval of time in the attribute-value time-stamps in T(R

0

) is in

a time-stamp of each tuple in R

0

. That is,

8r 2 T(R

0

) 8a; 1 � a � m 8I 2 Interval(valid(r(N

a

))) 9r

0

2 R

0

(

8c; 1 � c � m (value(r(N

c

)) = r

0

(N

c

))

^ I = Extend(r

0

(From); Pred(r

0

(To)))

)

PROOF. Apply the de�nitions of coalescing and Interval to T and simplify.

Having de�ned the algebraic equivalents of TQuel relations and expressions in the new TQuel

clauses, we can now de�ne the algebraic equivalent of a TQuel retrieve statement. Every Quel

retrieve statement (a target list and where clause) is equivalent to an algebraic expression that
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T(R

0

)

�

=
fu

m

j 9r

0

2 R

0

( 8A 2 N (value(u(N

A

)) = r

0

(N

A

))

^ 8A 2 N 8t 2 valid(u(N

A

)) (t 2 Extend(r

0

(From); Pred(r

0

(To))))

)

^ 8r

0

2 R

0

( 8A 2 N (r

0

(N

A

) = value(u(N

A

)))

^8A 2 N (Extend(r

0

(From); Pred(r

0

(To))) � valid(u(N

A

)))

)

g

The �rst clause of this de�nition ensures that each tuple in T(R

0

) has at least one value-equivalent

tuple in R. The second clause in the de�nition ensures that each subset of value-equivalent tuples

in R is represented by a single tuple in T(R

0

). Note also that the same time-stamp is assigned to

each attribute of a tuple in T(R

0

). This time-stamp is simply the union of the time-stamps of the

tuple's value-equivalent tuples in R

0

.

EXAMPLE. If R

0

= f (Phil, English, 1, 1),

(Phil, English, 3, 4),

(Norman, English, 1, 2),

(Norman, Calculus, 5, 6) g

then T (R

0

) = Courses, shown on page 3.

De�nition 2 We de�ne a m+2-tuple TQuel relation R

0

and a m-tuple relation R in the historical

algebra to be equivalent if, and only if, R = T(R

0

). In addition, we de�ne a TQuel query and an

expression in the historical algebra to be equivalent if, and only if, they evaluate to equivalent

relations.

Let 	

 

, �

�

, and �

�

be the denotations in the historical algebra of  , �, and � respectively. 	

 

is

obtained by replacing each occurrence of r

0

i

(N

i; a

); 1 � i � k; 1 � a � m

i

, in 	

0

 

with N

i; a

. �

�

and

�

�

are obtained by replacing each occurrence of an ordered pair (r

0

i

(From

i

); r

0

i

(To

i

)); 1 � i � k;

in �

0

�

and �

0

�

with N

i;1

and each occurrence of a TQuel function with its algebraic equivalent.

That is,

r

0

i

! N

i;1

,

begin of I ! First(I ),

end of I ! Last(I ),

I

1

overlap I

2

! I

1

\ I

2

, and

I

1

extend I

2

! Extend(First(I

1

); Last(I

2

)).

28



r

0

i

:N

i; a

! r

0

i

(N

i; a

),

and ! ^,

or ! _, and

not ! :.

�

0

�

and �

0

�

are obtained by replacing each occurrence of a tuple variable r

0

i

in � and � with

the ordered pair (r

0

i

(From

i

); r

0

i

(To

i

)) and each occurrence of a temporal constructor with a corre-

sponding function. That is,

r

0

i

! (r

0

i

(From

i

); r

0

i

(To

i

))

begin of I ! beginof (I ),

end of I ! endof (I )

I

1

overlap I

2

! overlap(I

1

; I

2

), and

I

1

extend I

2

! extend(I

1

; I

2

)

where beginof , endof , overlap, and extend are functions over intervals. Formal de�nitions for these

functions are presented elsewhere [Snodgrass 1987].

�

0

�

is obtained by replacing each occurrence of a logical operator in � with its corresponding

logical predicate according to the rules given for its replacement in  , replacing each occurrence of

a tuple variable or temporal constructor according to the rules given for their replacement in � and

�, and replacing each occurrence of a temporal predicate operator with an analogous predicate on

intervals. That is,

I

1

precede I

2

! precede(I

1

; I

2

),

I

1

overlap I

2

! overlap(I

1

; I

2

), and

I

1

equal I

2

! equal(I

1

; I

2

)

where precede, overlap, and equal are predicates over intervals. Again, formal de�nitions for these

predicates are presented elsewhere [Snodgrass 1987].

4.2 Correspondence with the Historical Algebra

To compare the expressive power of TQuel and the historical algebra presented in Section 3, we

�rst relate relations in the two systems, then expressions in the new TQuel clauses, and �nally the

retrieve statement with algebraic expressions.

De�nition 1 The transformation function T maps a TQuel embedded snapshot relation over the

scheme fN

1

; : : : ; N

m

; From; Tog into its equivalent historical relation, valid in the historical

algebra over the scheme N = fN

1

; : : : ; N

m

g.
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N

1

= fN

1;1

; : : : ; N

1;m

1

; From

1

; To

1

g

� � �

N

k

= fN

k;1

; : : : ; N

k;m

k

; From

k

; To

k

g

For notational convenience, we associate \

0

" with TQuel relations, tuple variables, and ex-

pressions to di�erentiate them from their counterparts in the historical algebra and assume that

N

1;1

; : : : ; N

k;m

k

are unique. The TQuel retrieve statement has the following syntax.

range of r

0

1

is R

0

1

� � �

range of r

0

k

is R

0

k

retrieve into R

0

k+1

(N

k+1; 1

= r

0

i

1

:N

i

1

; a

1

, : : :,N

k+1; n

= r

0

i

n

:N

i

n

; a

n

) (1)

valid from � to �

where  

when �

where i

1

, i

2

; : : :, i

n

are integers, not necessarily distinct, in the range 1 to k. This statement

computes a new relation R

0

k+1

over the relational scheme

N

k+1

= fN

k+1;1

; : : : ; N

k+1; n

; From

k+1

; To

k+1

g

Its tuple calculus statement has the following form [Snodgrass 1987].

R

0

k+1

= fu

n+2

j 9r

0

1

2 R

0

1

� � � 9r

0

k

2 R

0

k

(

u(N

k+1;1

) = r

0

i

1

(N

i

1

; a

1

) ^ � � � ^ u(N

k+1; n

) = r

0

i

n

(N

i

n

; a

n

)

^ u(From

k+1

) = �

0

�

((r

0

1

(From

1

); r

0

1

(To

1

)); : : : ; (r

0

k

(From

k

); r

0

k

(To

k

)))

^ u(To

k+1

) = �

0

�

((r

0

1

(From

1

); r

0

1

(To

1

)); : : : ; (r

0

k

(From

k

); r

0

k

(To

k

))) (2)

^ Before(u(From

k+1

); u(To

k+1

))

^ 	

0

 

(r

0

1

(N

1;1

); : : : ; r

0

k

(N

k;m

k

))

^ �

0

�

((r

0

1

(From

1

); r

0

1

(To

1

)); : : : ; (r

0

k

(From

k

); r

0

k

(To

k

)))

)

g

where Before is the \<" predicate on integers, the ordered pair (r

0

i

(From

i

); r

0

i

(To

i

)); 1 � i � k,

represents the interval [r

0

i

(From

i

); r

0

i

(To

i

)), and 	

0

 

, �

0

�

, �

0

�

, and �

0

�

are the denotations described

below of  , �, �, and � respectively.

	

0

 

is obtained by replacing each occurrence of an attribute reference r

0

i

:N

i; a

; 1 � i � k; 1 �

a � m

i

, in  with r

0

i

(N

i; a

) and each occurrence of a logical operator with its corresponding logical

predicate. That is,
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� Snapshot (

d

SN
) and AT convert between snapshot and historical relations.

The snapshot rollback (�) and historical rollback (�̂) operators, de�ned elsewhere [McKenzie &

Snodgrass 1990], serve to generalize the algebra to handle temporal relations incorporating both

valid and transaction time.

We showed that intersection (

^

\
), quotient (

^

�
), natural join (^

1
), and �-join (

^

./

�

) can all be

de�ned in terms of the �ve basic operators, most in an identical fashion to the de�nition of their

snapshot counterparts.

4 Equivalence with TQuel

We now show that the historical algebra de�ned above has the expressive power of the TQuel

(T emporal QUEry Language) [Snodgrass 1987] facilities that support valid time. TQuel is a

version of Quel [Held et al. 1975], the calculus-based query language for the Ingres relational

database management system [Stonebraker et al. 1976], augmented to handle both valid time and

transaction time. Two new syntactic and semantic constructs are provided to support valid time.

The valid clause is the temporal analogue to Quel's target list; it is used to specify the value of

the valid time for tuples in the derived relation. This clause consists of the keywords valid from

to and two temporal expressions, each consisting of tuple variables, temporal constants, and the

temporal constructors begin of, end of, overlap, and extend. The when clause is the temporal

analogue to Quel's where clause. This clause consists of the keyword when followed by a temporal

predicate consisting of temporal expressions, the temporal predicate operators precede, overlap,

and equal, and the logical operators or, and, and not. (Note that overlap is overloaded; it may

be either a temporal constructor or a temporal predicate operator, with context di�erentiating the

uses.) A third new construct, the as-of clause, is provided to handle transaction time but will not

be considered here. We will generally limit our discussion of TQuel to its facilities for handling

valid time.

