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Icon Implementation Notes 

L. Introduction, 

Icon is a new general-purpose programming language intended for nonnumeric 
applications, especially those involving string and structure processing. 
Much of the philosophical basis of Icon comes from its predecessors, SN0B0L4 
[1] and SL5 [2]. This report describes some aspects of the implementation of 
Version 2.0 of Icon. Further details concerning the language and its use may 
be found in Refs. [3-5]; additional implementation details are given in Refs. 
[5,6]. 

The Icon system consists of two major parts: a translator and a runtime 
system. The translator compiles an Icon program into a program in the target 
language. The runtime system contains all of the routines referenced by this 
program. Currently, Fortran is the target language. Thus, running an Icon 
program requires translating it into Fortran, compiling the Fortran program, 
and loading it with the previously compiled routines from the runtime system. 

!• The Translator 

The translator transforms Icon source text into Fortran code. This code 
consists mainly of calls to subroutines that implement the semantics. Each 
Icon procedure is translated into a corresponding Fortran subroutine. There 
is also a Fortran subroutine, generated by the translator, that controls 
transfer of control. The format of the generated subroutines is described in 
Appendix A. 

The translator consists of three parts: the lexical analyzer, the parser, 
and the code generator. 

1A The Lexical Analyzer 

The lexical analyzer makes two passes. The first pass builds the symbol 
table, procedure and record blocks, and resolves undeclared identifiers. In 
addition, it processes include statements and generates a listing if 
requested. The results of the first pass are data structure tables and a file 
containing the source text broken down into tokens (no declaration information 
is included). The format of each line of the file is 

token subtype 

where "token** is a number representing a token and "subtype** is a number 
representing additional information about the token. For example, if token 
represents a literal (INT, FLOAT, or STRING), subtype is the index of the 
literal in the appropriate literal table. If token represents an operator 
class (INFIX, PREFIX, SUFFIX), subtype describes the specific operator. If 
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token signifies an identifier (ALPHA), subtype is the index of the identifier 
in the identifier table. If token represents a keyword (LEXKEY), subtype 
identifies the specific keyword. Finally, subtype is the same as token for 
reserved words and keywords. Locations of newlines in the source program are 
also noted in the token file by including a token representing newline (NEW-
LINE) with the line number as the value of subtype. 

The second pass reads from the token file a token at a time as requested by 
the parser. 

1*2 The Parser 

The parser is a recursive descent parser, derived from a context-free gram­
mar for the language. In general, this grammar contains left-recursive pro­
ductions. These are transformed using the technique described in Ref. [7]. 
As an example of this technique, the production (note the left recursion) 

MULOP • -> MULOP •*» EXPOP 

becomes 

MULOP — > 
MULOPP --> 

EXPOP MULOPP 
»*» EXPOP MULOPP 
eps 

Appendix B contains a transformed grammar for Icon. 

Recursive descent is usually implemented by writing a recursive procedure 
for each nonterminal in the grammar [8], Since Icon is implemented in Ratfor, 
implementation of recursive procedures was not possible. Instead, a methodol­
ogy that explicitly simulates recursion is used. As a result, the entire 
parser is contained in one subroutine. Recursive procedures are simulated 
using labeled code segments, explicit push and pop operations, and a computed 
goto for dispatching to return points. The general form of the parser subrou­
tine is as follows. 
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repeat { 
call pop(case) 
goto (... 

labels for all nonterminal routines 
and all possible return points 
• • • ) • case 

nonterminall 
... code ... 
next 

nonterminal 
... code ... 
ca l l push(return21) 
goto nonterminalx 

return21 
. . . code . . . 
next 

nonterminaln 
... code ... 
next 

} 

The nonterminal code segments are written in much the same way as would 
recursive procedures in the usual implementation of recursive descent. As the 
code segments above indicate, the main difference is the need to stack the 
return label prior to "calling" a code segment for another nonterminal. For 
example, the code segment for multiplication operators derived from the syntax 
fragment given above is as follows. 

MULOP 
call push(MULOPP) 
goto EXPOP * "call" 

MULOPP 
while ( token == OMUL) { 

c a l l push(MULOPPl) 
goto EXPOP 

MUL0PP1 
continue 
} 

next 

The parser operates on a single Icon procedure and returns a parse tree for 
that procedure. The parse tree is a directed graph of connected nodes gen­
erated during parsing. Each node may have from one to eight fields depending 
on the semantics of the object represented by that node. The information 
placed in these fields is constrained by type: labels, pointers, and data. 
Data may not be placed in pointer fields nor pointers placed in data fields. 
The value of the variable ptree is the pointer to the current parse tree. 
When invoking other nonterminal functions the value of ptree must be saved on 
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the stack along with the return label. Unlike the return label, which is 
popped automatically, the saved value ptree must be popped explicitly. A node 
is assigned to ptree upon the completion of the processing for each nontermi­
nal. For example, for the multiplicative operators the "continue" in the 
above code is replaced by 

ptree = node5(CINFIX, t, tn, e, ptree) 

where e is a pointer to the parse tree for the left side of the operator and 
ptree (inside the function call) is a pointer to the right side. 

In addition to ptree, there are several other important variables global to 
the parser. 

The value of the variable fail indicates whether or not an expression can 
fail. As described in Section 3.3, expressions that can fail require addi­
tional code to drive them. This, in turn, requires that an additional node be 
produced during parsing to indicate the need for the driving code. Thus, many 
of the nonterminal code segments in the parser save and restore fail if neces­
sary. 

The value of the variable var indicates whether not an expression is a 
variable. This value is used in those code segments that deal with operators, 
such as assignment, that change the value of program variables. 

The value of the variable type indicates the data type of the current 
expression. Type is used to determine which runtime type conversions, if any, 
are required. 

The values of the variables brklab and nxtlab contain the labels used in 
break and next expressions. A zero value indicates an improper context for 
break or next. 

1*2 The Code Generator 

The code generator produces the Fortran code for a single Icon procedure. 
It takes as input the parse tree and generates code while traversing the tree 
in preorder. Since tree traversal is a recursive process, the recursion is 
simulated using a technique similar to that used in the parser. The targets 
of the recursive calls in the parser are determined by the grammar and are 
constant. The targets in the code generator, however, are determined by the 
configuration of the parse tree. This is handling by placing the label of the 
next code segment on the stack in addition to the return point. The general 
form of the code generator is as follows. 
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call push(CDONE) * set end marker 
call push(heap(ptree+NTYPE)) * type of first node 
while (ptree > 0) { 

call pop(case) * current node or label 
goto (... 

labels of parse tree nodes 
and of return points 
• • • ) , case 

Cnode 
el = heap(ptree+NPTRl) * leftmost subtree 
call push(ptree) * save current parse tree 
call push(Cnodel) * save return point 
call push(heap(el+NTYPE)) * type of first node 
ptree = el * reset parse tree 
next 

Cnodel 
call pop(ptree) * restore parse tree 
call printx(**C output code$n$0**, 0, 0) 
next * "return** 

CDONE * end marker 
break 
} 

Appendix C gives the form of the generated code for each language construct. 

