
Reference Manual for the

Icon Programming Language*

Version 2

Ralph E. Griswold and David R. Hanson

TR 79-la

January 1979
Revised January 1980

Department of Computer Science
The University of Arizona

•This work was supported by the National Science Foundation under NSF Grants MCS75-01307 and
MCS79-03890.

Copyright © 1979 and 1980 by Ralph E. Griswold and David R. Hanson

All rights reserved.

No part of this work may be reproduced, transmitted, or stored in any form or by any means without the prior
written consent of the authors.

CONTENTS

Chapter I — Introduction

1.1 An Overview of Icon 1
1.2 Syntax Notation 1
1.3 Program Text and Character Sets 2
1.4 Organization of the Manual 2

Chapter 2 — Basic Concepts

2.1 Values and Types 3
2.2 Variables 3
2.3 Assignment 4
2.4 Keywords 4
2.5 Built-in Functions 4
2.6 Operators 5
2.7 Values and Signals 6
2.8 Control Structures 6

2.8.1 Basic Control Structures 6
2.8.2 Compound Expressions 7
2.8.3 Generators 8
2.8.4 Goal-Directed Evaluation 8
2.8.5 Loop Exits 9

2.9 Backtracking and the Reversal of Effects 9
2.10 Procedures 10

Chapter 3 — Arithmetic

3.1 Integers 11
3.1.1 Literal integers II
3.1.2 Integer Arithmetic II
3.1.3 Integer Comparison 13

3.2 Real Numbers 13
3.2.1 Literal Real Numbers 14
3.2.2 Real Arithmetic 14
3.2.3 Comparison of Real Numbers 14

3.3 Mixed-Mode Arithmetic 15
3.4 Arithmetic Type Conversion 15

3.4.1 Conversion to Integer 15
3.4.2 Conversion to Real 16

3.5 Numeric Test 18

in

Chapter 4 — String Processing

4.1 Characters 19
4.2 Strings 19

4.2.1 Literal Strings 19
4.2.2 Built-in Strings 21
4.2.3 String Size 21
4.2.4 The Null String 21
4.2.5 Positions of Characters in a String 22

4.3 Character Sets 22
4.4 Type Conversions 23
4.5 Constructing Strings 25

4.5.1 Concatenation 25
4.5.2 String Replication 25
4.5.3 Positioning Strings for Column Output , 25
4.5.4 Substrings 27
4.5.5 Other String-Valued Operations 29

4.6 String Comparison 30
4.7 String Analysis 30

4.7.1 Identifying Substrings .30
4.7.2 Lexical Analysis 31

4.8 String Scanning 33
4.8.1 Scanning Keywords 34
4.8.2 Positional Analysis 34
4.8.3 Scanning Operations 35
4.8.4 Modification of &subject 36
4.8.5 The Scope of Scanning 37

Chapter 5 — Structures

5.1 Lists 39
5.1.1 Creation of Lists '. 39
5.1.2 Accessing List Elements 40
5.1.3 Open Lists 40

5.2 Tables 41
5.2.1 Creation of Tables 41
5.2.2 Accessing Table Elements 41
5.2.3 Closed Tables 42

5.3 Stacks 42
5.3.1 Creation of Sucks 42
5.3.2 Accessing Sucks 43

5.4 Records 43
5.4.1 Declaring Record Types 43
5.4.2 Creating Records 44
5.4.3 Accessing Records 44

5.5 Sorting Structures 44
5.6 Structure Size 45

IV

Chapter 6 — Input and Output

6.1 Files 47
6.2 Opening and Closing Files 47
6.3 Writing Data to Files 48
6.4 Reading Data from Files 49
6.5 Character Set Conversions 49

Chapter 7 — Miscellaneous Operations

7.1 Element Generat ion 51
7.2 Comparison of Objects 51
7.3 Copying Objects 52
7.4 Random Number Generation 52
7.5 Time and Date 53
7.6 The null Type 53
7.7 Type Determination 53
7.8 String Images of Objects 54

Chapter 8 — Procedures

8.1 Procedure Declaration 55
8.2 Scope of Identifiers 56
8.3 Procedure Activation 56

8.3.1 Procedure Invocation 56
8.3.2 Return from Procedures 57
8.3.3 Procedure Level 58
8.3.4 Tracing Procedure Activity 58

8.4 Listing Identifier Values 59
8.5 Procedure Names and Values 60

Chapter 9 Program Organization and Execution

9.1 Program Structure 61
9.1.1 Preparation of Program Text 61
9.1.2 Comments 62

9.2 Including Text from Other Files 62
9.3 Program Execution 62

9.3.1 Program Translation 62
9.3.2 Initiating Execution 63
9.3.3 Program Termination 63

9.4 Programming Pitfalls 64

Appendix A — Syntax 65

Appendix B — Built-in Operations 71

Appendix C — Summary of Defaults 75

Appendix D — Summary of Type Conversions 77

Appendix E — Summary of Error Messages 79

Appendix F — The ASCII Character Set 83

Acknowledgment 87

References .87

Index 89

VI

CHAPTER 1

Introduction

This manual describes Version 2 of the Icon programming language. It is neither a tutorial nor a
completely detailed reference manual. It attempts to give comprehensive coverage of the language
in a complete but informal way. The reader is assumed to have experience with other programming
languages. A familiarity with SNOBOL4 [1] will be helpful in placing the concepts in perspective.

The first part of this manual gives an overview of Icon and presents the techniques that are used
for describing language features. Subsequent chapters describe the language in detail. There are a
number of appendices at the end of this manual that provide quick reference to frequently needed
information.

1.1 An Overview of Icon

Icon is a general-purpose programming language with an emphasis on string processing. Icon is a
descendant of SNOBOL4 and SL5 [2] and shares much of the philosophical bases of these
languages.

Icon differs from SNOBOL4 in that it provides string processing that is integrated into the
language rather than as a separate pattern-matching facility. Icon lacks some of the exotic features
of both SNOBOL4 and SL5. In order to provide greater efficiency in the most frequently used
operations. Icon restricts run-time flexibility. In this sense. Icon follows the more traditional
method of binding many language operations at compile time.

One of the unusual characteristics of Icon is goal-directed expression evaluation, which provides
automatic searching for alternatives and a controlled form of backtracking. This method of
evaluation allows concise, natural formulation of many algorithms while avoiding the inefficiency of
uncontrolled backtracking.

Syntactically, Icon is a language in the style of Algol 60. It has an expression-based structure and
uses reserved words for many constructs.

In addition to conventional control structures. Icon has a number of unusual control structures
related to alternatives and goal-directed evaluation. The result of expression evaluation is both a
value and a signal. The signal indicates the success or failure of the operation (as in SNOBOL4and
SL5) and is used to drive control structures.

Variables are 'untyped'as in SNOBOL4 and SL5. Thus a variable may have values of any type.
Run-time type checking and coercion to expected types according to context are performed
automatically.

1.2 Syntax Notation

The syntax of Icon is described in a semiformal manner with emphasis on clarity rather than
rigor. For simple cases, English prose is generally used. Where the syntax is more complicated, a
formal metalanguage is used.

I n this metalanguage, syntactic classes are denoted by italics. For example, expr denotes the class
of expressions. The names of the syntactic classes are chosen to be mnemonic, but have no formal
significance. Program text is given in a sans-serif type face (e.g.. size) with reserved words given in
boldface (e.g.. procedure). There is, of course, no distinction between reserved words and other
program text in actual programs, except for the significance of the reserved word names.

1.3 Program Text and Character Sets

Alternatives are separated by bars (|) . Braces ({}) enclose mandatory items, while brackets (.[])
enclose optional items. Ellipses (...) indicate indefinite repetition of items. The metalinguistic and
literal uses of bars, brackets, braces and periods are not mixed in any one usage, and the meaning
should be clear in context. In the summary of the syntax given in Appendix A, ambiguity is resolved
by using primitive syntactic classes. For example, bar denotes the symbol | and the symbol [is
denoted by left-bracket.

1.3 Program Text and Character Sets

The natural character set for Icon is ASCII [3]. To allow for compatibility with computers and
equipment that do not support the full ASCII character set, there are the following syntactic
equivalences:

lower-case letters and corresponding upper-case letters
blank and tab
* and "
[, { , and.$(
] , } , and $)
| and \ and !

In the program examples given in this manual, lower-case letters are used exclusively. However,
these letters can be entered in upper case in a program without changing the operation of the
program. Similarly, braces and brackets are used differently in the manual, although they can be
used interchangeably in a program. Bars and backslashes are treated in the same fashion. The
important point is that the equivalences above apply uniformly to program constructs (except for
characters in literal strings; see Section 4.2.1).

1.4 Organization of the Manual

This manual is organized around chapters describing the major features of the language. For
example, all the string-processing operations are described in one chapter. Each operation and
function is described separately or is grouped with others of a similar nature. Following the
description, examples of usage are given.

The examples are not intended to motivate uses of language features, but rather to provide
concrete instances, to show special cases that may not be clear otherwise, and to illustrate
possibilities that may not be obvious. For these reasons, many of the examples are contrived and
are not typical of ordinary usage.

Where appropriate, there are remarks that are subsidiary to the main description. These remarks
are divided into notes, warnings, defaults, failure conditions, and error conditions. The notes
describe special cases, details, and such. The warnings are designed to alert the programmer to
programming pitfalls and hazards that might otherwise be overlooked. The defaults describe
interpretations that are rrfade in the absence of optional parts of expressions. The failure conditions
specify situations in which an operation may signal failure. The error conditions specify situations
that are erroneous and cause program termination. The defaults and error conditions are
summarized in Appendices C and E.

It is not always possible to describe language features in a linear fashion; some circularity is
unavoidable. This manual contains numerous cross references between sections. In the case of
forward references, an attempt has been made to make the referenced items clear in context even if
they cannot be completely described there. For a full set of references, see the index.

CHAPTER 2

Basic Concepts

2.1 Values and Types

Computation involves the specification, creation, and comparison of data. The concept of value
is a fundamental one. The nature of values varies from one kind of data to another and much of this
manual is concerned with various kinds of values.

Icon supports several kinds of data, called types:

integer procedure
real list
string table
cset stack
file null

Integers and reals (floating-point numbers) serve their conventional purposes. Strings are
sequences of characters as in SNOBOL4. Csets are sets of characters in which membership is
significant, but order is not. Files identify external data storage. Procedures serve their
conventional purpose, but it is notable that they are data objects. Lists, tables, and stacks are data
structures with different organizations and access methods. The null type serves a special purpose as
the identity object for several operations and it is convertible to other types. For example, the
integer equivalent of null is 0, while the string equivalent of null is the string containing no
characters. In addition to the types listed above, there is a facility for defining record types. The
type names are reserved words that have different roles, depending on context.

Types arc indicated in examples by letters related to conventional usage or the type name. In
particular, i. j . and k arc used to indicate integers, s1 , s2. and s3 are used to indicate strings, and x
and y are used to indicate objects of undetermined type.

Integers, real numbers, and strings can be specified literally in the program text. Integers and real
numbers arc represented as constants in the conventional manner. For example, 300 is an integer,
while 1.0 is a real number. Strings are enclosed in quotation marks, as in "summary". See
Sections 3.I.I, 3.2.1, and 4.2.1 for further descriptions of the methods available for representing
literals. Values of types other than these can be constructed and computed in a variety of ways, but
they do not have literal representations.

2.2 Variables

A variable is an entity that can have a value. Variables provide a way of storing and referencing
values that are computed during program execution.

The simplest kind of variable is an identifier. Syntactically, an identifier must begin with a letter
or underscore, which may be followed by any number of other letters, underscores, and digits.
Reserved words may not be used as identifiers.

syntactically correct identifiers

x
X
k00001
summary
report 1
node-link
Jink

2.3 Assignment

syntactically erroneous identifiers
23K
reports
xO@s
string

There are various forms of variables other than identifiers. Some variables, such as the elements
of a list, are computed during program execution and have various syntactic representations. See
Sections 4.5.4, 5.1.2, 5.2.2, 5.3.2, 5.4.3, and 8.3.2.

2.3 Assignment

One of the most fundamental operations is the assignment of a value to a variable. This
operation is performed by the := infix operator. For example, x := 3 assigns the integer value 3 to the
identifier x.

Note: The assignment operator associates to the right and returns its left operand as a
variable. Thus multiple assignments can be made. For example, x := y := 3 assigns 3 to both x
and y.

Any expression that yields a variable may appear on the left side of an assignment operation and
any expression may appear on the right. For example, x := z assigns the value of the identifier z to
the identifier x.

Error Condition: If the expression on the left side of the assignment operation is not a
variable, Error 121 occurs.

The infix operator :=: exchanges the values of its operands. For example, x :=: y exchanges the
values of x and y.

Note: The exchange operator associates to the right and returns its right operand as a
variable.

Error Condition: If the expression on either side of the exchange operation is not a variable.
Error 121 occurs.

2.4 Keywords

Keywords provide an interface between the executing program and the environment in which it
operates. Some keywords have important constants as values, others change the status of global
conditions, while others provide the values of environmental variables.

A keyword is composed of an ampersand (&) followed by a word that has a special meaning.
Typical keywords are &date, whose value is the current date, and &null, whose value is the object of
type null.

Some keywords are variables, and values can be assigned to them to set the status of conditions.
An example is & trace, which controls the tracing of procedure calls (see Section 8.3.4). If &trace is
assigned a nonzero value, tracing is enabled, while a zero value disables tracing.

Some keywords are not variables and cannot be assigned values. An example is &date.

Other keywords are described throughout this manual in the sections that relate to their use.

2.5 Built-in Functions

Built-in functions provide much of the computational repertoire of Icon. Function calls have a
conventional syntax in which the function name is followed by arguments in an expression list that
is enclosed in parentheses:

name (expr [. expr J ...)

2.6 Operators

For example, size(x) produces the size of object x, map(s1,s2,s3) produces a character mapping
on s i , and write(s) writes the value of s.

As indicated, an argument may be any expression of arbitrary complexity.

Different functions expect arguments of different types, as indicated above. Automatic
conversion (coercion) is performed to convert arguments to the expected types.

Error Condition: If an argument cannot be converted to a required type, an error with a
number of the form I OH occurs, where n is a digit that identifies the expected type. See
Appendix E.

Default: Omitted arguments default to &null and are converted to the required type unless
otherwise noted. In some cases, omitted arguments have special defaults. These cases are
noted throughout the manual and are summarized in Appendix C. If trailing arguments are
omitted, the trailing commas may be omitted also.

Failure Conditions: As indicated in Section 1.1, some functions fail under certain conditions.
See also Section 2.7. If the evaluation of an argument fails, the function is not called, and the
calling expression fails. If more arguments are provided than are required by the function,
the extra arguments are evaluated, but their values are ignored. If an extra argument fails,
however, the function is not called and the calling expression fails.

2.6 Operators

Operators provide a convenient abbreviated notation for functions. There are three kinds of
operators: prefix, infix, and suffix.

Prefix and suffix operators have one operand (argument). Examples are -i, which produces the
negative of i, and i-, which decrements the value of i by one and produces the new value.

Note: The & in keywords is part of the keyword and is not a prefix operator.

Infix operators have two operands and stand between them. Examples are i + j and i * j, which
produce the sum and product of i and j, respectively.

Failure Condition: If evaluation of an operand of an operation fails, the operation is not
performed and the expression fails.

While all prefix and suffix operators are single symbols, some infix operators are composed of
more than one symbol. Examples are x := y, s1 || s2, which produces the concatenation of the
strings s1 and s2, and s1 == s2. which compares strings s1 and s2 for equality.

Various operators used in conjunction may produce potentially ambiguous expressions. For
example, i--j might be interpreted in several ways. Blanks may be used to differentiate otherwise
ambiguous expressions. For example, i- - j and i - -j arc clearly different. Parentheses may
also be used for grouping. The expressions (i-)-j and i-(-j) arc alternate forms of the expressions
given above. .

In the absence of blanks or parentheses, rules arc used to interpret potentially ambiguous
expressions. In addition, rules of precedence and associativity are used to determine which
operands are associated with which operators in complex expressions.

As a class, prefix operators have the highest precedence (bind most tightly to their operands).
Suffix operators have the next highest preced6hce. and infix operators have the lowest precedence.
For example, -i*j is equivalent to (-i)*j. while i*j- is equivalent to i*(j-). Different infix operators
have different precedences. For arithmetic operators, the conventional precedences apply. Thus
i+j*k is equivalent to i+(j*k). A complete list of operator precedences is given in Appendix A.

Infix operators also have associativity, which determines for two consecutive operators of the
same precedence, which one applies to which operand. Most operators associate to the left. For
example, i-j-k is equivalent to (i-j)-k. Assignment, however, associates to the right. Thus i:=j:=k is
equiValent to i:=(j:=k). A complete list of infix operator associativities is given in Appendix A.

