Diagramming Icon Data Structures*

Ralph E. Griswold

TR 84-5

April 28, 1984

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS81-01916.

Diagramming Icon Data Structures

1. Introduction

Icon, like a number of other high-level programming languages with late binding times, creates and mani-
pulates a variety of data objects at run time [1]. These include strings, records, lists with queue and stack
access methods, and tables that can be subscripted with any kind of value.

The internal representation of such objects plays a significant role in the overall implementation. The
manipulation of some of these objects is comparatively sophisticated, although little of the complex underly-
ing mechanism is visible to the user of Icon. The impact of these mechanisms on the performance of the imple-
mentation — or even their correctness — is difficult to determine. Even the designer and implementor of the
language may not understand, in a broad, general sense, the processes that take place during program execu-
tion. The code itself is unsuitable for deriving such an understanding, and modifications made over a period of
time may obscure the original design intentions [2-3].

This report describes a tool, called Igram, that produces diagrams of Icon’s data objects. This pictorial
representation makes it easy to grasp the structures that are used and to understand their interrelationships.
This tool consists of a library of Icon procedures that can be called during the execution of an Icon program.
Thus the user of this tool can add such calls to a program at appropriate points to produce desired diagrams.
This diagrams are produced by examining the layout of memory during the execution of an Icon program.
They therefore represent objects as they really are, not as they are imagined to be.

In order to interpret these diagrams, it is necessary to understand, at least in general terms, how memory is
organized and referenced in the implementation of Icon. The following section covers the basics of this sub-
ject and introduces the main diagramming procedures. Subsequent sections treat special topics in more detail.
The latter part of this paper describes how the procedures are implemented and how the user can write post-
processors to produce diagrams for different formatting systems.

2. Icon Data Structures

Much of Icon data is composed of words, whose size depends on the architecture of the computer on
which Icon is implemented. On the PDP-11, words are 16 bits long, while on the VAX-11, 32-bit “longwords”
are used. The diagramming system described here runs on the VAX and, unless otherwise noted, the descrip-
tion here refers to that architecture. To a large extent, however, Icon data objects can be described in
machine-independent terms.

2.1 Descriptors

All Icon source-language data values are represented by descriptors, which consist of two words: a r-word
that generally contains flags and a type code, and a v-word that generally contains a data value or a pointer to
one. For example, the Icon integer 37 is represented by the descriptor

Nni integer
37

The letters in the left portion of a t-word represent flag bits. N indicates that a descriptor is not a qualifier
(explained below), n indicates a descriptor represents a numeric value (integer or real number), while i indi-
cates the descriptor represents an integer!. These flags distinguish different properties of descriptors. Some

!On 16-bit machines, there are two kinds of integers internally — short integers, whose values fit in the v-word, and long
integers, whose values are pointed to. The i flag is used for both.

-1-

flags, such as n are provided more for convenience than necessity. See [4] for a complete list of flags.

The name in the right portion of a t-word is a symbolic representation for a type code for the value that the
descriptor represents. Type codes are small integers that range from 1 to 19; see [4] for a complete list. As
mentioned above, the v-word contains the data value or a pointer to it. In the case of an integer, the value itself
is in the v-word, as illustrated above.

The procedure call Descrip(x) produces a diagram of the descriptor for x. For example,
Descrip(37)
produces the diagram shown above.

The null value has a special descriptor representation in which both the t-word and the v-word are zero.
For example,

Descrip(&null)

produces

2.2 Blocks

As noted in the preceding section, the descriptors for integers and the null value are self-contained — their
data values fit into v-words. All other types are represented by descriptors in which the v-word contains a
pointer to the actual value. Except for strings, which are discussed in the next section, such values are blocks
of words. For example, a real number is too large to fit into a v-word and therefore is stored in a block.

The first word of every block contains its type code (the same code that appears in the t-word). This type
code is used by the garbage collector. For example, the descriptor for the real number 37.0 is

Npn real

+

>37.0

where the arrow indicates the v-word contains the address of a block that contains the actual value. The value
37.0 following the arrow is the Icon string image of the value (image(37.0)). The p flag indicates that the v-
word contains a pointer instead of the actual value. The block pointed to by the v-word is

real

- 37.0 -

The diagrams for such blocks are produced by the procedure Struct(x). For example,
Struct(37.0) -

produces the diagram of the block above.

Different types of values have different block structures. See [4] for details. Blocks for lists and tables,
which are described in Sections 2.4 and 2.5, contain pointers to other blocks.

2.3 Strings

The descriptor layout for strings is specialized to allow strings to be represented compactly. The t-word for
a string descriptor (qualifier) contains the length of the string and the v-word contains the (byte) address of the
first character of the string, For example, the qualifier for the string the is diagrammed as

>"the”

The arrow followed by the string enclose in quotation marks represents a byte address at which the character t
occurs, followed by h and e.