1A The Runtime System 

The bulk of the Fortran program generated by the translator consists of 
calls into the runtime system. The runtime system is a set of subroutines 
that implements the built-in operations in the language. There are also many 
utility subroutines, including the storage management subsystem, for example. 

Operation of the runtime system revolves around a system stack. Functions 
in the runtime system get their arguments from the stack and leave results 
there. Activation records for procedures are also placed on the stack. In 
addition, the storage management system uses the stack as a starting point for 
locating accessible data objects during reclamation. 

Generators are implemented using the common two-stack model for implement­
ing backtracking [9]. The second stack, called the control stack, is used to 
hold information associated with dormant generators. The system stack could 
be used to hold this information without the elaborate threading [10] required 
in more general cases. This simplification, which is used in Ucon (a more 
recent implementation of Icon for the PDP-11), is possible because the seman­
tics of Icon generators imply that the two stacks operate in parallel. 

The following sections describe the representation of data, the organiza­
tion of storage at runtime, and the operation of some of the subroutines in 
the runtime system. 
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3.1 Data Representation and Storage Organization 

Storage is represented by the Fortran array mem. Mem is divided into five 
regions roughly corresponding to the division of data types into classes. 
These regions are depicted in Figure 1. 

string 
region 

strbas 

strfrp 

+ + 

string 
qualifier 
region 

+ + 

integer 
region 

sqlbas 

intbas 

+ + 

heap 
region 

hepbas 

hepfrp 

stack 
region 

+ ,_+ 

sp 

stkbas 

theend 

Figure 1. Storage Regions. 

All source-language values have a uniform representation: an index into 
mem (indices into mem are often referred to as pointers). The type of a value 
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is determined by the region to which it refers, e.g. if the value is within 
the bounds specified by intbas and hepbas, it is an integer. 

The structure, allocation algorithm, and reclamation technique of each 
region is determined by the kind of data stored in that region. 

Integers are represented by pointers into the integer region. Each cell in 
the region contains one integer. The lower portion of the region houses a 
range of permanently allocated integers; the typical range is -1 to 100. A 
linked list of free cells in the integer region is maintained; allocation con­
sists of simply returning the first free integer on this list. 

Strings are represented by pointers into the string qualifier region. A 
string qualifier is a two-cell block containing the length of the string and 
the character offset from the beginning of mem to the first character in the 
string. The actual string is stored in the string region [11,12], A qualif­
ier for the null (zero-length) string is permanently allocated as the first 
qualifier in the qualifier region. Allocation of qualifiers is similar to 
allocation of integers; a linked list of free qualifiers is maintained. For 
the string region, a free space pointer is maintained (strfrp, see Figure 1). 
Allocation is done by simply incrementing strfrp by the amount of the request. 

All aggregates (e.g. lists, tables, records) are stored in the heap. 
Storage in the heap is allocated in self-identifying blocks. All pointers 
into the heap point to the head of a block. There are four block layouts, 
depending on whether the block contains pointers (called "floating addresses**) 
and is varying or fixed size. The four variations are shown in Figure 2. 
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+ + 
I block code I 
+ + 

I back reference I 
+ + 
I size I 
+ + 

data 

varying size, 
pointers 

+ + 

I block code I 
+ . + 

I back reference | 
+ + 

I I 
I data I 

I I 
+ + 

fixed size, 
pointers 

+ + 
I block code I 

size 

data 

varying size, 
no pointers 

+ + 
fixed size, 
no pointers 

Figure 2. Block Layouts. 

Allocation in the heap is performed by incrementing the free space pointer 
hepfrp (see Figure 1) by the amount of the allocation request. 

The stack grows from stkbas backwards towards hepfrp (see Figure 1); sp 
indicates the top of the stack. Variables and values on the stack are 
represented by two-cell blocks as depicted in Figure 3. 

offset 

base 

•+ 
l<-
-+ 

I 
-+ 

sp 

Figure 3. Stack representation of variables and values. 

The meanings of base and offset are summarized in Table 1. 
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Table 1. Base and Offset for Variables and Values. 

base base size 
symbol 

-7 

offset meaning 

>0 

0 

-1 

- 2 

-3 

- 4 

-5 

TVNONE 

TVLCL 

TVPOS 

TVRAND 

TV SUBS 

2 

2 

2 

2 

2 

2 

6 

- 6 TV SUB J 

TVTBL 

- 8 TVARRY 6 

<0 va lue i s mem(base-offse t ) 

value i s o f f s e t 

not used 

<0 value i s mem(cfp+offset) 

value i s &pos 

value is &random 

<0 value is substr(s,i,l): 
-offset-1 is i 
mem(sp+2) is value of s 
-mem(sp+3)-2 is 1 
mem(sp+4) is offset for s 
mem(sp+5) is base for s 

<0 value is substring of &subject: 
-offset-1 is i 
mem(sp+2) is value of s 
-mem(sp+3)-2 is 1 
-mem(sp+4)-l is new &pos or 
mem(sp+4) is 0 if &pos is to 
be positioned at end of the 
replacement string 

mem(sp+5) is 0 

<0 value is a table element t[e]: 
-offset is hash bucket offset 
mem(sp+2) is t 
mem(sp+4) is e 

<0 value is open list element a[i]: 
-offset-1 is i 
mem(sp+4) is a 

Negative values of base indicate "trapped variables"; these represent kinds of 
access that requires special processing [13]. Note that several of the 
trapped variables occupy 6 stack cells. 

Since the stack is used by the reclamation routines to locate accessible 
data, it is essential that "junk" — anything that is not a valid pointer — 
never get pushed onto the stack. There are, however, cases in which it is 
necessary to push arbitrary integer data, such as return labels, onto the 
stack. This is done by preceding such data by -1 and a count of the number of 
junk cells that follow. For example, Figure 4 shows the stack configuration 
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after pushing the junk values 52 and -104. 

+ + 

I -104 |< sp 
+ + 

I 5 2 I 
+ + 

I 2 | 
+ + 

I " I I 
+ + 
I I 
/ . / 
/ . / 
/ . / 
| |< stkbas 
+ + 

Figure 4. Stack Configuration After Pushing 52 and -104. 

Figures depicting the representation of all types of data are given in 
Appendix E. 

3.2 Reclamation 

Reclamation of storage in each region consists of identifying the accessi­
ble data in that region, and restructuring the region so that the space occu­
pied by inaccessible data is made available for reuse. Determining the acces­
sible data in any region starts by examining the contents of a set of loca­
tions that may contain pointers; these locations are called tended locations. 
The tended locations include the system stack and about two dozen specific 
locations in the labeled common ctend. 

