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1. Introduction 

The character set and character mapping facilities in Icon, 
used in conjunction with its string-processing facilities, sup-
port a number of unusual programming techniques that can be used 
to advantage in a variety of nonnumerical programming problems. 

This paper descibes the features that are important to these 
techniques and characterizes their usage. Examples are given to 
illustrate the major paradigms. A familiarity with Icon [1,2] is 
assumed. This paper uses Icon constructs freely, supplementing 
them with additional notation as required. 

2. Character Sets 

There are a variety of character sets in use on different 
kinds of computers. They differ in size, in the relationship 
between the internal representations of characters to control 
functions and external graphics, and (hence) in collating se-
quence. The most commonly used character sets are ASCII [3], 
EBCDIC [4], and various forms of BCD [5]. Internally, a charac-
ter is simply an integer in the range from 0 to one less than the 
size of the character set. Thus in ASCII, there are 128 charac-
ters with internal representations from 0 to 127 (decimal), in-
clusive . 

Most of the programming techniques described in this paper 
depend on the use of characters within a program, rather than 
their input or output. Where graphic representations are impor-
tant, it is desirable, but not necessary, to have both upper- and 
lower-case letters but any of the common collating sequences will 
suffice. The size of the character set is significant, however, 
since in a number of applications individual characters are used 
to represent or label other objects. 

The size of the internal Icon character set is 256. This 
character set is independent of the size of the character set for 
the host computer on which Icon runs. The internal character set 
and the host character set are interfaced only by input and out-
put routines. Despite the size of its character set, Icon is 
ASCII based and the first 128 characters have ASCII interpreta-
tions. The use of the remaining characters is illustrated in 
subsequent examples. It is assumed for ease of presentation that 
both upper- and lower-case letters are available on the host 
machine. This assumption is not essential, however, since Icon 
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provides escape conventions for the literal representation of any 
internal character, regardless of input limitations that may be 
imposed by the host computer [2]. 

Icon supports a character set type, called cset for short. In 
Icon csets may have from 0 to 256 members. The value of the 
keyword &cset is a cset containing all 256 characters. 

Csets are constructed from strings using the built-in function 
cset(s), which produces a cset consisting of the characters in 
the string s. While a string may contain duplicate characters, a 
cset cannot, of course. Similarly, the order of characters in s 
is irrelevant to the resulting cset. Thus 

cset("armada") 
cset("ramada") 
cset("drama") 
cset("dram") 

all produce equivalent csets. 

Hi storical Note; The concept of character set is latent in SNO-
B0L4 [T] and" related languages. Although there is no character 
set type in SN0B0L4, typical implementations of SN0E0L4 deal with 
various representations of character sets [7,8] in order to sup-
port lexical analysis functions such as SPAN(S) and BREAK(S). 
The emergence of characters sets in Icon is a linguistic eleva-
tion of an implementation mechanism to full status as a source-
language feature. The consequences of this elevation exceed the 
mechanisms for which they were originally developed, however. 

Aside from type conversions, there are five built-in opera-
tions defined on csets: 

~c complement with respect to &cset 
cl + + c2 union 
cl ** C2 intersection 
cl ~~ c2 difference 

The creation of a cset from a string may be considered to be type 
conversion. Conversely, a cset may be converted to a string 
using the built-in function string(c). In this operation, the 
resulting string is alphabetized, that is, the characters of c 
are placed in the string according to their relative position in 
the collating sequence. For example, 

alpha := string(&cset) 

assigns to alpha a string consisting of all the available charac-
ters in order of their collating sequence. This string is re-
ferred to from place to place throughout this paper. 

As a consequence of the properties of these conversions, the 
result of 

S2 := string(cset(s^)) 



is a string S2 which contains every distinct character of s^ 
arranged in alphabetical order. This feature can be used to 
advantage, as is described in later sections. 

Icon also supports implicit type conversions, coercing argu-
ments to expected types as the context demands. For example, 
si || S2 is the concatenation of strings si and S2. Similarly, 
if c\ and C2 are csets, ci || C2 produces a string that is the 
concatenation of the results of converting c^ and C2 to strings 

3. Character Mappings 

Icon has an apparently innocuous built-in function for mapping 
the characters in a string, map(sj,S2,S3). This function pro-
duces a result in which every character of s^ that appears in S2 
is replaced by the corresponding character in S3. For example, 
the result of 

map("retroactive","aeiou"," ") 

is "r-tr—ct-v-". Different characters can also be mapped dif-
ferently. The result of 

map("retroactive","aeiou","AEIOU") 

is "rEtrOActlvE". 

Note: The function map in Icon is virtually identical to the 
function REPLACE in SNOBOL4, the difference being in the handling 
of the case in which the lengths of S2 and S3 are different. In 
Icon, this is an error, while in SN0B0L4, it causes failure of 
the evaluation of the function. 

