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rule. The graph on the right shows the number of pokes sent per context switch, which can be used to asses the relative

magnitude of the input waiting rule and null message overheads.
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The next graph shows how often null messages were sent when they were considered. In this algorithm, there

were many more times when null messages were considered but deemed unnecessary than in the Matrix Multiply al-

gorithm.

The following two graphs involve the effect of null messages on the context switching of Poker processing

elements. The left graph shows the frequency that reads by adjacent processors cause processing elements to be moved

onto the ready queue when they are blocked waiting for I/O. The graph on the right shows the frequency that null mes-

sages cause extraneous context switches, i.e. that they cause processing elements to be moved to the ready queue and

when activated, the processing elements are immediately swapped back out because no I/O messages had arrived. Note

that there were no instances when extraneous context switches occurred in this algorithm, in contrast to the Matrix

Multiply algorithm.

The final two graphs pertain to the overhead of the input waiting rule. The graph on the left shows the number

of context switches per MultiRead, an indication of the amount of time which should be charged to the input waiting
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MultiRead Jacobi Iteration

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator running the version

of the Jacobi Iteration algorithm using MultiRead construct. Once again, we only show the data for the compute phase,

since we believe that the timings on the aggregate phase are too small for the data to be meaningful. Here, not only do

we see the effect of null messages on the overhead, but overhead due to the input waiting rule is also present. Once

again, the term “pokes” is used in lieu of the term “null messages” in the graphs.

Once again we begin by considering the total number of null messages or “pokes”. On the left we show the

total number of null messages which were sent, and see that it is no longer invariant with respect to the number of

processors. Likewise, the total number of null messages which were considered also changes with the number of pro-

cessors. This graph is shown on the right

In the next two graphs the above data is simply divided by the number of reads, which is an invariant.
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The next graph verifies that all null messages which were considered were actually sent.

The final two graphs for these simulation runs involve the effect of the null messages on the Poker threads

package. The graph on the left shows the frequency that reads cause adjacent Poker processing elements to be moved

onto the ready queue when they were blocked waiting for reads. The graph on the right shows the frequency that null

messages cause extraneous context switches. In these cases the null messages caused the processing elements to be

placed on the ready queue, and when they were activated, they were immediately swapped back out because no I/O

messages had arrived.We see much more variation in this algorithm than in the Matrix Multiply algorithm.
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Plain Jacobi Iteration

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator run on the Jacobi

Iteration code which does not use MultiRead. We only show the results of the compute phase of the algorithm, since

we believe that the data for the aggregate phase may not be representative since the time spent in this phase is so short.

Once again, the graphs in this section measure the effects of adding null messages, or “pokes”, to the original Poker

simulator; no overheads are present from the input waiting rule.

We begin by considering the total number of null messages, or “pokes”. On the left we show the total number

of null messages that were sent and see that the number is invariant with respect to the number of processors. It is also

interesting to see that the number is invariant over all sampled runs. On the right we show the total number of null

messages considered, which equals the number of null messages sent in this algorithm

In the next two graphs, we simply divide the data in the above graphs by the number of reads, which is also

invariant in the simulations, so we once again obtain constant data.
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rule. The graph on the right shows the number of pokes sent per context switch, which can be used to asses the relative

magnitude of the input waiting rule and null message overheads.
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The next graph shows that there were times when null messages were considered, but not sent. This corre-

sponds to the times when the null message would not have increased the timestamp of the processing element’s clock,

so it was not necessary to send the message.

The following two graphs involve the effect of null messages on the context switching of Poker processing

elements. The left graph shows the frequency that reads by adjacent processors cause processing elements to be moved

onto the ready queue when they are blocked waiting for I/O. The graph on the right shows the frequency that null mes-

sages cause extraneous context switches, i.e. that they cause processing elements to be moved to the ready queue and

when activated, the processing elements are immediately swapped back out because no I/O messages had arrived.

The final two graphs pertain to the overhead of the input waiting rule. The graph on the left shows the number

of context switches per MultiRead, an indication of the amount of time which should be charged to the input waiting
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MultiRead Matrix Multiply

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator running the version

of the Matrix Multiply algorithm using MultiRead construct. Here, not only do we see the effect of null messages on

the overhead, but overhead due to the input waiting rule is also present. Once again, the term “pokes” is used in lieu

of the term “null messages” in the graphs.

Once again we begin by considering the total number of null messages or “pokes”. On the left we show the

total number of null messages which were sent, and see that it is no longer invariant with respect to the number of

processors. Likewise, the total number of null messages which were considered also changes with the number of pro-

cessors. This graph is shown on the right.