Note in particular that the t-word of a qualifier does not contain any flags and has the string length in place
of a type code. Any descriptor that is not a qualifier contains the N flag. The v-word of the empty string is
nonzero, so that the empty string can be distinguished from the null value. The descriptor for the empty string
is diagrammed as

2.4 Lists

The data structures for a list are somewhat complicated, since the size of a list can increase or decrease as
the result of queue or stack access. The v-word of a list descriptor points to a list header block that contains
the usual type word, the size of the list (the number of elements in it), and two descriptors that point to the
beginning and end, respectively, of a doubly-linked list of one or more list element blocks.

For example, if the list ais produced by
a:=[1223456728]
then
Struct(a)

produces the diagram

list

8

Npa lelem
+ >lelem

Npa lelem
—— >lelem

A list element block contains a type word (lelem), the size of the block in bytes, three words that describe
the location of the elements in the block, two descriptors for links to other list element blocks, and descriptor
slots for the elements in the block. For the example above, there is one list element block, which has the form

lelem
100 size of block (bytes)
number of slots in block
index of first slot used
number of slots used
link to previous lelem

link to next lelem

QIO | OO ||O 0

Nni integer list elements
I
Nni integer
2
Nni integer
3
Nni integer
4
Nni integer
S
Nni integer
6
Nni integer
7
Nni integer
8

The link descriptors are zero (null descriptors), indicating that there is no previous or next list element block.
The descriptor slots in a list element block are managed as a circular queue, allowing list elements to be
removed and added conveniently. See [4].

A list element block is added when an element is added to a list and there is no available slot for it. For
example,

push(a, 9)

applied to the list given above causes a list element block to be added to the structure above, so that the list
header block becomes

list

9

Npa lelem
+ >al

Npa lelem
+ >a2

where the list element blocks are labeled al and a2.

al

lelem

100

OO —|3]oo

Npa

+

=0 k=] [=] [=] {~3 {=} [~} f=) [=) [=} =) F=) F=) N

Nni

integer

>a2

Npa lelem

>al

Nni integer
1
Nni integer
2
Nni integer
3
Nni integer
4
Nni integer
5
Nni integer
6
Nni integer
7
Nni integer
8

Note that the new list element block contains extra slots for the addition of new elements.

List element blocks have an internal data type. The descriptors that point to them resemble descriptors for
source-language data objects in every way, except that the type code lelem refers to a type that is only used
internally and is not visible at the source level. In order to be able to diagram list element blocks, it is neces-
sary to be able to treat them as Icon data objects. Four procedures are provided for this purpose:

Flelem(a) first list element block for a
Llelem(a) last list element block for a
Nlelem(le) next list element block for le
Plelem(le) previous list element block for le

where le indicates a list element block. All of these procedures return the null value if there is no correspond-
ing list element block. For example,

le ;= Flelem(a)
while \le do {
Struct(le)
le ;= Nlelem(le)

}

diagrams the list element blocks for the list a.

2.5 Tables

Tables are implemented in Icon using hashing with chaining [4). The v-word for a table descriptor points
to a table header block that contains the type word, the size of the table (the number of elements in it), a
descriptor for the table’s default value, and 14 bin descriptors that serve as pointers to singly-linked lists of
table element blocks.

For example, if tis a table produced by

t = table(0)
then
Struct(t)
produces

table

0 size of table
Nni integer default assigned value

0
0 bin |
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 bin 14
0

Note that the bins initially contain null descriptors, indicating that they are empty.

Each element that is added to a table is contained in a table element block that consists of the usual type

word, a descriptor pointing to the next table element block, and descriptors for the entry value and assigned
value. For example,

f"the”] +:= 1

produces the table element block

telem
0 next table element block
0
3
+ >"the”
Nni integer
1

The bin that an element goes in is determined by a hash function of the entry value. As more elements are
added to the table, more table element blocks are constructed and linked into the bins.

Like list element blocks, table element blocks correspond to an internal data type (telem). In order to
diagram table element blocks, two procedures are provided:

Tbin(t, i) first table element block in the ith bin of t
Ntelem(te) next table element biock after te

where te indicates a table element block. These procedures return the null value if there is no corresponding
table element block. For example,

te := Tbin(t, 1)
while \te do {
Struct(te)

te := Ntelem(te)

}

diagrams the table element blocks in the first bin of t.

3. Spanned Diagramming

In some situations, it is useful to be able to diagram all the structures that are accessible, via pointers, from
a given descriptor or block. The procedures Descrip and Struct have an optional second argument for this
purpose: if it is nonnull, all structures accessible from that point are diagrammed. This is referred to as
“spanned diagramming”. In spanned diagramming, structures are assigned identifying addresses, al, a2,
An example is

Descrip(37.0, 1)

which produces

Npn real

>al

al real

- 37.0 -

Any nonnull value can be used for the second argument to specify spanned diagramming, For example,
Descrip(37.0, "span”)

produces the same diagram as the one above.