3.1 Properties of Character Mappings 

The description of the map function given above is a superfi-
cial one. In order to use the full capabilities of this func-
tion, it is necessary to be more precise about the operation and 
its consequences. In the discussion that follows, the form of 
the call is 

s4 := map(s1,s2,s3) 

1. The length of S4 is the same as the length of S]_, regardless 
of the values of S2 and S3. in Icon terms, this is stated as 

size(S4) = size(si) 

To remain in the domain of Icon as much as possible, this termi-
nology is used subsequently. 

If the notation alphan is used for the set of all strings of 
length n that are composed of characters in alpha, then in gener-
al the result of the operation is a many-to-one mapping of 
alphasize(si) into itself. 

2. The relative order of characters of S2 and S3 is significant, 



since it establishes the correspondence used in the mapping. 
Thus the two expressions 

map(si,"aeiou","AEIUO") 
map(si,"uoiea","UOIEA") 

produce the same result, but the two expressions 

map(si,"aeiou","AEIOU") 
map (si/'uoiea", "AEIOU") 

produce quite different results, in general. 

(1) 
(2) 

As an aid to visualization, the correspondences between char-
acters in s>2 and S3 are shown as maps indicating the correspon-
dences between individual characters directly. The map for 
expression (1) is 

S2 a e i o u 

s3 

t 

A E 0 

i 
u 

Expression (2) has the map 

S2 u o i 

E 0 u 

Note that only the relative order is important. Thus the map 

S2 a e i o u 

s3 

t 

U 

t 

0 
t 
E A 

is equivalent to the previous map. The expression 

map(si,"aeiou","UOIEA") 

is also equivalent to expression (2). 

3. As illustrated in the first example in this section, S3 may 
contain duplicate characters. This results in a mapping that is 
illustrated as follows 



s2 

L LJ 

4. Duplicate characters in S2 are permitted. In this case the 
last (rightmost) correspondence with S3 holds. For example, the 
map for 

map(s1/"aeioua","AEIOU-") 

is 

s2 

s3 E 

t 

I 0 

t 

u 

It is convenient for the purposes of discussion to deal with the 
reduced forms of S2 and S3, in which there are no duplicate char-
acters in S2« In addition, it is convenient to deal with 
canonical forms in which S2 *s i-n reduced form and in alphabeti-
cal order and s3 is rearranged accordingly. The expression above 
in canonical form is 

map(slf"aeiou","-EIOU") 

The symbols §2 and §3 are used for the canonical forms of S2 and 
S3, respectively. See the end of Section 3.4 for a method of 
computing canonical forms. 

In programming use, it is often convenient or more efficient 
to use values of S2 and S3 that are not canonical or even re-
duced. The map function can be thought of as performing the 
necessary canonicalization. 

5. Characters of s\ that do not occur in S2 appear unchanged in 
their respective positions in S4. The map function can be 
thought of as setting up automatic correspondences with such 
characters with themselves, but such detail is cumbersome and is 
omitted from maps shown in this paper. It is worth noting that 

map(slfs2,S3) 

and 

map(Si,alpha || s2,alpha || S3) 

are equivalent. 



6* sl/ S2, and S3 may be of any size, although the sizes of S2 
and S3 must be the same, and size(§2) = size(§3) <= size(alpha). 
Furthermore, as noted above, size(S4) = size(sj). 

3.2 Substitutions 

The use of map(si,52,S3) in which S2 and S3 are fixed and si 
varies is called a substitution for s]_. 

As a consequence of the properties listed in Section 3.1, the 
following condition holds: 

Substitution inverse Condition: For fixed S2 and S3 and varying 
si, the substitution 

S4 := map(si,s2,s3) 

has an inverse if and only if §3 is equal to pi(§2) for some 
permutation pi. An inverse is 

si := map(s4,§3,§2) 

The classical use for this kind of mapping occurs in cryptog-
raphy. Substitution ciphers, which by definition must have in-
verses, are used to substitute for characters of a message. The 
form of substitution given above is directly applicable to 
monoliteral substitutions. See Reference 9 for an extended dis-
cussion and for programming techniques in SNOBOL4 that can be 
directly employed in Icon. 

3.3. Permutations 

The map function was originally designed to perform substitu-
tions and its use for this purpose is obvious. it use to effect 
permutations (rearrangements) is less obvious. 

A simple example illustrates the technique. Suppose that the 
order of the characters of a string is to be reversed end-for-
end. As a specific case, suppose size(S3) = 6. Then 

s2 := "123456" 
s1 := "654321" 
s4 := map(si,S2,S3) 

produces the desired result. In this expression, the mapping 
between S2 and S3 depends on the particular characters in S3. If 
S3 consists of characters C1C2C3C4C5C5, then the map is 

JT ^ A J, ^ r̂ 

Ci c2 c3 C4 c5 c6 



The desired permutation is accomplished since the characters of 
sj are mapped through S2, by relative position, into those of S3, 
as illustrated by the following diagram. 

sl 

Historical Note: The use of character mapping to effect string 
reversal was first called to the author's attention in a private 
communication from Morris Seigel [10], who noted the technique is 
a use of the IBM 360 translate instruction [11]. This specific 
use was mentioned in the second edition of the SNOBOL4 program-
ming language manual [6]. Jim Gimpel subsequently generalized 
the technique, which is described in Reference 12. A more exten-
sive, but less formal presentation is given in Reference 9. 