In the next two graphs the data in the above graphs in simply divided by the number of reads, which is an

invariant in the simulations.
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The next graph verifies that all null messages which were considered were actually sent.

The final two graphs for these simulation runs involve the effect of the null messages on the Poker threads

package. The graph on the left shows the frequency that reads cause adjacent Poker processing elements to be moved

onto the ready queue when they were blocked waiting for reads. The graph on the right shows the frequency that null

messages cause extraneous context switches. In these cases the null messages caused the processing elements to be

placed on the ready queue, and when they were activated, they were immediately swapped back out because no I/O

messages had arrived.
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Appendix B: Performance Graphs

Plain Matrix Multiply

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator run on the Matrix

Multiply code which does not use MultiRead. Thus these graphs measure the effects of adding null messages to the

original Poker simulator. In the graphs, the term “pokes” is used in lieu of “null messages”.

We begin by considering the total number of null messages, or “pokes”. On the left we show the total number

of null messages that were sent and see that the number is invariant with respect to the number of processors. It is also

interesting to see that the number is invariant over all sampled runs. On the right we show the total number of null

messages considered, which equals the number of null messages sent in this algorithm.

In the next two graphs we simply divide the data in the above graphs by the number of reads, which is also

invariant in these simulations, so we once again obtain constant data.
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identify the port with the earliest possible message arrival;

}

if there is no message ready on the required port {

SendNullMessage( earliest arrival time );

forevery port we have a connection too {

if there is a message waiting at that port {

++switchCount[ port ];

}

++CurProcs->switches;

put this process to sleep;
}

}

else {

CurProcs->waitedOnWrong += switchCount[ identified earliest arrival ];

done;
}

}

ReadPort( identified earliest arrival );
}

/*
 * Procedure wakeupOldPokes
 *
 * It is possible for a poke to occur after a process has last examined
 * its input queue and decided to go to sleep.  This routine awakens
 * processes that are asleep with waiting pokes.
 */

wakeupOldPokes()
{

for each sleeping process {

if process went to sleep with an unprocessed poke {

++Process->sleeperWakeUpsSent;

wait the process up;

}
}

}

/*
 * Procedure ContextSwitch:
 *
 * Suspends the current process.  Starts the next runable process
 */
ContextSwitch( ... )
{                       /* Numbers are indexes for sequent */

 ++CurProcs->contextSwitches;

 suspend the current process;

 activate the next runnable process;
}
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Appendix A: Measurement Modifications

The following code templates identify the locations where measurements were taken during the executation

of the simulator. Each Poker Processing Element maintained its own set of counters. The counters were “wrapped” in

conditionally compiled code allowing for executation time measures with and without the additional counter code.

/*
 * Procedure SendNullMessage
 *
 * Go poke my connections simulating NULL messages
 * The calling process will never send a message earlier than.... time
 */

SendNullMessage( time )
{

foreach connected port {

++CurProcs->pokesConsidered;

if time is greater than the last time we poked this port {

++CurProcs->pokesSent;

poke the port;

if the process is waiting for IO from this port {

++CurProcs->wakeUpsSent;

wake the process up;

}
}

}
}

/*
 * Procedure ReadPort
 *
 * Read a message of a specified size on a specified port
 */

ReadPort( ... )
{

++CurProcs->reads;

while there is no data on the requested port {

++CurProcs->nullReads;

put this process to sleep;
}

read an process the waiting message;

SendNullMessage( processes current timestamp );
}

/*
 * Procedure ReadMultiPort
 *
 * Read a message from anyone of a set of ports
 * Apply the input waiting rule to insure that the earliest
 *  possible message is read first.
 */

ReadMultiPort( ... )
{

++CurProcs->multiPortReads;

loop until done {

foreach port requested in the MultiRead {
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null messages generally decreases with the number of

processors, although there is an increase in the cases

when the processors are more poorly balanced. We also

see that there are a number of instances when null mes-

sages are considered but not sent. In our code, we only

send null messages if the time stamp differs from the last

null message that was sent. In this phase, there seem to

be a large number of times when the null message being

sent has the same time stamp as the last null message the

PPE sent. This seems to be most pronounced in the three

and five processor experiments. We also see some over-

head due to the input waiting rule, although there are

many fewer context switches than in the compute phase.

In fact, the number of null message per context switch

ranges from 20 to 70, a huge increase over the compute

phase. Four processors seems to be particularly suscepti-

ble to extraneous context switches. It is the instance

where poor PPE balancing is most evident.