2.7 Values and Signals

2.7 Values and Signals

As indicated in Section 1.1, the result of the evaluation of an expression is both a value and a
signal. The value serves the traditional computational role. The signal, success or failure, indicates
whether or not a computation completes successfully or whether or not a relation holds. For
example, i = j succeeds if i is equal to j and fails otherwise. The value returned on success is the
value of j .

When an expression fails, the value is not used and the failure is passed on to any larger
expression of which it is a part. For example, i < j < k is equivalent to (i < j) < k. This expression fails
if i is not less than j or if j is not less than k.

2.8 Control Structures

Ordinarily expressions are evaluated in the sequence in which they appear in the program.
Various control structures provide for other orders of evaluation.

2.8.1 Basic Control Structures

Icon provides a number of traditional control structures. These control structures are driven by
signals (rather than by boolean values as in most programming languages).

1. The control structure

if exprl then expr2 [else expri]

evaluates exprl. If exprl succeeds, exprl is evaluated; otherwise expr3 is evaluated. The result
returned by if-then-else is the result of expr2 or expr3, whichever is evaluated. If the else clause is
omitted and exprl fails, the result of the if-then-else expression is &null and the signal is success.

2. The control structure

while exprl do expr2

evaluates exprl repeatedly until exprl fails. Each time exprl succeeds, exprl is evaluated.

Note: while-do returns &null and the signal success on completion.

3. The control structure

until exprl do exprl

evaluates exprl repeatedly until exprl succeeds. Each time exprl fails, exprl is evaluated.

Note: until-do returns &null and the signal success on completion.

4. The case control structure permits the selection of one of a number of expressions according to
the value of a control expression. The form of the case control structure is

case expr of {
I case-clause [; case-clause] ...]
}

where expr is the control expression. A case clause has the form

literal [, literal} ... : expr

where the literals may be integers, real numbers, or strings. There is also a default case clause, which
has the form default: expr. When the case expression is evaluated, the control expression is
evaluated first and its value is compared to the literal values, in order, as given in the case clauses. If

2.8.2 Compound Expressions

a comparison is successful, the expression in the case clause is evaluated and evaluation of the case
control structure is terminated. If no comparison succeeds, the expression in the default case clause,
if present, is evaluated. If no comparison succeeds and there is no default clause, no action is taken.

Notes: case returns the result of evaluating the expression in the selected clause. The default
clause may appear in any position with respect to the other case clauses, although it is
customary for it to appear either first or last. Only one default clause is allowed in a case
expression.

Error Condition: If the control expression fails, Error 230 occurs.

An example of a case expression is

case mod(x,10) of {
1,2,3: x := 0
4,5,6: x := 1
default: x := 2
}

which assigns 0 to x if its last digit is between 1 and 3, assigns 1 to x if its last digit is between 4 and 6,
or assigns 2 to x otherwise.

Some control structures are designed specifically to use the signaling mechanism of control.

5. The control structure

repeat expr

evaluates expr repeatedly until expr fails.

Note: repeat succeeds and returns &null when expr fails.

6. The control structure

expr fails

succeeds if expr fails and fails if expr succeeds. For example,

if expr I fails then expr2 else expr3

is equivalent to

if exprl then expr3 else expr2

Note: fails returns &null if it succeeds.

2.8.2 Compound Expressions

Expressions may be compounded to allow several expressions to appear in a control structure
that requires a single expression. The result of a compound expression is the signal and value of the
last expression in the sequence. A compound expression has the form

{ [expr [; expr 1 ... 1 J

For example

if z = 0 then {x := 0; y := 0}

sets both x and y to zero if z is zero.

2.8.3 Generators

If the expressions of a compound expression are placed on separate lines, the semicolons are not
necessary. For example,

rf z = 0 then {
x := 0
y :=0
}

is equivalent to the compound expression above. See also Section 9.1.1.

2.8.3 Generators

One of the unusual aspects of Icon is the concept of generators. Some expressions are capable of
generating a series of values to obtain successful evaluation of the expression in which they occur.

The most fundamental generator is alternation

exprl | expr2

This exression first evaluates exprl. If exprl succeeds, its value is returned. If exprl fails, however,
expr2 is evaluated and its result (value and signal) is returned by the evaluation. For example,

(i = J) I (J = k)

succeeds if i is equal to j or if] is equal to k.

Alternation has an important additional property. If exprl is successful, but the expression in
which the alternation occurs would fail, the alternation operator then evaluates expr2. For example

x = (1 | 3)

succeeds if x is equal to I or 3.

Another generator is

exprl to expr2 [by expr3)

which generates, as required, the integers from exprl to expr2 inclusive, using expr3 as an
increment. For example

x = (0 to 10 by 2)

succeeds if x is equal to any of the even integers between 0 and 10, inclusive.

Notes: exprl, expr2, and expri are evaluated only once. Generation stops when expr2 is
exceeded, expri may be negative, in which case successively smaller values are generated
until expr2 is reached or passed.

Default: If the by clause is omitted, the increment defaults to 1.

2.8.4 Goal-Directed Evaluation

Goal-directed evaluation, in which a successful result is sought, is implicit in the examples of the
previous section. If a component of an expression fails, evaluation is continued until all alternatives
have been attempted.

There are two control structures that are expressly concerned with goal-directed evaluation.

2.9 Backtracking and the Reversal of Effects 9

I. The control structure

every exprl [do expr2]

produces all alternatives of exprl. For each alternative that is generated, exprl is evaluated. For
example,

every i := (1 | 4 | 6) do f(i)

calls f(1), f(4), and f(6). Similarly,

every i := 1 to 10 do f(i)

calls f(1). f(2) f(10).

Notes: every-do succeeds and returns &null when it completes, every i := j to k do expr is
equivalent to the for control structure found in many programming languages.

2. The conjunction operator

exprl & expr2

succeeds only if both exprl and expr2 succeed. For example

(x = y) & (z = 1)

succeeds only if x equals y and z equals I.

If exprl succeeds but expr2 fails, alternatives in exprl are sought in an attempt to obtain
successful evaluation of the entire expression. For example

(x := 1 to 10) & (x > y)

succeeds and assigns to x the least value between I and 10 that is greater than y, provided such a
value exists.

2.8.5 Loop Exits

There are two control structures for bypassing the normal completion of expressions in loops.
These control structures may be used in repeat and in the do clauses of every, until, and while.

1. The control structure next causes immediate transfer to the beginning of the loop without
completion of the expression in which the next appears.

2. The control structure break causes immediate termination of the loop without the completion of
the expression in which the break appears.

2.9 Backtracking and the Reversal of Effects

In expressions such as conjunction, backtracking to an earlier point in a computation may take
place in order to obtain alternatives of previously evaluated expressions. There is, however, no
implicit reversal of effects such as assignments. For example, in the expression

(x := 1 to 10) & (x > y)

if the value of y is 20, the value of x after the failure of the conjunction is 10. regardless of what the
value of x was before evaluation of the conjunction.

IQ 2.10 Procedures

There are two assignment operators that do reverse their effects if failure occurs.

1. The infix operator x < - y assigns the value of y to x, but restores the previous value of x if
backtracking causes failure in the expression in which the reversible assignment occurred. For
example, in

x := 0; (x <- 1 to 10) & (x > y)

if the value of y is 20, the value of x is restored to 0 when the conjunction fails.

Note: The reversible assignment operator associates to the right and returns its left operand
as a variable.

2. The infix operator x < - > y exchanges the values of x and y, but restores the former values if
backtracking causes failure in the expression in which the reversible exchange occurred.

Note: The reversible exchange operator associates to the right and returns its right operand
as a variable.

2.10 Procedures

A program is composed of a sequence of procedures. Procedures have the form

procedure name [(argument-list)]
procedure- body

end

The procedure name identifies the procedure in the same way that built-in functions are named. The
optional argument list consists of the identifiers through which values are passed to the procedure.
The procedure body consists of a sequence of expressions that are evaluated when the procedure is
invoked. A return expression terminates an invocation of the procedure and returns a value.

An example of a procedure is

procedure max(i.j)
rf i > j then return i else return j

end

A procedure is invoked in the same fashion that a built-in function is called. For example

m := max(size(s1),size(s2))

assigns to m the maximum of the sizes of s1 and s2.

Program execution begins with an invocation of the procedure named main. All programs must
have a procedure with this name.

For a more detailed description of procedures, see Chapter 8.

II

CHAPTER 3

Arithmetic
Icon provides integer, real, and mixed-mode arithmetic with the standard operations and

comparisons.

3.1 Integers

Integers in Icon are treated as they are in most programming languages. The allowable range of
integer values is machine dependent.

Note: For machines that perform arithmetic in twoVcomplement form, the absolute value of
the largest negative integer is one greater than the largest positive integer.

3.1.1 Literal Integers

Integers may be specified literally in a program in the standard fashion.

Notes: Leading zeroes are allowed but are ignored. Negative integers cannot be expressed
literally, but may be computed as the result of arithmetic operations.

Examples:

expression value

0 0
000 0
10 10
010 10
27524 27,524

Integer literals such as those given above are in the base 10. Other radices may be specified by
beginning the integer literal with nr, where n is a number (base 10) between 2 and 36 that specifies
the radix for the digits that follow. For digits with a decimal value greater than 9, the letters a, b, c,
... are used.

Note: The digits used in the literal must be less than the radix.

Examples:

expression value

2M1 3
8r10 8
10M0 10
16rff 255
36rcat 15,941

3.1.2 Integer Arithmetic

The following infix arithmetic operations are provided.

relative
expression operation precedence associativity

* j addition I left
- j subtraction 1 left
* j multiplication 2 left
/ j division 2 left
' j exponentiation 3 right

12 3.1.2 Integer Arithmetic

Note: The remainder of integer division is discarded; that is, the result is truncated.

Error Conditions: If the result of an arithmetic operation exceeds the range of allowable
integer values, Error 203 occurs. On some computers, exceeding arithmetic limits may cause
abnormal program termination. If an attempt is made to divide by 0, Error 201 occurs.

Examples:

expression
1 + 2
1 - 2
1 * 2
1 / 2
2 / 1
2 * 3
2 - 0
2 - -1
1 - 1 - 1
1 • 2 / 2
1 / 2 * 2
2 / 2 - 1
2 / (1 - 2)
4 3 - 2

value
3

-1
2
0
2
8
1
0

-1
1
0
0

-2
262,144

The function mod(i,j) produces the residue of i mod j , that is, the remainder of i divided by j . The
sign of the result is the sign of i.

Error Condition: If j is 0, Error 202 occurs.

Examples:

expression value

mod(4,3) I
mod(1400.1000) 400
mod(4,4) 0
mod(-4,3) -I
mod(4,-3) I
mod(-4.-3) -I

The two prefix operations +i and -i are equivalent to 0 + i and 0 - i, respectively. That is,-i is
the negative of i.

Examples:
expression

•100
-100
- 0
+0
-(4 - 700)

value

100
-too

0
0

696

3.2 Real Numbers 13

There are also two suffix operators that apply to variables:

The operation i+ increments the value of i by I and produces the new value.

The operation i- decrements the value of i by 1 and produces the new value.

Note: Both suffix operators return variables.

Error Condition: If the operand of i+ or i- is not a variable, Error 121 occurs.

Examples:
expression
i := 101
i+
j+++

i-

value
10I
102
105
104
100

3.1.3 Integer Comparison

There are six operations for comparing the magnitude of integers.

' =]
i "= i
i > J
i >= j
• < J
i <= j

equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to

All the comparison operators associate to the left and have lower precedence than any of the
arithmetic computation operations. The operations succeed if the specified relation between the
operands holds and fail otherwise. The value returned on success is the value of the right operand.

Examples:
expression

100 = 100
1 -= 1
1 > 1
2 > 1
1 < 2
2 >= 1
2 <= 2
2 < 3 < 400
2 < 3 = 4

value

100

1
2
1
2

400

signal

success
failure
failure
success
success
success
success
success
failure

3.2 Real Numbers

Real numbers are represented in floating-point format. The range and precision of real numbers
are machine dependent.

14 3.2.1 Literal Real Numbers

3.2.1 Literal Real Numbers

Real numbers may be specified literally in a program in the standard fashions using either
decimal or exponent notation.

Note: For magnitudes less than 1, a leading zero is required. Additional leading zeroes are
allowed but are ignored.

Examples:
expression

3.14159
0.0
000.
27e2
27e-6
27e5
27E5

value

3.14159
0.0
0.0

2700.0
0.000027

2,700,000.0
2,700,000.0

3.2.2 Real Arithmetic

The arithmetic operations available for real numbers are the same as those available for integers.
See Section 3.1.2.

Note: Some systems do not support exponentiation or residue computation for real
numbers.

Error Condition: If an attempt is made to raise a negative real number to a real power, Error
206 occurs.

Examples:

expression

1.0 • 2.0
1.0 - 2.0
1.0 • 2.0
1.0 / 2.0
2.0 / 1.0
1.0 - 1.0 - 1
1.0 • 2.0 / 2
1.0 / 2.0 • 2
mod(4.7.2.0)
mod(2.5.1.0)
x := 3.1416
x+
X+++
X -

value

3.0
-1.0
2.0
0.5
2.0

-1.0
1.0
1.0
0.7
0.5
3.1416
4.1416
7.1416
6.1416

3.2.3 Comparison of Real Numbers
The comparison operations available for real numbers are the same as those available for

integers. See Section 3.1.3.

3.4.1 Conversion to Integer 15

Note: Because of the imprecision of the floating-point representation and computation,
comparison for equality of real numbers may not always produce the result that would be
obtained if true real arithmetic were possible.

Examples:
expression

1.0 = 1.0
1.0 '= 10
1.0 > 1.0
2.0 > 1.0
1.0 < 2.0
2.0 <= 10
2.0 <= 2.0
2.0 < 3.0 <
2.0 < 3.0 <
2.0 < 3.0 =

4.0
= 4.0
4.0

value

1.0

1.0
2.0

2.0
4.0
4.0

signal

success
failure
failure
success
success
failure
success
success
success
failure

3.3 Mixed-Mode Arithmetic

Except for exponentiation, if either operand of an infix operation is real, the other operand is
converted to real and real arithmetic is performed. In the case of exponentiation, a negative real
number may be raised to an integer power.

Examples:

expression
1 . 0 + 2
1 + 2.0
1 - 2.0
1.0 * 2
1 . 0 / 2
2 / 1.0
1 - 1 - 1 . 0
1 * 2.0 / 2
1 / 2.0 * 2
1.0 / 2 * 2
2.0 * 2
2.0 * -1

value
3.0
3.0

-1.0
2.0
0.5
2.0

-1.0
1.0
1.0
1.0
4.0
0.5

3.4 Arithmetic Type Conversion

3.4.1 Conversion to Integer

The value of integer(x) is an integer corresponding to x, where x may have type integer, real,
string, cset, or null.
1. An object of type integer is returned unmodified by integer(x).

2. An object of type real is converted to integer by truncation.

Failure Condition: Conversion of a real to integer fails if the value of the real number is out
of the allowable range of integers.

16 3.4.2 Conversion to Real

Examples:
expression

integer(2.0)
integer(2.5)
integer(-2.5)
integer(2e35)

value

2
2

-2

signal

success
success
success
failure

3. For type string, the string is converted to integer in the same way that an integer literal is
treated in program text, except that

(a) Leading and trailing blanks are allowed, but are ignored.

(b) A leading sign may be included.

If the string corresponds to a real literal, real-to-integer conversion is performed. See Section
3.4.2. The null string is converted to the integer 0.

Failure Condition: integer(s) fails if s is not a proper representation of an integer or real.

value signal
Examples:
expression

integer("10")
integer("8r10")
integer("-10")
integer(" 3")
integer(" 0003")
integer("3.5")
integer!'*")
integer("3.x")
integer("3r4")

Objects of type cset are converted to string and then to integer. See Section 4.4.

For type null, the value of integer(x) is 0.

Failure Condition: integer(x) fails if the type of x is not one of those listed above.

10
8

10
3
3
3
0

success
success
success
success
success
success
success
failure
failure

For operations that require objects of type integer, implicit conversions are automatically
performed for the types real, string, cset, and null.

Error Condition: If conversion fails. Error 101 occurs.

Examples:
expression
1 + "10"
2 * 4.0
1 > &null

value
II
16.0
0

3.4.2 Conversion to Real
The value of real(x) is a real number corresponding to x, where x may have type real, integer,

string, cset, or null.
1. An object of type real is returned unmodified by real(x).
2. An object of type integer is converted to the corresponding real value.

3.4.2 Conversion to Real 17

Examples:

expression

real(10)
real(-10)
real(8r10)
rea 1(27000)

value

10.0
-10.0

8.0
27000.0

3. For type string, the string is converted to a real number in the same way that a real literal is
treated in program text, except that

(a) Leading and trailing blanks are allowed, but they are ignored.

(b) A leading sign may be included.

(c) A leading zero is not required before the decimal point for values whose magnitudes are less
than 1.