Unlike the historical algebra, which assumes attribute-value time-stamping, TQuel assumes

tuple time-stamping. The formal semantics of TQuel conceptually embeds its temporal relations in

snapshot relations; such an embedding is done purely for convenience in developing the semantics.

TQuel represents valid time by adding two time values to each tuple to specify the time when the

tuple became valid (i.e., From) and the time when the tuple became invalid (i.e., To). Also unlike

the historical algebra, TQuel allows value-equivalent tuples in a relation but assumes that value-

equivalent tuples are coalesced (i.e., tuples with identical values for the explicit attributes neither

overlap nor are adjacent in time). As we will see shortly, it is possible to convert the embedded,

coalesced snapshot relations used in TQuel's formal semantics to historical relations.

4.1 TQuel Retrieve Statement

Assume that we are given the k snapshot relations R

0

1

; : : : ; R

0

k

whose schemes are respectively,
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Norman were included in S

3

^

�
S

6

because neither resided in Texas at time 9. The

^

�
clause ensured

that Norman was excluded even though he lived in Virginia at time 5 and in Texas at times 7 and

8.

In de�ning the above operators, we restricted the valid-time component of attributes to el-

ements from the domain

}

(T ). By so doing, we were able to de�ne all operations on attribute

time-stamps in terms of the standard operations from set theory. We can eliminate the restric-

tion and allow time-stamps to have a more complex structure without di�culty. For example,

we could allow the valid-time component of attributes to be an element from, or even a subset of,

}

(T )�

}

(T ). We need only rede�ne the functions First , Last , and Interval to handle time-stamps

of the new form and replace each set operation on time-stamps with an equivalent operation for the

new time domain. In this way, the algebra could support either periodicity [Lorentzos & Johnson

1988] or multi-dimensional time-stamps [Gadia & Yeung 1988].

We also restricted the value component of attributes to atomic elements from a value domain.

Several of the other historical algebras that have been proposed allow set-valued attributes [Cli�ord

& Croker 1987, Gadia 1986, Tansel 1986]. Their purpose in allowing set-valued attributes is to

model real-world relationships more naturally and to eliminate the need to replicate data among

tuples. These algebras only allow one level of nesting. Hence, while they can model the relationship

between students and courses without replication of data, they can't model the relationships among

students, courses, and grades without replication of data. Several proposals have already been

presented for extending the snapshot algebra to support non-�rst-normal-form relations with an

arbitrary level of nesting [Roth et al. 1988, Schek & Scholl 1986,

�

Ozsoyo�glu et al. 1987]. Hence,

rather than complicate the semantics of the algebra by allowing set-valued attributes, we propose

extending the algebra to support non-�rst-normal-form historical relations with an arbitrary level of

nesting using an approach similar to the one Schek and Scholl used to extend the snapshot algebra.

Then, we could de�ne both relations and operations on relations recursively. At each recursively

de�ned level, an attribute could take on an atomic value from a value domain or a structured value

from a domain of historical relations. The semantics, however, would be left unchanged, simply

embedded in the new structure.

We leave these last two extensions to future work.

3.7 Summary

We �rst introduced historical relations, in which attribute values are associated with set-valued

time-stamps. We then de�ned ten historical operators.

� Five operators are analogous to the �ve standard snapshot operators: union (

^

[
), di�erence

(

^

�
), cartesian product (

^

�
), selection (�̂), and projection (�̂).

� Historical derivation (

^

�
) e�ectively performs selection and projection on the valid-time dimen-

sion by replacing the time-stamp of each attribute of selected tuples with a new time-stamp.

� Aggregation (

b

A
) and unique aggregation (

d

AU
) serve to compute a distribution of single values

over time for a collection of tuples.
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S

^

�
R

�

=
�̂

A

Q

(S)

^

�
�̂

A

Q

(U

^

[

^

�

R

1

6=;_���_R

m

2

6=;; (Q

1

;T ); :::; (Q

m

1

;T ); (R

1

;R

1

); :::; (R

m

2

;R

m

2

)

(U ))

where U = (�̂

A

Q

(S)

^

�
R)

^

�
S . The additional restriction introduced by the

^

�
clause ensures that

no tuple in S

^

�
R can combine with a tuple in R to produces a tuple whose attribute time-stamps

are not contained in the attribute time-stamps of its value-equivalent tuple in S .

EXAMPLES. Assume that we are given the historical relation S

3

from page 6, duplicated below.

f h(Phil; f1; 3; 4g); (Kansas; f1; 2; 3g)i,

h(Phil; f1; 3; 4g); (Virginia; f4; 5; 6g)i,

h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f1; 2; 5; 6g); (Texas; f7; 8g)i g

If we are given the following historical relation S

5

,

S

5

= f h(Virginia; f5g)i,

h(Texas; f7; 8g)i g

then

S

3

^

�
S

5

= f h(Norman; f1; 2; 5; 6g)i g .

If, however, we are given

S

6

= f h(Virginia; f5g)i,

h(Texas; f7; 8; 9g)i g

then

S

3

^

�
S

6

= ;:

In the �rst example, although Phil lived in Virginia at time 5, he was not included in S

3

^

�
S

5

because he did not reside in Texas at times 7 and 8. In the second example, neither Phil nor
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Q ./ R

�

=
�

A

Q

; Q:I

1

;:::;Q:I

m

;A

R

(�

Q:I

1

=R:I

1

^���^Q:I

m

=R:I

m

(Q � R)).

Now let Q and R be historical relations, rather than snapshot relations. If we were to simply

replace snapshot operators in the above de�nition with their historical counterparts,
^

./
would retain

the valid time assigned to attributes A

QR

in Q but not in R, because the projection somewhat

arbitrarily keeps the common attributes from Q and not from R. Similarly, if we were also to

replace references to Q

u

, 1 � u � m, in the projection operator with references to R

u

,
^

./
would

retain the valid time assigned to attributes A

QR

in R but not in Q . Retention of the valid time

assigned to attributes A

QR

in both Q and R, however, seems more appropriate. Hence, we de�ne

Q
^

./
R, the historical natural join of Q and R, as

Q
^

./
R

�

=
�̂

A

Q

; Q:I

1

;:::;Q:I

m

;A

R

(

^

�

true; Q

1

; :::;Q

m

1

; Q:I

1

[R:I

1

; :::; Q:I

m

[R:I

m

;
R

1

; :::; R

m

2

;R:I

1

; :::;R:I

m

(

�̂

Q:I

1

=R:I

1

^���^Q:I

m

=R:I

m

(Q

^

�
R))).

The

^

�
operator is introduced to compute the valid-time component of attributes in the resulting

historical relation common to both Q and R. Here, we use union semantics to retain, for each

attribute common to Q and R, the valid time assigned to the attribute in both relation relations.

We can just as easily de�ne other historical variations of natural join using either intersection or

di�erence semantics. Note that the new time-stamps for attributes R

1

; : : : ; R

m

are arbitrary as

these attributes are discarded by the projection operator.

To de�ne quotient, let S be a snapshot relation of (m

1

+m

2

)-tuples on the relation signature

Z

S

with attributes A

Q

[ A

R

and R be a snapshot relation ofm

2

-tuples on the relation signature Z

R

with attributes A

R

, where A

Q

= fQ

1

; : : : ; Q

m

1

g and A

R

= fR

1

; : : : ; R

m

2

g. Then, the quotient

of S divided by R (S �R) intuitively is the maximal subset Q of �

A

Q

(S) such that Q � R is

contained in S [Maier 1983]. S � R is de�ned as [Ullman 1988]

S �R

�

=
�

A

Q

(S)� �

A

Q

((�

A

Q

(S)� R)� S).

Now let S and R be historical relations, rather than snapshot relations. If we were to simply

replace snapshot operators in the above de�nition with their historical counterparts,

^

�
would not

place the same restrictions on the attribute time-stamps of tuples in Q that it places on the tuples'

attribute values. The operator would require that each tuple in Q

^

�
R have a value-equivalent tuple

in S , but it would not require that the attribute time-stamps of a tuple in Q

^

�
R be contained in

the attribute time-stamps of its value-equivalent tuple in S . Hence, we propose a de�nition of

^

�

that places the same restrictions on the attribute time-stamps of tuples in Q that it places on the

tuples' attribute values. If we let the historical quotient of S divided by R (S

^

�
R) be the maximal

temporal contents of �̂

A

Q

(S) such that Q

^

�
R is contained temporally in S , then S

^

�
R is de�ned as
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Historical intersection can be de�ned in an identical fashion to its snapshot counterpart.

De�nition of the historical version of intersection is straightforward only because we took care when

de�ning the historical version of di�erence to ensure its compatible with de�nition of intersection in

terms of di�erence. If we let Q and R be snapshot relations of m-tuples over the relation signature

z with attributes A = f I

1

; : : : ; I

m

g, then Q \ R is de�ned as [Ullman 1988]

Q \ R

�

=
Q � (Q � R).