To summarize the results for the aggregate

phase, we see very different behavior in this phase than

in either of the two other experiments. This is likely due

in part to the small execution time of this phase. Before

any concrete conclusions can be drawn concerning the

effect of the tree interconnection structure on the over-

heads in the conservative algorithms, a more time-

consuming example needs to be used.

5 CONCLUSIONS

We were able to measure many of the over-

heads present in the conservative algorithm. In the first

example, the matrix multiply, we saw that a simple exe-

cution model was generally able to explain the difference

in the MultiRead and Plain versions, demonstrating the

minimal effects of overhead due to the conservative al-

gorithm. The major overhead present in this case was the

addition of null messages which increased the overall

workload. The absence of other effects is likely due to

the well-balanced algorithm.

In the mesh interconnection structure, we saw

some impact of edge effects. Here, the simple execution

model no longer explained the difference in execution

times. The total number of pokes increased, as well as the

number of context switches due to the input waiting rule.

The number of pokes per Read ranged from 5.08 to 5.32

and generally increased with the number of processors.

The number of pokes per context switch ranged from 3.9

to 5.1 and generally decreased with the number of pro-

cessors.

The binary tree interconnection structure be-

haved quite differently from either of the other two. We

saw that the addition of null messages actually decreased

the simulation time. Unfortunately, the run times were so

small, that the data drawn from this experiment is incon-

clusive. However, we did see that poor balance of PPEs

to processors had an large impact on both execution time

and context switch overhead.

There is still a great deal of work to be done in

characterizing the overheads in conservative simula-

tions. The interconnection structure seems to have a

major impact on the resulting overheads. We were able

to discuss only a single algorithm using each intercon-

nection structure in this paper. Imbalances in

communication patterns and structures appear to result in

increased overheads.

In the future, we hope to quantify the effects of

the dynamic overheads, such as the effects of the input

waiting rule, so that they can be used in analytical mod-

els. The data here suggests that this is a viable task, that

it is feasible to characterize the overheads in the conser-

vative algorithm for this class of programs.
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null messages per Read. The number of null messages

per context switches is not constant, but ranged from 3.9

to 5.1. One interesting phenomenon that we observed is

that these overheads decrease when three or five proces-

sors are used. We saw a “zig-zag” shaped graph for many

of the measured overheads, with the magnitude of the

peaks and valleys generally increasing with the number

of processors. For example, Figure 6 shows the total

number of pokes sent as a function of the number of pro-

cessors.

In summary, we see overheads in the Jacobi

compute phase, due to both the presence of null messag-

es and the input waiting rule. This increase is likely due

in part to the imbalances caused by edge effects in the

mesh, since the PPEs on the edge of the mesh have dif-

ferent communication patterns from those in the interior

of the mesh. This problem does not fit the typical parallel

execution model, demonstrating that the conservative

overheads are impacting the simulation execution time.

We did measure the ratio of null messages to context

switches and found that there were on average four to

five null messages sent per context switch. Thus we can

begin to quantitatively compare the overheads spent in

the input waiting rule and time spent in processing null

messages.

We now consider the overheads in the aggre-

gate phase. This phase uses a binary tree as its

interconnection structure, with the modification that the

root node has a third child, which is the remaining PPE.

Just over half of the PPEs are leaf nodes, which perform
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no reads, but simply write a value to their parent nodes.

The inner nodes of the tree require two MultiReads, and

the root node requires three. Thus there are many fewer

Reads than in the other phase. Consequently the execu-

tion times are much shorter.

As before we begin by considering the differ-

ence in execution times between Original and Plain

(Figure 7).

We have a really unusual case here. If we look

at Original compared to Plain, we see that by adding

null messages we actually improved the running time of

the simulation in all cases except the uniprocessor case!

We once again found the total number of null messages

sent was invariant, although the total number sent here

was only 315, substantially less than in the other two ex-

amples. We see a large number of pokes sent per read,

five. As in the matrix multiply, this is due to null pokes

being sent as PPEs terminate. The effect is even more

dramatic here because half of the PPEs perform no reads,

but all terminate. There is also a rather substantial num-

ber of extraneous context switches due to null message

arrival, an effect seen in all runs. We believe that the in-

creased performance of the Plain over Original can be

attributed to the small amount of additional code which

is executed, together with its impact on scheduling of

PPEs. Transmission of null messages does impact the

scheduler, and in this case, it appears to have increased

its efficiency.