Notes: If the string corresponds to an integer literal, integer-to-real conversion is performed.
The null string is converted to 0.0.

Failure Condition: real(s) fails if s is not a proper representation of a real or integer.

Examples:

expression

real("10.0")
rea l("-10.0")
real("27000")
real(" 3.0")
real(" 0003.0'
real("8r10")
real<"")
real("3.x")
real<"3r4")

value signal

10.0
-10.0
000.0

3.0
3.0
8.0
0.0

success
success
success
success
success
success
success
failure
failure

4. Objects of type cset are first converted to string and then to real. See Section 4.4.

5. For type null, the value of real(x) is 0.0.

Failure Condition: real(x) fails if the type of x is not one of those listed above.

For operations that require objects of type real, implicit conversions are automatically performed
for the types integer, string, cset, and null.

Error Condition: If conversion fails. Error 102 occurs.

Examples:
expression

1.0 • "10.0"
"2.0" " 3
1.0 > &null

value

11.0
8.0
0.0

18 3.5 Numeric Test

3.5 Numeric Test

The function numeric(x) succeeds if x is of type integer, real, or if it is convertible to one of
these types. See Section 3.4. The function fails otherwise. If it succeeds, the value returned is the
integer or real corresponding to x.

Examples:

expression '
numeric(IOO)
numeric(O.O)
numeric("0,;)
numericCO.O")
numeric("a")
numeric("36rcat")
numeric("3r4")
numericC")
numeric(&null)

value
100

0.0
0
0.0

15,941

0
0

signal
success
success
success
success
failure
success
failure
success
success

19

CHAPTER 4

String Processing

4.1 Characters

Although characters are not themselves data objects in Icon, strings of characters are, and strings
are important in many situations, forming the heart of Icon's processing capabilities.

Icon is based on the ASCII character set [3], which is listed in Appendix F. There are, however,
256 different characters available for use in Icon programs. Of the 128 characters in the ASCII
character set, some are associated with graphics and are used for representing text and for producing
printed output while other characters have no standard graphics; they typically signify control
functions for operating systems and various input and output devices. See Section 6.5 for a
description of the interface between the internal character set of Icon and the character set of the
computer on which Icon runs.

Note: The thirty-third character (octal code 40) is the blank (space). Since it has no visible
representation, the symbol • is used for clarity to represent the blank.

While it is customary to think of characters in terms of their graphic representations and control
functions, characters are basically just integers. Internally the integers corresponding to ASCII are
represented by octal codes from 000 through 177 (hexadecimal codes 00 through 7F). The order of
characters is determined by these codes and specifies the'collating sequence'of the ASCII character
set. For example. Z comes before z in the collating sequence. This order is the basis for comparing
strings (see Section 4.6) and for sorting (see Section 5.5). The full set of 256 characters similarly are
represented by octal codes 000 through 377 (hexadecimal codes 00 through FF).

4.2 Strings

A string is a sequence of zero or more characters. Any character may appear in a string. There
are many ways of constructing strings during program execution. See Section 4.5.

4.2.1 Literal Strings

Strings may be specified literally in a program by delimiting (enclosing) the sequence of
characters by double quotes (") or single quotes (') . The same type of quote must be used at the
beginning and end of each string literal, and a quote of one type cannot appear directly in a literal
delimited by that type (sec below).

Examples:

expression value

"X" X
X' X
"D" D
"abed" abed
"Isn'tDitDgreat?" Isn'tDitDgreat?
'"whoopee".' "whoopee".

Note: In this manual, string values are given in the body of the text without the delimiting
quotation marks provided the meaning is clear.

20 4.2.1 Literal Strings

Some characters cannot be entered directly in program text because of their control functions or
because of the limitations of input devices. To allow specification of all characters in literal strings,
an escape convention is used in which the backslash (\) causes subsequent characters to have a
special meaning:

character
backspace .
delete
escape
formfeed
linefeed
carriage return
horizontal tab
vertical tab
double quote
single quote
backslash
left brace ({)
right brace (j)
left bracket ([)
right bracket (])
octal code
hexadecimal code

code
\b
\d
\ e
\f
\ l
\r
\ t
\v
\ "
V

w \ <
\ >
\ (
\)
\ddd
\xdd

The specification \ddd represents the character with octal code ddd (see Appendix F). Only
enough digits need to be given to specify the code. For example, \ 0 specifies the null character.
The specification \xdd represents a character with hexadecimal code dd. If the character following
a backslash is not one of those listed above, the backslash is ignored.

Notes: The convention used here for representing characters in literals is adapted from that
used by the C programming language [4]. Since |, \ , and t are all equivalent in their syntactic
interpretation, any one of these characters may be used as the escape character.

Warning: If |, \ , or I is intended to be used literally, it must be preceded by an escape
character. Otherwise unexpected results or a syntactically erroneous construction may occur.

Examples:

expression

"Y'oopsV"
#»V MV II II

»\D'
"\a\x"
"\132"
"\134\134"
"\77a"
"\1234"
"\x64"
"II"
11"
"II"
" I V
" \ \ "

vah

"oc
« »
D
ax
Z
\ \
?a
S4
d
1
1

1
\
\

file:///134/134

4.2.4 The Null String 21

4.2.2 Built-in Strings

The keyword &ascii consists of a string of all the ASCII characters in their collating sequence.

Warning: Ordinarily the value of &ascii should not be transmitted to an output device, since
some ASCII characters typically have device control functions.

The letters of the alphabet are used so frequently that two keywords are provided for
convenience:

&ucase ABCDEFGHIJKLMNOPQRSTUVWXYZ
&lcase abcdefghijklmnopqrstuvwxyz

Error Condition: The keywords &ascii, & lease, and &ucase are not variables. If an
attempt is made to assign a value to one of them, Error 121 occurs.

4.2.3 String Size

The size of a string is the number of characters it contains and is computed by size(s).

Examples:

expression value

size("abcd") 4
size(&lcase) 26
size("D") I
size(&ascii) 128

The maximum size of a literal string (excluding the delimiters and special encodings) is 120. Strings
constructed during program execution are limited in size by internal, machine-dependent
considerations. The practical maximum is usually dictated by the amount of memory available. In
any event, strings may be very long, although the manipulation of long strings is expensive.

4.2.4 The Null String

The null string is the string consisting of no characters and has size zero. It may be represented
literally by two adjacent quotes, enclosing no characters. The null string is also produced by the use
of the keyword &null in a context that requires a string.

Notes: Since the null string contains no characters, it has no visible representation. In this
manual, the symbol • is used for clarity to represent the null string. Thus "" and "•" both
indicate a literal null string. The null character (see Appendix F) is not related to the null
string. A string consisting of a single null character has a size of I.

Examples:

expression value

size() 0
size("B") 0
size(&null) 0
size("\0") I

22 4.2.5 Positions of Characters in a String

4.2.5 Positions of Characters in a String

The positions of characters in a string are numbered from the left starting at 1. The numbering
identifies positions between characters. For example, the positions in the string CAPITAL are

C A P I T A L
t I t t t t t t
I 2 3 ' 4 5 6 7 8

Note that the position after the last character may be specified.

Positions may also be specified with respect to the right end of a string, using nonpositive
numbers starting at 0 and continuing with negative values toward the left:

C A P I T A L
t t t t t t t t

- 7 - 6 - 5 - 4 -3 -2 -I 0

For this string, positions 8 and 0 are equivalent, positions 7 and -1 are equivalent, and so on.

The positions that can be specified for a string s are in the range -size(s) to size(s)+1, inclusive.
Other values are out of range and are not allowable position specifications.

Note: The only allowable positions for the null string are I and 0, which are equivalent.

In general, the positive specification i is equivalent to the negative specification -(size(s)+1)+i.
While nonpositive position specifications are frequently convenient, it is also often necessary to
express position specifications in their positive form. The value of pos(i.s) is the positive position
specification of i with respect to s, regardless of whether i is in positive form or not.

Failure Condition: pos(i.s) fails if i is out of range of s.

Examples:
expression
pos(0,8t lease)
pos(-1,&lcase)
pos(1,& lease)
pos(28,&lcase)
pos(0,&nutl)
pos(-1,&null)

value signal

27
26

I

1

success
success
success
failure
success
failure

Default: pos(i) defaults to a special meaning for string scanning. See Section 4.8.3.

4.3 Character Sets

Whereas a string is an ordered sequence of characters in which the same character may appear
more than once, a character set (type cset) is an unordered collection of characters. The value of
the keyword fit cset is the set of all 256 characters. Other character sets are subsets of & cset and are
useful for operations where specific characters are of interest, regardless of the order in which they
appear. See Sections 4.7.2 and 4.8.3.

The value of cset(s) is a character set consisting of the characters.in string s. Duplicate
characters in s are ignored, and the order of characters in s is irrelevant.

4.4 Type Conversions 23

Examples:

expression value

cset("abcd") a b e d
cset("badc") a b e d
cset("energy") e g n r y

There are four operations on character sets.

1. The value of *c is the complement of c with respect to &cset.

2. The value of d ++ c2 is the union of d and c2.

3. The value of d ** c2 is the intersection of d and c2.

4. T h e v a l u e o f d - - c2 is the difference of d and c2; that is, all of the characters in d that are
not in c2.

Examples:

expression value

d := cset("drama") a d m r
c2 := cset("append") a d e n p
d ++ c2 a d e i m n p r x
d •• c2 a d
d — c2 m r
d - - *c2 a d

Note: A character set may be empty, i.e. containing no characters. Such a character set may
be obtained by cset(&null) or *&cset.

4.4 Type Conversions

The value of string(x) is a string corresponding to x, where x may have type integer, real, string,
cset. or null.

Failure Condition: string(x) fails if the type of x is not one of those listed above.

1. An object of type string is returned unmodified by string(x).

2. For the numeric types integer and real, the resulting string is a representation of the numerical
value corresponding to the literal representation that the numeric object would have in the source
program.

Note: Literal representations are in normal form without leading zeroes and according to
the following rules for reals:

1. Trailing zeroes are suppressed.

2. Ihe number of significant digits depends on the precision of reals and is machine
dependent. In the examples that follow, a precision of five digits is assumed.

3. If the absolute value of the real number is greater than 10s or less than I0~4. the
exponent notation is used.

24 4.4 Type Conversions

Examples:

expression

string! 10)
string (00010)
string(8r10)
string(2.7)
string(02.70)
string(27e-1)
string(2700000.)
string(0.0000027)

value

10
10
8
2.7
2.7
2.7
2.7e6
2.7e-6

3. For type cset, the value is a string of characters in the cset, arranged in order of collating
sequence (see Section 4.6).

Note: Conversion of a string to a cset and back to string, as in

s := string(cset(s))

eliminates duplicate characters and sorts the characters of the string.

Examples:

expression value

string(cset("ab")) ab
string((cset("ba")) ab
string(cset("mam")) am
string(cset("a b")) Dab

4. For type null, the value of string(x) is • .

For operations that require objects of type string, implicit conversions are automatically
performed for the types integer, real, cset, and null.

Failure Condition: string(x) fails if x is not one of types listed above.

Error Condition: If an object of any other type is encountered in a context that requires
implicit conversion to string. Error 104 occurs.

Examples:

expression value

pos(0.10) 3
size(010) 2
sized 0) 2
size(&nuil) 0

Similarly, for operations that require objects of type cset, implicit conversion is performed
automatically for types integer, real, string, and null. The conversions are performed by first
converting to type string, if necessary, and then to type cset.

Failure Condition: cset(x) fails if the type of x is not one of those listed above.

Error Condition: If an object of any other type is encountered in a context that requires
implicit conversion to cset. Error I OS occurs.

4.5.3 Positioning Strings for Column Output 25

Examples:

expression value

cset(1088) 0 1 8
cset(3.14) . 1 3 4

Note: In this manual, arguments of type cset are usually given as strings for clarity.

4.5 Constructing Strings

There are a number of operations for constructing strings. Most of these operations are descibed
in the following sections. See also Sections 4.8.2 and 4.8.3.

4.5.1 Concatenation

Since a string is a sequence of characters, one of the most natural string construction operations
is concatenation, appending one string to another. The value of s1 || s2 is a string consisting of s1
followed by s2.

Note: The null string is the identity with respect to concatenation. That is, the result of
concatenating the null string with any string s is simply s.

Examples:

expression value

"a" || "z" az
"[" II "abed" || "]" [abed]
"abed" || &null abed

4.5.2 String Replication

The value of repl(s.i) is the result of concatenating i copies of s.

Error Condition: In repl(s,i), if i is negative. Error 211 occurs.

Note: The value of repl(s.O) is • .

Examples:

expression value

repl("a".3) aaa
repl("*.".3) *.*.*.
repl(&lcase) •

4.5.3 Positioning Strings for Column Output

When text is printed in columns, it is useful to position data in strings of a specified size. There
are three functions for doing this.

I. The value of Ieft(s1 ,i,s2) is s1 positioned at the left of a string of size i. s2 is used to fill out the
remaining portion to the right of s 1 . and is replicated as necessary, starting from the right. The last
copy of s2 is truncated at the left if necessary to obtain the proper si/e. If the size of s1 is greater
than i. it is truncated at the right end.

26 4.5.3 Positioning Strings for Column Output

Default: A null or omitted value of s2 defaults to D.

Error Condition: In Ieft(s1,i,s2), if i is negative, Error 212 occurs.

Examples:

expression

left("abcd",6,".D")
left("abcd",7,".D")
left("abcde".7.".D")
left("abcd",6)
left(& lease, 10)

value

abcd.D
abcdD.D
abcde.O
abcdD
abedefghij

2. The value of right(s1 ,i,s2) is similar to Ieft(s1 ,i,s2), except that s1 is placed at the right, s2 is
replicated starting at the left, with the truncation of the last copy of s2 at the right if necessary.

Default: A null or omitted value of s2 defaults to D.

Error Condition: In right(s1,i,s2), if i is negative, Error 213 occurs.

Examples:

expression

right("abcd".6,".D")
right("abcd".7,".D")
right("abcde,7,".D")
right("abcd'\6)
right(& lease. 10)

value

.Dabcd

.D.abcd

.Dabcde
DDabcd
qrstuvwxyz

3. The value of center(s1,i,s2) is s1 centered in a string of size i. s2 is used for filling on the left
and right as for the functions above. If the size of s1 is greater than i, it is truncated at the left and at
the right to produce its center section. If s1 cannot be centered exactly, it is positioned one
character to the left of center.

Default: A null or omitted value of s2 defaults to D.

Error Condition: In center(s1,i,s2), if i is negative. Error 2I4 occurs.

Examples:

expression

center("abcd'\8.".D")
center("abcd".9,".D")
center("abcde".9,".D")
center("abcd",6)
center(& lease, 10)
center(8»lcase,11)

value

.Dabcd. D

.DabcdD.D

. Dabcde. D
DabcdD
ijklmnopqr
hijklmnopqr

4.5.4 Substrings 27

4.5.4 Substrings

A substring is a sequence of characters within a string. An initial substring of s is one that begins
at the first character of s. A terminal substring of s is one that ends at the last character of s. There
arc three operations that return substrings.

I. The value of section(s,i,j) is the substring of s between positions i and j , inclusive.

Failure Conditions: section(s,i,j) fails if i or j is out of range.

Default: section(s) defaults to section(s,1,0), i.e., the entire string.

Examples:

expression

section(&lcase, 1,2)
section(&lcase,2,1)
section(&lcase,1.1)
section(&lcase,27,28)
sect ion(&lcase,-1,-2)
section("abcd",2)
sect ion("abcd".2,-7)
section("abcd")

value

a
a

y

bed

abed

signal

success
success
success
failure
success
success
failure
success

If the first argument of section is a variable, assignment to section(s,i,j) can be performed to
replace the specified substring and hence change the value of s.

Examples:

expression

s := "abed"
section(s,1,2) : =
section(s,-1.0) :
section(s,1,1) :-

"xx"
. „ B „
"abc"

value of s

abed
xx bed
xx be
abexxbe

2. The value of substr(s,i,j) is the substring of si/e j starting at position i of s. The size
specification may be negative, indicating a string taken from i toward the left.

Note: substr(s,i,j) is equivalent to section(s,i,j+pos(i.s)).

Failure Conditions: substr(s.i,j) fails if i or pos(i)+j is out of range.

Examples:

expression value

substr(&lcase.2,1) b
substr(&lcase,2,26)
substr("abcd".2,2) be
substr(&lcase,-1,-2) xy
substr(&lcase.,-1) z
substr("abcd".2.0) •
substr("abcd",2) •
substr("abcd".2,-3)

signal

success
failure
success
success
success
success
success
failure

28 4.5.4 Substrings

Assignment to substr(s,i,j) can be performed in the same manner as to section(s,i,j).