From the example above, it is clear that the technique can be 
used to perform any permutation, provided S3 is not longer than 
size(alpha). Specifically: 

Permutation Property: 
n <= size(alpHa) and" 
then the result of 

If pi is a permutation on a string of size 
S2 is a string of n distinct characters, 

s4 := map(pi(s2),S2,S3) 

is S4 = pi(s3). Furthermore, an inverse to the permutation is 

S3 := map(s2,pi(s2),54) 

Note that for constant values s^ and pi(S2), the first expression 
above applies the permutation pi to all strings S3 of size n. 

An application of fixed permutations applied to a set of 
strings occurs again in classical cryptography, where various 
transposition ciphers (route transposition, columnar transposi-
tion, and so forth) can all be seen as instances of this paradigm 
[9] . 



3.4. Positional Transformations 

Permutations are a restricted case of more general positional 
transformations [12], A positional transformation rho(s) of a 
string s is a rearrangement of the charcters of s in which 

(1) Any character in a specific position in s may appear in 
zero or more fixed positions in rho(s). 

(2) Additional constant characters, independent of the char-
acters in s may appear in rho(s) at other fixed positions. These 
characters are called nulls. 

For example, (abc)(cba) is a positional transformation of abc. 
The same positional transformation applied to xxy produces 
(xxy) (yxx) . In this example, the parentheses are nulls. 

positional Transformation Property: if rho(s) is a positional 
transformation, then the result of 

s4 := map(rho(s2) ,s2,s3) 

is S4 := rho(S3). 

Obviously not a l l p o s i t i o n a l t r a n s f o r m a t i o n s have i n v e r s e s . 
For example 

s 4 := m a p ( , , f l " , " f l l l l l l , , , s 3 ) 

produces a two-character string consisting of the first and last 
characters of a seven-character string S3. 

One form of positional transformation that always has an in-
verse is the permutation, as described in Section 3.3. The class 
of positional transformations with inverses is more general, 
however. 

positional Transformation Inverse Property: Given a positional 
transformation rho, the mapping 

s4 := map(rho(s2),s2,s3) 

has an inverse if and only if 

(1) All the characters in s2 are distinct. 

(2) All characters in s2 appear at least once in rho(s2). 

If these conditions hold, the inverse is 

s3 := map(s2,rho(s2),s4) 

In the first place, if there is a duplicate character in s2, 
only the last correspondence with S3 will hold, and a character 
of S3 will be deleted in the transformation and hence cannot be 
restored, in general, by any mapping. 



Similarly, it is easy to see that if rho(s2) does not contain 
some character in S2, then the corresponding character in s-̂  will 
not appear in s, ana hence cannot be restored by any mapping. It 
remains to show that characters of s2 can occur more than once in 
rho(s2) and that nulls in rho(S2) do not affect the inverse map-
ping. 

Consider a positional transformation in which a character of 
S2 is duplicated. 

C 1 C 2 " ,Cn 

rho(s2): 

s3-
Then the map has the form 

Clc2'•-cncl 

D1D2...Dn 

D-

t 

D. 

t 

D, 

and s4 is clearly D^D2.•.DnDi. When the inverse transformation 
is applied, rho(S2) and ŝ  stand in the correspondence 

rho(S2) : 

'4: 

• 

D-

I 
• 

D. 

. . . 

. « • t 
D. 

• 

D-

so the map for the reduced form is 

• • • 

I 
t 

D-

t 

D. 

• • » 
• . • 

I 
t 
D, 

which is clearly an inverse to the original map. That is, dupli-
cate characters of s2 in rho(s2) always stand in the same corre-
spondence to characters of s^. Furthermore, this applies to any 
rearrangement or duplication of Cj, Co, ..., Cn in rho(s2), since 
duplicate characters always produce identical correspondences. 

Consider next the case in which the positional transformation 
contains a null X^. For simplicity, suppose rho(s2) has the form 

rho(s2) : CiC2...CnXi 



Then s4 will have the form 

S4: D^D2...DnXi 

and in the inverse transformation the following correspondences 
hold: 

rho(s2): Ci C2 . . . Cn Xj 

I I . . . I I 
t t . . . i t 

S4: Di D2 . • . Dn Xj 

Since by definition X} does not occur in S2, it will not appear 
in the result. 

It is easy to show that the same situation exists for other 
nulls and that their location in rho(S2) is irrelevant. 