The overheads seen in the MultiRead experi-

ments are relatively straightforward. The total number of
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tains code for only 12 PPEs. It is this fifth processor

which generates all of the context switches and addition-

al null messages. An analogous situation holds for the six

and seven processor case, although in the six processor

case there are two processors which are unbalanced so

both are performing context switches and sending extra

null messages, causing the total number of context

switches in the six processor case to be much larger than

in the five and seven processor cases. These extra context

switches have a minimal effect on the overall simulation

time, since it is the fast processors which are wasting

time. They are likely to have higher idle rates in Original

and Plain.

Thus the difference in execution time is due to

the overhead of performing MultiReads instead of Reads,

together with additional simulation time required to pro-

cess the additional code present in the MultiRead version

of the algorithm. In fact, we see that the MultiRead vs.

Plain curve fits the predicted difference formula, imply-

ing that there are no additional overheads due to the input

waiting rule which impact the execution time of the sim-

ulation.

In summary, we found that in this example, the

overheads due to the addition of Chandy-Misra were

completely accounted for by the typical execution curve

for any parallel algorithm. There are no additional fac-

tors related to the Chandy-Misra algorithm, except for

computing the increment in the total work. Thus it is

straightforward to compute the extra work in this prob-

lem which is due to the Chandy-Misra algorithm.

4.3 Jacobi Iteration

We will discuss each phase of the Jacobi Itera-

tion separately since each has a different interconnection

structure. We begin with the compute phase, which uses

a mesh interconnection structure. As in the matrix multi-

ply, we begin by considering the difference in execution

times in the Original and Plain measurements (see Fig-

ure 5).

Once again, the total number of null messages

is independent of the number of processors. Here there

are a total of 3.63214 null messages sent per read. This

number is lower than four because the PPEs on the edges

of the mesh send only three messages (the corner PPEs

send two), and there are many more Reads, an average of

140 per PPE. Unlike the matrix multiply, there is some

context switch overhead in all versions from processes

waiting for Reads being awakened by receiving null

messages. These seem to be mainly in the PPEs on the

edges of the mesh when the number of processors is

small, but becomes widespread as the number of proces-

sors increases. The largest number of context switches

occur when five, six, or seven processes are used. Unlike

the matrix multiply, although there is often more context

switch overhead in the processors with unbalanced num-

bers of PPEs, there is a significant amount of context

switching in other processors. This extra context switch-

ing doesn’t seem to adversely affect the execution time

of the simulation, because we can fit the difference curve

to the simple parallel execution model. Hence, the extra

“thrashing” which occurs in unbalanced processors is not

affecting the overall simulation time.

The overheads due to changes between the

Plain and MultiRead execution times are more difficult

to characterize. There is a superlinear decrease in over-

head going from one to two processors, which implies

that the total overhead in the system actually decreased.

In fact, we see this for other numbers of processors also.

The data points here do not fit the simple parallel execu-

tion model, implying that there are additional overhead

terms due to the dynamic characteristics of the Chandy-

Misra algorithm which affect the simulation execution

time.

The measurements of conservative algorithm

overheads indicate that the number of null messages in-

creased over Plain, and additional context switches due

to the input waiting rule were also present. In fact, there

is on average between 1 and 1.38 context switches per

read. More interestingly, the number of context switches

per Read has a similar shape to the average number of
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models: Original, Plain, and MultiRead. Figure 4

shows these for the Matrix Multiply algorithm.

We begin by considering the difference in exe-

cution times for the Original and Plain measurements.

Since the same algorithm is used in both measurements,

and no MultiReads are used, this difference must be com-

pletely due to null message overhead.

We computed the total number of null messages

in the runs and found it to be invariant with respect to the
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number of processors. There are exactly 4.25 null mes-

sages sent per read in all cases, and there are a total of

1024 reads, 16 per PPE. Whenever a read is done, all 4

neighbors are poked. Additionally, all neighbors are

poked when each PPE finishes. Thus we obtain an aver-

age of 4.25 pokes per read. There is no additional

overhead from extraneous context switches due to pro-

cessors waiting for Reads except when the number of

processors is five or six. In these cases the total number

of extraneous context switches is small. Thus we can

conclude that the overhead due to null messages is essen-

tially linear in the number of PPEs, since every PPE

generates and receives the same number of null messag-

es. Additionally, the PPE’s are mapped to simulator

processes in row-major order, so in most cases the same

number of PPE’s are mapped onto every processor.