Now, let Q and R be historical relations, rather than snapshot relations. Then, Q

^

\
R, the historical

intersection of Q and R, is de�ned as

Q

^

\
R

�

=
Q

^

�
(Q

^

�
R).

�-join also can be de�ned in an identical fashion to its snapshot counterpart. De�nition of

the historical version of �-join is straightforward because its de�nition involves only selection and

cartesian product, two operators whose historical versions are themselves de�ned in an identical

fashion to their snapshot couterparts. If we let Q be a historical relation ofm

1

-tuples on the relation

signature z

Q

with attributes A

Q

= f I

Q;1

; : : : ; I

Q;m

1

g and R be a historical relation of m

2

-tuples

on the relation signature z

R

with attributes A

R

= f I

R;1

; : : : ; I

R;m

2

g, where A

Q

\ A

R

= ;, then

the �-join of Q and R is de�ned as [Ullman 1988]

Q

./

u�v

R

�

=
�

u�v

(Q � R),

where the u and v attributes are �-comparable.

Now let Q and R be historical relations, rather than snapshot relations. Then the historical

�-join of Q and R is de�ned as

Q

^
./

u�v

�

=
�̂

u�v

(Q

^

�
R).

Historical natural join and quotient, unlike historical di�erence and �-join, can't be de�ned

simply by substituting historical operators for snapshot operators in the de�nition of their snapshot

counterparts [Ullman 1988], because both involve projection, an operation whose semantics in the

historical algebra is substantially di�erent from its semantics in the snapshot algebra. Small, but

important, changes must be made to the de�nitions to handle properly the temporal dimension.

Let A

Q

= fQ

1

; : : : ; Q

m

1

g, A

R

= fR

1

; : : : ; R

m

2

g, and A

QR

= f I

1

; : : : ; I

m

g. Also let Q be a

snapshot relation of (m

1

+m)-tuples on the relation signature Z

Q

with attributes A

Q

[ A

QR

and R

be a snapshot relation of (m

2

+m)-tuples on the relation signature Z

R

with attributes A

R

[ A

QR

.

Hence, the attributes A

QR

are common to Q and R. Rather than rename attributes, we simply

refer to the common attributes in Q and R as Q:I

u

and R:I

u

, 1 � u � m, respectively, for notational

convenience. Then Q ./ R, the natural join of Q and R, is de�ned as [Ullman 1988]
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historical relation(s). Because the historical algebra allows tuples that contain attributes of di�ering

time-stamps, it satis�es this property only through the introduction of distinguished nulls when

taking snapshots. We avoid this problem by proving a weaker property: we restrict reducibility to

operations on historical relations that have identical time-stamps for all of their attributes, termed

homogeneous relations.

Theorem 3 The historical operators

^

[
,

^

�
,

^

�
, �̂ and �̂ reduce to their snapshot counterparts when

their arguments are homogeneous.

PROOF. Let Q and R be homogeneous relations. We demonstrate reducibility for selection,

speci�cally, for all values of � ,

d

SN
(�̂

F

(R); �) = �

F

(

d

SN
(R; �)).

d

SN
(�̂

F

(R); �) = f(value(r

1

); : : : ; value(r

n

)) j 9r 2 �̂

F

(R) ^ � 2 valid(r

1

)g

from the de�nition of

d

SN
and the fact that R is homogeneous.

= f(value(r

1

); : : : ; value(r

n

)) j 9R 2 r ^ F (value(r

1

); : : : ; value(r

n

))

^ � 2 valid(r

1

)g

from the de�nition of �̂

F

.

= f(r

0

1

; : : : ; r

0

n

) j 9r 2 R; 9r

0

1

: : :9r

0

n

; r

0

i

= value(r

i

)

^ F (r

0

1

; : : : ; r

0

n

)) ^ � 2 valid(r

1

)g

by substituting r

0

i

for value(r

i

).

= f(r

0

1

; : : : ; r

0

n

) j 9r

0

2

d

SN
(R; �) ^ F (r

0

1

; : : : ; r

0

n

)g

from the de�nition of

d

SN
.

= �

F

(

d

SN
(R; �))

from the de�nition of �.

Proofs for the other four operators follow analogously.

3.6 Additional Aspects of the Algebra

We have thus far de�ned eight algebraic operators. We now show how historical intersection (

^

\
),

�-join (

^

./

�

), natural join (
^

./
), and quotient (

^

�
) all can be de�ned in terms of the six operators

^

[
,

^

�
,

^

�
, �̂, �̂, and

^

�
.
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A relational algebra is said to be complete if it is at least as expressive as the snapshot algebra

[Codd 1972].

Theorem 2 The historical algebra is complete.

PROOF. We show this for selection, that is, we show that historical selection is as expressive as

snapshot selection. Speci�cally, we show that for all values of � ,

�̂

F

(AT (R

0

; �)) = AT (�

F

(R

0

); �)

Here we use primes (

0

) to denote snapshot relations.

�̂

F

(AT (R

0

; �)) = fu j 9u 2 AT (R

0

; �) ^ F (value(u

1

); : : : ; value(u

m

))g

from the de�nition of �̂.

= fu j 9r

0

2 R

0

(8 i; 1 � i � n (r

0

i

= value(u

i

))^ valid(u

i

) = �))

^ F (value(u

1

); : : : ; value(u

m

))g

from the de�nition of AT .

= fu j 9r

0

2 R

0

(8 i; 1 � i � n (r

0

i

= value(u

i

) ^ valid(u

i

) = �) ^ F (r

0

1

; : : : ; r

0

m

))g

by substituting r

0

i

for value(u

i

).

= fu j 9r

0

2 �

F

(R

0

) (8 i; 1 � i � n (r

0

i

= value(u

i

) ^ valid(u

i

) = �))g

from the de�nition of �.

= AT (�

F

(R

0

); �)

from the de�nition of AT .

The correspondence between historical and snapshot operators centers on how time-stamps

are manipulated by the historical operators. Historical cartesian product doesn't alter the time-

stamps. Historical projection merges the time-stamps for value equivalent tuples, which has no

e�ect since all the time-stamps are f�g; the same holds for historical union. Finally, historical

di�erence subtracts the chronons of value equivalent tuples, reducing all associated time-stamps to

;, which removes the tuple.

We now examine whether the historical algebra is in some sense a consistent extension of

the snapshot algebra. An algebra is said to reduce to the snapshot algebra if taking a snapshot

on the result of applying a historical operator on one or two historical relations is identical to

the result of applying the analogous snapshot operator to the snapshots (at the same time) of the
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d

SN
returns a snapshot relation, this criterion is not relevant. Finally, no two output tuples can be

value-equivalent. This criterion is explicitly ensured in the semantics of �̂ and

^

�
via the Reduce

function. For the operators

^

[
,

^

�
,

^

�
and �̂ we show that if there are value-equivalent tuples in

an operator's output relation, then there must have been value-equivalent tuples in at least one

of its input relations. For the operators

b

A
, and

d

AU
, we show by contradiction that there cannot

be value-equivalent tuples in their output relations. Because

d

SN
returns a snapshot relation, this

criterion is not relevant.

Case 1:

^

[
. Assume that Q

^

[
R contains at least two value-equivalent tuples. From the de�nition

of

^

[
, each tuple in Q

^

[
R has a value-equivalent tuple in Q, R, or both. If two value-equivalent

tuples û

1

and û

2

in Q

^

[
R do not have a value-equivalent tuple in R, then both are tuples in Q.

Similarly, if they do not have a value-equivalent tuple in Q, then both are tuples in R. If they

have a value-equivalent tuple in both Q and R, then each was constructed from a value-equivalent

tuple in Q and a value-equivalent tuple in R. If both û

1

and û

2

had been constructed from the

same tuple in Q and the same tuple in R, then û

1

and û

2

would be, by de�nition, the same tuple.

Hence, they were constructed from di�erent value-equivalent tuples in Q, R, or both.

Case 2:

^

�
. Assume that Q

^

�
R contains at least two value-equivalent tuples. From the de�nition

of

^

�
, each tuple in Q

^

�
R has a value-equivalent tuple in Q but not in R or a value-equivalent tuple

in both Q and R. If two value-equivalent tuples û

1

and û

2

in Q

^

�
R do not have a value-equivalent

tuple in R, then both are tuples in Q. If they have a value-equivalent tuple in both Q and R,

then each was constructed from a value-equivalent tuple in Q and a value-equivalent tuple in R.

If both û

1

and û

2

had been constructed from the same tuple in Q and the same tuple in R, then

û

1

and û

2

would be, by de�nition, the same tuple. Hence, they were constructed from di�erent

value-equivalent tuples in Q, R, or both.

Case 3:

^

�
. Assume that Q

^

�
R contains at least two value-equivalent tuples. From the de�nition

of

^

�
, each tuple in Q

^

�
R is constructed from a tuple in Q and a tuple in R. If two value-equivalent

tuples û

1

and û

2

in Q

^

�
R had been constructed from the same tuple in Q and the same tuple in

R, then û

1

and û

2

would be, by de�nition, the same tuple. Hence, they were constructed from

di�erent value-equivalent tuples in Q, R, or both.

