
Version 6 of Icon*

Ralph E. Griswold
William H.Mitchell

Janalee O'Bagy

TR 86-10b

June 8,1986; Last Revision September 24,1986

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This work was supported by the National Science Foundation under Grant DCR-8401831.

Version 6 of Icon

1. Background
Different versions of the Icon programming language are identified by numbers. The first, Version 1, was super­

ceded by Version 2. Starting with Version 3, the implementation of Icon was completely changed. While Version 2
is still in use on some computers, Version 5 is by far the mostly widely used version of Icon. The features of Ver­
sion 5 are described in the "Icon book" [1]. Since this book is the only complete and generally available descrip­
tion of a widely used version of Icon, Version 5 is sometimes called "standard Icon".

Since Icon is the byproduct of a research effort that is concerned with the development of novel programming
language features, some extensions to the standard language are inevitable. These extensions are incorporated as
features of new releases of the implementation. These releases are identified by minor version numbers that are
separated from the major version number by a decimal point For example, Version 5.10 is the tenth minor revision
of Version 5.

Because of the relationship between language design and implementation, major version numbers usually con­
tain significant language changes that have accumulated over a number of minor revisions, while minor version
numbers primarily reflect implementation changes.

Recently an implementation of Icon written almost entirely in C has been completed. This implementation is so
different from previous ones that some designation is needed to distinguish it from other implementations. It there­
fore has been designated Version 6. Despite the change in major version number, the Version 6 language is nearly
the same as the Version 5.10 language and the Version 5 book continues to serve as the primary reference for Ver­
sion 6. Since a revision of a book is a major and time-consuming process, this report is provided to supplement the
present Icon book. Together, the book and this report provide a description of Version 6.

Most of the language extensions in Version 6 are upward-compatible with Version 5 and almost all programs
that contain only standard Version 5 features work properly under Version 6. However, some of the more
implementation-dependent aspects described in the Version 5 book are now obsolete and there are significant new
language features.

2. Features of Version 6

Version 6 extensions consist of a declaration to facilitate the use of Icon procedure libraries, a new set data type,
new options for sorting tables, new syntax to support the use of co-expressions in programmer-defined control
operations, the invocation of functions and operators by their string names, and a few new functions.

2.1 The Link Declaration

The link declaration simplifies the inclusion of separately translated libraries of Icon procedures. If icont [2] is
run with the -C option, source files are translated into intermediate ucode files (with names ending in .u1 and .u2).
For example,

icont -c libe.icn

produces the ucode files Iibe.ul and Iibe.u2. The ucode files can be incorporated in another program with the new
link declaration, which has the form

link libe

The argument of link is, in general, a list of identifiers or string literals that specify the names of files to be linked
(without the .u1 or .u2). Thus, when running under UNIX ,

'UNIX is a trademark of AT&T Bell Laboratories.

- 1

link libe, 7usr/icon/ilib/collate"

specifies the linking of libe in the current directory and collate in /usr/icon/ilib. The syntax for paths may be dif­
ferent for other operating systems.

The environment variable I PATH controls the location of files specified in link declarations. The value of
I PATH should be a blank-separated string1 of the form pi pi ---Pn where each pi names a directory. Each direc­
tory is searched in turn to locate files named in link declarations. The default value of I PATH is the current direc­
tory.

2.2 Sets

Sets are unordered collections of values and have many of the properties normally associated with sets in the
mathematical sense. The function

set(a)

creates a set that contains the distinct elements of the list a. For example,

set(["abc",3])

creates a set with two members, abc and 3. Note that

set([])

creates an empty set. Sets, like other data aggregates in Icon, need not be homogeneous — a set may contain
members of different types.

Sets, like other Icon data aggregates, are represented by pointers to the actual data. Sets can be members of sets,
as in

s1 := set([1,2,3])
s2 := set([s1,[]])

in which s2 contains two members, one of which is a set of three members and the other of which is an empty list
Any specific value can occur only once in a set. For example,

set([1,2,3,3,1])

creates a set with the three members 1, 2, and 3. Set membership is determined the same way the equivalence of
values is determined in the operation

x === y

For example,

set([[],[]])

creates a set that contains two distinct empty lists.

Several set operations are provided. The function

member(s,x)

succeeds and returns the value of x if x is a member of s, but fails otherwise. Note that

member(s1, member(s2, x))

succeeds if x is a member of both s1 and s2.

The function

insert(s.x)

inserts x into the set S and returns the value of S. Note that insert(s, x) is similar to put(a, x) in form. A set may
contain (a pointer to) itself:

lrThe separator is a colon for UNIX systems under Versions 5.9 and 5.10.