If we assume that the original Poker simulator

reflects a “typical” parallel execution curve, then we can

approximate the execution time of the simulation as

 where p is the number of proces-

sors, W is the total amount of work, c is a constant related

to the extra code due to the original Poker parallel ver-

sion, and ε is a small constant involved with

initialization, such as forking processes. Since we have

basically added a constant amount of work to W per pro-

cessor, we can compute the difference between the

Original and Plain versions to be: where δ W is the

amount of work we added to each processor.

Using the 6 processor value as the basis point

we fit  to the difference curves in Fig-

ure 4. With the exception of the single processor case, the

data from Plain vs. Original fits within one standard de-

viation of the calculated values. The single processor

difference is less than predicted, indicating that based on

multiprocessor performance, single processor perfor-

mance is faster than expected. More analysis is required

to exactly determine the cause of this effect.

Now we consider the overhead differences be-

tween the Plain and MultiRead execution times. In the

one to four processor runs, the total number of null mes-

sages did not change. In addition, there were no

extraneous context switches due to MultiReads. For the

larger numbers of processors, there were additional null

message and context switches. These all occurred on the

processor with the least balanced load. For instance,

when 5 processors are used for 64 PPEs, four processors

contain code for 13 PPEs and the other processor con-

Torig εp c
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Two versions of the Poker Simulator and two

versions of each test program were used in the measure-

ments. Table 1 shows the names that we use for each of

the measurements.

Original is the original Poker simulator, with

the algorithm written without the MultiRead construct.

This provides a baseline for our comparison, since there

is no overhead here due to the Chandy-Misra algorithm.

Plain uses the Chandy-Misra version of the Poker simu-

lator but run on the version of the algorithm which does

not use MultiRead. Thus there is no input waiting rule

overhead in this version, but there is overhead due to null

messages. MultiRead uses the Chandy-Misra version of

the Poker simulator run on the version of the algorithm

which uses MultiRead. Both null message and input

waiting rule overheads will be present in this version.

In both versions, there is a heavy-weight UNIX

process associated with each running Symmetry proces-

sor. Poker PPEs are implemented as light-weight

processes using a light-weight threads package provided

in the original Poker parallel simulator. The heavy-

weight processes are actually just parked (suspended) af-

ter the first phase of a Poker program; in subsequent

phases these processes are simply signaled

We begin by presenting the execution times of

the three simulators on each of the algorithms. These are

shown in Figure 1, Figure 2, and Figure 3. The average

execution times are plotted in the graphs. Standard devi-

ations are shown using error bars.

Each of the points in the figure represents the

average of 22 runs. The execution times were printed out

as part of the program and measures the execution time

for each phase from the point just before the processes

are forked to the point when the last forked process has

completed. The measurements do not include any over-

head time to print the statistical information that was

gathered during the run 1.

1.  We compared the execution times both with and without measure-
ments and found no significant difference. Thus all results here are with
measurements turned on. Appendix A details the measurement points
added to the simulator

Table 1: Naming Conventions used in the

Measurements

No MultiRead MultiRead

Original Simulator Original

Modified Simulator Plain MultiRead

In the following sections we will discuss the

overheads found in each of the two algorithms. See Ap-

pendix A and Appendix B for more detailed

experimental data.

4.2 Matrix Multiply

The easiest way to visualize the overheads in

the modified Poker simulator is to consider the differ-

ence in execution times between the three experimental
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when it wasn’t. These timing problems were exacerbated

with the addition of MultiReads.

3 THE TEST PROGRAMS

Two test programs have been run to test the ef-

ficiency of the Chandy-Misra strategy on Poker

programs. One is a systolic Matrix Multiply algorithm.

The other program implements the Jacobi iterative meth-

od for solving Laplace’s equation on a rectangle. The

Matrix Multiply algorithm and a single-point version of

the Jacobi Iteration are described in Nelson (1987). Both

are implemented on 64 Poker processing elements

(PPEs). Because the structure of the algorithm impacts

the resulting performance and overhead, we will describe

each of the algorithms briefly.

3.1 Matrix Multiply

The matrix multiply algorithm is a well-known

wavefront algorithm first proposed by Kung et al. (1982)

to multiply two n × n matrices, A and B together. Our im-

plementation uses two 8 × 8 input arrays. It differs from

the original algorithm in that the matrix elements begin

in the PPEs instead of being fed into the matrix from the

edges. The 64 PPEs are connected in a 8 × 8 torus, creat-

ed from an 8 × 8 matrix by connecting the ends of each

row and column. The matrix elements flow vertically or

horizontally around the torus. The result matrix is also

stored in the processors.