Examples:
expression

s := "abed"
substr(s,1,1) := "x"
substr(s.2.-1) := " •
substr(s,1) := "xxx"

value of s

abed
xbed
bed
xxx bed

3. The expression s[i] is equivalent to substr(s,i,1).

Examples:

expression

&lcase[1]
&lcase[0]
&ascii[98]
&ascii[33]
&lcase[-1]
"abcd"[-2]
&null[2]

value

a

a
D
z
c

signal

success
failure
success
success
success
success
failure

Warning: The internal representation of characters starts at 0, not 1, while the positions in a
string start at I. Consequently, there is a difference of I between the position of a character in
&ascii and its (decimal) code value (see Appendix F). Thus &ascii[1] is the null character.
This difference may be an annoyance and also a source of error. It is the consequence of the
technique used for specifying positions from either end of the string by unique integers.

Assignment to s[i] can be performed in the same manner as to substr(s,i,1). For example

s[3] := "xy"

replaces the third character of s by xy. Similarly,

s[3] :=: s[4]

exchanges the third and fourth characters of s.

Examples:
expression

s := "abed"
s[2]
s[1]
s[2]
s[1]
s[1]

= "x"
= s[-1]
=: s[3]
= "abed"
= &null

value of s

abed
axed
dxed
dexd
abedexd
bedexd

4.5.5 Other String-Valued Operations 29

4.5.5 Other String-Valued Operations

1. The value of reverse(s) is a string consisting of the characters of s in reverse order.

Examples:

expression value

reverse("abcd") deba
reverse(& lease) zyxwvutsrqponmlkjihgfedcba
reverse(&null) •

2. The value of trim(s.c) is a string consisting of the initial substring of s with the omission of the
trailing substring of s which consists solely of characters contained in c.

Default: trim(s) defaults to trim(s,cset("D")).

Examples:

expression

trim("abcdDDD","D")
trimC'abcdDDD")
trim("abcdDDD","Dd")
trimC'abcdDDD", "d")
trim("abcdDDD",&ascii)

value

abed
abed
abc
abcdDDD
•

3. The value of map(s1,s2.s3) is a string resulting from a character mapping on s 1 , where each
character of s1 that is contained in s2 is replaced by the character in the corresponding position in
s3. Characters of s1 that do not appear in s2 are left unchanged. If the same character appears
more than once in s2, the rightmost correspondence with s3 applies.

Error Condition: If the sizes of s2 and s3 arc not the same. Error 2I5 occurs.

Note: If s1 is a transposition (rearrangement) of the characters of s2. then map(s1 ,s2,s3)
produces the corresponding transposition of s3.

Examples:

expression value

map("abcda"."a"."*") *bcd*
mapCabcdaV'ad".) *bc**
map("abcda"."ad","V) *bc:#

map("abcda"."ax","*:") *bcd*
map("abcda","yx","*:") abeda
map("abcda"."bcad"."1234") 31243
map("abcda"."abac"."1234") 324d3
map("wxyz"."zyxw"."abcd") deba

30 4.6 String Comparison

4.6 String Comparison

Strings, like numbers, can be compared, but the basis for comparison is lexical (alphabetical)
order rather than numerical value. Lexical order includes all characters and is based on the collating
sequence. If a character d appears before c2 in collating sequence, d is lexically less than c2. The
lexical order for single-character strings is based on this ordering. Thus X is less than x, but z is
greater than x. For longer strings, lexical order is determined by the lexical order of characters in
corresponding positions, starting at the left. Two strings are lexically equal if and only if they are
identical, character by character. If one string is an initial substring of another, then the shorter
string is lexically less than the longer one.

Note: The null string is lexically less than any other string.

The function Ilt(s1,s2) succeeds if s1 is lexically less than s2 and fails otherwise. The value
returned on success is s2.

Examples:
expression

llt("X","x")
llt("x","X")

llt("XX","x")
llt("xx","xX")
llt("xx"."xxx")
llt("xx","xxX")
llt(&null."x")
llt(&null,&null)

re are four lexical

Ilt(s1.s2)
Ile(s1,s2)
Igt(s1,s2)
Ige(s1,s2)
s1 == s2
s1 -== s2

value

X

X

XXX

xxX
X

comparison predicates

lexically less than
lexically less than or
lexically greater than
lexically greater than
lexically equal
lexically not equal

signal

success
failure
failure
success
failure
success
success
success
failure

and two le:

equal

or equal

4.7 String Analysis

Most programming operations on strings involve analysis rather than synthesis, and the
repertoire of analytic operations is correspondingly large. A higher-level form of string analysis is
included in string scanning, which is described in Section 4.8.

4.7.1 Identifying Substrings

There are two functions for identifying specific substrings.

I. The function match(s1,s2,i,j) succeeds if si is an initial substring of section(s2,i.j). The value
returned is the position of the end of the substring, that is, i+size(s1).

Failure Condition:
section(s2,i,j).

match(s1,s2,i.j) fails if s1 does not exist at the beginning of

Default: Since section(s) defaults to section(s. 1,0), match(s1,s2) defaults to
match(s1,s2.1,0).

4.7.2 Lexical Analysis 31

Examples:

expression value signal

match("a"."abc".1) 2 success
match("a"."abc") 2 success
match("a","abc".2) failure
match("ab","abc",1,2) failure
match("bc","abc".1) failure
match("bc","abc",2) 4 success
match("bcd","abc",2) failure
match(&null,"abcd",1) 1 success
match(&null,"abcd",5) 5 success

2. The function find(s1,s2,i,j) succeeds if s1 is a substring anywhere in section(s2,i,j). The value
returned is the position in s2 where the substring begins.

Failure Condition: find(s1.s2,i,j) fails if s1 does not exist in section(s2,i.j).

Default: find(sl,s2) defaults to find(s1,s2.1f0). Note that an omitted fourth argument is
equivalent to the end of the string.

Examples:

expression value signal

find("a"."abcd".1) 1 success
find("a","abcd") 1 success
find("bc"."abcd",1) 2 success
find("a","abcd".2) failure
f ind("ab". "abed", 1.2) failure
find("de"."abcd",1) failure
find(&null,"abcd".3) 3 success

The function find is a generator that produces, as required, a sequence of the positions, from left
to right, at which s1 is a substring of section(s2,i,j).

Examples:

expression

every fmd("a"."abaaa")
every find("abcd","abcdeabc")
every find("bc"."abcdeabc")
every find("bc","abcdeabc",3)

4.7.2 Lexical Analysis

Lexical analysis operations involve sets of characters rather than substrings. There are four
lexical analysis operations.

I. The value of any(c,s,i.j) is i+1 if the first character of section(s,i.j) is contained in the character
set c.

Failure Condition: any(c.s.i.j) fails if the first character of section(s.i,j) is not contained in
the character set c.

Default: any(c.s) defaults to any(c,s, 1.0).

vai

I .
i
1

2.
7

ue

3.

7

v in

4.

i sequence

5

32 4.7.2 Lexical Analysis

Examples:
expression

any("abc","abcd",1)
any("abc","abcd")
any("abc"."dcba")
any(""abc'V'dcba")
any("abc","dcba",2)
anyC'abcd", "abed", 1.1)

value

2
2

2
3

signal

success
success
failure
success
success
failure

2. The value of upto(c,s,i,j) is the position in s of the first instance of a character of c in
section(s.i.j).

Failure Condition: upto(c,s,i,j) fails if no character in section(s,i,j) is contained in c.

Default: upto(c.s) defaults to upto(c,s, 1,0).

Examples:
expression

upto("a"."abcd",1)
upto("a"."abcd")
upto("abc"."abcd")
upto(-"abc"."abcd")
upto("d"."abcd",2)
upto("a"."abcd".2)

value

1
1
1
4
4

signal

success
success
success
success
success
failure

The function upto is a generator that produces, as required, a sequence of the positions, from left
to right, at which a character of c occurs in section(s,i,j).

Examples:
expression

•very upto("abed"."abed")
•vary upto("a"."abcd")
•v«ry upto("ab","abcd",2)
•v©ry upto(""ab","abcd")

values in sequence
I, 2, 3. 4
I
2
3,4

3. The value of many(c,s,i,j) is the position in s after the longest initial substring of section(s.i.j)
consisting solely of characters contained in c.

Failure Condition: many(c.s.i.j) fails if s[i] is not contained in c.

Default: many(c.s) defaults to many(c,s.1,0).

Examples:
expression

many("ab"."abcd".1)
manyCab'V'abcd")
many("ab"."abcd".2)
many("ab","abcd".3)

value

3
3
3

signal

success
success
success
failure

4. The value of bal(c1 ,c2,c3,s,i,j) is the position in s after an initial substring of section(s,i,j) that
is balanced with respect to characters in c2 and c3, respectively, and which is followed by a
character in c1.

4.K String Scanning 33

In determining balance, a count is kept, starting at 0, and characters in section(s,i,j) are
processed from left to right. A character in c2 causes the count to be incremented by I, while a
character in c3 causes the count to be decremented by I. All other characters leave the count
unchanged. If the count is 0 after processing a character and the termination condition is satisified,
the process is complete at that position. Otherwise, it is continued.

Failure Condition: If the count ever becomes negative or if the substring being examined is
exhausted with a positive count, bal fails.

Notes: Characters in c2 are examined before characters in c3, so that if a character occurs in
both c2 and c3, it is treated as if it occurred only in c2. By the algorithm described above, at
least one character is always processed. If that character is not contained in c2 or c3, the
value returned is i+1, provided the termination condition is satisified.

Defaults: bal(c1,c2,c3,s) defaults to bal(c1,c2,c3,s,1.0). If d is omitted, it defaults to
&cset. An omitted value of c2 defaults to cset("(") and an omitted value of c3 defaults to
cset(")").

Examples:

expression value signal

bal("+","(",")", "(a)+b".1 4 success
bal("+",„"(a)+(b)",1) 4 success
bal("+".„"(a)+(b)") 4 success
bal("+".,."(a)+(b)",2) failure
bal("-"..."(a)+(b)") failure
bal(..."(a)+(b)") 4 success
bal(,"(["."])","(a)+(b)") 4 success
bal(,"([","])'\"[a)+(b]") 4 success
bal(„"]","[a)+(b]") 2 success
bal(,„")a(+)b(") failure

The function bal is a generator that produces, as required, a sequence of positions, from left to
right, at which successively longer balanced strings terminate.

Examples:

expression

every bal(.„"(a)+(b)+(c)")
every bal("+"..."(a)+(b)+(c)")
every bal(,„"abcd")

4.8 String Scanning

String scanning is a high-level facility for the analysis and synthesis of strings that permits the
string being operated on to be implicit, thus avoiding much of the notational detail that would
otherwise be required.

The control structure

scan exprl using expr2

evaluates exprl and establishes its value as the string to be scanned. expr2 is then evaluated to
perform the scanning.

values

4.
4.
2.

5,
K
3.

»• in

K,

4

1 sequence

9

34 4.8.1 Scanning Keywords

Failure Conditions: If exprl fails, expr2 is not evaluated and the scan-using expression fails.
scan-using also fails if expr2 fails.

Error Condition: If exprl does not produce a value that is a string or convertible to a string.
Error 104 occurs.

4.8.1 Scanning Keywords

During string scanning, the string being scanned is the value of the keyword &subject. The
implicit position in ^subject is the value of the keyword &pos. The value of &subject is
automatically set after evaluation of exprl and the value of &pos is set to 1, corresponding to the
beginning of & subject. Subsequently, values may be explicitly assigned to &subject and &pos.
Assignment of a value to &subject automatically sets &pos to 1. &pos may be subsequently
changed as desired. The value of the scan-using expression is the value of &subject when the
evaluation of expr2 is complete.

Note: A nonpositive position specification may be used in assignment to &pos, but the
corresponding positive value is actually assigned.

Failure Condition: An attempt to set &pos to a value greater than si?e(&subject)+1 fails.

4.8.2 Positional Analysis

There are two functions that change &pos automatically and return the substring between the
previous and new values of &pos. This substring is called a scanned substring.

1. The value of move(i) is the substring between &pos and &pos+i, and i is added to &pos.

Failure Condition: If &pos+i is out of range, move(i) fails and &pos is not changed.

Examples:

expression
&subject :=
move(2)
move(3)
move(-l)
move(-2)
move(O)
&pos := 0
move(-l)

'abed'

value

abed
ab

signal

success
success
failure
success
failure
success
success
success

value of &pos

1
3
3
2
2
2
5
4

The assignment made to &pos by move(i) is a reversible effect. If move(i) succeeds, but the
expression in which it appears fails, &pos is restored to its original value.

Examples:

expression

^subject := "abed"
move(2) & move(3)
move(2)
move(-1) & (&pos = 3)

value

abed

ab

signal

success
failure
success
failure

value of &pos

1
1
3
3

The expression in the using clause can be arbitrarily complicated. For example,

• ._ *» »»

acan s using
whi le t := t || move(l) do move(1)

assigns to t a string consisting of the odd-numbered characters of s.

4.8.3 Scanning Operations 35

The value of tab(i) is the substring between &pos and i, and &pos is set to

Failure Condition: If i is out of range, tab(i) fails and &pos is not changed.

Examples:

expression

&subject := "abed"
tab(2)
tab(O)
tab(1)
tab(-5)

value

abed
a
bed
abed

signal

success
success
success
success
failure

value o / & p o

1
2
5
1
1

The assignment made to &pos by tab(i) is a reversible effect

Examples:

signal expression value
&subject := "abed" abed
tab(O) & moved)
tab(O) & move(-1) d

success
failure
success

value of &pos

I
I
4

4.8.3 Scanning Operations

Several functions have defaults that provide implicit arguments for string scanning. For
example, find(s) defaults to find(s,&subject,&pos,0) and pos(i) defaults to pos(i,&subject). Thus.
pos(O) = &pos succeeds if &pos is positioned after the end of StSubject. Other defaults are:

form

any(c)
bal(c1,c2.c3)
match(s)
many(c)
upto(c)

interpretation
any(c,&subject,&pos,0)
bal(c1 ,c2,c3.&subject,&pos,0)
match(s,&subject,&pos,0)
many(c,&subject,&pos.O)
upto(c,&subject,&pos.O)

Thus in each case the operation applies to &subject starting at &pos and continuing to the end of
&subject. The values returned by these functions are integers representing positions in &subject,
hut &pos is not changed.

Examples:

expression

&subject := '
upto("c")
upto("a")
many("abc")
any("d")

abed'

value

abed
3
1
4

signal

success
success
success
success
failure

value of &pos

These functions may he used as arguments to tab to change the value of &pos and obtain a substring
between the new and old values of &pos.

36 4.8.4 Modification of & subject

Examples:

expression

fitsubject := "abed"
tab(upto("c"»
tab(upto("a"))
tab(many("c"))
tab(any("d"))

value

abed
ab

c
d

signal

success
success
failure
success
success

value of &pos

1
3
3
4
5

In addition, =s is provided as a synonym for tab(match(s)).

Examples:

expression

^subject := "abed'
="ab"
="ab"
="c"
="d"
=&null
="d"

value

abed
ab

signal

success
success
failure
success
success
success
failure

value 0/&DOS

1
3
3
4
5
5
5

4.8.4 Modification of &subject

Since the value of a scan expri using expr2 expression is the value of &subject When evaluation
of expr2 is complete, expr2 can be used to transform &subject to produce a desired result.

One way to transform &subject is simply to assign a value to it in expr2. For example,

t := scan s using &subject := tab(upto(":"))

assigns to t the initial substring of s up to the first occurrence of a colon.

Assignment can also be made to tab(i) and move(i) to replace their scanned substrings in
&subject. When an assignment to a scanned substring is made, &pos is set to the end of the
replaced substring. For example,

s := scan s using
while tab(upto(" ")) do

tab(many(" ")) := " "

replaces all occurrences of multiple blanks in s by single blanks.

Assignment to scanned substrings is a reversible effect. If such an assignment is made, but the
expression in which it occurs fails, &subject and &pos are restored to their former values.

Warning: Assignment to a scanned substring may change the length of fitsubject and the
value of fitpos.

Notes: Any form of assignment may be made to a scanned substring: reversible assignment,
exchange, and reversible exchange. Assignment may also be made to =s.

4.8.5 The Scope of Scanning 37

4.8.5 The Scope of Scanning

The values of &subject and &pos are saved and restored by scan-using expressions. In fact,
scan exprl using expr2 is conceptually equivalent to

save(&pos)
save(& subject)
&subject := exprl
expr2
restore(&subject)
restore(&pos)

where save(x) and restore(x) represent internal operations that save and restore the value of x.

Since the values of &subject and &pos are saved and restored by scan-using, scanning
expressions can be nested. For example, if words contains a list of words followed by blanks, the
following expressions

twords := " ' *
words := scan words using

while scan tab(upto(" ")) using
if upto("t") then twords := t || &subject || " "

do move(1)

assign to twords a similar string, but with only those words containing the letter t.

38

39

CHAPTER 5

Structures

Structures are aggregates of variables. Different kinds of structures have different organizations
and different methods for accessing these variables. Lists are sequences of variables that are indexed
by position, while tables are sets of values that are accessed by content. Stacks provide last-in, first-
out access. Records provide an organization in which fields are accessed by name.