Note: The canonical forms in the substitution paradigm can be 
obtained as follows: 

§2 := string(cset(S2) ) 
§3 := map(S2,s2,s3) 

This mapping is the inverse of the positional transformation that 
maps §2 into S2. 

Positional transformations with inverses appear in classical 
transposition ciphers, such as grilles [9], in which null charac-
ters are added to the cipher to obscure the transposed message. 
It is interesteing to note, as well, that message characters can 
be duplicated in the cipher without interfering with the inverse 
deciphering process. 

4. Applications and Examples 

As mentioned above, many of the models for substitution and 
positional transformation are found in classical enciphering 
techniques. While there are no longer many practical applica-
tions of classical enciphering techniques, there are a number of 
related applications that are of interest. The examples that 
follow illustrate techniques that many be useful in such cases. 

For brevity, program solutions are stripped down to their 
essentials. Tests for the validity of arguments and so forth are 
deliberately omitted; these components easily can be added. 

10 



4.1 Substitutions 

Example It Case Folding 

One of the common uses for substitution is to establish equiv-
alences between characters by mapping one set into another. For 
example, it is often convenient to consider upper- and lower-case 
letters to be equivalent. Instances of this situation arise in 
command processors that are insensitive to case. To simplify 
processing, therefore, the input is "folded" into a single case. 
The following procedure maps upper-case letters into lower-case 
ones using the Icon keywords for these values: 

procedure fold(s) 
return map(s,&ucase,&lcase) 

end 

Example 2: Bit String Operations 

Bit strings can be simulated by character strings composed of 
zeroes and ones. The logical negation operation is then simply 

procedure not(b) 
return map(b,"01","10") 

end 

The logical operations of "or", "and", and "exclusive or" can be 
performed by adding bit strings as integers and making appropri-
ate substitutions: 

procedure or(bl,b.2) 
return map(bl+b2,"2","1") 

end 

procedure and(bl,b2) 
return map(bl+b2,"12","01") 

end 

procedure exor(bl,b2) 
return map(bl+b2, "2","0") 

end 

Note: In general it is necessary to perform symbolic addition, 
since bits strings of any reasonable size are too large to repre-
sent as integers on most computers. Furthermore, bit strings are 
usually considered to be of fixed length with leading zeroes as 
necessary. Therefore the expression bl+b2 above should be re-
placed by sum(bl,b2), where sum is a procedure that handles these 
problems. 

Example 3: Displaying Card Decks 

A related application of substitution is illustrated by the 
problem of manipulating and displaying a deck of cards. Here a 
standard deck of playing cards can be represented by 52 distinct 
characters. Although any 52 distinct characters can be used, it 
is convenient to use the upper- and lower-case letters, since 
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their graphic representations facilitate program development and 
debugging. Therefore 

deck := deckimage := fcucase || &lcase 

provides a "fresh" deck. The identifier deckimage is retained as 
a labeling of the cards, while deck may, for example, be shuf-
fled. Since individual characters are used to represent the 
cards, shuffling can be done easily by character exchanges [13]: 

procedure shuffle(deck) local m 
every m := size(deck) to 2 by -1 do 
deck[random(m)] :=: deck[m] 

return deck 
end 

In order to display a shuffled deck, it is necessary to determine 
the suit and denomination of each card. Again, this can be done 
by a substitution in which the first 13 characters of deckimage 
are mapped into the character C (for clubs), the second 13 into D 
(for diamonds), and so on. The third argument to map in this 
case is 

suits := repl("C",13) II repl("D",13) II repl("H",13) 
I I repl("S",13) 

Similarly, the denominations can be identified by associating the 
first character of each 13-character group of deckimage with A 
(for ace), the second character in each group by 2, and so on. 
The third argument of map in this case is 

denoms := repl("A23456789TJQK",4) 

A simple display of a deck of cards is then provided by the fol-
lowing procedure 

procedure display(deck) 
global deckimage,suits,denoms 
write(map(deck,deckimage,suits)) 
write(map(deck,deckimage,denoms)) 
return 

end 

This procedure displays the deck with the suits on the first line 
and the denominations directly below. For example, if the shuf-
fled deck begins with the 3 of clubs, the ace of .hearts, and the 
8 of spades, and so on, the display has the following form: 

CH S ... 
3A8 ... 

A refinement to this display is given in Section 4.2. 

Note that the technique used above is independent of the char-
acter set of the host computer on which Icon runs. Even if the 
host character set is BCD, the procedures above will work proper-
ly, since internally Icon supports a larger character set. Thus 
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is is not necessary to change deckimage if the host character set 
does not support lower-case letters. The interface between the 
internal character set only occurs when the (upper-case) results 
are written out. 

Example 4; Masking Characters 

In order to isolate characters of interest from those that are 
not of interest, it is useful to map all uninteresting characters 
into a single "null" that is not in the set of interest. The 
following procedure substitutes the character s3 for all charac-
ters in si that are not contained in s2. 

procedure mask(si,s2,s3) 
return map(si, ~s2,repl(s3,size(~s2))) 

end 

For example, 

mask("Watch for spooks","aeiou","-") 

produces -a o oo— . 