Reclamation in the integer region consists of "sweeping** the tended loca­
tions and the heap for integers. Prior to sweeping, a bit map of the integer 
region is pushed onto the stack; this is used to record accessible integers. 

Reclamation in the qualifier region is similar to that in the integer 
region. The bit map is not needed, however. Accessible qualifiers are 
"marked" by setting their location fields to -(location+1) (the location field 
of free qualifiers is -1). 

Reclamation in the string region consists of sorting pointers to the active 
qualifiers by their location fields, and compacting accessible strings into 
the lower part of the string region. The complete algorithm is given in Ref. 
[12]. 

Heap reclamation is performed using the SITBOL compactifying garbage col­
lection algorithm [13]. There is an important aspect of this scheme that had 
a significant effect on the implementation. The marking phase of the algo­
rithm constructs a linked list of pointers to every accessible block. For 
each such block, this list begins at its type code field (see Figure 2). One 
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problem is that pointers are simply indices into mem and consequently pointers 
to the tended locations in ctend are not easily represented. In order to 
address the tended values, the values in ctend are copied to reserved loca­
tions at the base of the stack prior to marking, and the updated values are 
copied back upon completion. 

The second problem is that pointers are indistinguishable from type codes, 
which terminate the linked lists mentioned above. Thus, the heap must be 
positioned in mem so that all pointers into the heap have values greater than 
the largest type code value. 

Further details concerning reclamation are given in Ref. [6], 

1*3 Handling Failure 

The system stack holds intermediate results. This presents a problem in 
the implementation of the immediate termination of an expression; it is neces­
sary to be able to discard partially computed results that are no longer 
relevant. On entry to any expression that may fail (and only those expres­
sions), the current height of the system stack is saved. When evaluation of 
the expression is completed (with either success or failure), the stack height 
is reset. 

For any expression that may fail, the generated code is 

call xmark(MAXLABELS*p + n) 

<code for expression> 

n call xdrive 

where p is the procedure number. The code 

if(signal.eq.O)goto 1 

is emitted following every operation that may fail. In every procedure, the 
Fortran statement 

1 label=flabel 

precedes the goto switch yard; thus transfer to the failure point is effected 
by transfer to label 1. 

The purpose of xmark is to save the current heights of the system and con­
trol stack, the current value of flabel, and set flabel to the argument. 
These data are saved on the stack as depicted in Figure 5. The current 
heights of the system and control stacks are given by the values of marksp and 
markcp, respecitively. In order to avoid problems during heap reclamation, 
marksp and markcp are saved as offsets from the base of the appropriate stack. 
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+ + 
I old flabel |< sp 
+ + 
I old marksp | 
+ ,__+ 
I old tnarkcp I 
+ + 
I 3 I 
+ + 
I "I I 
+ + 
| |< new marksp 
+ + (an offset) 

Figure 5. Stack after Call to xmark. 

Using the current value of marksp, xdrive resets the stack heights and flabel 
to their saved values. 

The routines xmark and xdrive are also used with generators; see Section 
3.6. 

1A Loop? 

The possibility of break and next appearing within loops is similar in 
nature to the possibility of failure in expressions. It is necessary to be 
able to discard partially computed results on the stack that are no longer 
relevant. Thus, every loop begins with 

call xlpbeg 

and ends with 

call xlpend 

The purpose of xlpbeg is similar to that of xmark; it saves the appropriate 
data on the system stack as illustrated in Figure 6. The variable lptop is an 
offset to the saved data. 
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+ + 
I cp (as offset) |< sp 
+ + 

I markcp | 
+ + 

I marksp I 
+ + 

I flabel I 
+ + 

I cp (as offset) I 
+ + 

I markcp | 
+ + 

I marksp I 
+ + 

I flabel I 
+ + 

I old Iptop | 
+ + 

I 9 I 
+ + 

I - 1 I 
+ + 

| |< new Iptop 
+ + (an offset) 

Figure 6. Stack after Call to xlpbeg. 

The purpose of xlpend is similar to xdrive; it uses Iptop to restore the data 
saved by xlpbeg. It also insures that null is returned by the loop expres­
sion. 

The break expression simply causes a transfer to the statement containing 
the call to xlpend (see Appendix C). The fl£X£ expression, however, calls 
xnext and then transfers to the code for the first statement in the loop. The 
routine xnext resets cp, markcp, marksp, and flabel using the data saved in 
the stack at Iptop. It also discards partially computed results by setting sp 
to Iptop - 11, which was the value of sp upon entry to the loop (after the 
call to xlpbeg). This latter action is actually incorrect for every loops; 
see Section 3.6. 

As an example, consider a loop of the form 

while ... is { 
• • • 
break, 
• • • 
next 
• • • 
} 

The general form of the generated code is 
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call xlpbeg 
23001 continue 

... * evaluate condition 
if(signal.eq.O)goto 23002 

goto 23002 
... 

call xnext 
goto 23001 

* break 

* next 

goto 23001 
23002 call xlpend 

*• do next iteration 

Note that two copies of cp, markcp, marksp, and flabel are saved; this is 
necessary for proper execution of next in the every loop. This is described 
further in Section 3.6. 

1*5 Procedure Activation 

Activation records for procedures are placed on the system stack. Figure 7 
shows the layout of activation records. 
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+ + 
I return label l< sp 
+ + 
| marksp I 
+ + 

I markcp I 
+ + 

I flabel I 

+ + 

I lptop I 
+ + 
I cp (as offset) | 
+ + 
I 6 I 
+ + 

I -1 I 
+ + 
I I 
+ last local + 
I I 
+ + 
I I 
/ . / 
/ . / 
/ . / 
I I 
+ + 
I I 
+ first local + 
I I 
+ + 
I I 
+ last argument + 
I I 
+ + 
I I 
/ . / 
/ . / 
/ . / 
I I 
+ + 

I I 
+ first argument + 
I I 
+ + 

| procedure |< cfp 
+ , + 

I old cfp(offset)| 
+ + 

Figure 7. Layout of Activation Records for Procedures. 

The base of the current activation record is indicated by cfp. Local 
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variables and arguments are accessed using offsets from cfp. Specifically, 
formal parameters are considered local variables, and the value of local vari­
able i is found at mem(cfp-2*i). 

Note that the values of local variables occupy two cells in accordance with 
the convention described in Section 3.1. The physical location of a local 
variable changes if the stack is moved. Thus, local variable i (as opposed to 
its value) is represented as shown in Figure 8 (see also Figure 3 and Table 
1). 

+ + 
I -2*i |<-
+ + 
I - 2 I 
+ + 

sp 

Figure 8. Stack Representation of Local Variable i. 

Note that the value of -2*i is never -1, which would confuse the reclamation 
routines. 

3.6 Generators 

When a generator is invoked, it produces its first value and then prepares 
for the possibility of reactivation. This preparation involves saving data 
related specifically to the generation of alternatives (such as the bounds and 
increment in the £o. generator) and partially computed results that might oth­
erwise be consumed before the generator is reactivated. A second stack, the 
control stack, is used for saving these kinds of data. 