In this implementation, the elements A(i,j) and

B(i,j) are pre-routed to the appropriate processor so that

the data is staged for the systolic portion of the algorithm.

The result array, C, has element C(i,j) stored in processor

(i,j). This algorithm is implemented in two phases. In the

first phase we load random numbers into the appropriate

processors to form the matrices A and B. In the second

phase the matrix multiply is performed. All measure-

ments reported in this article pertain only to the second

phase, the matrix multiply.

3.2 Jacobi Iteration

The Jacobi Iteration is a parallel implementa-

tion of the Jacobi iterative method for solving Laplace’s

equation on a rectangle. The rectangle is represented by

n discrete values which correspond to the voltages at

points in the rectangle. The boundary and the voltage

sources are fixed constants. In the algorithm, an initial

guess is computed for each of the points, and then new

values are iteratively obtained by averaging the values of

its four neighbors until the voltage stabilizes.

In the Poker implementation, this process is

represented as two phases, one for the iterations, and an-

other to determine whether the system has stabilized.

The iterate or compute phase uses a mesh interconnec-

tion structure, since each processor must obtain values

from each neighbor. The aggregate phase uses a tree in-

terconnection structure since it must determine whether

all processes have stabilized. In our implementation a

rectangular set of points is maintained in each processor,

and in the compute phase, a single message is sent to

each of the four neighbors containing the appropriate ar-

ray of points necessary for communication. Additionally,

we iterate 10 times in this phase to decrease the overhead

of changing phases. Increasing the number of iterations

also increases the resulting simulation time, so we obtain

more accurate measurements.

We took measurements on both phases of this

problem since both phases are pertinent to the algorithm

and can use the MultiRead operator. Since in the com-

pute phase the algorithm receives a set of values from

each of its 4 neighbors and then performs the averaging,

it doesn’t matter which values are received first, so we

used the MultiRead construct on the four ports. Because

four array boundaries of elements were being received, it

was necessary to understand which port was being read,

which complicated the code somewhat. Likewise in the

aggregate phase we are simply taking the maximum of a

set of values stored one in each processor (the maximum

voltage change in the last ten iterations), so order is not

important here.

4 EMPIRICAL RESULTS

The goal of the empirical tests is to determine

the amount and types of overhead present due to the

Chandy-Misra algorithm we added to the Poker simula-

tor. We will first discuss the general experimental

methodology used to take the measurements, and then

will discuss the actual experiments performed.

4.1 Methodology

All programs were run on a Sequent Symmetry,

with eight processors running at 16 MHz. On this ma-

chine, one processor must be reserved for the operating

system, so the maximum number of processors available

for measurements is seven. All experiments were run

when the machine was in single user mode, with

“tmp_affinity” set so that processes are bound to specific

processors1.

1.  This decreases the operating system overhead by reducing cache
conflicts.
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gy. However, we also have a deadlock detection

mechanism, since the simulated system can deadlock.

2.2 Poker

The Poker Programming Environment consists

of a programming language, together with a simulation/

debugging environment used to simulate the program-

ming language (Snyder 1984 and Notkin et al. 1988). We

will provide a brief summary of the programming envi-

ronment here; for more information, see Snyder (1988).

A Poker program is not a monolithic text file, but is rep-

resented by a database. The execution of a Poker

program occurs in one or more phases. Different phases

often have different interconnection structures.

There are two languages that are currently sup-

ported in Poker which are used for the sequential process

code, XX (dos equis) and Poker C. Poker C is the more

robust language and uses a faster, more generic simula-

tor; we use it as our experimental platform.

The current version of Poker C supports two

message primitives, one for sending a message and an-

other for receiving messages. In both of these a single

message is sent/received on a specific port. Processes

block on a receive until the message arrives; sends are

non-blocking. Events in the Poker simulator are generat-

ed by sending and receiving messages. The current

parallel implementation of the Poker simulator uses a

data-driven model since receives are blocking and only a

single port can supply the data to be received. Thus there

is no need for a more general synchronization strategy to

insure that the simulation is correct.

In order to test the viability of the conservative

synchronization primitives, a second type of receive

primitive was added to the Poker C language, MultiRead.

Here one can receive a message from one of several

specified ports, and whichever message arrives first will

be the one which is delivered 1. The addition of Multi-

Read eliminates the possibility of using the data-driven

paradigm for the parallel version of the Poker simulator.

The simulator now must insure that the event corre-

sponding to the message with the least time stamp among

the specified ports is actually simulated first; otherwise

the simulation is not accurately reflecting the perfor-

mance of the sequential processes.