5.1 Lists

5.1.1 Creation of Lists

Lists are created duriiit f-onram execution by expressions of the loin.

list ([list-bounds]) [initial-clause]

The list bounds give the lower and upper bounds of the list. The lower bound and upper bound
are separated by a colon:

[lower-bound :] upper-bound

If the lower bound is one, only the upper bound need be given. For example, 10 and 1:10 are
equivalent specifications. The size of a list is the difference between the upper bound and lower
bound plus I. Bound specifications may be arbitrary expressions, allowing the creation of lists with
computed bounds.

Error Condition: If a bound specification is erroneous. Error 2I6 occurs.

Note: Although there is no explicit limit on the size of a list, there is a limit to the size of an
object, which is imposed by machine architecture and the amount of available memory. Such
limits are machine and environment dependent.

Examples:

expression lower hound upper hound

dec := l is t (I IO) I 10
dec := list(IO) I 10
sector := list(-5 2) -5 2

The initial clause specifies a value that is assigned to all list elements when the list is created.

Examples:

dec := list(10) initial 1
bar := list(20) initial tt it

Defaults: As indicated above, the list bounds and initial clause are optional. The defaults lor
omitted components are:

list bounds 0
initial clause initial &null

40 5.1.2 Accessing List Elements

A list bound of 0 specifies a list with no elements. See Section 5.1.3.

A list of size n may be created as shown above or by an expression of the form

<x1,x2,...,xn>

where x1, x2,..., xn are the initial values of the n elements. In this case, the lower bound is 1 and the
upper bound is n.

Examples:
expression size

triple := <0.0,0> 3
line := <,„> 4
octave := <1,2,3,4,5.6,7,8> 8
unit := <> I

5.1.2 Accessing List Elements

An element of a list is accessed by specifying the position of the element in an expression of the
form

x[i]

where i is the position of the element. Element positions are also called subscripts. Assignment may
be made to a position in a list to change the value of the corresponding element.

Failure Condition: x[i] fails if i is out of range.

Examples (for the lists given in the preceding examples):
expression
dec[3]
dec[3] := dec[5] •
dec[0]
dec[]
octave[4]
unitll]
sector[]

1 5

value
1
5

4
•
•

signal
success
success
failure
failure
success
success
success

5.1.3 Open Lists

Lists are ordinarily of fixed size. Lists may be opened for expansion so that they can be indexed
beyond the original upper bound. A list is opened by the expression open(x). Subsequently, x
expands automatically when assignment is made to an index that is one beyond its current upper
bound.

Notes: Expansion occurs only when the index is one beyond the current upper bound.
References to larger indexes fail. Expansion occurs only when an assignment is actually
made. A reference to the value at a position one beyond the current end of a list returns the
value specified in the initial clause for the list, but does not increase the size of the list.
open(x) modifies x and also returns the modified value.

The function close(x) closes x and prevents x from being expanded by out-of-range references.

Note: close(x) modifies x and also returns the modified value.

Default: Lists are ordinarily closed when they are created. A list of size 0, however, is created
as an open list.

5.2.2 Accessing Tabic Elements 41

Examples:

expression

laundry := list{ 10)
laundry[1]
laundry[11] : =
open(laundry)
laundry[12] : =
laundry[11] :=
laundry[12] :=
close(laundry)
laundry[12]
laundry[13]

5.2 Tables

"shirts"

"shirts"
"shirts"
"socks"

value signal

list
•

list

shirts
socks
list
socks

success
success
failure
success
failure
success
success
success
success
failure

size
10
10
10
10
10
II
12
12
12
12

A table is an aggregate of elements that resembles a list. A table, however, can be referenced by
any object. The elements of a table are not ordered by position. Thus a table can be thought of as
an associative list.

5.2.1 Creation of Tables

Tables are created during program execution by expressions of the form

table ([size])

When tables are created, they are empty and have no elements. Elements may be added at will (see
Section 5.2.3) and tables grow automatically. The size given in the table expression limits the
number of elements in the table. A size of 0 specifies a table that is not limited in size, except by the
amount of storage that is available.

Default: An omitted si/c defaults to 0.

Error Condition: If a si/e specification is negative. Error 218 occurs.

5.2.2 Accessing Table Elements

An element of a table is accessed by specifying a referencing value in an expression of the form
t(x] where t is a table and x is the referencing value. The referencing value may be of any type. For
example, t["n"] references the table t with the string n.

Note: No type conversion is performed on the value used to reference the table. For
example, t(1] and t["1"] reference different elements. See also Section 7.2.

A value is assigned to a table element in a manner similar to that for lists. For example

t["n"] := 3

assigns the integer 3 to the clement referenced by the string n.

A table grows automatically as assignments arc made to referenced elements that arc not already
in the table.

The value of a table element that is not in the table is &null. Table elements are only created,
however, when values are assigned to them. See also Section 5.2.3.

Error Condition: If an attempt is made to exceed the specified maximum si/e of a table.
Error 301 occurs.

42 5.2.3 Closed Tables

Examples:
expression

op := table
op["add"] := 273
op["sub"]
opl"sub"] := 274
ct := table
ct["four"]+
ct["score"l+
ct["1776"]+
ct[1776l
ct[1776] := 0

value size
table
273
•
274
table
1
1
1
•
0

0
1
1
2
0
1
2
3
3
4

5.2.3 Closed Tables

As discussed above, tables are ordinarily expandable and grow as values are assigned to newly
referenced elements. Tables may be closed to prevent future expansion. A table is closed by close(t)
where t is a table. When a table is closed, new elements cannot be added, but existing elements can
be accessed or assigned new values.

Note: close(t) modifies t and also returns the modified value.

Failure Condition: When a table is closed, a reference to a non-existent element fails.

The function open(t) opens t for further expansion.

Examples:
expression
digram := taWe(50)
digram["th"] := 73
digram["en"] := 81
digram["io"J := 41
close(digram)
digram["th'T+
digram["st"l
open(digram)
digram["st"J

value signal

table
73
81
41
table
74

table
•

success
success
success
success
success
success
failure
success
success

5.3 Stacks

A stack is an aggregate of variables that resembles a list. A stack, however, grows and shrinks
automatically as elements are added (pushed) and deleted (popped). Furthermore, a stack can be
accessed only at the most recently added element (top).

5.3.1 Creation of Stacks

Stacks are created during program execution by expressions of the form

stack ([size])

The size expression limits the maximum number of elements the stack may have. A size of 0
specifies a stack of unlimited size.

Default: An omitted size defaults to 0.
Error Condition: If a size specification is negative. Error 217 occurs.

5.4.1 Declaring Record Types 43

Failure Condition: pop(k) and top(k) fail if k is empty.

Examples:

expression

pstack := stack(50)
push(pstack,"x")
push(pstack,"y")
push(pstack."*")
top(pstack)
pop(pstack)
top(pstack) := "z"
pop(pstack)
pop(pstack)
pop(pstack)
top(pstack)

value

stack
X

V
»
•
•
z
z
X

signal

success
success
success
success
success
success
success
success
success
failure
failure

size

0
I
2
3
3
2
2
1
0
0
0

Stacks can be referenced by position like lists. k[1] references the top element of the stack k, k[2]
references the next element below the top, and so on.

5.4 Records

Records are aggregates of variables that resemble lists, but the elements are accessed by name
rather than position.

5.4.1 Declaring Record Types

A record type is declared in the form

record name
field-1 .
field-2 ,

field-n
end

Note: A record declaration cannot appear within a procedure declaration or within another
record declaration. The name specifies a new type, which is added to the repertoire of types
and becomes a reserved word.

*

^

5.3.2 Accessing Stacks ^ |

When a stack is created, it is empty and contains no elements. An element is added to a stack by
the function push(k,x), where k is a stack and x is a value to be added to the top of the stack. The
value of push(k,x) is x. tt

Error Condition: If an attempt is made to exceed the specified maximum size of a stack,
Error 302 occurs.

An element is removed from a stack by the function pop(k). The value of pop(k) is the value that ^
is removed.

The top element of a stack is referenced by top(k), which returns the value of the top element of k.
Assignment may be made to top(k) to change the value of the top element of the stack. ™

*

TI

1

44 5.4.2 Crcalim: Records

^

^

:;195 •

The fields provide names for the n elements of the record.

Sow: I he same Held name ma\ he H-M.II in ninrc llian one record declaration ami tIK-
positions need not ho the same.

An example of a record declaration is

record complex r, i end

which declares complex to be a record lvpc wi th two fields, r and i.

5.4.2 Creat ing Records

A record is created dur ing program execution bv an expression of the form

type (value [, value] ...)

where the type is one declared bv record and the values are assigned to the fields of the record in Un­
order corresponding to the field names. The \all ies ma\ be o\ any type, l o r example.

z :- complexfl.0,2.5)

assigns to z a complex record wi th a value o\ 1.0 lor the r field and a value of 2.5 lor the i field.

5.4.3 Accessing Records
A record is accessed bv field name, using an infix (.lot notat ion. Cont inu ing the example above,

the value of z.r is 1.0. I he infix dot operator hinds more tightlv than anv other infix operator ami
associates to the left, l o r example, a . b e d ami ((a.b).c).d are equivalent.

Records can also be accessed bv position like lists, l o r example. z[1] is equivalent to / t

lixamples:

expression

z1 - complex
z2 - complex
z1 r
zl .r * z2.i
zl .r : = z2.r
zl.i :• zl.r
zl .r - zl.i
z2[2]
2213]

:(0.0)
;(3 14, - 3 14)

value

complex
complex
l)

O.I 4
.VI4
.VI4
(1.0

O.I 4

signal

suet ess

\llft l'S\

W/< il'ss

w/c<rv\
\II((C N S

W/(< < v \

Silt tess

sueeess

failure

*

^

n

"%

*

1

5.5 Sorting Structures

The bui l t - in funct ion sort(x) produces a copy of the list x wi th the elements in sorted order.

In sort ing, strings are sorted in non-decreasing lexical order (see Section 4.6). whi le integers and
real numbers are sorted in non-decreasing numerical order (.see Section 3.1.3 and 3.2.3). The ordering
of values of other types is unspecified.

1

http://h-m.iI
file:///llft

5.6 Structure Si/e 45

In heterogeneous lists containing values of different types, values are first sorted by type and then
among the values of the same type. The order of types in sorting is

null
integer
real
string
cset
file
procedure
list
table
stack
record types

A table is converted to a sorted list by sort(t.i). If the size oft is n, the result is a list of n elements.
Each element of this list is itself a list of two elements, the first of which is the reference of a table
element and the second of which is the corresponding value. If i is I, these two-element lists are in the
sorted order of the references of the table. If i is 2, these two-element lists are in the sorted order of the
values of the table.

Failure Condition: If the si/e of t is 0 (that is. if it is an empty table), sort(t.i) fails.

Default: An omitted value of i defaults to I.

Error Conditions: In sort(x). if x is not a list or u table. Error 220 occurs. Insort(t, i), if iis not 1
or 2. Error 220 occurs.

5.6 Structure Size

The si/e of a structure x is the number of elements in it and is the value of size(x).

For lists, the si/e is specified by the list bounds and remains constant except for open lists, in which
the si/e increases as elements are added.

fables initially have a si/e of 0. but increase in size as values are assigned to newly referenced
elements.

Notes: M erely referencing an element in a table does not add that element to the table if it is not
already in the table. Stacks increase and decrease in si/e as elements are pushed and popped.
Records are fixed in si/e bv their declaration.

47

CHAPTER 6

Input and Output

Many aspects of input and output are strongly dependent on specific computer architecture,
operating system characteristics, and installation conventions. For these reasons, much of the
material in this chapter is machine dependent.

6.1 Files

The term file refers to a set of data that is physically external to the computer itself. Files may be
considered to contain a sequence of strings, called lines.

There are two important files that provide for standard program input and output. They permit
the program to access data to be processed and provide a mechanism for recording the results of
computation. The values of & input and &output are the standard input and output files,
respectively.

Error Condition: These keywords are not variables. If an attempt is made to assign a value
to one of them. Error 121 occurs.

Note: The method by which standard input and output files are interfaced to a program
varies from machine to machine.

6.2 Opening and Closing Files

&input and &output are automatically opened when program execution begins.

A program may, in addition, read data from files other than the standard input file and may write
data to files other than the standard output file.

In order to reference files, they are given names. The syntax of file names is machine dependent
and varies significantly from one system to another.

A file must be opened to be written or read, and must be closed when input and output are
complete. In addition, the status of the file must be established; some files are designated for input
and others are designated for output.

All files are automatically closed when program execution is terminated.

Warning: In the case of abnormal program termination, files may not be closed. This can
result in the loss of data that has been written to output files. Some systems provide an
explicit means of closing files after program termination.

The function open(s1,s2) opens the file with name s1 according to the options specified by s2.
The possible options are represented by characters as follows:

r open for reading
w open for writing
b open for reading and writing (bidirectional)
a open for writing in append mode

Notes: Characters in the option specification may be duplicated. In the case of mutually
exclusive specifications, the last (right-most) specification holds. Not all the options listed
above arc available on all machines.

48 6.3 Writing Data to Files

In the case of the w option, writing starts at the beginning of the file, causing any data previously
contained in the file to be lost. The a option allows data to be written at the end of an existing file.
The b option usually applies to interactive input and output at a computer terminal where the
terminal behaves like a file that is both written and read.

Default: An omitted value of s2 defaults to r.

Failure Condition: open(s1.s2) fails if the file with name s1 cannot be opened with the
options specified by s2.

Error Condition: If the option specification is invalid, Error 221 occurs.

The function close(f) closes f. This has the effect of physically completing output (emptying
internal buffers used for intermediate storage of data). Once a file has been closed, it must be
reopened to be used again. In this case, the file is positioned at the beginning (rewound).

Error Condition: If a file cannot be closed. Error 401 occurs.

6.3 Writing Data to Files

The function write(f,s1 sn) writes the strings s 1 , s2, . . . , sn to the file f. The strings are written
one after another as a single line, not as separate lines (i.e., they are not separated by line
terminators). The effect is as if s 1 , s2 sn had been concatenated and written as a single line on
the file f.

The maximum length of an output line is machine and system dependent, as is the treatment of
output lines of excessive length.

Notes: A line terminator is added after sn. No actual concatenation is performed by the
write function. Since strings output to a file frequently are composed of several parts, the
write function may be used to avoid concatenation that otherwise might be necessary. A
significant amount of processing time may be saved in this way.

writes(f,s1,s2,...,sn) writes s 1 , s2 , . . . , sn to file f in the manner of write(f,s1,s2,...,sn), but no
line terminator is appended at the end. Thus several strings can be placed on the same line of a file
with successive calls of the writes function. One use of this function is to provide prompting at a
terminal in interactive mode, allowing the user to respond on the same (visual) line that the inquiry
is written.

Default: If the first argument to write or writes is not of type file, the arguments are written
to &output. That is, write(s1,s2 sn) writes s1, s2 sn to &output.

Error Condition: If an attempt is made to write on a file that is not open for writing. Error
403 occurs.

During writing, objects of type integer, real, ceet, null are automatically converted to string as
described in Section 4.4. Arguments of other types are converted to string by use of the image
function (see Section 7.8). Thus arguments of any type can be specified in the write and writes
functions.

Examples:

expression

out := open("data.txt'V'w")
flag := —"
sep := ":"
write(out)
write(out.flag,"a".sep."b")
write(flag."a".sep,"b")
write(out."x".sep."y".sep."z",flag)
write(1 ,sep,2.0,sep,"2")

value

file
•
:
•
•a:b
•a:b
x:y:z*
1:2.0:2

file written

none
none
none
data.txt
data.txt
&output
data.txt
&output

6.5 Character Set Conversions 4 9

6.4 Reading Data from Files

The function read(f) reads the next line from the file f.

Failure Condition: When the end of a file is reached (that is, when there are no more lines in
the file), read(f) fails.

Default: An omitted value for f defaults to & input.

Note: The maximum input line length is machine dependent.

Error Conditions: If an input line exceeds the maximum length. Error 411 occurs. If an
attempt is made to read from a file which is not opened for reading. Error 402 occurs. See
also Section 9.1.1.

The function reads(f,i) reads the next i characters from the file f. Line terminators are included
in the result. If fewer than i characters remain on the file f, the remaining characters are read and the
result is shorter than i.

Error Conditions: If i is less than I, Error 222 occurs. If an attempt is made to read from a
file which is not opened for reading, Error 402 occurs. See also Section 9.1.1.

6.5 Character Set Conversions

As described in Chapter 4, the size of the internal character set in Icon is 256 and the standard
ASCII graphics and control functions are associated with the first 128 of these characters.

Different computer systems use different character sets. For example, the DEC-10 and PDP-11
use ASCII, but the IBM 360/370 uses EBCDIC [5], and CDC 6000 and CYBER systems use both
Display Code [6] and ASCII. Despite these differences, the internal character set used by Icon is the
same on all computers.