An alternate form of coding that uses duplicate characters 
rather than character-set complementation is 

procedure mask(si,s2,s3) 
return map(sl,alpha || s2,repl(s3,size(alpha)) || s2) 

end 

Here a correspondence between each character of alpha (the string 
of all characters) and s3 is first established and then the cor-
respondences of characters in s2 with themselves are appended to 
override their correspondences with s3. 

Example 5: Extracting and Displaying Suits 

In card games like bridge, it is customary to sort hands into 
suits and to order the suits by denomination. All the cards in 
the same suit can be extracted by substituting some null for all 
characters that are not in the desired suit. Standard templates 
for the suits can be set up as follows: 

blanker := repl(" ",13) 
denom := substr(&lcase,13) 
clubs := denom || repl(blanker,3) 
diamonds := blanker || denom || repl(blanker,2) 
hearts := repl(blanker,2) II denom || blanker 
spades := repl(blanker,3) II denom 

The mapping to get the clubs, for example, is 

suit := map(hand,deckimage,clubs) 

The identifier denom is used to associate the cards of each suit 
with the same denominations, regardless of suit. For example, 
the 2 of clubs and the 2 of hearts are both mapped into b. In 
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each case, all characters that do not correspond to a given suit 
are mapped into a blank. Note that it is essential to select a 
null that is not among the characters used to represent the 
cards. 

If the suit above is converted to a cset and back to a string, 
the result is an (alphabetized) version of the suit with a single 
instance of the null. A further substitution can be performed to 
get the corect visual representation of each card: 

map(cset(suit),denom,"AKQJT9 87 65 432") 

If the hand contains the ace, queen, ten, and two of clubs, the 
result would be AQT2. 

Note that the null used here is "invisible" in printed output, 
although is it actually the first character in the string pro-
duced above (for the ASCII collating sequence). It can be re-
moved, if desired, by performing the following operation instead: 

map(differ(suit," "),denom,"AKQJT98765432") 

Note that in any case the final mapping to get the desired visual 
representation is done after the formation of the cset, since the 
visual representations are not in alphabetical order according to 
rank. 

Other Applications 

A number of other interesting uses of substitution are given 
in Reference 12. Two examples are the translation of Roman nu-
meral to a higher "octave" in the conversion of Arabic numerals, 
and the use of ten's-complement arithmetic to effect symbolic 
subtraction by addition. 

4.2 Positional Transformations 

Example 6: Reversal 

The reversal of the order of characters in a string, as de-
scribed in Section 3.3, is not of interest in itself, since there 
is a built-in function in Icon for performing this operation. 
The solution of the problem, however, serves as a model for a 
number of other positional transformations. 

The approach is to provide, by conventional means, general 
templates for the transformation. The second argument of map 
serves as a labeling for the third argument, while the first 
argument is the desired permutation. The terms image and object 
are used to refer to these two strings, respectively. For re-
verse, a possible image, object, and corresponding template size 
are 

revimage := "abcdefghijklmnopqrstuvwxyz" 
revobjct :~ "zyxwvutsrqponmlkjihgfedcba" 
revsize := size(revimage) 

and the procedure is 
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procedure reverse(s) 
global revimage,revobjct,revsi ze 
if size(s) <= revsize then 
return map( 
section(revobjct,-size(s)), 
section(revimage ,size (s)) , 
s 
) 

else 
return reverse(section(s,revsize+l)) 

I| map(revobjct,revimage,substr(s ,1, revsize)) 
end 

If s is not longer than the image template, the reversal is done 
in one mapping. In this case, specific templates of the correct 
length are selected from the general ones. Note that the first 
part of revimage is used, while the last part of revobjct is 
used. If s is too long, it is divided into two portions. One 
portion is reversed by a recursive call, while the other is re-
versed using the full templates. This process can also be done 
iteratively at the expense of some complication of the code. 

Note that the templates can be chosen in any convenient fash-
ion, as long as revobjct is the reversal of revimage. For maxi-
mum efficiency in reversing long strings, the templates should be 
as long as possible: alpha and its reversal. These strings can 
be formed by conventional means: 

revimiage := "" 
every c := lalpha.do 

revimage := c |I revimage 

In fact, these strings can be obtained by bootstrapping: 

revimage := "ab" 
revobjct := "ba" 
revobjct := reverse(alpha) 
revimage := alpha 

This technique had the advantage of using the most elementary 
characterization of the positional transformation as well as 
avoiding possible errors in constructing the two long strings by 
conventional methods. 