The addition of the MultiRead construct is actu-

ally useful in many Poker programs. There are often

1. Note that the message delivery ordering must be in terms of the local
clocks on each multicomputer process, as opposed to the simulator’s
time.

cases where one needs to get values from several ports

and the order that they arrive is immaterial 2. To make

the construct more meaningful, we allow the user to

check to see which port provided the message that was

read during the MultiRead.

2.3 Chandy-Misra Poker Simulator

The Chandy-Misra version of the Poker simula-

tor uses much of the original Poker simulator code intact.

There were two major modifications to the data-driven

parallel version of the Poker simulator which were nec-

essary to create the Chandy-Misra version, adding the

MultiRead and adding null messages to avoid deadlock.

In addition we modified the parser for Poker C to accept

the new MultiRead construct.

Adding MultiRead to the simulator was rela-

tively straightforward. Because messages are generated

and sent in time stamp order, the output waiting rule is

not needed in this environment. The code for the input

waiting rule is isolated in the MultiRead function. We ba-

sically execute a loop waiting for the input waiting rule

to be satisfied. In this loop we perform a context switch

if the waiting rule is not satisfied. Thus we use the num-

ber of context switches when the desired message is

already present to provide an estimate of the overhead

from the input waiting rule, since it is a measure of the

substantive source of overhead from the input waiting

rule. See Appendix A for additional details.

The other major change is the implementation

of null messages to the system to avoid deadlocks. Null

messages are implemented as “pokes” in shared memo-

ry, which generates less overhead than if they are

implemented as full-blown messages. When a process

performs a Read, it “pokes” all other processes which are

connected to it 3. In our experiments 79% to 99% of sim-

ulated time is spent in I/O. In programs with lower I/O to

compute ratios, or where the ratio is very asymmetric be-

tween processes, a method to “poke” processes during

compute time would likely be beneficial.

Besides these two changes, we modified the

Poker C deadlock detection algorithm. The original

deadlock detection algorithm had some timing problems,

causing it to report that the simulator was deadlocked

2. In an earlier version of Poker, the XX language supported a similar
construct, where the user could read from multiple ports and these reads
were done in order of message arrival time. This construct was not im-
plemented in the original Poker C.
3. Since all arcs in the graph are bidirectional, this is equivalent to
“poking” all outgoing arcs.
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measurements. Next is a discussion of the results of the

empirical study, including both general overhead costs

together with a more specific breakdown of the overhead

costs. Finally, we conclude and discuss future directions.

2 THE PARALLEL SIMULATOR

At the core of our empirical work is the Poker

simulator and a Chandy-Misra algorithm. We will briefly

discuss each of these separately, and then will describe

the interactions between the two when we created the

Chandy-Misra version of the Poker simulator.

2.1 The Chandy-Misra Paradigm

In synchronous event-driven simulation, two

independent events may not execute in parallel if they

have different time stamps. Asynchronous strategies at-

tempt to increase the number of events available for

parallel evaluation by allowing independent events to be

executed in parallel. These parallel simulations must pro-

duce the same result as an equivalent sequential

simulation, so the focus is on developing strategies for

ensuring this correctness while completing the simula-

tion as quickly as possible. There are two general

strategies that are most prevalent in the literature: conser-

vative and optimistic. In both asynchronous strategies, as

in the synchronous strategy, the processes are divided

among the simulation processors, with each executing

events for its partition of the problem space. Each pro-

cess also maintains a local clock and one or more local

event queues. Events queued for this process can be exe-

cuted if their time stamps equal the value of the local

clock. The two strategies differ in the way the local

clocks advance. We focus on the conservative strategy in

the remainder of this paper. The interested reader is re-

ferred to Fujimoto (1990) for a more complete

description.

In the conservative strategy, local clocks can

advance only if it can be guaranteed that the process will

not receive an event with a time stamp less than the new

value of the local clock. In other words, no events can ar-

rive that are in the “past”. Chandy and Misra (1979) and

Bryant (1977) pioneered this strategy. We will summa-

rize the key ideas in the asynchronous strategies. To

simplify the explanation, we will assume that there is one

process per simulation processor. This is not a require-

ment, and we do not have this situation in our

simulations, since we expect that there will be many

more processors in the multiprocessor than in the simu-

lation engine.