In the case that there is more than one pointer to a structure, the structure is diagrammed only once. In
spanned diagramming, structures are queued and diagrammed in first-in, first-out order.

4. Artificial Diagrams

Igram, by its nature, cannot diagram variables or trapped-variable blocks [4] because arguments in pro-
cedure calls are dereferenced automatically and variables vanish before they can be processed. Similarly, there
is no way to construct a descriptor or block with arbitrary contents,

Nonetheless, it is sometimes useful to be able to produce diagrams corresponding to variables, trapped-
variable blocks, or even hypothetical structures. Two procedures are provided for such purposes:

Adescrip(tword, vword, label) diagram an artificial descriptor
Astruct(words, label) diagram an artificial block

In Adescrip, tword is a two-element list whose first element is the left (flag) part of the t-word and whose
second element is the right (type code) part of the t-word. The value of vword is the v-word of the descriptor.
If it is a record of the form

Pwd(val)
this indicates that the v-word contains a pointer to val, For example,
Adescrip(["Nni”, "integer’], 37)

produces

Nni integer
37

while
Adescrip(["Npn”,"real”], Pwd("37.0"))

produces

Npn real

>37.0

The argument label is optional and provides a label at the left of the t-word. For example,
Adescrip({"Nni"”,"integer’"],37,”11")

produces

Il Nni integer
37

The procedure Astruct is similar in form to Adescrip, except that its first argument is a list, each element
of which specifies a word in the block that is diagrammed. For example,

Astruct([“tvtbl”, ["Npa”, “table"], Pwd("a1"), 3, Pwd("the")])

produces

tvtbi
Npa table
+— >al
3
+— >"the”

5. Using Igram
Igram is run by

Igram [options] file
where file is the name of an Icon program (ending in .icn).

Igram translates, links, and executes file. The diagramming procedures described in the preceding sections
are included automatically, along with support and layout procedures. The output of Igram is in a form suit-
able as input to a formatting program. Igram runs on the VAX-11 under UNIX'. Diagrams correspond to
Version 5.8 of Icon as implemented on 32-bit computers.

The layout procedures to be used are determined by the following options:
—n Nroff processing
—t Troff processing
=i Itroff processing

The default option is —n. The macro package —ms is assumed for all these formatting programs [5]. For the
—tand —ioptions, the Th/ preprocessor is required for formatting. For example, Igram might be used as

Igram —t chapil.icn | tbl | troff —ms
The diagrams in this report were prepared using the —t option.

In addition, the option —I file causes the user-specified layout procedures given in file to be used for layout.
See Section 7. Any other options are passed on to Icon. See [6].

Any Icon program can be run under Igram. Care should be taken to assure that output written by the pro-
gram does not interfere with output produced by diagramming procedures. All global identifiers used in the
procedures included by Igram end in underscores. User programs should not use such identifiers. Igram also
uses the following external procedures from the Icon program library [7]: Word1, Word2, indir, and Descr.
User programs must not contain procedures with these names.

Diagnostic messages produced by igram are designed to be self-explanatory.

'UNIX is a trademark of Bell Laboratories.

-10-

6. Implementation

Words of memory are accessed by the diagramming procedures using Iscope functions in the Icon pro-
gram library [7]. These functions return the contents of words at specified addresses and treat them as Icon
integers. For example, Word1(x) returns the word of memory at location X.

When a descriptor is processed, its two words are extracted and stored in the fields of a record. Since these
fields contain integers, they can be examined for flag, type code, pointers, and so forth.

Igram has implicit knowledge of some aspects of Icon data structures. For example, in the case of a list
header block, Igram knows that the first word of the block contains a type code, the second word contains the
size of the list, and the next four words constitute two descriptors. Such knowledge of Icon structures is neces-
sary, since it cannot be derived from the data itself. In particular, Igram knows where descriptors occur in
blocks — there is nothing in a descriptor itself that designates it as such.

On the other hand, Igram avoids the use of implicit knowledge where possible and uses the data itself,
even if its structure is known. For example, the first word in a list header block is formatted from data that is
extracted from memory, even though it is known that it contains the code list. Similarly, the t-words of the
two descriptors in a list header block are diagrammed from the data that is extracted from memory. This
approach assures that, so far as possible, diagrams represent Icon data structures as they really exist, rather
than as they are assumed to be.

The procedures used by Igram are divided into three groups:
e diagramming procedures
e support procedures
® layout procedures

The diagramming procedures are those described in Sections 2 through 5. These procedures, in turn, call sup-
port procedures and layout procedures. Listings of the diagramming procedures and support procedures are
given in Appendices A and B, respectively.