Case 4: �̂. Assume that �̂

F

(R) contains at least two value-equivalent tuples. From the de�nition

of �̂, each tuple in �̂

F

(R) is a tuple in R. Hence, any two value-equivalent tuples in �̂

F

(R) are also

tuples in R.

Case 5: AT . Assume that AT (R; �) contains at least two value-equivalent tuples. Because AT

generates at most one output tuple for each input tuple, there must have been two identical tuples

in R, which is not possible, as R is a set.

Case 6:

b

A
. Assume that

b

A

f; w; N

a

; X

(Q; R) contains at least two value-equivalent tuples. From

Case 1 above, if

b

A

f; w; N

a

; X

(Q; R) contains value-equivalent tuples, then the input relation to

b

A
's outermost � operator, which explicitly has the Reduce function applied to it. Hence, our

assumption that

b

A

f; w; N

a

; X

(Q; R) contains at least two value-equivalent tuples is contradicted.

Case 7:

d

AU
. Simply replace

b

A
with

d

AU
in Case 7.
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3.4.4 Expressions in Aggregates

The aggregate functions can be extended to allow expressions to be aggregated and support aggre-

gation by arbitrary expressions. Let Eaggregate be an arbitrary expression involving u historical

aggregate functions. Also, assume that the v

th

historical aggregate function applies the scalar

aggregate f

v

to attribute N

a

v

where the aggregation window function is w

v

, and the partitioning

attributes are X

v

. Then the de�nition of

b

A
, now denoted by

b

A

f

1

; :::; f

u

; w

1

; :::; w

u

; N

a

1

; :::; N

a

u

; X

1

; :::; X

u

; Eaggregate

(Q; R),

is constructed from the de�nition of

b

A
above simply by substituting y = Eaggregate

0

for y =

f

N

a

(: : :). Eaggregate

0

is Eaggregate where each reference to the v

th

aggregate has been replaced

by the expression f

v N

a

v

(q; t; PARTITION(R; q; t; w

v

; N

a

v

; X

v

)). With these changes,

b

A

allows expressions to be aggregated.

d

AU
can be modi�ed similarly.

If

b

A
and

d

AU
are to support aggregation by arbitrary expressions, changes must be made to

the de�nitions of PARTITION,

b

A
, and

d

AU
given above. First, let Evalue

l

; 1 � l � o; be an

expression involving the attribute names N

c

1

; : : : ; N

c

n

. Evalue

l

is evaluated for a tuple r 2 R; by

substituting the value components of the attributes of r for all occurrences of their corresponding

attribute names in Evalue

l

. Secondly, let X = fEvalue

1

; : : : ; Evalue

o

g and d

1

; : : : ; d

p

be

the distinct integers in the range 1 to m such that N

d

h

; 1 � h � p; appears in at least one

Evalue

l

; 1 � l � o. Then new de�nitions of PARTITION,

b

A
, and

d

AU
are constructed from the

de�nitions above simply by substituting the predicate 8l; 1 � l � o (Evalue

l

(r) = Evalue

l

(q)) for

the predicate 8A 2 X (value(r

A

) = value(q

A

)) and the predicate 8l; 1 � l � p (valid(u

d

l

) 6= ;)

for the predicate 8A 2 X (valid(u

A

) 6= ;) in the de�nition of PARTITION and substituting p

for n and valid(q

d

l

) for valid(q

A

) in the de�nitions of

b

A
and

d

AU
. With these changes,

b

A
and

d

AU

support aggregation by arbitrary expressions.

3.5 Closure, Completeness, and Reducibility

An important property of an algebra is that it is closed, that is, all operators produce valid objects,

in this case historical relations.

Theorem 1 The historical algebra is closed.

PROOF. An historical relation is a �nite set of historical tuples that satisfy three criteria. First,

the values must be drawn from the appropriate domains, which is easy to show since values of

an output attribute for all operators always originate from a single input attribute (or compatible

attributes, in the case of binary operators). Second, at least one time-stamp in each tuple must

be non-empty. This criterion is explicitly ensured in the semantics of �̂,

^

�
, �̂,

^

�
and AT via the

NotNull function. Since

^

�
,

b

A
, and

d

AU
append attributes to each input tuple, this criterion is

satis�ed. Because time-stamps remain the same or grow in

^

[
, it also satis�es this criterion. Because
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Here N

agg

is the attribute name assigned the aggregate value (y; ftg). If X is not empty, function

b

A
�rst associates with each time t the partition of relation Q whose tuples intersect the window in

the valid component of attributes X and N (line 3). For each of these partitions,

b

A
then constructs

a set of historical tuples. Each tuple in the set contains all the attributes X of a tuple q in the

partition and a new attribute. This new attribute's valid component is the time t corresponding

to the partition and its value component is the scalar value returned by the aggregate f

N

, when

f

N

is applied to the appropriate partition of R (line 4).

If X is empty,

b

A
constructs for each time t an historical relation that is either empty or

contains a single tuple. If the valid component of attribute N of no tuple r in R overlaps the

window, then the historical relation is empty. Otherwise, the historical relation contains a single

tuple whose valid component is the time t and whose value component is the scalar value returned

by the aggregate f

N

.

Note that a tuple and a time are passed as parameters to the scalar aggregate f

N

, along with

a partition of R, in the de�nition of

b

A
. Although most aggregate operators can be de�ned in terms

of a single parameter, the partition of R, the additional parameters are present because aggregates

that evaluate to events or intervals, one of which is de�ned in Section 4.3, require them.

3.4.3 Unique Aggregates

The function

b

A
allows its embedded scalar aggregates to aggregate over duplicate attribute values.

We now de�ne an historical aggregate function

d

AU
, identical to

b

A
with one exception; it restricts

its embedded scalar aggregates to aggregation over unique attribute values.

EXAMPLE. Count uniquely the number of states in which enrolled students reside.

d

AU

count; 0; State; ;

(�̂

State

(S

3

); S

3

) = f h(1; f3; 4; 5; 6; 7; 8g)i,

h(2; f1; 2g)i g

This relation di�ers from the non-unique variant only during the interval f5; 6g. Here, Virginia

is correctly counted only once, even though there are two tuples valid during this interval with a

state of Virginia.

d

AU

f; w; N

a

; X

(Q; R)

�

=

�̂

X[fN

agg

g

(fq � (y; z) j q 2 Q

^ z =

S

ft j 8A 2 (N [ fXg) ((valid(q

A

) \ w

^

(t)) 6= ;)g

^ 9t 2 z (y = f

N

(q; t; �̂

N

(PARTITION(R; q; t; w; N; X)))

g)

The formal de�nition di�ers from that of

b

A
only in that the added historical projection on attribute

N of PARTITION(: : :) eliminates duplicate values of the aggregated attribute before the scalar

aggregation is preformed.
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Only the third and fourth tuples in S

3

satisfy this requirement. The partitioning function here

e�ectively returns the tuples for those students who were enrolled in school at time 5. Note that

the time-stamp of each attribute in the selected tuples has been restricted to the interval from the

attribute's original time-stamp overlapping time 5, if any.

Do the same, but group by State and select the group from Phil's state.

PARTITION(S

3

; h(Phil; f1; 3; 4g); (Virginia; f4; 5; 6g)i; 5; 0; Name; fStateg) =

f h(Norman; f5; 6g); (Virginia; f5; 6g)i g

Here Q is assumed to be S

3

; q is a tuple drawn from S

3

. Tuples are selected for those students who

were enrolled in school and a resident of Phil's state (Virginia) at time 5. Only the third tuple

in S

3

satis�es this requirement. Although Phil was a resident of Virginia at time 5, he was not

enrolled in school at time 5. Hence, the second tuple in S

3

is not included in this partition.

Do the same, except use a moving window of one year.

PARTITION(S

3

; h(Phil; f1; 3; 4g); (Virginia; f4; 5; 6g)i; 5; 1; Name; fStateg) =

f h(Phil; f3; 4g); (Virginia; f4; 5; 6g)i

h(Norman; f5; 6g); (Virginia; f5; 6g)i g

Here tuples are selected for those students who were enrolled in school and a resident of Virginia

within a year (w(t) = 1) of time 5. Both the second and third tuples in S

3

satisfy this requirement.

The second tuple in S

3

is now included in the partition because Phil was a resident of Virginia and

enrolled in school at time 4.

3.4.2 Non-unique Aggregates

The historical aggregate function

b

A

f; w; N; X

(Q; R) calculates, for each tuple in Q, a distribution of

scalar values over time for an arbitrary aggregate applied to attribute N of the subset of tuples in

R whose value component for attributes X matches the value component for the same attributes

of the tuple in Q. If X is empty,

b

A
simply calculates a single distribution of scalar values over

time for the aggregate applied to attribute N of R. f represents an arbitrary family of scalar

aggregates and w represent an aggregation window function. The aggregate function is de�ned

using the historical union and projection operators previously presented.