The data saved for a dormant generator is taken from the system stack. The 
precise amount of data saved is determined by the value of marksp. Specifi­
cally, sp and marksp delimit that portion of the system stack that contains 
partially computed results and data relevant to the generation of alterna­
tives. For any expression containing generators, calls to xmark and xdrive 
are generated as they are for expressions that may fail. The call to xmark 
establishes the value of marksp that is used when data is pushed onto the con­
trol stack. 

A generator "prepares for reactivation" by pushing any data it may need 
onto the system stack and calling save. This call causes all data from sp to 
marksp to be pushed onto the control stack. The layout of that data is dep­
icted in Figure 9. 
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+ + 

I label |< cp 
+ + 
| n | (number of cells saved) 
+ + 
I 2 I 
+ + 

I - 1 I 
+ + 

I I 
/ n saved data / 
/ cells from the / 
/ system stack / 
I I 
+ + 

Figure 9. Control Stack after Call to save. 

The label saved on the control stack (see Figure 9) is the label of the call 
to the generator. As described below, this is used to transfer control back 
to the generator so that it can generate alternatives. 

Dormant generators are activated by a call to xdrive. Subroutine xdrive 
performs different functions depending on whether dormant generators exist or 
not. If the signal is failure and there are no dormant generators, xdrive 
behaves as described above (see Section 3.3). If dormant generators exist 
upon failure, xdrive activates the most recently suspended dormant generator. 

The general outline of xdrive is as follows. 

subroutine xdrive 
if (signal == 0 & dormant generators exist) { 

label = reactivation label of dormant generator 
restore system stack from top of control stack 
} 

else { * expression succeeded or has no alternatives 
label = 0 
pop and save expression value off of system stack 
reset cp and sp from marksp and markcp 
restore marksp, markcp, & flabel from data saved by xmark 
push expression value onto system stack 
} 

return 
end 

The value of label after a call to xdrive indicates whether a generator is to 
be reactivated. If label is non-zero, it is the label to which control should 
be transferred. If label is zero, execution continues without transfer of 
control (note that xdrive does not change signal). Every call to xdrive is 
followed by the statement 

if(label.ne.O)goto 2 
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in order to reactivate the dormant generator. Subroutine xdrive detects the 
presence of dormant generators by noting that the size of the control stack 
has increased since the last call to xmark. This is accomplished using the 
value of markcp set by xmark. 

As mentioned above, generators save local data that is needed to compute 
alternatives by pushing this data onto the system stack and calling save. 
When the generator is reactivated, the system stack is restored to its state 
just prior to the call to save so that the generator may retrieve these saved 
data. A call to a generator results in Fortran code of the form 

L call x????(MAXLABELS*p+L) 

where p is the current procedure number and L is the reactivation label. In 
order to avoid having to write two routines for every generator (one for the 
initial activation and one for reactivation), the value of signal is used to 
determine the current phase of a generator. If the signal indicates success, 
the generator is being activated for the first time; it initializes itself and 
computes its first value. If the signal indicates failure, the generator is 
being reactivated; it restores its local data (now on the top of the system 
stack) and computes its next value. A general outline of this scheme is 

subroutine x????(lab) 
if (signal == 1) { * initial call 

initialize local variables 
} 

else { * reactivation call 
signal = 1 2 assume success 
restore saved local variables 
} 

generate next value 
if (generation succeeded) { 

push local variables onto system stack 
call save(lab) 
pop local variables off system stack 
push generated value onto system stack 
} 

else 
signal = 0 * generation failed 

return 
end 

Note that the reactivation label -- the argument to a generator subroutine --
is passed along to save. The initialization of local variables usually 
involves using additional arguments passed on the system stack. These argu­
ments are not saved, however. The information they convey is usually stored 
in local variables (perhaps in a different form) and saved by calling save. 
The form in which the local data is saved varies from generator to generator. 
For example, the Jtfi generator simply saves the current value and the limit as 
integers on the stack preceded by the -1 flag and a cell count. 

As an example, the generated code for the expression 
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x + 2 < (1 is 5) 

is as follows, assuming the expression appears in procedure number 1 and MAX-
LABELS is 1024. 

call xmark(1028) * set 4 as failure label 
call xlocal(l) * push x as a variable 
call xderef * dereference to get value of x 
call xcnumr * convert value to numeric 
call xpintg(l) * push integer literal **2" 
call xadd * add value of x + 2 
call xpintg(2) * push integer literal "1*" 
call xpintg(3) * push integer literal "5** 

5 call xto(1029) * generate 1 12 5 
if (signal.eq.0)goto 1 * failure if io. is exhausted 
if(xncmp(junk).ge.0)goto 1 * compare top 2 numeric values 
signal=l * reset signal after comparison 

4 call xdrive * here on failure 
if(label.ne.0)goto 2 * jump to reactive generator 

Alternation (|) requires a different implementation than other generators. 
Consider the expression el I e2; if alternation were treated like other gen­
erators, the generated code would be something like 

<evaluate el> 
<evaluate e2> 

L call xalt(MAXLABELS*p+L) 

The problem here is that if el fails, e2 would not be evaluated. In addition, 
e2 is evaluated "too early** — it should only be evaluated if a subsequent 
expression fails. The actual code for el | e2 is of the form 

L if(signal.eq.0)goto 23001 * if failure evaluate e2 
call save(MAXLABELS*p+L) * save current state 
<evaluate el> 
goto 23002 * skip over e2 

23001 signal=l * here on subsequent failure... 
<evaluate e2> * reset signal and evaluate e2 

23002 continue 

Generators are reactivated by xdrive only upon subsequent failure in the 
expression in which they appear. The every expression causes repeated activa­
tion of generators even if they succeed. Since every e is equivalent to 

e & (1 = 0) 

and every el djj e2 i s equ iva l en t to 

el & {e2; 1 = 0 } 

every is implemented by simply setting the signal to 0 before the call to 
xdrive, thereby causing xdrive to reactivate dormant generators. 
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Specifically, the generated code for the expression 

every el An. e2 

is of the form 

call xlpbeg * begin a loop 
call xmark(MAXLABELS*p+L) 
<evaluate el> 
call xpop * discard value of el 
call xevery * reset saved control stack height 
<evaluate e2> 
call xpop * discard value of e2 

23001 continue 
signal=0 * force failure 

L call xdrive * reactivation generators in el 
if(label.ne.0)goto 2 

23002 call xlpend * end of loop 

The sole purpose of xevery is to reset the second copy of cp, markcp, marksp, 
and flabel saved by xlpbeg (see Figure 6). The values of these variables 
saved by xlpbeg do not reflect the data accumulated by the evaluation of el. 
If a next expression appears in e2, the failure label, system stack, and con­
trol stack must be restored to the state that they had immediately following 
the evaluation of el. The second copy of this data saved by xlpbeg is used 
for this purpose and xevery simply records the current values of cp, markcp, 
marksp, and flabel after every activation of el. 