The support procedures do most of the work in diagramming and it is in them that the implicit knowledge
of Icon data structures resides. There is a procedure to analyze each type of Icon descriptor and block.
Descriptors are broken down into t- and v-word integers and most of the processing is done on these integers.
For example, the type of a descriptor is determined by examining the low-order five bits of the t-word, not by
using the function type(x). This is done partly to avoid the unnecessary use of implicit knowledge and partly
because type(x) cannot be applied to the internal types lelem and telem.

It should be noted that the handling of v-words as integers makes Igram vulnerable to garbage collection,
which may change a v-word pointing to a relocatable object without changing the corresponding integer that
Igram uses. This can be a problem only during the evaluation of a diagramming procedure. However, such
procedures allocate storage in order to produce diagrams, so it is possible for a malfunction to occur. This has
not been observed in practice, however. The likely symptom would be an obviously erroneous diagram or
program error termination.

Layout procedures do not contain implicit knowledge of Icon data structures, except that they assume that
words contain 32 bits. The layout procedures for Nroff are comparatively simple and amount to the provision
of vertical and horizontal lines for boxes and the arrangement of data within these boxes. See Appendix C.
The layout procedures for Troff and [troff are more complicated, since Th/ commands must be provided. See
Appendix D.

7. User-Supplied Layout Procedures

Layout procedures are primarily “device drivers”. For example, layout procedures could be produced to
drive graphics hardware and generate cinematic displays of Icon structures.

There are 10 layout procedures that are called by diagramming and support procedures:

-1l -

Initl_ () Initialize the layout. This procedure is called just once and before any other layout pro-
cedure. It typically assigns values to global identifiers that are used in preparing output.

Beginbl_(x) Begin layout of a block of type x. This typically involves some initialization, such as
outputting a block header.

Endbi_() End layout of a block.
Begindr_.() Begin layout of a descriptor.
Enddr_() End layout of a descriptor.

Bword_ (x) Layout a word of 32 bits, which are given in x.

Fcword_(f.c) Layout a word with the flags f in the high-order part and the code ¢ in the low-order
part.

iword_(x) Layout X as an integer word
Pword_(x) Layout a word pointing to X.
Rblock_(x) Layout two words containing the real value x.

To avoid possible collisions with identifiers in user programs, all global identifiers used by layout procedures
should end with underscores. Care also should be taken not to collide with identifiers used by the support pro-
cedures. See Appendix B.

A library of user-supplied layout procedures is linked in by the |gram command processor and must be
available in ucode format. For example, if the user-supplied layout procedures are in graphics.icn, they
should be translated by)

icont —¢ graphics.icn
which produces the ucode files graphics.u1and graphics.u2 These files are used when Igram is run by
Igram —| graphics

8. Conclusions

Igram was conceived as a tool to support documentation of Icon’s internal structures. It has been used
extensively for that purpose in a graduate-level course on the implementation of Icon. The purpose of Igram
was not simply to make it easier to produce diagrams, but also to assure, as far as possible, that the diagrams
represented the actual data structures without omissions and errors due to preconceptions.

In fact, the actual diagrams turned out to be somewhat different, in some cases, from what was expected,
indicating how easy it is to make mistakes and overlook details. A number of errors in hand-produced docu-
mentation were discovered as a result [4].

Since Igram makes it easy to produce diagrams, it has led to a better understanding of the amount and
type of data produced by the execution of Icon programs. If diagrams had been produced on the basis of
analysis of the source code for the implementation, instead of being produced by executing programs, many
details might have been overlooked. In fact, such details were persistently overlooked by students who studied
the source code before seeing the diagrams. :

An example occurred in determining what happens when a list element block becomes empty due to, say,
pop(a). Many students failed to observe an important detail: a list element block is not removed from the
doubly-link list when it becomes empty. Instead, an empty list element block is only removed when there is an
attempt to remove an element from it. The retention of an empty list element block serves the important func-
tion of prevent thrashing in case of a repeated pop/push combination at a list element block boundary. This
aspect of the implementation is immediately obvious, on the other hand, when Igram is used with a program
that removes elements from a list.

Not surprisingly, Igram also was responsible for detecting errors in the implementation of Icon. For
example, during the coding of the support procedures for lgram, it became obvious that there was a
discrepancy between the use of descriptors in most cases to point to procedure blocks and the use of a single
word to point to the procedure block for the record constructor. See Record_(x) in Appendix B.

-12-

Descriptors are used to assure the relocation of blocks during garbage collection [4). It happens that pro-
cedure blocks normally are not relocatable, so this discrepancy did not cause Icon programs to malfunction.
Interestingly, however, there is a specially tailored version of Icon that uses relocatable procedure blocks. By
coincidence, the discrepancy noted above was discovered at the same time that the specially tailored version of
Icon was malfunctioning because of it.