1

b

A

f; w; N; X

(Q; R)

�

=

2 �̂

X[fN

agg

g

(fq � (y; ftg) j q 2 Q

3 ^ z =

S

ft j 8A 2 (fNg [X) ((valid(q

A

) \ w

^

(t)) 6= ;)g

4 ^ 9t 2 z (y = f

N

(q; t; PARTITION(R; q; t; w; N; X))

5 g)
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EXAMPLE. For each state, count the number of enrolled students who reside in that state.

b

A

count; 0; Name; fStateg

(S

3

; S

3

) = f h(Kansas; f1; 2; 3g); (1; f1; 2; 3g)i

h(Virginia; f1; 2; 4; 5; 6g); (1; f1; 2; 4g)i

h(Virginia; f1; 2; 4; 5; 6g); (2; f5; 6g)i

h(Texas; f7; 8g); (1; f7; 8g)i g

Here,

b

A
computes an instantaneous aggregate. In e�ect, the aggregate is computed for each

subset of tuples in S

3

having the same value for the attribute State. For example, the �rst tuple is

computed by selecting all the tuples in S

3

with a state of Kansas and then performing the aggregate

on this (smaller) set.

3.4.1 Partitioning Function

Before de�ning the historical aggregate functions

b

A
and

d

AU
, we formally de�ne a partitioning

function. Recall that X � N , q 2 Q is a tuple of the set of partitioning values, t 2 T , w is an

aggregation window function, and N 2 N

R

.

PARTITION(R; q; t; w; N; X)

�

=

1 fu

m

j 9r 2 R ( 8A 2 X (value(r

A

) = value(q

A

))

2 ^ u � r

3 ^ 8A 2 N (valid(u

A

) = fI j I 2 Interval(valid(r

a

))^ (I \ w

^

(t)) 6= ;g)

4 ^ valid(u

N

) 6= ; ^ 8A 2 X (valid(u

A

) 6= ;)

5 )

6 g

This function retrieves from R those tuples that have the same value component for attributes in

X as q (line 1) and have time t or some time in the interval of length w(t) immediately preceding

t in the time-stamp of attribute N (line 3).

EXAMPLES. Partition the entire S

3

relation given on page 6 at the instant 5 based on the Name

attribute.

PARTITION(S

3

; h i; 5; 0; Name; ;) = f h(Norman; f5; 6g); (Virginia; f5; 6g)i

h(Norman; f5; 6g); (Texas; ;)i g

Because time 5 is speci�ed and the aggregation window function, denoted by zero, is the constant

function w(t) = 0, tuples are selected whose time-stamp for attribute Name overlaps time 5.
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languages (e.g., the attributes in the GROUP BY clause in SQL [IBM 1981]). Generally X = N

Q

and Q = �

X

(R), but these constraints are not dictated by the formal de�nition of

b

A
.

Finally, assume, as does Klug, that for each aggregate operation (e.g., count) we have a

family of scalar aggregates that performs the indicated aggregation on R (e.g., count

N

1

, count

N

2

,

: : :, count

N

m

, where count

N

a

counts the (possibly duplicate) values of attribute N

a

of R). The

particular scalar aggregate is denoted by f . w represents an aggregation window function.

EXAMPLE. Count the number of states in which enrolled students resided.

b

A

count; 0; State; ;

(�̂

State

(S

3

); S

3

) = f h(1; f3; 4; 7; 8g)i,

h(2; f1; 2; 5; 6g)i g

Because w(t) = 0 and the time granularity of S

3

is a semester, the resulting relation represents

aggregation by semester. Hence, the aggregate is in e�ect an instantaneous aggregate. For the

interval f1; 2g, there were two states (Kansas in the �rst tuple and Virginia in the third tuple).

For the interval f3; 4g, there was one state (Kansas in the �rst tuple at time 3 and Virginia in the

second tuple at time 4). For the interval f5; 6g, there also was only one state (Virginia), but it

appeared in both the second and third tuples. It was counted twice because the scalar aggregates

embedded within

b

A
aggregate over duplicate values. For the interval f7; 8g, there was only one

state (Texas, in the fourth tuple).

EXAMPLE. Count the number of states in which enrolled students reside over the previous year.

b

A

count; 1; State; ;

(�̂

State

(S

3

); S

3

) = f h(1; f8; 9g)i,

h(2; f1; 2; 3; 4; 5; 6g)i,

h(3; f7g)i g

Here, w(t) = 2 � 1 = 1 representing aggregation by year (assuming two semesters per year).

Although the chronon 9 does not appear in the time-stamp of attribute State in any tuple in S

3

, a

count of one is recorded at time 9 because a tuple, the fourth tuple in S

3

, falls into the aggregation

window at time 9.

EXAMPLE. Count the number of states in which enrolled students ever resided.

b

A

count;1; State; ;

(�̂

State

(S

3

); S

3

) = f h(2; f1; 2; 3g)i,

h(3; f4; 5; 6g)i,

h(4; f7; 8; : : :g)i g

With w(t) =1,

b

A
computes a cumulative aggregate.
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terms of the time granularity. Hence, instantaneous aggregates can be viewed as aggregates over

an interval whose duration is determined by the granularity of the measure of time being used.

Others have generalized the de�nition of instantaneous and cumulative aggregates by introducing

the concept of moving aggregation windows [Navathe & Ahmed 1989]. An aggregation window

function w is a function from the domain T into the non-negative integers. For each time t, the

window function w gives rise to the interval of length w(t) immediately preceding time t. This

interval, termed the window (w

^

), may be de�ned as

w

^

�

=
Extend(Last(1; t � w(t)); t)

An aggregate returns, for each time t, a value computed from tuples valid during the window.

An instantaneous aggregate is an aggregate with an aggregation window function w(t) = 0 and a

cumulative aggregate is an aggregate with an aggregation window function w(t) =1.

Klug introduced an approach to handle aggregates in the snapshot algebra [Klug 1982]. His

approach makes it possible to de�ne aggregates, in particular, non-unique aggregates, in a rigorous

fashion. We use his approach to de�ne two historical aggregate functions for the algebra.

�

b

A
, that calculates non-unique aggregates, and

�

d

AU
, that calculates unique aggregates.

These two historical aggregate functions serve as the historical counterpart of both scalar aggregates

and aggregate functions.

The historical aggregate functions must contend with a variety of demands that surface as

parameters (subscripts) to the functions. First, a speci�c aggregate (e.g., count) must be speci�ed.

Secondly, the attribute over which the aggregate is to be applied must be stated and the aggregation

window function must be indicated. Finally, to accommodate partitioning, where the aggregate is

applied to partitions of a relation, a set of partitioning attributes must be given. These demands

complicate the de�nitions of

b

A
and

d

AU
, but at the same time ensure some degree of generality to

these operators.

The aggregate operator is denoted by

b

A

f; w; N; X

(Q; R). R is an historical relation of m-

tuples over the relation scheme N

R

. N 2 N

R

is the attribute on which the aggregate is applied. Q

supplies the values that partition R. X denotes the attributes on which the partitioning is applied,

with the restrictions that N

Q

� N

R

and fNg [X � N

Q

.

If X is empty, the historical aggregate operators simply calculate a single distribution of scalar

values over time for an arbitrary aggregate applied to attribute N of relation R. In this case, the

tuples in Q are ignored.

If X is not empty, the operators calculate, for each subtuple in Q formed from the attributes

X , a distribution of scalar values over time for an aggregate applied to attribute N of the subset

of tuples in R whose values for attributes X match the values for the same attributes of the tuple

in Q. Hence, X corresponds to the by-list of an aggregate function in conventional database query
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derivation operator could have been replaced by two simpler operators, analogous to the selection

and projection operators, that would have performed tuple selection and attribute projection in

terms of the valid components, rather than the value components, of attributes. But, as we will

see in Section 6, disallowing set-valued time-stamps would have required that the algebra support

value-equivalent tuples, which would have prevented the algebra from having several other, more

highly desirable properties.

3.3 Conversion Operators

The snapshot operator

d

SN
computes a snapshot relation valid at a speci�ed time � . If only a

subset of attributes is valid at � , that tuple is not selected.

d

SN
(R; �) = f(value(r

1

); : : : ; value(r

n

)) j 9r 2 R 8A 2 N (� 2 valid(r

A

))g

EXAMPLE. S

4

=

d

SN
(S

3

; 4) = f(Phil; Virginia)g

The dual is the AT operator, which converts a snapshot relation to its historical analogue at

considered valid at the speci�ed time � .

AT (R

0

; �) = fr j 9r

0

2 R

0

8A 2 N (r

0

A

= value(r

A

) ^ valid(r

A

) = �)g

EXAMPLE. S

4

= AT (S

4

; 4) = f h(Phil; f4g); (Virginia; f4g)i

3.4 Aggregates

Aggregates allow users to summarize information contained in a relation. Aggregates are catego-

rized as either scalar aggregates or aggregate functions. Scalar aggregates return a single scalar

value that is the result of applying the aggregate to a speci�ed attribute of a snapshot relation.

Aggregate functions, however, return a set of scalar values, each value the result of applying the

aggregate to a speci�ed attribute of those tuples in a snapshot relation having the same values for

certain attributes. Database management systems based on the relational model typically provide

several aggregate operators. For example, Quel [Stonebraker et al. 1976] provides a count, sum,

average, minimum, maximum, and any aggregate operator. Quel also provides two versions of the

count, sum, and average operators, one that aggregates over all values of an attribute and one

that aggregates over only the unique values of an attribute.

Several researchers have investigated aggregates in time-oriented relational databases [Ben-

Zvi 1982, Jones et al. 1979, Navathe & Ahmed 1989, Snodgrass et al. 1989, Tansel et al. 1989].