As mentioned in the previous section, however, xnext resets sp, which 
amounts to discarding partially computed results that may be required for com­
puting alternatives of el. The reason this action does not cause problems is 
that upon return from xnext, control is transferred to the statement labeled 
23001 (see above), signal is set to 0, and xdrive is called. If el has more 
alternatives, xdrive resets sp from the current value of marksp, which was 
reset by xevery. Thus, resetting sp in xnext has no effect in every loops. A 
better technique would be to treat every loops differently from the other loop 
contructs. In particular, the duplicate copy of the data saved by xlpbeg (see 
Figure 6) is needed only for every loops, and most of the complications to 
break and next are caused by the generative aspects of every. 

kx Programming Conventions and Peculiarities 

There are a number of less-than-obvious programming conventions and pecu­
liarities in the implementation of Icon that deserve discussion. Most of 
these are due to the use of Fortran as an implementation language. 

4_J Stability 

All routines in the implementation are classified as either stable or 
unstable. An unstable routine is one that has the potential of causing a rec­
lamation in some region; a stable routine is one that can never cause a recla­
mation. A routine is unstable if it calls an unstable routine. 
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This convention is very important because failure to place pointers in 
tended locations prior to calling unstable routines leads to time- and data-
dependent bugs that are very difficult to locate. Thus, the usual technique 
is to push local variables that contain pointers onto the system stack before 
calling an unstable routine and to pop them off upon return. 

LMI Galling Unstable Routines 

Actual arguments to Fortran subroutines and functions are passed by refer­
ence. This mechanism has induced a particular programming convention for cal­
ling unstable routines. 

To illustrate the problem, consider the call 

z = cat(mem(sp), mem(sp+2)) 

which appears to concatenate the two values at the top of the stack and assign 
the result to z. The problem is that if cat is unstable (assume it is), the 
value of sp may change midway during its execution due to a reclamation. If 
this occurs, the addresses of the actual arguments are no longer valid. 

In implementations of Fortran that use call by reference for all arguments 
(e.g. CDC FTN [15]), references to the actual arguments after the reclamation 
access what appears to be junk. Some implementations of Fortran (e.g. DEC 
Fortran-10 [16]), use call by value-result for scalar arguments. In this kind 
of argument transmission, the value of the actual argument is fetched upon 
entry to the routine and stored in a local variable. Upon exit, the final 
value of the local varible is stored in the actual argument. After the recla­
mation in this case, not only do references to the actual argument access 
junk, but the assignment upon exit overwrites the wrong data in mem. 

These problems are avoided by writing the above call as 

x = mem(sp) 
y = mem(sp+2) 
z = cat(x, y) 

and not using the values of x and y after the call to cat. 

Similar comments apply to statements such as 

call f(g(x), y) 

where g(x) returns a pointer and f is unstable. In this case, the value of 
g(x) is stored in an untended temporary location. Note, however, that this 
statement is safe if f copies its arguments to tended locations upon entry; 
this "trick** is not used. 

As a result of these problems, there are very few routines that have cal­
ling sequence like cat above. Most unstable routines do not take tended argu­
ments as Fortran arguments, but use the system stack for the transmission of 
tended arguments and results. 
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4^2 The Stack 

Since the stack grows backwards, the sequence to push x onto the stack is 

sp = sp - 1 
mem(sp) = x 

This code does not check for overflow, however. Overflow has occurred when 
the stack pointer (sp) equals the heap free pointer (hepfrp). Thus, the 
correct sequence to push x is 

if (sp == hepfrp) 
... overflow ... 

sp = sp - 1 
mem(sp) = x 

This sequence is tedious, and is avoided by the use of stkchk. The call 
stkchk(n) insures that there are at least n cells of available stack space. 
Thus, to push several values onto the stack, stkchk is called to insure enough 
room followed by code to push each value. For example, the following code 
pushes x and y onto the stack as junk. 

call stkchk(4) 
mem(sp-l) = -1 
mem(sp-2) = 2 
mem(sp-3) = x 
mem(sp-4) = y 
sp = sp - 4 

The pushes are written in this fashion to avoid repeated decrements of sp. In 
a reference like mem(sp-3), most Fortran compilers will absorb the -3 into the 
address portion of the instruction. As a result, the above sequence usually 
generates good code using the value of sp (in a register) as an offset from 4 
different addresses. 

As shown in Appendix C, there are no calls to stkchk in the generated code. 
The translator estimates the amount of stack space required to execute a pro­
cedure, and stkchk is called during procedure invocation to insure sufficient 
stack space. 
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Appendix A. Format of the Generated Icon Program 

The following code is an example of the overall structure of the Fortran 
code generated by the translator. 

1 subroutine icon 
2 common /craain/signal,label.flabel*line 
3 integer signal,label,flabel»line 
4 integer xcmp,xlcmp,xncmp,xcomp 
5 integer s(NS+l), p(NP+l), g(NG+l), i(NI+l), 1(NL+1) 
6 real r(NR+l) 
7 data s/NS, .../ 
8 data g/NG, .../ 
9 data p/NP, .../ 
10 data i/NI, .../ 
11 data 1/NL, .../ 
12 data r/NR, .../ 
13 call sinit(s,g,p,i,r,l) 
14 call xglobl(l) * 1 = main procedure global 
15 call xderef * get the procedure value 
16 call xcproc * convert to procedure and go to it 
17 call xinvok((NP+l)*MAXLABELS,0) 
18 goto 23001 
19 1 call pi 
20 goto 23001 
21 
22 
23 
24 i call pi 
25 goto 23001 
26 
27 
28 
29 NP call pNP 
30 goto 23001 
31 NP+1 return 
32 23001 kk=label/MAXLABELS 
33 goto (1,2 NP),kk 
34 call syserr(29hicon: illegal internal label.) 
35 return 
36 end 
37 
38 
39 
40 subroutine pi * one for each Icon procedure 
41 common /cmain/signal,label,flabel,line 
42 integer signal,label,flabel,line 
43 integer xcmp,xlcmp,xncmp,xcomp 
44 goto 2 
45 3 continue 
46 
47 . * generated code (see Appendix B) 
48 
49 1 label=flabel 
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50 2 ifQabel/MAXLABELS . n e . i ) r e t u r n 
51 kk=mod(label,MAXLABEL) 
52 g o t o ( l , 2 , 3 n ) , kk 
53 c a l l s y s e r r ( 2 7 h p i : i l l e g a l i n t e r n a l l a b e l . ) 
54 r e t u r n 
55 end 

The numbers in the following explanation refer to line numbers in the above 
program skeleton. 