A related bug was discovered in the size of the procedure block for the record constructor, where Igram
output showed that the actual value was incorrect. See Procedure_(x) in Appendix B. If Igram had used
implicit knowledge for this value, rather than the data as it existed in memory, this bug would not have been
discovered.

Although Igram is primarily a pedagogical tool, it also can be used to analyze the performance of the
implementation. For example, the following procedure, which does no diagramming, provides a histogram of
table bin usage and can be used to provide empirical evidence concerning the effectiveness of the hashing func-
tion:

procedure Thist(t)

local i, j, x

every i := 1 to 14 do {
x = Tbin(t, i)
ji=1

while x ;= Ntelem(\x) do j +;= 1
write(right(i, 3), ": i, repl("x",}))
}

return
end

A program such as Igram is not limited to Icon, of course. It can be adapted to a variety of programming
languages, as has been demonstrated for SNOBOL4 [2] and SL5[3].

References
1. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey. 1983.
2. Griswold, Ralph E. “A Portable Diagnostic Facility for SNOBOL4", Software — Practice and Experi-
ence, Vol. 5, No. | (January-March 1975), pp. 93-104.
3. Griswold, Ralph E. “Linguistic Extension of Abstract Machine Modelling to Aid Software Develop-
ment”, Software — Practice and Experience, Vol. 10, No. 1 (January 1980), pp. 1-9.

4. Griswold, Ralph E., William H. Mitchell, and Stephen B. Wampler. The C Implementation of Icon; A
Tour Through Version 5, Technical Report TR 83-11a, Department of Computer Science, The Univer-
sity of Arizona. 1983. :

5. Lesk, M. E. Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff, Bell
Laboratories, Murray Hill, New Jersey. 1978.

6. Griswold, Ralph E. and William H. Mitchell. Icont(1), manual page for UNIX Programmer’s Manual,
Department of Computer Science, The University of Arizona. 1983.

7. Griswold, Ralph E. The Icon Program Library, Technical Report TR 83-6a, Department of Computer
Science, The University of Arizona. 1983.

Acknowledgements

Dave Hanson, Bill Mitchell, and Steve Wampler provided a number of helpful suggestions concerning the
diagramming facility and the presentation of the material in this report.

-13-

Appendix A — Diagramming Procedures

record Pwd(val)

procedure Adescrip(tword, vword, label) # diagram artificial descriptor
addr. := \label | ""
Begindr_()
Fcword_ (tword([1], tword({2])
addr_ = "
it type(vword) = "Pwd"” then Pword_{vword.vai)
else |lword_(vword)

Enddr_()
end
procedure Astruct{words, iabel) # diagram artificial structure
local word
addr_ = \label | ""
Beginbl_()

every word = lwords do {
case type(word) of {
"list": Feword_(word(1], word[2])
"Pwd"”: Pword_(word.val)
default: Iword._(word)
}

addr_ = "
}
Endbl_()
end
procedure Descrip(x, u) # diagram descriptor
local y, p
span- = u
y = D_(Word1(x), Word2(x)) # representation as two integers
if p ;= \dtable_[Type_(y)] # get diagramming procedure

then p(y, x) eise stop(“unknown type”)
Struct(x,\u)
span_ = &null

end

procedure Flelem(a) # get first list block
local x
x = D_(Word1(a), Word2(a))
if Type_(x) ~== "list” then stop("invalid argument to Flelem")
return Descr(var—, x.v + wsize_ s« 2)
end

procedure Lielem(a) # get last list block
local x
x = D_(Word1(a), Word2(a))
it Type.(x) ~== "list" then stop("invalid argument to Llelem")
return Descr(var—, x.v + wsize_ « 4)

end

procedure Nlelem(x) # get next list block
local y
y = D_(Word1(x), Word2(x))
if Type_(y) ~== "lelem” then stop("invalid argument to Nlelem")
return Descr(var_,y.v + wsize_ « 7)

end

procedure Ntelem(x) # get next table element

local y
y = D_(Word1(x), Word2(x))
if Type_(y) ~—== "telem” then stop(”invalid argument to Ntelem”)
return Descr(var_,y.v + wsize_)
end
procedure Plelem(x) # get previous list block
local y

y = D_(Word1(x), Word2(x))
if Type_(y) ~== "lelem” then stop(“invalid argument to Plelem”)
return Descr(var_,y.v + wsize_ « 5)

end
procedure Struct(x, u) # diagram structure
local y, 2, p
span. = u # set.global to enable derivative processing
put(liist_, x) # queuse structure
done_ := table() # table of structures aiready processed
while y = get(llist_) do { # next value to diagram
z = D_(Word1(y), Word2(y)) # representation as two integers
if \done_[z.v] then next # skip if already processed
done_(z.v] = 1 # mark as processed
if p = \stabte_[Type_(z)] # get diagramming procedure

then p(z) else stop("non—structure type in Struct”)
}

span. = &null
end

procedure Tbin(t, i) # get bin of table
local x
if not(1 <= integer(i) <= tsize_) then stop(“invalid bin in Tbin")
x = D_(Word1(t), Word2(t))
it Type_(x) ~== "table” then stop(“invalid type to Tbin")
return Descr(var_, x.v + 2 0+ wsiza_ « (i + 1))
end