-2

insert(s.s)

adds s as an member of itself.
The function

delete(s.x)

deletes the member x from the set s and returns the value of s.

The functions insert(s, x) and delete(s,x) always succeed, whether or not x is in s. This allows their use in
loops in which failure may occur for other reasons. For example,

s := set([])
while insert(s, read())

builds a set that consists of the (distinct) lines from the standard input file.

The operations

s1 ++ s2
S1 ** S2
S1 — S2

create the union, intersection, and difference of s1 and s2, respectively. In each case, the result is a new set.
The use of these operations on csets is unchanged. There is no automatic type conversion between csets and sets;

the result of the operation depends on the types of the arguments. For example,

'aeiou' ++ 'abcde'

produces the cset 'abcdeiou', while

set([1,2,3]) ++ set([2,3,4])

produces a set that contains 1,2, 3, and 4. On the other hand,

set([1,2,3]) ++ 4

results in Run-time Error 119 (set expected).

The functions and operations of Icon that apply to other data aggregates apply to sets as well. For example, if s
is a set,

*s

is the size of S (the number of members in it). Similarly,

type(s)

produces the string set. The string images of sets are in the same style as for other aggregates, with the size
enclosed in parentheses. Therefore,

s := set(["abc",3])
write(image(s))

writes set(2).

The operation

!s

generates the members of S, but in no predictable order. Similarly,

?S

produces a randomly selected member of S. These operations produce values, not variables — it is not possible to
assign a value to !s or ?s.

The function

- 3 -

copy(s)

produces a new set, distinct from s, but which contains the same members as S. The copy is made in the same
fashion as the copy of a list — the members themselves are not copied.

The function

sort(s)

produces a list containing the members of S in sorted order. Sets occur after tables but before records in Icon's col­
lating sequence.

Examples

Word Counting:

The following program lists, in alphabetical order, all the different words that occur in standard input:

procedure main()
letter := &lcase ++ &ucase
words := set([])
while text := read() do

text ? while tab(upto(letter)) do
insert(words, tab(many(letter)))

every write(!sort(words))
end

The Sieve of Eratosthenes:

The follow program produces prime numbers, using the classical "Sieve of Eratosthenes":

procedure main()
local limit, s, i
limit := 5000
s := set(Q)
every insert(s, 1 to limit)
every member(s,i := 2 to limit) do

every delete(s,i + i to limit by i)
primes := sort(s)
writefThere are ",*primes," primes in the first ".limit," integers.")
write ("The primes are:")
every write(right(!primes, *limit + 1))

end

2.3 Sorting Tables

Two new options are available for sorting tables. These options are specified by the values 3 and 4 as the second
argument of sort(t, i). Both of these options produce a single list in which the entry values and assigned values of
table elements alternate. A value of 3 for i produces a list in which the entry values are in sorted order, and a value
of 4 produces a list in which the assigned values are in sorted order. For example, if the table wcount contains ele­
ments whose entry values are words and whose corresponding assigned values are counts, the following code seg­
ment writes out a list of the words and their counts, with the words in alphabetical order:

a := sort(wcount, 3)
every i := 1 to *a - 1 by 2 do

write(a[i]," : ",a[i + 1])

The main advantage of the new sorting options is that they only produce a single list, rather than a list of lists as
produced by the options 1 and 2. The amount of space needed for the single list is proportionally much less than for
the list of lists.

2.4 Programmer-Defined Control Operations
As described in [3], co-expressions can be used to provide programmer-defined control operations. Version 6

provides support for this facility by means of an alternative syntax for procedure invocation in which the arguments
are passed in a list of co-expressions. This syntax uses braces in place of parentheses:

p{expn, exprz, ..., exprn)

is equivalent to

p([create expn, create expn create exprn])

Note that

P(}

is equivalent to

P([])

2.5 Invocation By String Name

A string-valued expression that corresponds to the name of a procedure or operation can be used in place of the
procedure or operation in an invocation expression. For example,

"image"(x)

produces the same call as

image(x)

and

"-"(U)
is equivalent to

i - J

In the case of operator symbols with unary and binary forms, the number of arguments determines the operation.
Thus

"-"(i)

is equivalent to

-i

Since to-by is an operation, despite its reserved-word syntax, it is included in this facility with the string name "...".
Thus

"..."(1.10,2)

is equivalent to

1 to 10 by 2

Similarly, range specifications are represented by ":", so that

":"(s,i,j)

is equivalent to

s[i:j]

Defaults are not provided for omitted or null-valued arguments in this facility. Consequently,

-5 -

"..."(1,10)

results in a run-time error when it is evaluated.