It is reasonable to question the use of map to effect this 
permutation, since it can be more easily coded by conventional 
techniques. One method is simply to concatenate successive char-
acters in reverse order. The most compact Icon code for this 
method is 

procedure reverse (s) local t 
every t := !s | | t 
return t 

end 

Both this method and the mapping method are approximately time 
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linear in size(s) if secondary effects such as storage management 
anomalies are ignored. The conventional method is clearly lin-
ear. The map function itself is time linear in the sizes of its 
first and second arguments (see Section 6.2). In the procedure 
above, these two sizes are the same. Hence the mapping method is 
also time linear in size(s). Results of actual timings are shown 
in Fig. 1. 

time 

mapping 

characters 

Fig. 1 — Timings of String Reversal Methods 
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detriment of the conventional method. These remarks apply in 
general to the relative efficiency of effecting positional trans-
formations by conventional means versus mapping. 

Example 7; Character Exchange 

A positional transformation that is similar to reversal is the 
exchange of adjacent characters in a string, For example, ABCDEF 
becomes BADCFE. The model for the solution to this problem is 
the same as reversal: an image to label the string to be trans-
formed and an object that is the desired transformation of the 
labels. Suitable values are 

ximage := "abcdefghijklmnopqrstuvwxyz" 
xobjct := "badcfehgjilknmporqtsvexwzy" 
xsize := size(ximage) 

The procedure is virtually identical to the one for reversal, the 
difference being in the method for selection of the appropriate 
parts of the templates and the order of concatenation if the 
string is too long to be processed in one map: 

procedure xchar(s) 
global ximage,xobjct,xsize 
if size(s) <= xsize then 
return map( 
substr(xobjct,1,size(s) ) , 
substr(ximage,1,size(s)), 
s 
) 

else 
return map(xobjct,ximage,substr(s,1,xsize)) 

M xchar(section(s,xsize+l)) 
end 

As with reversal, longer images and object provide more efficien-
cy for processing long strings. 

This example is included to illustrate an important aspect of 
this kind of positional transformation: the object must be a 
permutation of the image. In this case, this is only true if s 
is of even length. Suppose, for example, that the value of s is 
ABCDE. The map produced by the procedure above is 

map("badcf","abcde","ABCDE") 

Since the first argument contains a character, f, that does not 
appear in the second argument, this character is not changed by 
the mapping and appears in the result, which is BADCf, the last 
character being spurious. The procedure above only produces 
meaningful results for strings of even length. Of course, the 
exchange operation is not well defined for strings of odd length, 
which is the essential source of the problem. It is easy to add 
a check or modification to handle strings of odd length, but the 
problem is a general one and must be taken into account when 
performing positional transformations. 
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Example 8: Decollation 

Both the positional transformations in the preceding examples 
are permutations. An example of a positional transformation that 
is not a permutation is decollation, the selection of every other 
character of a string. For example, to get the even characters, 
the following values can be used: 

decimage := "-a-b-c-d-e-f-g-h-i-j-k-1-m-n-o-p-q-r-s-t-u-v-w-x-y-z" 
decobjct := "abcdefghijklmnopqrst" 
decsize := size(decimage) 

with the procedure 

procedure decollate(s) 
global decimage,decobjct,decsize 
if size(s) <= decsize then 
return map( 
substr(decobjct,1,size(s)/2) , 
substr(decimage,1,size(s) ), 
s 
) 

else 
return map( 
map(decobjct,decimage,substr(s,l,decsize)) 

I| decollate(section(s,decsize+l)) 
) 

end 

Here only the even-numbered characters in the image have corre-
spondences in the object and hence the result is the even-
numbered characters in s. Any characters can be used as nulls in 
the image, provided that they are not the same as any of the 
labels for the even-numbered characters. 

The odd-numbered characters can be selected by using the 
values above, but with a slightly modified image: 

"a-b-c-d-e-f-g-h-i-j-k-1-m-n-o-p-q-r-s-t-u-v-w-x-y-z" 

Since this value is just a one-character offset of the one above, 
the two operations can be combined into a single procedure decol-
late(s,n), where n is an integer whose parity, odd or even, 
determines whether the odd- or even-numbered characters are se-
lected. A general-purpose procedure for decollation is 

procedure decollate(s,n) local length 
length := size(s) 
n := mod (n ,2) 
if length+n <= decsize then 
return map( 
substr(decobjct,1,(length+n)/2), 
substr(decimage,n+1,length), 
s 
) 

else 
map ( 
substr(decobjct,1,(decsize-2)/2), 
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substr(decimage,n + l,decsize-2), 
substr(s,l,decsize-2) 
) 

end 
decollate(section(s,decsize-l),n) 

The decollation of a smaller size than usual in the second 
section of the procedure allows for the fact that if n is odd, 
the substring of decimage starts at the second character. The 
choice of decsize-2 allows both parts of the decollation to oper-
ate on strings of even length, assuming s is of even length. An 
examination of this procedure will reveal that it operates cor-
rectly for strings of odd length. If s were split at decsize-1, 
however, the parity would have to be reversed for the second 
part. 