Their work reects the consensus that aggregates when applied to historical relations should return

not a single value, but a distribution of values over time. Jones, et al. also introduced the concepts

of instantaneous aggregates and cumulative aggregates. Instantaneous aggregates return, for each

time t, a value computed only from the tuples valid at time t. Cumulative aggregates return, for

each time t, a value computed from all tuples valid at any time up to and including t, regardless of

whether the tuples are still valid at time t. Note that a time t has meaning only when de�ned in

11



in the linear ordering of all times.

Succ is the successor function on the domain T. It maps a time into its immediate successor in the

linear ordering of all times.

Extend maps two times into the set of times that represents the interval between the �rst time

and the second time.

Interval maps a set of times into the set of intervals containing the minimum number of non-

disjoint intervals represented by the input set. Each time in the input set appears in exactly one

interval in the output set and each interval in the output set is itself represented by a set of times.

EXAMPLE. Consider the following tuple taken from the relation S

3

de�ned previously.

r = h(Norman; f1; 2; 5; 6g); (Texas; f7; 8g)i

then Interval(valid(r(Name))) = ff1; 2g; f5; 6gg

Interval(valid(r(State))) = ff7; 8gg

Let R be an historical relation of m-tuples. Let V

a

; 1 � a � m; be temporal functions

involving the attribute names N

1

; : : : ; N

m

, constants from the domain I of non-disjoint intervals

de�ned in Appendix B, the functions First, Last, and Extend, and the set operators [; \; and

�. Let G be a boolean function involving the temporal functions, as just described, the relational

operators <; =; and >, and the logical operators ^; _; and :.

Apply selects an interval from the temporal element of each attribute's timestamp, applies

the predicate G to these intervals, and, if G returns true, evaluates the V

i

to generate an output

interval.

Apply(G; V

1

; : : : ; V

m

; R) = fu j 9r 2 R (u � r ^ 9I

i

2 Interval(valid(r

i

)); 1 � i � m

(G(I

1

; : : : ; I

m

) ^ valid(u

i

) = V

i

(I

1

; : : : ; I

m

))g

Note that the resulting set may contain many value-equivalent tuples.

Given these auxiliary functions, we can now de�ne the historical derivation operator on his-

torical relations. In the formal semantics, the functions G and V

a

are always evaluated for a speci�c

assignment of non-disjoint intervals to attribute names N

1

; : : : ; N

m

. G evaluates to either true or

false and V

a

evaluates to an interval.

^

�

G; V

1

; :::; V

m

(R)

�

=
NotNull(Reduce(Apply(G; V

1

; : : : ; V

m

; R)))

The Apply function, and thus the derivation operator, is necessarily somewhat complex

because we allow set-valued time-stamps. Had we had disallowed set-valued time-stamps, the
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time-stamp for this tuple's attributes would be assigned the empty set in the resulting relation

except the de�nition of the historical derivation operator disallows tuples whose attributes all have

an empty time-stamp. This tuple is therefore eliminated and does not appear in the resulting rela-

tion. From the third tuple, h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i, we �nd that Norman

was a resident of Virginia during both of his intervals of enrollment (G(f1; 2g; f1; 2g) is true and

G(f5; 6g; f5; 6g) is true). Hence, this tuple's attributes are assigned a time-stamp of f1; 2; 5; 6g

in the resulting relation. From the fourth tuple, h(Norman; f1; 2; 5; 6g); (Texas; f7; 8g)i, we �nd

that Norman was not a resident of Texas at any time during his enrollment (G(f1; 2g; f7; 8g) is

false and G(f5; 6g; f7; 8g) is false); this tuple is therefore eliminated from the resulting relation.

EXAMPLE. Find the students who home state changed during at least one interval of enrollment.

^

�

(Name\State) 6=Name ^ (Name\State) 6=;; Name\State

(S

3

) = f h(Phil; f3g); (Kansas; f3g)i,

h(Phil; f4g); (Virginia; f4g)i g

The new time-stamp for each tuple that satis�es G for some assignment of intervals Name and

State contains the intervals Name\ State from each assignment of intervals that satisfy G. From

the �rst tuple in S

3

we �nd that Phil had one interval of enrollment during which his home state

changed, because G(f3; 4g; f1; 2; 3g) = (f3; 4g\f1; 2; 3g 6= f3; 4g^ f3; 4g\f1; 2; 3g 6= ;) evaluates

to true. Hence, this tuple's attributes are assigned a time-stamp of f3; 4g \ f1; 2; 3g = f3g in the

resulting relation. From the second tuple in S

3

we �nd that Phil had one interval of enrollment

during which his home state changed. Hence, this tuple's attributes are assigned a time-stamp of

f4g in the resulting relation. Note that Norman does not satisfy the restriction; his home state was

the same during his two periods of enrollment. Hence, the third and fourth tuples are eliminated

from the resulting relation.

Note that the historical derivation operator actually performs two functions. First, it performs

a selection function on the valid component of a tuple's attributes. For a tuple r, if G is false when

an interval from the valid component of each of r's attributes is substituted for each occurrence

of its corresponding attribute name in G, then the temporal information represented by that

combination of intervals is not used in the calculation of the new time-stamps for r's attributes.

Secondly, the derivation operator calculates a new time-stamp for attribute N

a

; 1 � a � m; from

those combinations of intervals for which G is true, using V

a

. If V

1

; : : : ; V

m

are all the same

function, the tuple is e�ectively converted from attribute time-stamping to tuple time-stamping.

Several functions, de�ned on the domains T and

}

(T ), are used either directly or indirectly

in the de�nition of the historical derivation operator. Before de�ning the derivation operator itself,

we describe informally these auxiliary functions. Formal de�nitions appear in Appendix B.

First takes a set of times from the domain

}

(T ) and maps it into the earliest time in the set.

Last takes a set of times from the domain

}

(T ) and maps it into the latest time in the set.

Pred is the predecessor function on the domain T. It maps a time into its immediate predecessor

9



signment of intervals to attribute names for which G is true, the operator evaluates V

a

; 1 � a � m.

The sets of times resulting from the evaluations of V

a

are then combined to form a new time-stamp

for attribute N

a

. For notational convenience, we assume that if only one V -function is provided,

it applies to all attributes.

EXAMPLE. List the state of residence for the periods when each student was enrolled.

HomeWhenEnrolled =

^

�

G;V

(S

3

) = f h(Phil; f1; 3g); (Kansas; f1; 3g)i,

h(Phil; f4g); (Virginia; f4g)i,

h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i g

where

G � Last(First(SName);First(State)) < First(Last(SName);Last(State))

V � Extend(Last(First(SName);First(State)); First(Last(SName);Last(State)))

Here First selects the earliest chronon from an interval; Last selects the latest chronon; and

Extend(a; b) generates an interval commencing with a and ending at b. In this example, G

determines whether the interval of residency overlaps the interval of enrollment (it may take the

reader a moment to be convinced that G is indeed merely overlap), and V calculates this overlap,

i.e., the interval during which both were valid. This interval is assigned to both attributes.

EXAMPLE. Find the periods of enrollment during which the student's home state did not change.

^

�

(Name\State)=Name; Name; Name

(S

3

) = f h(Phil; f1g); (Kansas; f1g)i,

h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i g

In this example, G is \(Name \ State) = Name" and V

1

and V

2

are both \Name". A stu-

dent tuple s 2 S

3

satis�es condition G if the student had at least one interval of enrollment

during which his home state (i.e, State) did not change. The new time-stamp for each at-

tribute of a tuple that satis�es G for some assignment of intervals Name and State consists

of the Name intervals from each assignment of intervals that satisfy G. In the �rst tuple in

S

3

, h(Phil; f1; 3; 4g); (Kansas; f1; 2; 3g)i, there are three intervals, two assigned to the at-

tribute Name (f1g; f3; 4g) and one assigned to the attribute State (f1; 2; 3g). From this tu-

ple, we �nd that Phil was a resident of Kansas during his �rst interval of enrollment, because

G(f1g; f1; 2; 3g) = (f1g \ f1; 2; 3g = f1g) evaluates to true. However, Phil was a resident of

Kansas during only part of his second interval of enrollment, because G(f3; 4g; f1; 2; 3g) is false.

Hence, this tuple's attributes are assigned a time-stamp of f1g in the resulting relation. From the

second tuple in S

3

, h(Phil; f1; 3; 4g); (Virginia; f4; 5; 6g)i, we �nd that Phil was not a resident

of Virginia during his �rst interval of enrollment (G(f1g; f4; 5; 6g) is false) and lived in Virginia

during only part of his second interval of enrollment (G(f3; 4g; f4; 5; 6g) is false). Hence, the

8



The �̂ operator also supports projections on expressions. For an arbitrary n, let Evalue

l

; 1 �

l � n; be an arbitrary expression involving the attribute names N

a

; 1 � a � m. Evalue

l

is

evaluated, for a tuple r 2 R; by substituting the value components of the attributes of r for all

occurrences of their corresponding attribute names in Evalue

l

. Also, let Evalid

l

; 1 � l � n;

be an arbitrary expression involving the attribute names N

a

; 1 � a � m; where Evalid

l

is

evaluated for a tuple r 2 R by substituting the valid components of the attributes of r for all

occurrences of their corresponding attribute names in Evalid

l

. In addition, assume that evalua-

tion of Evalue

l

for every tuple r produces an element of the domain D

b

; 1 � b � m; and that

evaluation of Evalid

l

produces an element of the domain

}

(T ). Then the de�nition of �̂, now

denoted by �̂

(Evalue

1

; Evalid

1

); :::; (Evalue

n

; Evalid

n

)

(R), is constructed from the de�nition above sim-

ply by substituting Evalue

h

(r) for value(r

a

h

), Evalid

h

(r) for valid(r

a

h

), Evalue

l

(r) for value(r

a

l

),

and Evalid

l

(r) for valid(r

a

l

). Note that this de�nition of the �̂ operator is simply a more general

version of the de�nition presented earlier, where N

a

l

; 1 � l � n; is assumed to be the ordered pair

of expressions (N

a

l

; N

a

l

).