The subscripting operation is available with the string name "[]". Thus

"[]"(&lcase,3)
produces c.

Arguments to operators invoked by string names are dereferenced. Consequently, string invocation for assign­
ment operations is ineffective and results in error termination.

String names are available for the operations in Icon, but not for control structures. Thus

"\\expn,expt2)

is erroneous. Note that string scanning is a control structure.

Field references, of the form

expr . fieldname

are not operations in the ordinary sense and are not available via string invocation. In addition, conjunction is not
available via string invocation, since no operation is actually performed.

String names for procedures are available through global identifiers. Note that the names of functions, such as
image, are global identifiers. Similarly, any procedure-valued global identifier may be used as the string name of a
procedure. Thus in

global q

procedure main()
q := p
"q"("hi")

end

procedure p(s)
write (s)

end

the procedure p is invoked via the global identifier q.

2.6 New Functions

The function proc(x, i) converts x to a procedure, if possible. If x is procedure-valued, its value is returned
unchanged. If the value of x is a string that corresponds to the name of a procedure as described in the preceding
section, the corresponding procedure value is returned. The value of i is used to distinguish between unary and
binary operators. For example, proc("*", 2) produces the multiplication operator, while proc("*", 1) produces the
size operator. The default value for i is 1. If x cannot be converted to a procedure, proc(x, i) fails.

The function seq(i, j) generates an infinite sequence of integers starting at i with increments of j . An omitted or
null-valued argument defaults to 1. For example, seq() generates 1,2,3,

Storage is allocated automatically during the execution of an Icon program, and garbage collections are per­
formed automatically to reclaim storage for subsequent reallocation. Garbage collection normally only occurs when
it is necessary. Garbage collection can be forced by the function collectQ.

-6

2.7 Minor Language Changes

There are two minor language changes:

• The keyword &options of Version 5.10 is not present in Version 6.
• Version 6 reads the last line of a file, even if that line does not end with a newline; Version 5 discards

such a line.

2.8 Version Checking

The Icon translator converts a source-language program to an intermediate form, called ucode. The Icon linker
converts one or more ucode files to a binary form called icode. The format of Version 6 ucode and icode files is dif­
ferent from that of earlier versions. To avoid the possibility of malfunction due to incompatible ucode and icode
formats, Version 6 checks both ucode and icode files and terminates processing with an error message if the ver­
sions are not correct.

3. Obsolete and Changed Features of Version 5

The original implementation of Version 5 supported both a compiler (iconc) and an interpreter (icont). Version
6 supports only an interpreter. Interpretation is only slightly slower than the execution of compiled code and the
interpreter is portable and gets into execution much more quickly than the compiler. However, it is not possible to
load C functions with the interpreter as it was with the compiler. A system for personalized interpreters [4] is
included with Version 6 for UNIX systems to make it comparatively easy to add new functions and otherwise
modify the Icon run-time system.

Some run-time environment variables have changed; see Appendix A. A number of error messages have been
changed. Appendix B contains a list of run-time error messages.

4. Known Bugs in Version 6

• The text of some translator error messages is incorrect and may not correctly reflect the nature of errors.

• The translator does not detect arithmetic overflow in conversion of numeric literals. Very large numeric
literals may have incorrect values.

• Integer overflow on multiplication and exponentiation is not detected during execution. Such overflow
may occur during type conversion.

• Line numbers may be wrong in diagnostic messages related to lines with continued quoted literals.

• In some cases, trace messages may show the return of subscripted values, such as&null[2], that would be
erroneous if they were dereferenced.

• If a long file name for an Icon source-language program is truncated by the operating system, mysterious
diagnostic messages may occur during linking.

• Stack overflow is checked using a heuristic that may not always be effective.

• If an expression such as

x := create expr

is used in a loop, and x is not a global variable, unreferenceable co-expressions are generated by each suc­
cessive create operation. These co-expressions are not garbage collected. This problem can be circum­
vented by making x a global variable or by assigning a value to x before the create operation, as in

x := &null
x := create expr

• Stack overflow in a co-expression may not be detected and may cause mysterious program malfunction.

• Co-expressions were designed to support coroutine programming as well as the more usual application for
the controlled production of the results of a generator. However, the implementation is not sufficiently
general to support coroutines. In Version 5, the use of co-expressions in a coroutine fashion could produce
program malfunction. In Version 6, such uses are prevented and cause error termination. As a

7-

consequence, some uses of co-expressions that worked in Version 5 may not work in Version 6. In partic­
ular, the example in Section 13.4.2 of the Icon book does not work in Version 6.