Another requirement for the conservative strat-

egy is a static process communication graph. In this

graph, there is a directed arc from a process to another if

and only if the first process will send message(s) to the

second one. The graph may not change as the simulation

progresses as the graph is used to determine when to in-

crement the local simulation clocks. Each simulation

process maintains an input queue for each incoming arc

in the communication graph and sends outgoing events

to the appropriate process queue as determined by the

process communication graph. The conservative strategy

requires that for each arc in the process communication

graph, events arrive in increasing time stamp order. This

enables the receiving process to consider only a single

event from each incoming edge in deciding whether to

increase its simulation clock.

There are two rules that are used to ensure the

“conservative” requirements in the algorithm. The first,

the input waiting rule, states that a process must wait for

an event on each incoming edge in the corresponding

communication graph before advancing the clock. The

clock time is then advanced to the minimum of the time

stamps of the events in all queues. Because we know that

on each arc, events arrive in time stamp order, we know

that there will be no event arriving earlier than the mini-

mum time stamp. The second rule, the output waiting

rule, states that output messages cannot be sent until the

simulation clock time equals the time of the outgoing

message. This guarantees that output messages are sent

in time stamp order. There is an explicit assumption that

the hardware maintains this message ordering when

transmitting messages. The output waiting rule is often

relaxed if there is a minimum delay between any event

and resulting output messages. Its function is to ensure

that no later event will generate output messages with

time stamps less than those already transmitted.

As a consequence of these two rules, there can

be substantial idle time while a process waits for input

messages, and there can be substantial delays between

creating an output message and its transmission. In par-

ticular, the system can deadlock because of both the

input and output waiting rules. Thus the simulation strat-

egy must be able to detect and recover from deadlock or

to avoid deadlock. The most popular deadlock avoidance

mechanism is to use “null messages,” messages which

only transmit timing information, to ensure that the sim-

ulation can proceed. Thus the overhead in this system

must account for deadlock detection and recovery or

transmission of null messages. In these experiments we

primarily use null messages because it seems to be the

most popular implementation of the conservative strate-
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ABSTRACT

In this paper we show that it is feasible to char-

acterize the overheads present in conservative parallel

simulations of multicomputer programs. We use a mod-

ified version of the parallel simulator from the Poker

Programming Environment to empirically measure the

overhead in two parallel algorithms which use three dif-

ferent interconnection structures. We discuss the sources

of overhead and qualitatively discuss their relative im-

portance.

1 INTRODUCTION

There has been a great deal of interest over the

past few years in comparing conservative and optimistic

strategies for parallel discrete-event simulations. The

work in this area can be categorized as empirical studies

and analytical or formal models. In the empirical studies,

specific experiments are run on both conservative and

optimistic simulators to see which strategy results in a

faster simulation. Fujimoto (1989) did this for closed

queuing networks and found that the optimistic strategy

generally outperformed the conservative strategy. Rey-

nolds and Dickens (1989) have developed a test bed for

comparing the two strategies and are currently using it to

compare the synchronization strategies with various ap-

plications.

In addition to these empirical studies, there has

been a flurry of activity in formal or analytical models

for comparing the two synchronization strategies. Here

different assumptions are made to keep the analysis trac-

table, such as requiring one process per processor, or

vastly simplifying the overhead costs. In contrast to the
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empirical experiments, where a single application do-

main is investigated, most of the analytical studies

consider all domains (Felderman and Kleinrock 1991,

Nicol 1990, Lin and Lazowska 1990, Madisetti, Walrand

and Messerschmitt 1990, Lipton and Mizell 1990, Mitra

and Mitrani 1984). There has been some work in do-

main-specific formal models, but this seems to be the

exception, rather than the rule, and simplifying assump-

tions are still made for overhead costs and processes per

processors (Lin, Lazowska and Bailey 1990).

The focus of our work lies between these two

traditional approaches. We have performed an empirical

study using the conservative strategy in which we exam-

ine its performance and more importantly investigate

whether it is feasible to characterize the overheads in the

simulation so that they can be used in analytical models.

The application domain which we have chosen is simu-

lating multicomputer programs, i. e., programs written

for non-shared memory parallel processors. In particular,

we have taken a well-established multicomputer pro-

gramming environment, the Poker Programming

Environment, to use for our work (Snyder 1984). We

have modified a parallel version of the Poker simulator

by adding a conservative communication strategy based

on the Chandy-Misra paradigm, and have characterized

the overheads using two Poker programs. Our character-

izations are not sufficiently tuned for use in analytic

models, but we believe we demonstrate the feasibility of

this approach, and its future efficacy.

The organization of this paper is as follows. We

first describe the parallel multicomputer simulator which

we used in the experiments, including brief overviews of

the original Poker simulator and the conservative algo-

rithm. Then we discuss the programs that we used for our
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