2-3, 41-42: The labeled common cmain contains the global identifiers refer­
enced by the compiled code; it serves to communicate current status informa­
tion to and from the runtime system. Signal is the current value of the sig­
nal, label is used for transfer of control much like a location counter, fla­
bel contains the label to which control is transferred upon failure, and line 
is the line number in the source program of the current focus of execution. 

4,43: These routines are called for comparisons; they return integers. 

5-12: These arrays contain initialization data. The general format is that 
the first element contains a count of the number of data elements that follow. 
The array s contains the characters appearing in string literals and identif­
iers. Each string is terminated by an EOS character. The array p contains 
control data for each procedure; g contains global identifier names as indices 
into s; i contains literal integers; 1 contains literal strings as indices 
into s; and r contains literal reals. 

13: Sinit initializes storage and copies the data appearing in s, g, p, i, r, 
and 1 into the appropriate Icon storage regions. 

14-18: This is code to invoke the main procedure much in the same way that 
other procedures are invoked. The return point, labeled NP+1 where NP is the 
number of procedures, causes a return to the Fortran main program, which ter­
minates execution. 

19-23: Labels that may be targets for transfer of control are composed of two 
parts, a procedure number p and an internal (Fortran) label i. A label is 
represented by p*MAXLABELS+i. Whenever control leaves a procedure, it returns 
to the subroutine icon, which serves to transfer control to another procedure. 
The code in this section accomplishes this kind of transfer. 

40,44-45: Each Icon procedure is translated into a Fortran subroutine named 
pi, where i is the procedure number. The procedure entry point is in line 44, 
but execution begins by transferring to the local "switch yard** in case the 
procedure was suspended. 

46-48: Generated code for the procedures as described in Appendix B. 

49-52: This is the local goto "switch yard" that is used to transfer control. 
The label 1 causes the current value of flabel to be used; transfer of control 
upon failure is effected by transfer to this label. If the target is not in 
the current procedure, a return to subroutine icon is made, otherwise control 
is transferred as indicated by the local label portion of the value of label. 
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With two exceptions, the Fortran code generated by the Icon translator con­
forms to the Fortran standard as embodied in the PFORT verifier [17]. 

The most serious exception is in the data statements illustrated in lines 
7-12 above. It is assumed that arrays can be initialized by data statements 
of the form 

data a /value of a(l), value of a(2) value of a(N)/ 

or, if the array is large, by data statements of the form 

data (a(k),k=l,100) /value of a(l), ..., value of a(100)/ 
data (a(k),k=101,200) /value of a(101), .... value of a(200)/ 
data (a(k),k=201,N) /value of a(201) value of a(N)/ 

The ANSI standard form requires explicit specification of each element of the 
array, i.e. 

data a(l) /value of a(l)/ 
data a(2) /value of a(2)/ 

• • • 
data a(N) /value of a(N)/ 

If the form of the data statements causes problems, it can be changed by modi­
fying the translator routine outds, which is called to output most data state­
ments. Exceptions are the array r (see line 12 above), which is output in 
outhdr, and field offset arrays, which are described below. 

The second exception concerns the use of block data subprograms. If 
records are used in an Icon program, arrays containing field offsets are gen­
erated and placed the labeled common cflds. A block data subprogram is gen­
erated that initializes these arrays. The problem is that, in this case, 
there are two block data subprograms — the one that initializes cflds and one 
that initializes other runtime data used by every Icon program. Having more 
than one block data subprogram is contrary to the ANSI standard and may cause 
problems. If so, the offset arrays can be made local to each Fortran pro­
cedure (corresponding to each Icon procedure) by modifying the translator rou­
tine outfld. This routine is called to output the common statement in each 
subroutine and may be modified to output the data statements in place of the 
common statement. Note that the arrays are output directly by outfld; outds 
is not called. Thus, if the form of data statement mentioned above causes 
problems, outfld will need to be modified. 
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Appendix B, A Grammar for Xcon 

The following grammar for Icon is left-factored and has no left-recursive 
productions. The code segments in the parser for each non-terminal are 
derived from the productions in this grammar. Language constructs processed 
by pass one, such as record and global declarations, are not shown. 

PROC 
INIT 

SLIST 
SLISTP 

DEXP 
EXP 

AND 
ANDP 

ASSIGN 
ATYP 

TOBY 
TOBYP 

BY 

OR 
ORP 

RELOP 
RELOPP 

CONCAT 
CONCATP 

ADDOP 
ADDOPP 

— > 
— > 

1 
--> 
--> 

1 
1 

--> 
--> 

1 
--> 
--> 

1 
--> 
--> 

1 
1 
1 
1 

--> 
--> 

1 
— > 

1 
--> 
--> 

1 
--> 
--> 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

— > 
— > 

1 
--> 
— > 

1 
1 
1 

Drocedure INIT SLIST 
jjaitiai DEXP 
eps 
DEXP SLISTP 
»;f DEXP SLISTP 
<newline> DEXP SLISTP 
eps 
EXP 
AND 
eps 
ASSIGN ANDP 
'&» ASSIGN ANDP 
eps 
TOBY ATYP 
'*:=" ASSIGN 
": = :" ASSIGN 
*'<-'* ASSIGN 
"<->" ASSIGN 
eps 
OR TOBYP 
Ifi OR BY TOBYP 
eps 
b_i OR 
eps 
RELOP ORP 
1 I * RELOP ORP 
eps 
CONCAT RELOPP 
»=' CONCAT RELOPP 
"~=" CONCAT RELOPP 
»<» CONCAT RELOPP 
"<=" CONCAT RELOPP 
f>' CONCAT RELOPP 
">=" CONCAT RELOPP 
"==" CONCAT RELOPP 
"~==** CONCAT RELOPP 
"===" CONCAT RELOPP 
"-===" CONCAT RELOPP 
eps 
ADDOP CONCATP 
"II" ADDOP CONCATP 
eps 
MULOP ADDOPP 
•+* MULOP ADDOPP 
•-• MULOP ADDOPP 
"++" MULOP ADDOPP 
"—" MULOP ADDOPP 
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MULOP 
MULOPP 

EXPOP 
ETYP 

SUFFIX 
SUFFIXP 

PREFIX —> 

PRIME — > 

PRIMEP —> 

ELSEX 

DOX 

RETX 

— > 

--> 

— > 

» + » 
t _ t 

* = » 
» i» 

eps 
EXPOP MULOPP 
•*• EXPOP MULOPP 
»/• EXPOP MULOPP 
'***" EXPOP MULOPP 
SUFFIX ETYP 
»A» EXPOP 
eps 
PREFIX SUFFIXP 
»+» SUFFIXP 
,-» SUFFIXP 
fails SUFFIXP 
eps 