Translation between the internal character set of Icon and the character set of the host computer
on which Icon runs is performed automatically on input and output. For example, on the DEC-I0,
an ASCII machine, the high-order bit of the last 128 characters is discarded on output so that these
characters are mapped into corresponding positions with the first 128. In general the nature of the
translation is machine dependent.

Warning: One consequence of character translation on input and output is that characters
may not be represented internally by the same (integer) codes as are normally used in the host
computer environment. For example, on an EBCDIC machine the character A is normally
represented by the (decimal) integer 193 (hexadecimal code CI). On the other hand, the
character A is represented internally in Icon by the (decimal) integer 65 (octal code 101),
corresponding to its ASCII code. One consequence of this difference in representation is that
string comparison and sorting in Icon, which use the internal representation, may produce
different results than would be produced by other host-computer programs. For example,
the digits precede the letters in the ASCII collating sequence, while the digits follow the
letters in the EBCDIC collating sequence. In Icon, however, string comparison and sorting
are machine independent and hence they are portable features.

50

d * - ! *

5!

CHAPTER 7

Miscellaneous Operations

7.1 Element Generation

The expression !x generates successive elements of x as required, x may be a string, structure, or
file.

For strings, successive characters are generated. Assignment to Is may be performed in the same
manner as to s[i].

Examples:
expression values in sequence
every f'abcde" a, b, c, d, e
every lsection(&lcase,10,15) j , k, I, m, n

For lists, the order of generation is from the lower bound to the upper bound. For example, if x is a
list

every write(lx)

writes the elements of x in order from the first to the last.

For tables, the order of generation is unpredictable, but all elements are generated if required.
For stacks, the order of generation is from the top of the stack to the bottom of the stack. For
records, the order of generation is the same as for lists. For all structure types, assignment to Ix may
be used to change the value of an element.

For files, successive lines of input are generated. For example,

every write(l&input)

copies all the lines in the standard input file to the standard output file.

7.2 Comparison of Objects

Most comparison operations such as i = j and s1 == s2 are concerned with comparison of values.
In these cases, implicit type conversion occurs prior to the comparison.

The two operations x === y and x "=== y are concerned with the equivalence of objects, x === y
succeeds if x and y are of the same type and are equivalent. Similarly, x *===y succeeds if x and y are
of different types or if they are not equivalent.

The meaning of the term 'equivalent' as used here depends of the type. For the types integer,
real, string, file, and cset, objects are considered to be equivalent if they have the same values,
regardless of how they are computed. For procedure, list, table, stack, and records, object
comparison fails regardless of value, unless x and y are the same object.

52 7.3 Copying Objects

Examples:
expression

("abc" || "def") === "abcdef"
7 === (6 + 1)
7 === "7"
csetC'amy") === cset("may")
" • " === &null
<10.10>=== <10.10>
x := y := list(10); x === y

value

abcdef
7

a m y

list

signal

success
success
failure
success
failure
failure
success

Note: The kind of comparison used in x === y is also used to determine whether two table
references are the same. See also Section 5.2.2.

7.3 Copying Objects

Assignment does not copy objects, but rather assigns the same object to another variable. For
example,

x := li«t(10)
y := x

assigns the same list to x and y. Subsequently, x[3] and y[3] reference the same element of the same
list.

An object may be copied by the built-in function copy(x). For example, if x is a list

z := copy(x)

assigns a copy of x to z. This copy has the same structure as x and the values of all the elements are
the same, but x and z are distinct objects. Subsequently, x[3] and z[3] reference elements in the
corresponding positions of different objects.

Note: Any type of object may be copied. In the case of integers, real numbers, strings, files,
and csets, the result is not a physically distinct object, but this difference is indistinguishable.
See Section 7.2.

7.4 Random Number Generation

The value of random(i) is an integer from a pseudo-random sequence with the range I to i,
inclusive.

The pseudo-random sequence is generated by a linear congruence relation starting with an initial
seed value of 0. This sequence is the same from one program execution to another, allowing
program testing in a reproducible environment. The seed may be changed by an assignment to
fitrandom. For example,

fitrandom := 0

resets the seed to its initial value.

Note: The maximum range of values in the pseudo-random sequence and the maximum seed
value are machine dependent.

Error Condition: If the value of i in random(i) is non-positive or out of range, or if the value
assigned to & random is negative or out of range. Error 207 occurs.

7.7 Type Determination 53

7.5 Time and Date

The value of the keyword &date is the current date in the form mm/dd/yy . For example, the
value of &date for April 1, 1979 is 0 4 / 0 1 / 7 9 .

The value of the keyword &clock is the current time of day in the form hh:mm:ss. For example,
the value of &clock for 8:00 p.m. is 20:00:00.

The value of the keyword &time is the elapsed time in milliseconds starting at the beginning of
program execution.

Note: The time required for program compilation is not included in the value of &time.

Error Condition: &date, &clock, and &time are not variables. If an attempt is made to
assign a value to one of them. Error 121 occurs.

7.6 The null Type
The null type is an identity in the concatenation of strings and in the addition of numeric objects.

It is also useful to indicate the end of a chain of pointers composed of structure objects.

The value of the keyword &null is the object of type null.

Note: There is only one null object.

The function null(x) converts x to the null object. The objects convertible to null are the null
string, " • " , the integer 0, the real number 0.0 and the empty character set.

Failure Condition: null(x) fails if x is not one of those values given above.

Examples:
expression

null("B")
null("D")
null(0)
null("0")
null(O.O)
null(&null)
nu l l ()

value

&null

&null

&null
&null
&null

signal
success
failure
success
failure
success
success
success

7.7 Type Determination

The function type(x) returns a string that is the name of type of x.

Examples:
expression

typed)
type(2.0)
typeC'B")
type()

value

integer
real
string
null

54 7.8 String Images of Objects

7.8 String Images of Objects

The function image(x) produces a string that resembles the form the value of x would have in the
text of a program. For strings, this includes enclosing double quotes and escapes as necessary. For
files, the name is enclosed in single quotes to avoid ambiguities with the images of strings. For
structures, their current size is given.

Note: The representation of file names is machine and system dependent.

Examples:
expression
imagefl)
image(2.0)
image('abc')
image("B")
image()
image(cset("drama"))
image(& input)
image(open("data"))
image(<1,0,1>)
image(list(-3:2))
image(complex(3.1,1.0))

value

1
2.0
"abc"
99 II

&null
cset("admr
&input
'data'
list(3)
list(-3:2)
complex(2)

55

CHAPTER 8

Procedures

8.1 Procedure Declaration

A procedure is declared in the form

procedure identifier [(identifier [, identifier] . . .)]
[local-declaration [; local-declaration] ...]
[initial-clause)
[procedure-body)

end

The identifier following procedure gives the name of the procedure. A local declaration has the
form

local-specification identifier [, identifier] ...

A local specification may be simply local or also specify a retention of dynamic or static.

Note: Identifiers in the argument list are local and dynamic.

Default: An omitted retention specification defaults to dynamic.

Examples:

local X; y
local dynamic count
static state, basis

Dynamic identifiers exist only during each invocation of the procedure. Static identifiers come
into existence at the first call of the procedure in which they are declared and remain in existence
after return from the procedure so that their values are retained between calls of the procedure.

The initial clause has the form

initial expr

The expression in the initial clause is evaluated once when the procedure is called the first time. The
initial clause is useful for assigning values to static identifiers.

The procedure body consists of a sequence of expressions that are executed when the procedure is
called.

Two examples of procedure declarations follow.

procedure max(i.j)
if i > j then return i elae return j

end

procedure accum(s)
local static t
initial t := "."
t := t || s || "."
return t

end

*6 8.2 Scope of Identifiers

8.2 Scope of Identifiers

As indicated in the preceding section, identifiers declared in a procedure are accessible only to
that procedure. If an identifier in a procedure is not declared, its scope is determined by global and
implicit declarations that apply to the entire program.

global identifier [, identifier] ...

specifies that the listed identifiers are to be interpreted as global in those procedures in which they
are not explicitly declared to be local. The values of such variables are accessible to all such
procedures.

Notes: A local declaration for an identifier in a procedure overrides a global declaration for
that identifier. Global declarations cannot occur inside other declarations but they otherwise
may occur anywhere in the program. Record field names have-global scope, but this scope
can be overridden by local declarations. ,̂ -~~"

The scope of an identifier for which there is neither a local nor a global declaration is determined
by

implicit [local | error]

If implicit local appears in a program, undeclared identifiers are interpreted as local. If implicit
error appears in a program, undeclared identifiers are interpreted as errors.

Notes: Only one implicit declaration may appear in a program and it affects the
interpretation of all undeclared identifiers in the program. An implicit declaration may not
occur inside another declaration, but it otherwise may appear anywhere in the program. If
there is no implicit declaration in a program, implicit local is assumed.

8.3 Procedure Activation

8.3.1 Procedure Invocation

Procedures are invoked in the same form that built-in functions are called:

expr ([expr [. expr J ... J)

where the expression before the parenthesized list has a procedure value. This expression usually is
an identifier. For example, the procedure max given in the example above might be used as follows:

m := max(size(x),size(y))

Argument transmission is by value. When a procedure is called, the expressions given in the call are
evaluated from the left to the right.

The values of the expressions in the call are assigned to the corresponding identifiers in the
argument list of the procedure. Control is then transferred to the first expression in the procedure
body.

Failure Condition: If any expression in the call fails, the remaining expressions are not
evaluated, the procedure is not called and the calling expression fails.

Note: If more expressions are given in the call than are specified in the procedure
declaration, the excess expressions are evaluated, but their values are discarded. If fewer
expressions are given in the call than are specified in the procedure declaration, &null is
provided for the remaining arguments.

8.3.2 Return from Procedures 57

8.3.2 Return from Procedures

When a procedure is called, the expressions in the procedure body are executed until a return
expression is encountered. There are four forms of return expression:

return [expr]
succeed [expr]
fail
suspend [expr]

Defaults: An omitted expr in a return expression defaults to &null. An implicit return is
provided at the end of every procedure body.

1. The expression return expr terminates the call of a procedure and returns the result of evaluating
expr. If expr fails, the procedure call fails. Otherwise the value of expr becomes the value of the
calling expression. For example

j := max(size(x),size(y))

assigns to j the size of the larger of the two objects x and y.

2. The expression succeed expr is the same as return expr, except that the signal resulting from the
evaluation of expr is ignored and the procedure signals success.

Note: If expr fails, &null is returned.

3. The expression fail terminates the call of a procedure with a failure signal, causing the calling
expression to fail. Consider the following procedure.

procedure typeq(x.y)
if type(x) == type(y) then succeed else fail

end

This procedure compares the types of x and y, succeeding if they are the same and failing otherwise.
If the types are the same, the value returned is &null. On the other hand,

return type(x) == type(y)

also succeeds if the types are the same and fails otherwise, but returns the type.

4. The expression suspend expr is similar to succeed expr, except that the procedure call is left in
suspension so that it may be resumed for additional computation. Execution of the procedure body
is resumed if goal-directed evaluation requests another alternative. Thus suspended procedures are
generators. Consider the following procedure.

procedure timer(t)
while &time < t do suspend
fail

end

This procedure suspends evaluation until the time exceeds a specified limit, in which case it fails.
Therefore

every timer(&time • 1000) do expr

evaluates expr repeatedly during an interval of approximately 1000 milliseconds.

58 8.3.3 Procedure Level

suspend, like every, produces all alternatives of expr as required. For example

suspend (1 | 2 | 3)

suspends with the values 1,2, and 3 on successive activations of the procedure in which it appears. If
the procedure is activated again, evaluation continues with the expression following the suspend.

If the expression in return or succeed is a global identifier or a computed variable (such as an
array reference), the variable is returned. In the case of local identifiers, only the value is returned.
An assignment can be made to the result of a procedure call that returns a variable. Consider the
following procedure:

procedure maxel(x,i,j)
if x[i] > x[j] then return x[i]

else return x[j]
end

An assignment can be made to a call of this procedure to change the value of the maximum of the
elements i and j in x:

maxel(roster, k,m) := n

Unlike return and succeed, suspend returns a local identifier as a variable, since local identifiers
in a procedure remain in existence while the procedure is suspended.

8.3.3 Procedure Level

Since procedures can invoke other procedures before they return, several procedures may be
invoked at any one time. The value of the &level is the number of procedures that are currently
active.

Error Conditions: There is no specific limit to the number of procedures that may be invoked
at any one time, but storage is required for procedure invocations that have not returned. If
available storage is exhausted. Error 501 occurs. &level is not a variable. If an attempt is
made to assign a value to it. Error 121 occurs.

8.3.4 Treeing Procedure Activity

Tracing of procedure invocation is controlled by the keyword &trace. If the value of &trace is
nonzero, a diagnostic message is printed on the standard output file each time a procedure is called
and each time a procedure returns or suspends. The value of &trace is decremented for each trace
message.

Default: The initial, default value of &trace is 0.

Note: Tracing stops automatically when Sttrace is decremented to 0. If a negative value is
assigned to &trace, tracing continues indefinitely.

In the case of a procedure call, the trace message includes the name of the procedure and string
images of the values of its arguments. The message is indented with a number of dots-equal to the
level from which the call is made (&level). In the case of procedure return, the trace message
includes the function name, the type of return, and the value returned, except in the case of failure.
The indentation corresponds to the level to which the return is made.

8.4 Listing Identifier Values 59

An example is given by the following program:

procedure acker(m,n)
if (m | n) < 0 then fail
if m = 0 then return n + 1
if n = 0 then return acker(m - 1,1)
return acker(m - 1 ,acker(m,n - 1))«

end

procedure main
&trace := -1
acker(1,3)

end

The trace output produced by this program is

line 10: acker(1,3)
.line 5: acker(1,2)
.. l ine 5: acker(1,1)
. . . l ine 5: acker(1,0)

line 4: acker(0,1)
. . . . l i ne 3: acker returned 2
. . . line 3: acker returned 2
. . . l ine 3: acker(0,2)
. . . l ine 3: acker returned 3
.. l ine 3: acker returned 3
.. l ine 3: acker(0,3)
.. l ine 3: acker returned 4
.line 3: acker returned 4
.line 3: acker(0,4)
.line 3: acker returned 5
line 3: acker returned 5

line 3: main returned &null

8.4 Listing Identifier Values

The function display(i) prints a list of all identifiers and their values in the i levels of procedure
invocation starting at the current procedure invocation.

Default: An omitted value of i defaults to I (only the identifiers in the currently invoked
procedure are displayed).
Note: display(&level) displays the identifiers in all procedure invocations leading to the
current invocation.

As an example of the display of identifiers, consider the following program:

global hexd
procedure hex(x)

display(&level)
return &ascii[16 * find(x[1], hexd) + find(x[2l hexd) - 16]

end
procedure main

local label
hexd := "0123456789ABCDEF"
label := "hex(61)="
write(label.hex("61'*))

end

60 8.5 Procedure Names and Values

The output of display(&level) is

hex locals:
x = "61"

main locals:
label = "hex(61)="

program globals:
main = procedure main
hex = procedure hex
hexd = "0123456789ABCDEF"

The global identifiers, which are common to all procedures, are listed at the end of every display
output, regardless of whether or not the global identifers are referenced by the displayed procedures.

8.5 Procedure Names and Values

A procedure declaration establishes an object of type procedure as the initial value of the global
identifier that is the procedure name. This object can be assigned to another variable and the
procedure can be called using the new variable. For example imax := max assigns to imax the
procedure for max as given earlier. Subsequently, imax(ij) can be used to compute the maximum
of i and j .

Any expression that produces a value of type procedure may be used in a call. For example, if
procs is a list whose elements have procedures as value, such as

procs[1] := max

then

procs[1](i,j)

computes the maximum of i and j .

If the name of a declared procedure is the same as the name of a built-in function, the declaration
overrides the built-in meaning.

Identifiers that are the names of built-in functions are not variables and values cannot be assigned
to them.

Note: Such names are similar to those keywords, such as Mime, that are not variables.

Error Condition: If an attempt is made to assign a value to an identifier that is the name of a
built-in function. Error 121 occurs.

61

CHAPTER 9

Program Organization and Execution

9.1 Program Structure

A program is a sequence of declarations. The executable components of a program are contained
in procedure declarations. These declarations may appear in any order. Every program must
contain a procedure named main.

9.1.1 Preparation of Program Text

A program is essentially a file of data. Program files may be constructed using any available
facility. Installations with interactive facilities may allow the program to be entered and run directly
from a terminal, although this is impractical for all but the shortest programs.

As a file, a program is a sequence of lines. In most cases it is convenient and natural to parallel
the logical structure of a sequence of expressions by the physical structure of a sequence of lines.