Example 9: Collation 

Strings can be collated as well as decollated by mapping. 
Since there are two strings specified in the collation process, 
it is useful to have two corresponding images, one to label each 
of the strings to be collated. The object is then the collation 
of these two images: 

colimagel := "abcdefghijklm" 
colimage2 := "nopqrstuvwxyz" 
colobject := "anbocpdqerfsgthuivjwkxlyrnz" 
colsize := size(colimagel) 

A collation procedure is 

procedure collate(sifs2) 
global colimagel,colimage2,colobject,colsize 
if size(s) <= colsize then 
return map( 
substr(colobject,1,2*size(s)), 
substr(colimagel,1,size(s)) || substr(colimaae2,1,size(s)), 
si || s2 
) 

else 
return map( 
colobject, 
colimagel || colimage2, 
substr(si,1,colsize) || substr(s2,1,colsize) 
) 

I | collate(section(si,colsize+l) ,section(s2,colsize + 1)) 
end 

This procedure assumes that si and s2 are of the same length, 
is instructive to examine the result when this condition is not 
satisfied. 

It 
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Example 10: Displaying a Card Deck 
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disimage := "ABCDEFGHIJKLMabcdefghijklm" 
disobjct := "Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk LI Mm" 

where it is assumed that the upper-case letters label the suits 
and the lower-case letters label the denominations. The suit and 
denomination strings are then concatenated before mapping. A 
procedure is 

procedure display(deck) local i 
global disimage,disobjct,deckimage',suits,denoms 
every i := 1 to 5 2 by 13 do 
write( 
map( 
di sobjct, 
di simage, 
map(substr(deck,i,13),deckimage,suits) 
) 

end 
) 

Example 11: Directed Graphs 

While it is customary to represent directed graphs by list structures 
or adjacency matrices, they can also be represented by character strings 
by associating a distinct character with each node and representing 
the arcs as character pairs. For example the graph 

has arcs AB, AC, CD, BD, and DD. 
this graph is represented by 

g := "ABACCDBDDD" 

Represented as a single string, 
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(If nodes without connecting arcs are allowed, a string contain-
ing all the nodes may be kept separately.) This representation 
is very compact and with the string processing operations of 
Icon, many graph operations can be performed economically. For 
example, a procedure to compute the number of nodes in a graph is 
simply 

procedure nodecount(g) 
return size(cset(g)) 

end 

Other graph operations are easily performed. For example, a cset 
of all nodes that are direct successors of other nodes is pro-
duced by 

snodes := cset(decollate(g,2)) 

An example of the use of this representation is given by a proce-
dure to determine the transitive closure of a node in a graph: 

procedure closure(n,g) 
local st,sn 
sn := n 
while (tn := sn ++ successors(sn,g)) ~=== sn do 
sn := tn 

return tn 
end 

The procedure successors(sn,g) returns all direct successors in g 
of nodes in the cset sn. Definition of this procedure is left as 
an exercise. The operation x ~=== y succeeds if x and y are 
different csets, so the loop continues until nothing new is added 
to the cset. It should be noted that all direct successors of 
the nodes in the evolving cset are added at each step. 

Although the representation above is very compact and easy to 
manipulate, it is not suitable for display purposes. A position-
al transformation can produce a much more attractive result. 
Using an image and object of the form 

grimage := "1234567890" 

grobjct := "1 -> 2; 3 ->4; 5 -> 6; 7 -> 8; 9 -> 0; " 

produces a display of the graph above as 

A -> B; A ->C; C -> D; B -> D; D -> D; 
It is a straightforward matter to generate longer image and ob-
ject strings and to write a general-purpose procedure for produc-
ing the display. 

Translation between various formats for input, output, dis-
play, and internal manipulation are easily derived in this man-
ner. 
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Example 12: Biliteral Substitution 

A classical ciphering technique is biliteral substitution, in 
which two characters are substituted for each character of the 
message. For example, DZ might be substituted for A, FR for B, 
and so on. This substitution is easily seen to be the collation 
of two simple substitutions, which can be performed as follows: 

procedure bilit(s,image,first,second) 
return collate( 
map(s,image,first), 
map(s,image,second) 
) 

end 

where first and second are the two substitutions for the charac-
ters of image. 

One use of this kind of "cipher" is in obtaining the hexadeci-
mal representation of a character string. For ASCII, the values 
are 

hexl := repl("0",16) II repl("l",16) II repl ("2",16) II repl ("3",16' 
repl("4",16) II repl("5",16) II repl("6",16) II repl("7",16) 

hex2 := repl("0123456789ABCDEF",8) 

The keyword &ascii, consisting of a string of all ASCII characters in 
collating sequence, may be used for the image. For example, the 
value of 

bilit("hello",&ascii,hexl,hex2) 

is 68656C6C6F. 

The use of this technique to convert character strings to 
their bit representations is left as an exercise. 