PREFIX 
PREFIX 
PREFIX 
PREFIX 
PREFIX 

PRIME 
»&» KEYWORD PRIMEP 
LOCAL PRIMEP 
GLOBAL PRIMEP 
BUILTIN •(• ELIST »)» PRIMEP 
RNAME •(• ELIST • ) • PRIMEP 
LITERAL PRIMEP 
•(• EXP • ) • PRIMEP 
•<• ELIST •>• PRIMEP 
•{' SLIST •}' PRIMEP 
if DEXP then DEXP ELSEX PRIMEP 
while DEXP ifl DEXP PRIMEP 
until DEXP ifl DEXP PRIMEP 
every EXP DOX PRIMEP 
repeat DEXP PRIMEP 
fail PRIMEP 
succeed RETX PRIMEP 
return RETX PRIMEP 
suspend RETX PRIMEP 
break PRIMEP 
next PRIMEP 
stack '(» EXP »)• PRIMEP 
table •(• EXP • ) • PRIMEP 
HS± • ( f PROTO • ) • AINIT PRIMEP 
scan DEXP usj&z DEXP PRIMEP 
case DEXP fi£ '{' CLIST f}• PRIMEP 
f(f ELIST • ) • PRIMEP 
•{• EXP »}' PRIMEP 
1.• FNAME PRIMEP 
eps 
else DEXP 
eps 
ilfl DEXP 
eps 
DEXP 
eps 
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EL 1ST 
ELISTP 

LITERAL 

ALIST 
ALISTP 

PROTO 

UBX 

AINIT 

CLIST 
CLISTP 

CELEM 

LLIST 
LLISTP 

--> 
--> 

1 
--> 

1 
1 --> 

--> 

1 
— > 

1 
— > 

1 
--> 

1 
— > 
--> 

1 
1 

--> 

1 
--> 
--> 

1 

EXP ELISTP 
' ,* EXP ELISTP 
eps 
INT 
FLOAT 
STRING 
LOCAL ALISTP 
',» LOCAL ALISTP 
eps 
DEXP UBX 
eps 
,:» DEXP 
eps 
initial DEXP 
eps 
CELEM CLISTP 
»;» CELEM CLISTP 
<newline> CELEM CLISTP 
eps 
default *:! DEXP 
LLIST •:• DEXP 
LITERAL LLISTP 
1,• LITERAL LLISTP 
eps 
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Appendix C, Syntax and Corresponding Fortran Code 

This appendix gives an informal BNF-like description of Icon and the form 
of the corresponding generated code. The notation is as follows: curly 
braces denote required constructs, square brackets denote optional constructs, 
and ellipses following a group denote repetition. No attempt has been made to 
show relative precedence in expressions. A nonterminal appearing in the code 
denotes its own generated code. 

A <procedure> is 

procedure <ident> [ <header-decl> ] <dexpl>... end 

LI continue 
ca l l xreset(L2) 
<dexpO> 

L2 continue 
<dexpl> 
call xpop 
call xpnull 
call xretrn 
goto JUMP 

* generate entry label 
* reset if initial 
* evaluate initial clause 
* secondary entry point 
* generate procedure body 
* pop final value 
* generate default return 
* and return 

A <dexp> is 

if <dexp> then <dexpl> else <dexp2> 

Fl 

F2 

<dexp> 
call xpop 
if (signal 
<dexpl> 
goto F2 
signal = 1 
<dexp2> 
continue 
if (signal 

,eq. 0) goto Fl 

* evaluate boolean 
* throw away value 
* jump if <dexp> failed 
* evaluate the statment 
£ skip second expression 
* reset signal to success 
* evaluate second expression 

,eq. 0) goto FAIL * check failure if necessary 

whj,le <dexp> dji <dexp> 

Fl 

F2 

call xlpbeg 
<dexp> 
call xpop 
if (signal . 
<dexp> 
call xpop 
goto Fl 
call xlpend 

eq. 0) goto F2 

* Fl = next, F2 = break lab 
* establish loop beginning 
* evaluate boolean 
discard its value 
skip out on failure 
evaluate the expression 
discard its value 
and loop 
close down loop 

- 30 -



until <dexp> £& <dexp> 

Fl 

F2 

call xlpbeg 
<dexp> 
call xpop 
if (signal , 
signal = 1 
<dexp> 
call xpop 
goto Fl 
call xlpend 

eq. 1) goto F2 

* establish loop beginning 
* evaluate boolean 
* discard its value 
* skip out on success 
* remove failure signal 
* evaluate the expression 
* discard its value 
* and loop 
* close down loop 

every <exp> 

LI 

call xmark(Ll) 
<exp> 
call xpop 
signal = 0 
call xdrive 
if (label .ne. 0) goto JUMP 
signal = 1 

* mark stacks; failure label 
* evaluate expression 
* throw away value 
*• force failure 
* iterate 
* jump if more alternatives 
* loop must succeed 

every <exp> dji <dexp> 

call xlpbeg 
call xmark(Ll) 
<exp> 
call xpop 
call xevery 
<dexp> 
call xpop 

Fl continue 
signal = 0 

LI call xdrive 
if (label .ne. 0) goto JUMP 

F2 call xlpend 

* establish loop beginning 
* mark stacks; failure label 
* evaluate the generator 
* throw away value 
* mark c stack data 
* evaluate the expression 
throw away value 
next label 
force failure 
iterate 

* jump if more alternatives 
* close down loop 

repeat <dexp> 

Fl 

F2 

call xlpbeg 
<dexp> 
call xpop 
if (signal . 
call xlpend 

eq. 1) goto Fl 

* establish loop beginning 
* evaluate expression 
* discard value 
* loop on success 
* close down loop 
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scan <dexpl> using <dexp2> 

<dexpl> 
if (signal . 
call xderef 
call xcstrg 
call xscanl 
<dexp2> 
call xscan2 
if (signal , 

eq. 0) goto FAIL 

eq. 0) goto FAIL 

* evaluate subject 
* abandon on failure 
* dereference if needed 
* convert to string if needed 
* setup for scanning 
* do scanning 
* restore &subject and &pos 
* check for failure 

case <dexp0> fif { C { <liti>, }... I default : <dexpj> ]... } 

F2 

<dexp0> 
call xecase 
if (xcomp(nl,tl).ne.O) goto F2 
call xpop 
<dexpl> 
goto Fl 
if (xcomp(n2,t2).ne.O .and. 

xcomp(n3,t3).ne.O)) goto F3 * check next set of literals 
call xpop * discard case expression value 
<dexp2> * evaluate expression for lit2 
goto Fl * skip remainder of case 

* evaluate case expression 
* error if <dexp0> fails 
* nl = literal, tl = type 
* discard case expression value 
* evaluate expression for litl 
2 skip remainder of case 

Fn call xpop 
<default expression> 

Fl continue 

* discard case expr value 
* evaluate default 

fail 

call xpnull 
signal = 0 
call xretrn 
goto JUMP 

* push &null 
* force failure 
* return &null,failure 
* computed branch 

succeed 

call xpnull 
signal = 1 
call xretrn 
goto JUMP 

* push &null 
* force success 
* return &null,succeed 
* computed branch 
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succeed <dexp> 