Several expressions can be placed on a single line using semicolons to separate them. For
example

x := 1
V := 2
z := 0

can also be written as

x := 1; y := 2; z := 0

The maximum length of a program line is 120 characters, although some systems may impose
more stringent limits. Sometimes an expression is too long to fit on a line. An expression may be
divided between lines at any point where a blank may be used. Infix operators whose operands span
lines must be surrounded by blanks.

There is one exception to the rule of dividing lines where blanks occur. Because of the dual use of
the character > as a list delimiter and an operator character, any operator containing the character >
must appear on the same line as its right operand.

Warning: Care should be taken not to split expressions at places where components are
optional. For example

return e

and

return
e

are quite different.

A string literal may be continued from one line to the next by entering an underscore (-) as the
last character of the current line. When a line is continued in this way, the underscore as well as any
blanks or tab characters at the beginning of the next line are ignored to allow normal indentation
and visual layout conventions to be used.

62 9.1.2 Comments

9.1.2 Comments

A comment is text in the line of a program that is not part of the program itself, but is included to
describe the program or to provide other auxiliary information. The character # causes the rest of
the line on which it appears to be treated as a comment. The following program segment shows the
use of comments.

These procedures print all the intersections of two words.
xcross uses nested every constructs to find all intersections and
calls xprint to print each intersection.

procedure cross(word1,word2)
local j , k
every j := upto(word2,word1) do # location in wordl of

every character in word2
every k := upto(word1[j],word2) do # and for each, all

positions in word2
xprint(word1,word2,j,k) # print the result

end

procedure xprint(word1, word2, j , k)
every write(right(word2[1 to k - 1],j)) # up to position in wordl
write(wordl) # then wordl
every write(right(word2[k + 1 to size(word2)].]))

then rest of word2
end

9.2 Including Text from Other Files

Text from other program files can be included by the declaration

include file-name

The contents of the named file replace the include declaration. This provides a convenient
mechanism for incorporating procedures or record declarations from libraries.

Notes: include may not appear inside a declaration. Included files may contain other
include declarations. The syntax of the file name is system dependent.

9.3 Program Execution

There are two phases of program execution. During the first phase, the text of the program is
translated into a form that can be executed by the computer. The program is then executed to carry
out the operations that it specifies.

9.3.1 Program Translation

An Icon program is first translated into a Fortran program. This translation involves two passes.
During the first pass, a listing is produced if requested. Specifications of options such as production

of a program listing are installation dependent.

The translator may detect a variety of errors. Most of the errors that the translator can detect are
syntactic ones: illegal grammatical constructions. The translator can also detect a few semantic
errors, such as undeclared identifiers in a program in which implicit error is specified.

9.3.3 Program Termination 63

Some errors are detected during the first pass of translation and appear in the program listing.
Errors detected during the second pass of translation appear after the program listing. See Appendix
E for a list of error messages.

Notes: Some grammatical errors are not detected until after the location of the actual cause
of the error. For example, if an extra left brace appears in an expression, the error is not
detected until some construction occurs that requires the matching, but missing right brace.
As a result of this phenomenon, the translator message may not properly indicate the cause
or location of the error. Similarly, some kinds of errors may cause the translator to
mistakenly interpret subsequent constructions as erroneous when, in fact, they are correct.
Several diagnostic messages referring to locations in proximity should be suspect.

If the translator detects a syntactic error, the translation process is continued, but the program is
not executed. There are also overflow conditions that cause termination of translation at the point
of overflow. See Appendix E.

9.3.2 Initiating Execution

Once the Icon program has been translated into a Fortran program, the Fortran program is
compiled and linked with a library of run-time routines. Execution begins with invocation of the
procedure named main.

9.3.3 Program Termination

Program execution terminates automatically on return from the initial call of the procedure
main.

Note: Since a default return is provided at the end of every procedure body, program
execution terminates on completion of evaluation of the body of the procedure main, even if
no explicit return has been made.

Program termination is also caused by stop(f,s1,s2,...,sn). The function stop writes s1 , s2, . . . ,
sn to f in the fashion of the write function (see Section 6.3) and then causes termination.

Note: The stop function can be used to terminate program execution at an arbitrary place
and is a convenient way of handling errors or abnormal conditions that are detected during
program execution.

The function exit() terminates program execution and preserves the core image of the program so
that it can be saved and restarted at a future time.

Note: The capability for saving and restarting core images, as well as the method by which it
is done, is machine dependent. The exit function may not be available on some machines.

There are three kinds of errors that may occur during program execution: program errors,
processor errors, and exception errors.

Program errors result from logical mistakes, invalid data, and so forth. If one of these errors
occurs, an error number and an explanatory message are printed and program execution is
terminated. Program errors are listed in Appendix E.

Most program errors are self-explanatory. There are two overflow conditions that relate to
storage capacity limits. Error SOI (insufficient storage) occurs if the amount of data required by a
program exceed the amount of storage that is available. One frequent cause of this error is
uncontrolled recursion. Error S02 (control stack overflow) occurs when there are too many
suspended generators with remaining alternatives.

Processor errors occur in the case of an unexpected situation or internal inconsistency in the Icon
processor. Such errors cause program termination with a message and a description of the internal
problem. If a processor error occurs, the problem should be brought to the attention of the person
responsible for the maintenance of the Icon processor. It is advisable to leave the program that
caused the problem, as well as any data that was processed, intact so that tests can be performed to
locate the cause of the error.

64 9.4 Programming Pitfalls

Exception errors may occur for a variety of reasons that are machine dependent. For example,
arithmetic overflow on some computers causes termination without allowing the Icon processor to
gain control. When a program terminates abnormally due to an exception error, the usual
termination messages are not provided and flies may not be closed. See Section 6.2.

9.4 Programming Pitfalls

Since Icon has several unusual features, the novice Icon programmer is likely to run into a
number of problems that would not come up in other programming languages. Some of the
problems that have been encountered are described below.

1. Dormant generators are reactivated in a last-in first-out manner. As a result, all possible
alternatives are attempted in the goal-directed mode of evaluation used by Icon. However, the order
of evaluation that results from last-in, first-out reactivation of generators is different from that in
conventional left-to-right, precedence-determined evaluation of expressions. In particular, if a
generator is reactivated for an alternative, only those components of the expression that follow the
reactivated generator are re-evaluated. If generators are used in complicated combinations,
unexpected results may occur for these reasons. In particular, it is bad programming practice to use
generators to produce side effects in an every clause. For example,

every t := t || "." || Is

does not assign to t the result of interspersing the characters of s with periods. A more
straightforward method should be used for this kind of operation, such as

every c := Is do t := t || "." || c

2. Reference to an element that is one position beyond the current end of an open list produces the
value specified in the initial clause in which the list was created. Thus if x is an open list with five
elements

every write(lx)

writes six lines, the last one producing a result corresponding to the specified initial value for x. It is
good practice to close lists except when they are in the process of being extended.

3. The referencing expression x[y] is polymorphous, allowing x to be a string, list, table, stack, or
record type. If x is not of the type that is expected, unusual results may occur. In particular, it is a
common programming practice for x to be a list and for an expression of the form x := x[i] to be
used to link through a structure. If x[i] is a string instead of a list (perhaps as a result of an error in
building the structure), an endless loop may result.

4. Return from a procedure from within a using clause does not restore previous the values of
&subject and &pos. Unless this effect is specifically desired, it is not good practice to return from
within a using clause.

5. The names of built-in functions have global scope and predefined values. As such, they may not
be used as identifiers. If such a name is declared in the program, it may be used as an identifier like
any other name, but the corresponding function is inaccessible. If such a declaration is made
unintentionally, the results may be mysterious.
6. Upper- and lower-case letters are equivalent, except in string literals. Thus identifiers such as
VALUE and value are the same, although they may appear to be different. This equivalence may
lead to unexpected collisions of identifiers.

7. SNOBOL4 programmers are prone to omit the || operator that is required for concatenation in
Icon. The result is usually a syntax error. A more subtle error is the use of = in place of := for
assignment. This error may produce undetected program malfunction or a run-time type error.

8. In some implementations, blanks may be added to lines on input. In such cases, it may be
desirable to trim all input.

65

APPENDIX A

Syntax

Formal Syntax

In the following listing of the formal syntax of Icon, the syntactic types bar, period, left-bracket,
and right-bracket indicate occurrences of the characters | , . , [, and] , which have metalinguistic
uses in the syntax description language. The lexical types identifier, integer-literal, real-literal,
string-literal, file-name, and word are not described here. Neither are the continuation of string
literals nor the situations in which semicolons may be omitted. See their description in the body of
the manual. The syntactic type record-type is determined by record declarations and varies from
program to program.

program ::= declaration [; declaration] ...

declaration ::= include-declaration | global-declaration \ implicit-declaration \
record-declaration \ procedure-declaration

include-declaration ::= include file-name

global-declaration ::= global identifier-list

identifier-list ::= identifier [, identifier ...]

implicit-declaration ::= implicit [local | error]

record ::= record identifier identifier-list end

procedure-declaration ::= procedure-header [local-declaration [; local-declaration] ...]
[initial-clause] [procedure-body] end

procedure-header ::= procedure identifier [(identifier-list)]

scope-declaration ::= local-declaration [; local-declaration] ...

local-declaration ::= local-specification identifier-list

local-specification ::= local | [local] static | [local] dynamic

initial-clause ::= initial expr

procedure-body ::= expr [; expr] ...

66 Syntax

expr ::= [literal \ identifier \ keyword \ operation \ call \ reference \

structure | control-struct \ return \ compound-expr \ (expr)]

literal ::= integer-literal \ real-literal \ string-literal

keyword ::= & word

operation ::= prefix-oper expr \ expr suffix-oper \ expr infix-oper expr

prefix-oper ::= + | - | " | !

suffix-oper ::= + | -
infix-oper ::= & | := | <- | :=: | <-> | bar | = | -= | > | < | >= | <= | == |

-== | === | -=== | bar bar \ * \ ++ | - | - | * | ** | / I *

call ::= expr (expr-list)

expr-list ::= [expr [, expr] ...]

reference ::= expr left-bracket expr right-bracket \ expr period identifier

structure ::= list \ table | stack \ record-object

list ::= list ([list-bounds]) [initial-clause] | < expr-list >

list-bounds ::- [expr :] expr

table ::= table ([expr])

stack ::= stack ([expr])

record-object ::= record-type (expr-list)

control-struct ::- if-then-else \ while-do \ until-do \ every-do \ repeat | case \
scan-using \ fails \ to-by \ next \ break

if-then-else ::= if expr than expr [else expr]

while-do ::- while expr do expr

until-do ::= until expr do expr

every-do ::= every expr [do expr]

Syntax 6 7

repeat ::= repeat expr

case ::= case expr of { case-clause [; case-clause] ... }

case-clause ::= literal-list : expr | default : expr

literal-list ::= literal [, literal] ...

scan-using ::= scan expr using expr

fails ::= expr fails

/o-^v ::= expr to expr [by expr]

/iex/ ::= next

break ::= break

re/Mr/i ::= fail | succeed [expr] | return [expr] | suspend [expr]

compound-expr ::= { [expr [; expr] . . .] }

68 Syntax

Precedence and Associativity

The relative precedence of reserved words and operators, arranged in ascending order, follows.
For infix operators, the associativity is listed also.

precedence type associativity

if-then-else
while-do
until-do
every-do
repeat
case
scan-using
return
succeed
fail
suspend
&

<-

<->
to-by
I

<
<=
>
>=

/

•

fails
I

2
3
3
3
3
4
5
6
6
6
6
6
6
6
6
6
6
7
8
8
8
8
9
9
9

10
11
11
11
12
12
12
12
12
13

infix
infix
infix
infix
infix

infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
infix
suffix
suffix
suffix
prefix
prefix
prefix
prefix
prefix
infix

left
right
right
right
right

left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
right

left

Syntax 69

Reserved Words

The following reserved words cannot be used as identifiers:

break
by
case
cset
default
do

dynamic
else
end
error
every
fail

fails
file
global
if
implicit
include

initial
integer
list
local
next
of

procedure
real
record
repeat
return
scan

stack
static
string
succeed
suspend
table

then
to
until
using
while

The Significance of Blanks

As a general rule, blanks are syntactic separators (except that a blank in a string literal represents
the blank character and has no syntactic significance). Syntactically, blanks are mandatory in some
places and optional in others.

Blanks are mandatory where they are necessary to avoid ambiguities:

1. Between reserved words and expressions unless the expressions are enclosed in parentheses.

2. Surrounding infix operators that otherwise would be adjacent to prefix or suffix operators. If a
blank occurs on one side of an infix operator, it must occur on the other side as well.

Blanks are optional before and after the punctuation characters parentheses, braces, semicolons,
colons, and commas.

70

71

APPENDIX B

Built-in Operations

The following sections list the built-in operations of Icon, with primary section references cited.

Functions

function section

any(c,s,i,j) 4.7.2
bal(d.c2,c3,s.i,j) 4.7.2
center(s1,i,s2) 4.5.3
close(x) 5.1.3, 5.2.3, 6.2
copy(x) 7.3
cset(x) 4.3
display(i) 8.4
exit{) 9.3.3
find(s1.s2,i,j) 4.7.1
image(x) 7.8
integer(x) 3.4.1
Ieft(s1.i.s2) 4.5.3
Ige(s1 ,s2) 4.6
Igt(s1,s2) 4.6
Ile(s1,s2) 4.6
Ilt(s1,s2) 4.6
many(c,s,i,j) 4.7.2
map(s1,s2,s3) 4.5.5
match(s1,s2,i,j) 4.7.1
mod(i,j) 3.1.2
move(i) 4.8.2
null(x) 7.6
numeric(x) 3.5
open(x.s) 5.1.3, 6.2
pop(k) 5.3.2
pos(i.s) 4.2.5
push(k,x) 5.3.2
random(i) 7.4
real(x) 3.4.2
read(f) 6.4
reads(f,i) 6.4
repl(s.i) 4.5.2
reverse(s) 4.5.5
right(s1,U2) 4.5.3
section(s.i.j) 4.5.4
size<x) 4.2.3, 5.6
sort(x.i) 5.5
stop(f,s1,s2 sn) 9.3.3
string(x) 4.4

•substr(s.i.j) 4.5.4

72 Built-in Operations

function

Infix Operators

section

tab(i)
top(k)
trim(s,c)
type(x)
upto(c,s,i,j)
write(f,s1.s2,...,sn)
writes(f,s1 ,s2 sn)

4.8.2
5.3.2
4.5.5

7.7
4.7.2

6.3
6.3

operator

<-

<->
I
&
+

>
>=
<
<=

section
2.3
2.9
2.3
2.9

2.8.3
2.8.4
3.1.2

4.3
3.1.2

4.3
3.1.2

4.3
3.1.2
3.1.2
3.1.3
3.1.3
3.1.3
3.1.3
3.1.3
3.1.3
4.5.1

4.6
4.6
7.2
7.2

5.4.3

Prefix Operators

operator
+

section
3.1.2
3.1.2

4.3
7.1

4.8.3

Built-in Operations 73

Suffix Operators

operator
+

section
3.1.2
3.1.2

Keywords

keyword

&ascii
&clock
&cset
&date
&input
&lcase
& level
&null
&output
&pos
&random
& subject
&time
&trace
&ucase

section
4.2.2

7.5
4.3
7.5
6.1

4.2.2
8.3.3

2.4
6.1

4.8.1
7.4

4.8.1
7.5

8.3.4
4.2.2

74

75

APPENDIX C

Summary of Defaults

Omitted Arguments in Functions

abbreviated form

any(c)
bal(.„s,i,jr
bal(c1,c2.c3)*
center(s,i)
display(i)
find(s1.s2)
find(s)
left(s.i)
many(cs)
many(c)
match(s1,s2)
match(s)
open(s)
pos(i)
read()
right(s.i)
section(s)
sort(x)
trim(s)
upto(cs)
upto(c)

equivalent expression

any(c,&subject,&pos,0)
bal(&cset,cset("(").cset(")"),s.i,j)
bal(c1 ,c2,c3,&subject.&pos,0)
center(s.i,"D")
display(1)
find(s1.s2.1.0)
find(s,&subject,&pos,0)
left(s.i,"D")
many(c.s.1,0)
many(c,&subject&pos)
match(s1.s2,1,0)
match(s.&subject,&pos,0)
open(s,"r")
pos(i,&subject)
read(&input)
right(s,i,"D")
section(s,1.0)
sort(x,1)
trim(s,cset("D"))
upto(c,s,1,0)
upto(c,&subject,&pos.O)

•These defaults apply separately and may be used in any combination. For example, bal() defaults
to

bal(&cset,cset("("),cset(")"),&subject,&pos,0)

Omitted arguments otherwise default to &null and are converted to the expected types accordingly.
For example, find(s1,s2,2) defaults to find(s1.s2,2,0).

76

77

APPENDIX D

Summary of Type Conversions

Explicit Conversions

There are five explicit type-conversion functions:

cset(x)
integer(x)
null(x)
real(x)
string(x)

Each of these functions converts objects of type cset, integer, null, real, and string to the type
indicated by the function name. The functions fail for objects of any other type. The success of a
conversion operation usually depends on the specific value involved. For example, integer("10")
succeeds, but integer("1a") fails.