-15-

Appendix B — Support Procedures

link “/usr/icon/ibin/duops” # user diagramming procedures
link “/usr/icon/ilib/bitops” # bit operations

global span_, llist., var_, done_, symtab_, ptrswitch_, btype., addr_
global wsize_, bsize_, tsize_, cwords_, stable_, dtable_, figsym_

record D.(t, v) # Icon descriptor as t—/v—words

procedure Block_(x, t) # diagram descriptor pointing to block
if \span_ then put(llist_, t)
t ;= Symbol_(x.t, x.v, t)
Begindr_{()
Descr_ (x.t, x.v, Image_(t), t)
Enddr_()
end

procedure Cset_(x) # diagram image of a cset
Head_ (x, "cset”)
every Bword_ (bitstring(Offset_(x, 1 to cwords_)))

Endbl_()
end
procedure Descr_(w1, w2, t,s) # diagram a descriptor
it Tword_(w1) | (\t = "string”) then Pword_(s) else Word_(w2)
end
procedure Eblock_(x) # diagram co—expression block
local i
Head_ (x, "ebiock")
Word..(i .= Offset_(x, 1)) #8ize of block

Pword_. (“entry point”)
every Word_(Offset_(x,3 | 4))

i /= wsize_
every Writedescr_(x,5 to i — 1 by 2) # arguments and locals
Endbil_()

end

procedure Estack_(x) # diagram co—expression stack

Head. (x, "estack”)
Writedescr_(x, 1)
Pword._("stack base")
Pword_("stack pointer”)
Pword._("address pointer”)
Pword_("Icon/C boundary”)
Word_ (Offset_(x, 7)) # "size” of co—expression
Writedescr_(x, 8)
every Word_(Offset_(x, 10 to 25)) # oniy a few words; block is huge
Endbl_()
end

procedure File_(x) # diagram file block
Head.. (x, “file")
Pword_("file descriptor”)
Word_ (Offset_ (x, 2))
Writedescr_(x, 3)
Endbl_()
end

procedure Head_(x, 1) # diagram head of block
local t

it \span_ then addr_ = Symbol_(x.t, x.v, x) # addr_ labels first descriptor
else addr_ = ""
Beginbl_(l)
Iword... (btype_[Offset_(x, 0)])
addr_ = "
end
procedure Image_(x) # augmented image to handle internal types
return (Type_(D..(Word1(x), Word2(x))) == ("lelem” | "telem” | "eblock"}) |
image(x)
end
procedure Init_() # initialize diagramming package
local x
Initl_ () # initialize layout procedures
addr. = ""
bsize_ = 32 number of bits per word on VAX
wsize_ = 4 word size in addressing units on VAX
tsize_ = 14 number of hash bins

number of words in a cset block
internal representation of a variable

cwords_ = s&cset / bsize_
var_ = Word1(x, 1)

llist_ =]

figsym.. = “Nvtpniam”
symtab_ = table()

btype_ = list(19)

* % X X% ®

symbolic addresses for structures
names of the block types

#

#
btype_[1] = "“integer” # integer
btype_[2] := "longint” # long integer for 16—bit machines
btype_(3] = “real” # real block
btype_(4] = “cset” # cset biock
btype_([5] = “tile” # file block
btype_(8] = “procedure” # procdure block
btype_[7] = "list” # list header block
btype_(8] = "table” # table header block
btype_(9] := "record” # record block
btype_[10] = "telem" # table element block
btype_[11] = “lelem” # list element biock
btype_[12] = “tvsubs” # substring trapped variable
btype_[13] = “junk” # junk block — not used
btype_[14] = “tvtbl” # table element trapped variable
btype_{15] := "tvpos” # &pos trapped variable
btype_[16] = "tvrand” # &random trapped variable
btype_[17] = “tvtrac” # &trace trapped variable
btype_[18] = “estack” # co—expression stack block
btype_[19) = "eblock” # co—expression heap block

stable_ = table() # type names/procedures for structures
stable_("ebiock”] = Eblock_
stable_[“estack] = Estack_
stable_["cset”] ;= Cset_
stable_["file"] := File_
stable_["list") := List.
stabie_["lelem”] := Lelem_
stable_["procedure’] := Procedure..
stable_{"real"] = Real.
stable_("table”] = Table_
stable_["telem™] = Telem_
stable_[“record”] ;= Record_
dtable_ = table(Block_.) # type names/procedures for descriptors
dtable_["eblock”] ;= Eblock_
dtable_["integer”] := Nblock_
dtable_ ["null”] = Nblock_
dtable_["string"] := String_
end

procedure Lelem_(x) # diagram list block
local i
Head..(x, "lelem")
every Word_(Offset_(x, 1) | (i := Offset_(x, 2)) | Offset.(x,3 | 4))
every Writedescr_(x,5 + (0 to (i + 1)) = 2)