EXAMPLE.

�̂

(name; (sname; sname)); (state; (state; sname\state))

(S

3

) =

f h(Phil; f1; 3; 4g); (Kansas; f1; 3g)i,

h(Phil; f1; 3; 4g); (Virginia; f4g)i,

h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f1; 2; 5; 6g); (Texas; ;)i g

The result is a historical relation with attributes fname; stateg rather than fsname; stateg. The

valid-time component of attribute name represents the interval(s) when the speci�ed student was

enrolled, but the valid-time component of attribute state represents only the subinterval(s) of

enrollment when the student was a resident of the speci�ed state. Note that, because Norman's

enrollment never overlapped his residency in Texas, the valid-time component of the attribute

state of the fourth tuple is the empty set.

3.2 Historical Derivation

The historical derivation operator

^

�
is a new operator that does not have an analogous snapshot

operator. It replaces the time-stamp of each attribute in a tuple with a new time-stamp, where

the new time-stamps are computed from the existing time-stamps of the tuple's attributes.

^

�
is

e�ectively a combination of selection and projection on a tuple's attribute time-stamps.

^

�

G; V

1

; :::; V

m

(R) determines, for a tuple r 2 R, new time-stamps for r's attributes. The histor-

ical derivation function �rst determines all possible assignments of intervals to attribute names for

which the predicate G on time-stamps is true. Hence, an occurrence of an attribute A in G and in

V is intended to be a variable, which evaluates to an interval upon tuple substitution. For each as-
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h(Norman; f5; 6g); (Calculus; f5; 6g); (Phil; f4; 5; 6g); (Virginia; f4; 5; 6g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g); (Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g); (Norman; f7; 8g); (Texas; f7; 8g)i g

Let R be an historical relation of m-tuples. Also, let F be a boolean function involving the

attribute namesN

1

; : : : ; N

m

, constants from the domains Dom(N

1

); : : :, Dom(N

m

), the relational

operators <, =, and >, and the logical operators ^; _; and :. To evaluate F for a tuple r 2 R,

we substitute the value components of the attributes of r for all occurrences of their corresponding

attribute names in F . Then the historical selection �̂

F

(R) is identical to selection in the snapshot

algebra: it evaluates to the set of tuples in R for which F is true.

�̂

F

(R)

�

=
fr

m

j r 2 R ^ F (value(r

1

); : : : ; value(r

m

))g

EXAMPLE. S

2

= �̂

SName=HName

(S

1

) =

f h(Phil; f1; 3; 4g); (English; f1; 3; 4g); (Phil; f1; 2; 3g); (Kansas; f1; 2; 3g)i,

h(Phil; f1; 3; 4g); (English; f1; 3; 4g); (Phil; f4; 5; 6g); (Virginia; f4; 5; 6g)i,

h(Norman; f1; 2g); (English; f1; 2g); (Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f1; 2g); (English; f1; 2g); (Norman; f7; 8g); (Texas; f7; 8g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g); (Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g); (Norman; f7; 8g); (Texas; f7; 8g)i g

Let R be an historical relation of m-tuples and let a

1

; : : : ; a

n

be distinct integers in the

range 1 to m. Like the projection operator for snapshot relation, the projection operator for

historical relations, �̂

N

a

1

; :::; N

a

n

, retains, for each tuple, the tuple components that correspond to

the attribute names N

a

1

; : : : ; N

a

n

.

�̂

N

a

1

; :::; N

a

n

(R)

�

=
Reduce(NotNull(fu

n

j 9r 2 R8i; 1 � i � n (u

i

= r

a

i

)g))

EXAMPLE. S

3

= �̂

SName; State

(S

2

) = f h(Phil; f1; 3; 4g); (Kansas; f1; 2; 3g)i,

h(Phil; f1; 3; 4g); (Virginia; f4; 5; 6g)i,

h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f1; 2; 5; 6g); (Texas; f7; 8g)i g

We interpret S

3

as follows. The time-stamp associated with the value of the attribute Name

represents the interval(s) when the speci�ed student was enrolled and the time-stamp associated

with the value of the attribute State represents the interval(s) when the student was a resident of

the speci�ed state.
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Courses

^

[
f h(Phil; f4; 5g); (English; f4; 5g)i g

= f h(Phil; f1; 3; 4; 5g); (English; f1; 3; 4; 5g)i,

h(Norman; f1; 2g); (English; f1; 2g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g)i g

The historical di�erence of Q and R, Q

^

�
R, is the set of all tuples such that the time-stamp

of each attribute of a tuple in Q

^

�
R must equal the set di�erence of the time-stamps of the

corresponding attribute in the value-equivalent tuple in Q and the value-equivalent tuple in R.

Q

^

�
R

�

=
fq

m

j 9q 2 Q ^ :(9r 2 R (r � q))g

S

NotNull(fu

m

j 9q 2 Q 9r 2 R (u � q � r ^ 8A 2 N (valid(u

A

) = valid(q

A

)� valid(r

A

)))g)

EXAMPLE. Phil didn't take English during semesters 4 and 5.

Courses

^

�
f h(Phil; f4; 5g); (English; f4; 5g)i g

= f h(Phil; f1g); (English; f1g)i,

h(Norman; f1; 2g); (English; f1; 2g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g)i g

Now let Q be an historical relation of m

1

-tuples and R be an historical relation of m

2

-tuples.

Because historical relations are attribute-value time-stamped, cartesian product is a particularly

simple operator. The historical cartesian product is identical to that for snapshot relations. In the

following, \�" denotes concatenation.

Q

^

�
R

�

=
fq � r j 9q 2 Q ^ 9r 2 Rg

EXAMPLE. Home is an historical relation over the relation scheme Home = fName; Stateg.

Home = f h(Phil; f1; 2; 3g); (Kansas; f1; 2; 3g)i,

h(Phil; f4; 5; 6g); (Virginia; f4; 5; 6g)i,

h(Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f7; 8g); (Texas; f7; 8g)i g

S

1

= Courses

^

�
Home =

f h(Phil; f1; 3; 4g); (English; f1; 3; 4g); (Phil; f1; 2; 3g); (Kansas; f1; 2; 3g)i,

h(Phil; f1; 3; 4g); (English; f1; 3; 4g); (Phil; f4; 5; 6g); (Virginia; f4; 5; 6g)i,

h(Phil; f1; 3; 4g); (English; f1; 3; 4g); (Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Phil; f1; 3; 4g); (English; f1; 3; 4g); (Norman; f7; 8g); (Texas; f7; 8g)i,

h(Norman; f1; 2g); (English; f1; 2g); (Phil; f1; 2; 3g); (Kansas; f1; 2; 3g)i,

h(Norman; f1; 2g); (English; f1; 2g); (Phil; f4; 5; 6g); (Virginia; f4; 5; 6g)i,

h(Norman; f1; 2g); (English; f1; 2g); (Norman; f1; 2; 5; 6g); (Virginia; f1; 2; 5; 6g)i,

h(Norman; f1; 2g); (English; f1; 2g); (Norman; f7; 8g); (Texas; f7; 8g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g); (Phil; f1; 2; 3g); (Kansas; f1; 2; 3g)i,
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3 Historical Operators

We present ten operators that serve to de�ne the historical algebra. Five of these operators |

union, di�erence, cartesian product, projection, and selection | are analogous to the �ve operators

that serve to de�ne the snapshot algebra for snapshot relations [Ullman 1988]. Each of these �ve

operators on historical relations is represented as ôp to distinguish it from its snapshot algebra

counterpart op. Historical derivation is a new operator that replaces the time-stamp of each

attribute value in a tuple with a new time-stamp, where the new time-stamps are computed from

the existing time-stamps of the tuple's attributes. The snapshot (

d

SN
) and AT operators convert

between historical and snapshot relations. The two remaining operators are aggregation and unique

aggregation. After de�ning the operators, we show that the historical algebra is closed, is complete,

and reduces to the snapshot algebra.

We will use two auxiliary functions in the formal semantics. Both operate over a set of tuples

R.

NotNull(R)

�

=
fR j 9r 2 R ^ 9A 2 N (valid(R

A

) 6= ;)g

This function ensures that all tuples in the resulting relation have at least one attribute value which

has a non-null timestamp.