• The garbage collector was designed for machines with comparatively small address spaces and may not
perform well for computers with very large address spaces. In particular, if an attempt is made to create a
very large data object that will not fit into memory (such as a million-element list), it takes an inordinately
long time to determine that the object can not be allocated.

5. Possible Differences Among Version 6 Implementations
Version 6 of Icon is written almost entirely in C and most of its features are machine-independent. Appendix B

of the Icon book lists differences that may occur because of different machine architectures. In addition to the
differences listed there, the implementation of sets and tables uses a parameter that is different for 16- and 32-bit
computers. This parameter determines how set members and table elements are physically stored as a result of hash­
ing. The difference only is noticeable in the results produced by !x and ?x, where x is a set or a table.

A few aspects of the implementation of Version 6 are specific to different computer architectures and operating
systems. Co-expressions require a context switch that is implemented in assembly language. If this context switch is
not implemented, an attempt to activate a co-expression results in error termination. Arithmetic overflow checking
also generally requires assembly-language routines and may not be supported on some implementations of Version
6.

Some features of Icon, such as opening a pipe for i/o and the system function, are closely related to UNIX.
These features should work correctly for Version 6 running on UNIX systems, but they may not be supported on
other operating systems.

Acknowledgements

In addition to the authors of this report, several persons contributed to the implementation of Version 6 of Icon.
The implementation of sets and the new sorting options were done by Rob McConeghy. Other major contributors
include Gregg Townsend, Chris Janton, and Kelvin Nilsen.

References

1. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey. 1983.

2. Griswold, Ralph E. ICONT(l), manual page for UNIX Programmer's Manual, Department of Computer Science,
The University of Arizona. May 1986.

3. Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Computer Journal,
Vol. 26, No. 2 (May 1983).
4. Griswold, Ralph E. Personalized Interpreters for Version 6.0 of Icon, Technical Report TR 86-12, Department of
Computer Science, The University of Arizona. May 1985.

8-

Appendix A — Environment Variables

There are a number of environment variables that can be set to override the default values for sizes of Icon's
storage regions and other run-time parameters. The values assigned to these environment variables should be
numbers. Care should be taken in assigning values to region sizes; unreasonable values may cause Icon to malfunc­
tion.

The environment variables are:

TRACE The initial value of &trace. The default value is zero.

NBUFS The number of input-output buffers. The default value is 10 for computers with large
address spaces and 5 for computers with small address spaces.

NOERRBUF No buffering of standard error output.
ICONCORE Produce a core dump in the case of error termination.
MSTKSIZE The size in words of the main interpreter stack. The default value is 10,000 for machines

with large address spaces and 3000 for machines with small address spaces.
STRSIZE The initial size in bytes of the allocated string region. The default value is 51,200 for

machines with large address spaces and 10,240 for machines with small address spaces.
HEAPSIZE The initial size in bytes of the allocated block region. The default value is 51,200 for

machines with large address spaces and 10,240 for machines with small address spaces.

STATSIZE The initial size in bytes of the static region in which co-expressions are allocated. The
default value is 20,480 for machines with large address spaces and 4,096 for machines with
small address spaces.

STATINCR The increment for expanding the static region. The default increment is one-fourth the ini­
tial size of the static region.

COEXPSIZE The size in words of co-expression blocks. The default value is 2,000 for machines with
large address spaces and 1,000 for machines with small address spaces.

9-

Appendix B — Run-Time Error Messages

101 integer expected
102 numeric expected
103 string expected
104 cset expected
105 file expected
106 procedure or integer expected
107 record expected
108 list expected
109 string or file expected
110 string or list expected
111 variable expected
112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 list or table expected
116 invalid type to element generator
117 missing main procedure
118 co-expression expected
119 set expected

201 division by zero
202 remaindering by zero
203 integer overflow
204 real overflow underflow or division by zero
205 value out of range
206 negative first operand to real exponentiation
207 invalid field name
208 second and third arguments to map of unequal length
209 invalid second argument to open
210 argument to system function too long
211 by clause equal to zero
212 attempt to read file not open for reading
213 attempt to write file not open for writing
214 recursive co-expression activation

301 interpreter stack overflow
302 C stack overflow
303 unable to expand memory region
304 memory region size changed
305 inadequate space in string region
306 inadequate space in block region
307 inadequate space for icode
308 inadequate space for i/o buffers
309 inadequate space for interpreter stack

10-