Endbl_()
end
procedure List_(x) # diagram list header block

Head_(x, "list")
Word_ (Offset_(x, 1))
every Writedescr_(x,2 | 4)
Endbi_()
end

procedure Nbiock_(x) # diagram integer
Begindr_()
Descr_(x.t, x.v, “integer”)
Enddr_()

end

procedure Offset_(x, i)
return Indir(x.v + | « wsize_)
end

procedure Procedure_(x) # diagram procedure block
local i
Head._. (x, “procedure”)
i = Offset_(x, 1)

The following expression would make the size for the record constructor
what it should be:

iti < 38 then | = 36

® X R

Note that no procedure block can be less that 36 bytes long.

Word_ (i)
Pword_("entry point”) # next word is entry point
every Word__(Offset_(x,3 to 8))
i /= wsize_
every Writedescr_(x,7 to i — 1 by 2)
Endbl_()
end

procedure Real_(x) # diagram real block
Head_ (x, "real”)
Rblock_ (Descr(x.t, x.v))
Endbl_()

end

procedure Record._(x) # diagram record block
local i,p,y,8
Head_(x, “record”)
Word. (i = Offset_(x, 1))
i /:= wsize_
p = Offset_(x, 2)

Note that the next word that points to a procedurs should, instead, be

a descriptor. In order to get to the block that is pointed to, it is
necessary here to construct a descriptor with the appropriate address.

y .= Descr(Word1(main), p)
s = Symbol_(-1.p.y)
Pword_(s)
\span_ & put(llist_,y)
every Writedescr_(x,3 to i — 1 by 2)
Endbl_()
end

procedure String-.(x)
Begindr_()

Descr_(x.t, x.v, “string”, Image. (Descr(x.t, x.v}))

Enddr_()
and

procedure Symbol_(t, v, d)
static i
initial i =0
it /span_ then return Image_(d)
else if t >= 0 then return ""

fake a pointer

diagram string descriptor

get representation for pointer

only negative t—words have v—word pointers

return \symtab_[v] | (symtab_[v] = ("a" || (I +:= 1)))

end

procedure Table_(x)
Head..(x, "table”)
Word_ (Offset_(x, 1))
every Writedescr_(x,2 « (1 to tsize_ + 1))
EndbL ()
end

procedure Tcode. (i)
i %:= 32
iti <0 then i +:= 32
return i

end

procedure Telem.(x)
Head_ (x, “telem”)
every Writedescr_(x,1 | 3 | 5)
Endbl_()

end

procedure Tword_(x)
local b, code, c, flags, i
b = bitstring(x)
flags = ""

every i = upto(’1’,b[1+:8]) do flags [|:= flgsym_[:]

= code = Tcode_(x)
lf x < 0 then c = btype_{c]
Fcword_(flags, ¢)
return (x < 0 & code > 1)
end

procedure Type_ (x)
if x.t = = 0 then return “nuil”
if x.t >= 0 then return "string”
return btype_[Tcode_(x.t)]

end

procedure Word_(x, t, 8)
it x > 10000 then Pword_()
else lword_(x)

end

diagram table block

get internal descriptor type code

diagram table element

format t—word of descriptor

get symbolic representation for flags
extract type code from word

user procedure for formatting t—word
signal if it indicates a v—word pointer

determine internal type of object
null descriptor
nonnegative type is string

format a word
guess at pointer
user procedure for formatting integer

procedure Writedescr._(x, offset)
local wi1,w2,d,s,t
g ="
t=""
d := Descr(var_,x.v + offset s wsize.)
w1 = Offset.(x, offset)
w2 = Offset_(x, offset + 1)
if wl = w2 = 0 then &null
else if w1 >= 0 then |
s = Image.(d)

else {

if Tcode_(w1) ~= 1 then \span_ & put(llist_, d)

8 = Symbol_(w1, w2, d)
}
Descr_(w1,w2, t, s)
end

-20-

dlagram a descriptor

form real descriptor

string descriptor

Appendix C — Layout Procedures for Nroff

global lid—, ptr—, blk_, indent., iwidth.