Reduce(R)

�

=
fU

n

j 8A 2 N 9r 2 R(r � u ^ 8t 2 valid(u

A

)(t 2 valid(r

A

)))

^ 8r 2 R(r � u) 8A 2 N (valid(r

A

) � valid(u

A

)))g

Reduce computes the minimal set of value-equivalent tuples, i.e., the set for which there are no

such tuples. The �rst line ensures that no chronons have been manufactured; the second line

ensures that all chronons of R are accounted for.

Thus, if R is a set of tuples over N , then Reduce(NotNull(R)) is an historical relation.

3.1 Historical Analogues of the Snapshot Operators

Let Q and R be historical relations of m-tuples over the same relation scheme. Then the historical

union of Q and R, Q

^

[
R, is the set of tuples that are only in Q, are only in R, or are in both

relations, with the restriction that each pair of value-equivalent tuples is represented by a single

tuple. The time-stamp associated with each attribute of this tuple in Q

^

[
R is the set union of the

time-stamps of the corresponding attribute in the value-equivalent tuples in Q and R.

Q

^

[
R

�

=
Reduce(fu j u 2 Q _ u 2 Rg)

EXAMPLE. Add the fact that Phil took English in semesters 4 and 5.
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Hereafter, we will refer to ht(A) simply as ht

A

, where A denotes an attribute in scheme N , when

there is no ambiguity of meaning. Note that it is possible for all but one attribute to have an

empty time-stamp.

Two tuples, ht and ht

0

, are said to be value-equivalent (ht � ht

0

) if and only if 8A 2

N ; value(ht

A

) = value(ht

0

A

). An historical relation h is then de�ned as a �nite set of histori-

cal tuples, with the restriction that no two tuples in the relation are value-equivalent.

EXAMPLE. Assume that we are given the relation scheme Student = fName ;Courseg and the

following set of tuples over this relation scheme. For this and all later examples, assume that the

granularity of time is a semester relative to the Fall semester 1980. Hence, 1 represents the Fall

semester 1980, 2 represents the Spring semester 1981, etc. This relation speci�es the courses each

student took.

S = f h(Phil; f1; 3g); (English; f1; 3g)i,

h(Norman; f1; 2g); (English; f1; 2g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g)i,

h(Phil; f4g); (English; f4g)i g

For notational convenience we enclose each attribute value in parentheses and each tuple in angular

brackets (i.e., h i). We assume the natural mapping between attribute names and attribute values

(e.g., Name ! (Phil; f1; 3g), and Course ! (English; f1; 3g)). Note that S is not an historical

relation because there are value-equivalent tuples in the set (the �rst and fourth tuples are value-

equivalent). If we replace the two value-equivalent tuples in S with a single tuple, then the new

set Courses is an historical relation. While the attributes of a tuple in Courses have the same

time-stamp, in general attributes within a tuple can have di�erent time-stamps.

Courses = f h(Phil; f1; 3; 4g); (English; f1; 3; 4g)i,

h(Norman; f1; 2g); (English; f1; 2g)i,

h(Norman; f5; 6g); (Calculus; f5; 6g)i g

In summary, the historical algebra places the same basic restrictions on the value components

of attributes as the snapshot algebra places on attribute values. Neither set-valued attribute value

components nor tuples with duplicate attribute value components are allowed. Valid time, however,

is represented by a set-valued time-stamp that is associated with individual attributes. A time-

stamp represents possibly disjoint intervals and the time-stamps assigned to two attributes in a

given tuple may, but need not, be identical.
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from having other, more highly desirable properties.

In the next section we de�ne the historical algebra and provide a formal semantics. To do so,

we rede�ne a relation, the only type of object allowed in the algebra, to include valid time. We

also rede�ne the algebraic operators, and introduce new operators, to handle this new temporal

dimension. We then show that the algebra has the expressive power of the TQuel (T emporal

QUEry Language) [Snodgrass 1987] facilities that support valid time. We demonstrate that several

important properties: closure, relational completeness, and a restricted form of reducibility, as well

as all but one of the traditional tautologies used in query optimization, hold for the algebra.

Various implementation aspects, including page structure and incremental evaluation techniques,

are considered. In particular, we show how the algebra may utilize a page layout that is quite

similiar to that used by conventional DBMS's, and how the algebra can be e�ciently implemented.

We conclude with a discussion of the major design decisions we made in de�ning the algebra and the

importance of those decisions in determining the algebra's properties. The notational conventions

used in the paper are described in Appendix A.

2 Historical Relations

The algebra presented in this paper is an extension of the snapshot algebra. As such, it retains the

basic restrictions on attribute values found in the snapshot algebra. Neither set-valued attributes

nor tuples with duplicate attribute values are allowed. Valid time is represented by a set-valued

time-stamp that is associated with individual attributes. A time-stamp represents possibly disjoint

intervals and the time-stamps assigned to two attributes in a given tuple need not be identical.

Assume that we are given a relation scheme de�ned as a �nite set of attribute namesN = fN

1

,

: : :, N

m

g. Corresponding to each attribute name N 2 N is a domain Dom(N), an arbitrary, non-

empty, �nite or denumerable set [Maier 83]. Let the positive integers be the domain T , where each

element of T represents a time quantum [Anderson 1982]. Assume that, if t

1

immediately precedes

t

2

in the linear ordering of T , then t

1

represents the interval [t

1

; t

2

). The granularity of time (e.g.,

nanosecond, month, year) associated with T is arbitrary. Note that when we speak of a \point

in time," we actually refer to an interval, termed a chronon, whose duration is determined by the

granularity of the measure of time being used to specify that point in time. Also, let the domain

}

(T ) be the power set of T. An element of

}

(T ) is then a set of integers, each of which represents

an interval of unit duration. Also, any group of consecutive integers t

1

; : : : ; t

n

appearing in

an element of

}

(T ), together represent the interval [t

1

; t

n

+ 1). An element of

}

(T ), termed a

temporal element [Gadia 1988], is thus a �nite union of intervals.

If we let value range over the domain Dom(N

1

) [ � � � [ Dom(N

m

) and valid range over the

domain

}

(T ), we can de�ne an historical tuple ht as a mapping from the set of attribute names

to the set of ordered pairs (value, valid), with the following restrictions.

� 8a; 1 � a � m (value(ht(N

a

)) 2 Dom(N

a

) and

� 9a; 1 � a � m (valid(ht(N

a

)) 6= ;).
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1 Introduction

Conventional database management systems do not support the time-varying aspects of the real

world. In this paper we propose extending the relational algebra [Codd 1970] to enable it to handle

time. Several bene�ts accrue from de�ning a historical algebra. A historical algebra is essential

to the formulation of a historical data model because it de�nes formally the types of objects and

the operations on object instances allowed in the data model. The usefulness of a historical data

model in representing the time-varying aspect of real-world phenomena depends on the power and

expressiveness of its underlying historical algebra. Similarly, the algebra determines a data model's

support of calculus-based query languages. Also, implementation issues, such as query optimization

and physical storage strategies, can best be addressed in terms of the algebra.

Conventional databases can be viewed as snapshot databases in that they represent the state

of the real world at one particular point in time. As a database is changed to reect changes in

the real world, out-of-date information, representing past states of the real world, is deleted. In

previous papers, we identi�ed three orthogonal kinds of time that a database management system

(DBMS) needs to support: valid time, transaction time, and user-de�ned time [Snodgrass & Ahn

1985, Snodgrass & Ahn 1986]. Valid time concerns modeling time-varying reality. The valid time

of, say, an event is the clock time at which the event occurred in the real world, independent of

the recording of that event in some database. Transaction time, on the other hand, concerns the

storage of information in the database. The transaction time of an event is the transaction number

(an integer) of the transaction that stored the information about the event in the database. User-

de�ned time is an uninterpreted domain for which the DBMS supports the operations of input,

output, and perhaps comparison. These three types of time are orthogonal in the support required

of the DBMS.

The relational algebra already supports user-de�ned time in that user-de�ned time is simply

another domain, such as integer or character string, provided by the DBMS [Bontempo 1983,

Overmyer & Stonebraker 1982, Tandem 1983]. The relational algebra, however, supports neither

valid time nor transaction time. Hence, for clarity, we refer to the relational algebra hereafter

as the snapshot algebra and our proposed algebra, which supports valid time, as an historical

algebra. We do not consider here extensions to support transaction time. Elsewhere we described

an approach for adding transaction time to the snapshot algebra and showed that this approach

applies without change to all historical algebras supporting valid time [McKenzie & Snodgrass

1987]. That approach also supports scheme evolution [McKenzie & Snodgrass 1990]. We provide

formal de�nitions for historical relations and for their associated algebraic operators. The result is

an algebra supporting all three kinds of time.

The algebra reects our basic design goal to de�ne an historical algebra that has as many

desirable properties as possible. For example, we wanted the historical algebra to be a straightfor-

ward extension of the snapshot algebra so that relations and algebraic expressions in the snapshot

algebra would have equivalent counterparts in the historical algebra. Yet we also wanted the al-

gebra to support historical queries and adhere to the user-oriented model of historical relations as

space-�lling objects, where the additional, third dimension is valid time. Hence, we did not restrict

historical relations to �rst normal form, insist on time-stamping of entire tuples, or require that

time-stamps be atomic-valued, because each of these restrictions would have prevented the algebra

1
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