Other Applications 

References 9 and 12 provide numerous examples of positional 
transformations ranging from the reformatting of dates to the 
generation of pig latin. 

5. Limitations 

The main limitation on the programming techniques described in 
this paper are imposed by the limited size of the character set. 
In positional transformations, this is usually more of an annoy-
ance than an actual limitation, since most positional transforma-
tions such as the reversal of a long string can be decomposed 
into a sequence of shorter transpositions. However, if the scope 
of the transposition requires more labels than there are charac-
ters in the character set, a different technique has to be used. 

The really serious limitation occurs in the use of characters 
to represent distinct objects. The representation of a deck of 
playing cards in this way works nicely with any commonly used 
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character set, but that is merely a convenient coincidence. In 
the case of graphs, the representation used clearly limits the 
cases that can be handled. Furthermore, since the methods spe-
cifically rely on character operations, there is no way to extend 
the techniques if the size of the character set is inadequate. 

6. Implementation 

The techniques used to implement string and cset operations 
are only of interest here to the extent that they affect the 
efficiency of the programming techniques that have been describ-
ed. See Reference 14 for a description of dynamic storage man-
agement in Icon and the details of data layout. 

6.1 Character Sets 

Character sets are represented as bit strings, with the bit in 
the position of the character in collating sequence set to 1 if 
the character is in the character set and set to 0 otherwise. 
The amount of space required for a cset depends on the size of 
the character set (256 in Icon), not on the number of characters 
it contains. In any event, csets require comparatively little 
storage space. 

The construction of a cset from a string involves processing 
the characters of the string in sequence, setting the correspond-
ing bit in the cset. This process is time linear in the size of 
the string. 

Constructing a string from a cset involves the converse pro-
cess and is also time linear in the number of characters in the 
cset. 

Complementing a character set is time linear in the number of 
characters not in the character set, but is a comparatively fast 
operation compared to those that involve accessing characters. 
The other built-in character set operations are also time linear 
and correspondingly efficient. 

6.2 Mapping 

map(sj,S2,33) is performed by first building a table of corre-
spondences between the characters of S2 and those of S3. This 
table contains one entry for each character in the character set 
(256 in Icon) and it is initialized by having each character 
correspond to itself. Then the entry for each character is S2 is 
replaced by the corresponding character in S3, working from left 
to right. Thus if there are duplicate characters in S2, the last 
(right-most) correspondence results naturally. 

Once the table is built, the characters in s^ are processed in 
sequence and the result is built from the characters obtained by 
the entry in the table that corresponds to the character of s^. 

The amount of time required to build the table of correspon-
dences is proportional to the size of S2 and the amount of time 
required to do the actual mapping is proportional to the size of 
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SJ. Thus the total time required for the mapping is approxi-
mately 

a*size(si) + b*size(S2) + c 

where c is constant overhead including the initialization of the 
table of correspondences. 

The table of correspondences is static. The only storage 
allocation required for mapping is for the resulting string. 
Furthermore, if map is called successively with the same values 
of S2 and S3, the previous table of correspondences is used with-
out reinitialization. 

7. Conclusions 

The character set and string processing facilities of Icon 
make programming techniques feasible that otherwise would require 
data to be represented in different ways. The main advantages of 
these techniques are the compactness of the data representations 
and the comparative efficiency of the operations. 

This efficiency is largely obtained by the internalization of 
processes that would ordinarily involve loops at the source-
language level. Specific examples of this are identifying dis-
tinct characters, sorting them using cset(s), and the positional 
transformations of long strings using a single mapping operation. 
Given appropriate computer architecture, character sets can be 
manipulated as bit vectors, with the potential improvement in 
efficiency that can be obtained from parallel operations [15]. 

It is interesting to note that csets are so useful in their 
role as sets independent of their relationships to specific char-
acters, despite the limitation on the number of objects that can 
be represented. At the same time, csets provide an economical 
facility, largely because they are limited in number. 

There is no inherent reason why a language character set 
should be resticted to the character set of the host machine. 
Indeed, in the CYBER 175 implementation of Icon, the language 
character set is four times the size of the (standard) host char-
acter set and on the DEC-10 it is twice the size of the host 
character set. Character sets larger than those normally sup-
ported by any computer could easily be implemented, increasing 
the scope of the string processing facilities. 

The problem of supporting a language character set that is 
different from the host character set is not as difficult as it 
might appear. In Icon, the size of a character (and hence of 
character sets) is an implementation parameter. Icon was origi-
nally configured for 128 characters and later changed to 256 
characters to allow more flexibility. The change was easy and 
accomplished quickly. Furthermore, an internal character set 
that is independent of the host character set is an advantage, 
especially for enhancing portability, since the bulk of the sys-
tem is written in machine-independent form with known collating 
sequence (ASCII is used). For example, the lexical analyzer is 
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machine independent, whereas if the internal character set varied 
according to the host character set of the target computer, there 
would be many complications. 
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