Implicit Conversions

Where required by context, implicit conversions are performed automatically for all types
corresponding to the type-conversion functions listed above. If such an implicit conversion cannot
be made (that is, if the corresponding explicit conversion would fail), an error of the form 10/7
occurs.

78

79

APPENDIX E

Summary of Error Messages

Translator Error Messages

There are two categories of translator errors. The first category consists of syntax errors. Error
messages in this category indicate the erroneous condition detected by the translator, not necessarily
the cause of the error. The second category consists of overflow conditions that prevent the
translation from continuing.

Category 1: Syntax Errors

assignment to nonvariable
cannot open include file
duplicate declaration for local identifier
duplicate field name
extraneous closing brace
extraneous end
global name previously declared
identifier too long
integer character larger than base
invalid character
invalid construction
invalid context for break
invalid context for next
invalid declaration
invalid escape specification
invalid field name
invalid function call
invalid global declaration
invalid implicit declaration
invalid integer base
invalid integer literal
invalid keyword
invalid keyword construction
invalid operator
invalid real literal
invalid reference
invalid use of field name
misplaced declaration
missing argument
missing closing brace in case expression
missing closing parenthesis
missing colon in case expression
missing declaration
missing do in while or until expression
missing literal in case expression
missing main procedure
missing of in case expression

80 Summary of Error Messages

missing open brace in case expression
missing opening parenthesis
missing procedure end
missing procedure name
missing quote
•missing record end
missing record field
missing record name
missing semicolon or operator
missing then in if-then expression
missing using in scan expression
multiple defaults in case expression
multiple implicit declarations
numeric literal too long
procedure name previously declared
string literal too long
unclosed list
unexpected end-of-file

Category 2: Overflow Conditions

overflow in character table
overflow in global identifier table
overflow in integer literal table
overflow in local identifier table
overflow in nested include files
overflow in parse tree
overflow in procedure block table
overflow in procedure labels
overflow in real literal table
overflow in record table
overflow in string literal table
overflow in translator stack

Summary of Error Messages

Program Error Messages

81

Program errors fall into several major classifications, depending on the nature of the error. Error
numbers are composed from the number of the category times 100 plus a specific identifying number
within the category. In the list that follows, omitted numbers are reserved for possible future use.

Category 1: Invalid Type

101
102
103
104
105
106
107
108
109
111
112
121

or Form

integer expected
real expected
numeric expected
string expected
cset expected
file expected
procedure expected
record expected
stack expected
invalid type to size
invalid type to close
variable expected

Category 2: Invalid Argument or Computation

201 division by zero
202 zero second argument to mod
203 integer overflow
204 real overflow
205 real underflow
206 negative first argument in real exponentiation
207 invalid value to random or &random
210 invalid field name
211 negative second argument to repl
212 negative second argument to left
213 negative second argument to right
214 negative second argument to center
215 second and third arguments to map of unequal length
216 erroneous list bounds
217 negative stack size
218 negative table size
219 invalid first argument to sort
220 invalid second argument to sort
221 invalid second argument to open
222 invalid second argument to reads
230 case expression failure

82 Summary of Error Messages

Category 3: Invalid Structure Operation

301 table size exceeded
302 stack size exceeded

Category 4: Input/Output Errors

401 cannot close file
402 attempt to read file not open for reading
403 attempt to write file not.open for writing
411 input string too long

Category 5: Capacity Exceeded

501 insufficient storage
502 control stack overflow

83

APPENDIX F

The ASCII Character Set

Characters and Codes

isition

1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

code

000
001
002
003
004
005
006
007
010
Oil
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051

graphic

!
M

n
$
%
&
*

(
)

keyboard entry

contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
contro
space
»
m

n
$
%
&
r

(
)

shift P
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V

w
1 X
1 Y
1 Z
1 shift K
1 shift L
1 shift M
1 shift N
1 shift O

control function

null

bell
backspace
horizontal tab
linefeed
vertical tab
formfeed
carriage return

escape

84 The ASCII Character Set

sition

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

code

052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
I I I
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136

graphic

•

+
i

-
.
/
0
1
2
3
4
5
6
7
8
9
|
t

<
=
>
?
@
A
B
C
D
E
F
G
H
1
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
z
[
\
]
*

keyboard entry

*
+
»
-
,

/
0
1
2
3
4
5
6
7
8
9
'
*
<
=
>
7
@
shift A
shift B
shift C
shift D
shift E
shift F
shift G
shift H
shift I
shift J
shift K
shift L
shift M
shift N
shift O
shift P
shift Q
shift R
shift S
shift T
shift U
shift V
shift W
shift X
shift Y
shift Z
[
\
]
*

control function

•

The ASCII Character Set 85

sition

96
97
98
99
100
101
102
103
104
105
106
107
108
109
NO
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

code

137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

graphic

*

a
b
c
d
e
f
g
h
i
J
k
1
m
n
o
P
q
r
s
t
u
V
w
X

V
z
I
1
)
-

keyboard entry

_
•

A
B
C
D
E
F
G
H
1
J
K
L
M
N
O
P
Q
R
S
T
U
V

w
X
Y

z
{
1
!
•

rubout

control function

delete

86

87

Acknowledgement

The Icon programming language was designed by the authors in collaboration with Tim Korb.
Cary Coutant, Walt Hansen, and Steve Wampler have also made significant contributions. Other
persons, too numerous to list here, have provided criticism and suggestions that have been
incorporated in the current version of the language. The authors are indebted to Cary Coutant,
Madge Griswold, and Steve Wampler for careful readings of drafts of this manual and for advice on
presentation of language features. Special thanks are due to Madge Griswold for assisting in the
preparation of the index.

References

1. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky. The SNOBOL4 Programming
Language, second edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1971.

2. Griswold, Ralph E. and David R. Hanson. "An Overview of SL5*\ S/GPLAN Notices, Vol. 12,
No. 4 (April 1977;. pp. 40-50.

3. American National Standards Institute. USA Standard Code for Information Interchange,
X3.4-1977. New York, New York. 1977.

4. Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice-Hall,
Inc. Englewood CLiffs, New Jersey. 1978.

5. IBM Corporation. System/370 Reference Summary. Form GX20-1850. White Plains, New
York. 1976.

6. Control Data Corporation. SCOPE Reference Manual. Publication Number 60307200.
Sunnyvale, California. 1971.

88

89

INDEX

abnormal termination 12, 47, 64
accessing lists 40
accessing records 44
accessing stacks 43
accessing tables 41
addition 11
alternation 8
alternatives 8, 9, 64
any(c) 35-36
any(c.s,i,j) 31
argument transmission 56
arguments 4. 5
arithmetic 11-18
arithmetic operations 14
ASCII 2, 19. 21. 49, 83-85
assignment 4, 10. 28, 36. 40. 52
associativity 5. II, 13, 68
backslash 20
backtracking 9-10
bal(c1.c2,c3) 35-36
bal(c1.c2,c3.s,i.j) 32-33
balanced strings 32-33
blanks 5. 19, 61. 64. 69
break 9
break expressions 9
built-in functions 4-5. 60. 71-72
built-in strings 21
case clauses 6. 7
case control expression 6
case expressions 6-7
CDC 6000 49
CDC CYBER 49
center(s1,i,s2) 26
character codes 19, 49
character graphics 19
character positions 22
character set conversion 49
character sets 22-23. 31-33. 49. 83-85
characters 19
close(f) 48
close(x) 40. 42
closed tables 42
closing files 47-48. 64
collating sequence 19. 19-21. 24. 30. 49
comments 62
comparison operators 13. 14-15, 30. 51-52
compound expressions 7-8
computed procedures 60
computed variables 58
concatenation 25. 48. 64
conjunction 9

constructing strings 25-30
continuation of string literals 61
control expressions 6, 7
control structures 6-10
conversion to integer 15
conversion to real 16-17
copy(x) 52
copying objects 52
core images 63
creation of lists 39

<x1,x2 xn> 40
creation of records 44
creation of stacks 42
creation of table elements 41
creation of tables 41
csat 3. 15-17, 22, 23-24, 45. 48, 51
cset(s) 22
date 53
DEC-10 49
decimal notation 14
declarations 43-44, 55-56. 61. 62
default 6
default case clause 6. 7
defaults 5, 8, 22, 26, 27, 29, 30, 31, 32, 33. 35,

39, 40, 41. 42, 45, 48, 49. 55. 57, 58, 59. 75
defined types 43-44, 45
Display Code 49
display(i) 59
division 11
dynamic 55
dynamic identifiers 55
EBCDIC 49
element generation 51

Ix 51
•nd 43. 55
equivalence of objects 51
equivalent characters 2
error 56. 62
error conditions 4. 5. 7. 12, 13. 14. 16. 17, 21,

24. 25. 26, 29. 34. 39, 41. 42. 43. 45. 47. 48, 49.
52. 53. 58, 60

error messages 63. 64, 79-82
errors 62. 63
escape convention 20. 54
every-do expressions 9, 58. 64
exception errors 63. 64
exchanging values 4, 10, 11
exit() 63
expandable lists 40
exponent notation 14. 23
exponentiation II, 14, 15

90 Index

expressions 3-10
extra arguments 56
fail 57
fails 7
fails expressions 7
failure 6, 57
failure conditions 5, IS, 16, 17, 22, 23, 24, 27,

30. 31. 32. 33, 34, 35, 40, 42, 43. 45. 48. 49,
53, 56, 64

Held names 43
file names 47, 54, 62
file option specifications 47
file 3. 45, 51
files 47-49, 54
find(s) 35-36, 58
find(s1,s2,i.j) 31
floating-point representation 14, 15
Fortran 62, 63
generators 8, 31, 32, 33, 57, 64
global 56
global declarations 56
global identifiers 58, 60
goal-directed evaluation 1, 8-9, 57, 64
hexadecimal codes 19, 20
IBM 360/370 49
identifier declarations 55-56
identifiers 3. 4, 55, 56
if-then-ebe expressions 6
image(x) 48, 54
implicit 56. 62
include 62
including program text 62
indexes 39, 40
infix operators 5, I I , 13. 72

d • • c2 23
d • • c2 23
d — c2 23
e1 & e2 9
e1 | e2 8
i < j 13
i <= j 13
i > j 13
i >= j 13
i • j I I
i • j I I
i - j I I
i / j I I
i = j 13. 51
i ' j I I
i - = j 13
$1 == s2 5. 30, 51
si || s2 5. 25
s1 •== s2 30
x < - V 10
x < - > y 10

x := y 4
x :=: y 4
x === y 51. 52
x '=== y 51

initial 39. 55
initial clauses 39, 55, 64
initial substrings 27, 30, 30-31, 32
initiating execution 63
input 47, 49
input line length 49
integer 3. 15-17, 23-24, 45. 48. 51
integer arithmetic 11-13
integer comparison 13
integer division 12
integer literals 11
integer(x) 15-16
integers 3, 11-13
keywords 4. 5, 21. 22. 34, 47, 52, 53. 58. 73

&ascii 21, 28
&clock 53
&cset 22
8tdate 4, S3
& input 47, 49
8il case 21
& level 58. 59
&null 4, 21, 41, S3. 56
&output 47, 48
&pos 34-37. 64
&random 52
&subject 34-37, 64
&time 53
fttrace 4. 58
gtucase 21

Ieft(s1.i.s2) 25
letters 21
lexical analysis 31
lexical order 30, 44
ige(s1,s2) 30
Igt(s1.s2) 30
line terminators 48, 49
list bounds 39. 40. 45. 51
list elements 39-40
Nat 3. 39. 45. 51
lists 39-41, 45, 51
literal strings 21
literals 3. 6, I I , 14
Ile(s1.s2) 30
Ilt(s1.s2) 30
local SS. 56
local declarations 55, 56
local identifiers 58
loop exits 9
machine dependencies I I , 14, 23, 39, 47, 48. 49,

52. 54. 61. 62. 63
main procedure 10, 61. 63

Index 91

many(c) 35-36
many(c,s,i,j) 32
map(s1,s2,s3) 5, 29
mapping characters 29
match(s) 35-36
match(s1,s2,i,j) 30-31
mixed-mode arithmetic 15
mod(i,j) 12
modification of &subject 36
move(i) 36
multiplication 11
nested scanning 37
next 9
next expressions 9
null 3, 15-17, 23-24, 45, 48, 53
null character 21, 28
null string 21, 22, 25, 30
null type 3
null(x) 53
numeric tests 18
numeric(x) 18
object comparison 51-52
octal codes 19, 20
omitted arguments 5, 56
open lists 40, 45, 64
open options 47
open(s1,s2) 47
open(x) 40. 42
opening files 47-48
order of evaluation 56
operands 5
operators 5-6
out-of-range references 40
output 47-49
overflow conditions 63
parentheses 4. 5
PDP-11 23
polymorphous operations 64
pop(k) 43
pos(i) 35
pos(i.s) 22
positional analysis 34-35
positioning of strings 25
positions in strings 22
precedence 5. 13, 68
precision of real numbers 23
prefix operators 5. 12, 72

•i 12
-i 12
=s 36
_c 23

procedure 3. 45. 51. 60
proceudre activation 56.59
procedure bodies 10. 55
procedure calls 56, 57. 58, 60

procedure declarations 55-56, 60, 61
procedure invocation 56,57, 59
procedure level 58
procedure names 55
procedure values 60
procedures 10, 55-59
processor errors 63
program character set 2
program errors 63, 81-82
program execution 62, 63
program line length 61
program lines 61
program listings 62
program structure 61
program termination 12, 63
program text 2, 61
program translation 62
programming pitfalls 64
programs 10, 61
push(k,x) 43
quotation marks 3, 19, 54
radix representation 11
random number generation 52
random number seed 52
random(i) 52
read(f) 49
reading data 49
reads(f.i) 49
real 3. 15-17, 23-24. 45, 51
real arithmetic 14
real comparison 14-15
real literals 14
real numbers 3, 13
real(x) 16-17
record 43, 44
record fields 43-44
record declarations 43-44
record types 43-44, 45
records 39, 43-44. 45. 51
referencing expressions 40, 43. 44

k[x] 43
tW 41
x[i) 40. 43
z.r 44

repeat 7. 9
repeat expressions 7, 9
repl(s.i) 25
replication of strings 25
reserved words I, 3, 43, 69
residues 12. 14
retention specifications 55
return 58
return expressions 10
return from procedures 57-58
reverse(s) 29

92 Index

reversible assignment 10
reversible effects 9-10, 34, 35, 36
reversible exchange 10
reversing strings 29
right(s1.i.s2) 26
scan-using expressions 33-37, 64
•canned substrings 34, 36
scanning keywords 34-37
scanning operations 35-36
scope of identifiers 55-56
t«ction(s.i.j) 27, 30-31, 31
semicolons 8, 61
signals I, 6, 7
size of structures 45
size specifications 39, 41, 42
size(s) 21
size(x) 5. 45
sort(t.i) 45
sort(x) 44-45
sorting 44-45, 49
splitting of expressions 61
•tack 3. 42. 45. 51
stack references 43
stacks 39, 42-43, 45. 51
standard input file 47
standard output file 47
static 55
static identifiers 55, 56
stop(f,s1,s2 sn) 63
storage limits 21, 42
string 3. 15- 23-24, 48, 51
string analysis 30-33
string comparison 30. 49
string images 54
string literals 64
string replication 25
string scanning 33-37
string size 21, 30
string(x) 7,24, 45
strings 3, 19-28. 51, 54
structure size 45
structures 39-45, 52, 54
subscripts 40
substr(s.i.j) 27-28
substrings 27- 30-31

s[i] 28. SI

subtraction 11
succeed 57, 58
success 6
suffix operators 5, 13, 73

h 13
i- 13

suspend 57, 58
suspended procedures 57, 58
syntactic classes 1, 65-68
syntactic equivalences 2, 64
syntactic errors 20, 62, 63, 79-81
syntax notation 1-2
tab(i) 35, 36
tabts 3, 45, SI
table references 41, 45, 52
tables 39, 41-42, 45, 51
terminal substrings 27
time 53
to-by expressions 8
top(k) 43
trace messages 58
tracing procedure activity 58
trailing arguments 5
translation errors 79-81
transposing of characters 29
trim(s.c) 29
trimming strings 29
truncation 12, 15
type checking I
type coercion 1, 5
type conversion 5, 15-17, 23-25. 41, 48. 77
type determination 53
type(x) 53
types I, 3, 43, 45
underscores 61
until-do expressions 6, 9
upto(c) 35-36
upto(c.s,i.j) 32
values I, 3,6
variables 3-4, 4, 6
warnings 20, 21, 28. 36, 47. 49. 61
whiie-do expressions 6, 9
write(f,8l sn) 5. 48
writes(f,s1..!..sn) 48
writing data 48-49

r