procedure Beginbl_() # begin a block
write(”.DS")
wiid_()

end

procedure Begindr_()
write(".DS")
whid_()

end

procedure Bword_(x) # format word of bits
write{indent_, "|”, x, ”|")
wiid_()

end

procedure Endbl_() # end a block
write(”.DE")
end

procedure Enddr_() # end a descriptor
write(".DE")
end

procedure Fcword_(f, ¢) # format t—word
write(left(addr_, iwidth_), "|", left(t, 22), right(c, 10), “|")
wlid_()

end

procedure InitL_() # initialize layout data
Hdo = "+" |} repi("—",32) || "+" # iild on word
ptr_ = "“|" || repl(” ", 28) || “+—| > # pointer
bik_ = "|" || repl(" ", 32) || “|" # blank space
iwidth_ = § # indentation for blocks
indent_ = repi(" ", iwidth_) # oftset for indentation
end

procedure Iword_(x) # format integer
write(left(addr_, iwidth_), 1", right(x, 32), “|") # allow for possible address
wlid_()

end

procedure Pword_(x) # format pointer
write(indent_, ptr_, x)
wlid_()

end

procedure Rblock_(x) # format real number
write(indent_, bik_)
write(indent_, “+”, center(x, 32), “+")
write(indent._, bik_)
wlid_()
end

procedure wlid_() # write a lid
write{indent_, lid_)
end

-21-

Appendix D — Layout Procedures for Tb// Troff

global blocktype_, cswitch_., band_, plua_, point., rest., chead., bhead_, rhead_

procedure Beginbl_(x) # begin a block
write(".KS") # need a keep
write(".ft R")
write(".sp 17)

write(". TS") # for Tol
case x of { # formatting depends on type of block
"cset”": |
write(chead..)
cswitch = 1 # set switch for cset formatting

}
“real”: write(rhead.)
default: write{(bhead_)
}
blocktype. = x
end

procedure Begindr_()
write(".KS")
write(”.sp 1”)
write("”.ft R")
write(".TS")
write(bhead.)
blocktype_ = &null

end

procedure Bword_(x) # format a word of bits
it \cswitch_. then {
write(".T&") # for cset, change form
write(band..)
cswitch_ = &null # turn off cset header processing

]
write("1\\s8", x, "\\80") # write the word
write("L")
end

procedure Endbl_() # end a block
write(".TE") # end the table
write(".sp 17)
write(”.KE") # end the keep
end

procedure Enddr_() # end a descriptor
write(".TE")
write{”.sp 1")
write(".KE")

end
procedure Fcword_(f, c) # format a t—word
it not integer(c) then ¢ = "\\IB” {| ¢ || "\\{R”
it ~= "" then ¢ = "\\fB” || { || "\\tR"
write(addr_, ! ", f,"1". ¢c,” ")
write("LL")
return
end

procedure (nitl_()
local width, hwidth, rmarg, dash
width = 1.8
hwidth = 6
rmarg = 20
dash = "\\(mi"

indentation of block from label in ens
ens from right border of block
use math minus for lines with arrows

bhead- = "center tab(l) ;\nLOw(” || hwidth || “n) | LOW(" || width / 2.0 ||
“I)ROW(" || width / 2.0 || "i)e | LOW(" || rmarg || "n) .\nLL"”
rhead. := "center tab(!) ;\nLOw(” || hwidth || "n) | LOW(" || width / 3.0 (|

"COw(” || width / 3.0 || "i)eROw(" ||

width / 3.0 || "i)e | LOW(" || rmarg {| "n) \nL_LL"
chead_ := “center tab(!) ;\nLOw(" || hwidth || "n} | ROw(" || width |[|

"l)e | LOW” || rmarg || " .\nL"

tbl continuation for bit strings

band_ := "LOw(" || hwidth || "n) | COw(" || width || "i)e | LOW" || rmarg || " .*

plus_ = "+" || repl{dash, 3)
point_ := repi(dash, 4) || “>\\fB"
rest. = "\\fR"
return

end

procedure Iword_(x)
if not integer(x) then x :

NNB” [x JF "\\fR”

it integer(x) < 0 then x = “\\(mi" || abs(x)
it addr_ ~== "" then addr_ = "\\fB" || addr_ || “\\fR"

case blocktype. of {
"cset”: {
write(addr_, "1”, x, " ")
write(”"L")
}
“real”; {
write(addr_, "1, x, " ")
write("L_LL")
}
default: {
write(addr_, "I, x, " ")
write("L_L")
}

end

procedure Pword.. (x)

write(”ll “, plus_, "1", point_, x, rest_)
write("L L")
end

procedure Rblock_(x)
write("IN_ I\\d", x, "\\ul
write()
write("LLL ")

end

_n)

-23-

arrow components

format an integer

math minus

cset header is only one column

real header is three columns

others are two coiumns

format a pointer

construct an arrow

format a real number