<dexp> 
signal = 1 
call xretrn 
goto JUMP 

* evaluate return value 
* force success 
* return value»success 
* computed branch 

return 

call xpnull 
signal = 1 
call xretrn 
goto JUMP 

* push &null 
* force success 
* return &null,success 
* computed branch 

return. <dexp> 

<dexp> 
call xretrn 
goto JUMP 

* evaluate return value 
* return value*signal 
* computed branch 

suspend 

call xpnull 
LI call xsusp(Ll) 

if (label .ne. 0) goto JUMP 
signal = 1 

* push &null 
* set up for suspend &null 
* jump if really suspending 
* insure success signal 

suspend <exp> 

call xmark(Ll) 
<exp> 

L2 call xsusp(L2) 
if (label .ne. 0) 

LI call xdrive 
if (label .ne. 0) 
signal = 1 

break 

goto JUMP 

goto JUMP 

X 

% 
X 

X 

X 

X 

X 

mark stacks 
evaluate the argument 
suspend argument 
jump if really suspending 
extract alternative value 
jump if we have any 
force success 

goto F2 * break from loop (to xlpend) 

next 

call xnext 
goto Fl 

* adjust stack heights 
* iterate 
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< [ <exp> , ]... > 

<expl> 
call xderef 
<exp2> 
call xderef 

* compute first element 
* dereference if necessary 
2 compute second element 
5s dereference if necessary 

call xllist(n) 2 n = number of elements 

<dexp: 

LI 

call xmark(Ll) 
<exp> 
call xdrive 
if (label .ne. 0) goto JUMP 

* mark stacks; failure label 
* evaluate expression 
2 drive expression to success 
* jump if more alternatives 

<exp> is 

For built-in prefix, suffix, and infix operators and built-in functions, 
the code sequences given below are the maximum that may be required. In gen­
eral, the label Ll (both in label position and as argument) is supplied only 
if the operation is a generator. The signal test and branch to FAIL is elim­
inated for unconditional operations (note that all generators are condi­
tional). Dereferencing and conversion code is also optional. Dereferencing 
is required whenever a variable (either natural or computed, including values 
returned by defined procedures) is given when a value is required. A call to 
a conversion routine is required when an argument is of the wrong or unknown 
type. The conversion routines are 

xcintg convert to integer 
xcstrg convert to string 
xcfile convert to file 
xcreal convert to real 
xccset convert to character set 
xcnumr convert to numeric 
xcproc convert to procedure 
xcrecd convert to record 

<prefix> <exp> 

<exp> 
call xderef 
call xc???? 

Ll call "opcode*"(Ll) 
if (signal .eq. 0) goto FAIL 

2 evaluate expression 
2 dereference arg if needed 
* convert arg if needed 
* "opcode" is prefix name 
* check failure if needed 
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<exp> <suffix> 

LI 

<exp> 
call xderef 
call xc???? 
call "opcode"(Ll) 
if (signal .eq. 0) goto FAIL 

* evaluate expression 
* dereference arg if needed 
2 convert arg if needed 
* "opcode" is suffix name 
2 check failure if needed 

<expl> <infix> <exp2> 

<expl> 
call xderef 
call xc???? 
<exp2> 
call xderef 
call xc???? 

LI call "opcode"(Ll) 
if (signal .eq. 0) goto FAIL 

2 evaluate first operand 
* dereference arg if needed 
2 convert arg if needed 
2 evaluate second operand 
2 dereference arg if needed 
* convert arg if needed 
2 "opcode" is infix name 
2 check failure if needed 

The code for numeric and lexical comparisons uses two functions, xncmp and 
xlcmp. These functions compare the top two values on the stack and return -1, 
0, or +1» if the top value is less than, equal to, or greater than the value 
below it on the stack. This result is then compared to zero using one of the 
Fortran comparisons (e.g., .le.). 

<expl> <relop> <exp2> 

<expl> 
call xderef 
call xc???? 
<exp2> 
call xderef 
call xc???? 

* evaluate first argument 
2 dereference arg if needed 
* convert arg if needed 
2 evaluate second operand 
* dereference arg if needed 
2 convert arg if needed 

if (x?cmp(junk).??.0) goto FAIL * check relation 

<ident> ( [ <exp> , ]... ) 

<expl> 
call xderef 
call xc???? 
<exp2> 
call xderef 
call xc???? 

* built-in procedure 
* evaluate first argument 
* dereference arg if needed 
* convert arg if needed 
2 evaluate second argument 
* dereference arg if needed 
2 convert arg if needed 

LI call "opcode"(Ll) * pass correct number of args 
if (signal .eq. 0) goto FAIL * check failure 
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<expl> ( [ <exp2> , ]... ) 

<expl> 
call xderef 
call xcproc 
<exp2> 
call xderef 
<exp3> 
call xderef 

* procedure call 
2 evaluate proc name 
* dereference proc 
* convert to procedure 
* evaluate first arg 
* dereference arg if needed 
* evaluate second arg 
* dereference arg if needed 

call xinvok(Ll,n) 
goto JUMP 

LI if (signal .eq. 0) goto FAIL 

* n = number of args 
* jump to the procedure 
* check failure 

{ [ <dexp> ]... } 

<dexp> 
call xpop 

* generate expression code 
* discard value (except last) 

<exp0> [ <expl> ] 

<exp0> 
<expl> 
call xacc 
if (signal .eq. 0) goto FAIL 

* evaluate list or string 
* evaluate subscript 
* access list 
* check failure 

<expl> & <exp2> 

<expl> 
call xpop 
<exp2> 

* evaluate left argument 
* throw away value 
* evaluate second argument 

<expl: <exp2> 

LI if (signal .eq. 0) goto Fl 
call save(Ll) 
<expl> 
goto F2 

Fl signal = 1 
<exp2> 

F2 continue 

* Fl = alternate label 
* LI = reactivation label 
* evaluate first expression 
* skip second expression 
* reset for success 
* evaluate second expression 
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<expl> iSL <exp2> 

LI 

<expl> 
call xderef 
call xcintg 
<exp2> 
call xderef 
call xcintg 
call xto(Ll) 
if (signal .eq. 0) goto FAIL 

* evaluate from expression 
* dereference arg if needed 
* convert to integer 
* evaluate to expression 
* dereference arg if needed 
* convert to integer 
*• generate values 
* check failure 

<expl> £o. <exp2> jjy. <exp3> 

LI 

<expl> 
call xderef 
call xcintg 
<exp2> 
call xderef 
call xcintg 
<exp3> 
call xderef 
call xcintg 
call xtoby(Ll) 
if (signal .eq. 0) goto FAIL 

* evaluate from expression 
* dereference arg if needed 
* convert to integer 
* evaluate to expression 
* dereference arg if needed 
* convert to integer 
* evaluate by expression 
* dereference arg if needed 
* convert to integer 
* generate values 
* check failure 

<dexp> iaiis. 

<dexp> 
signal = iabs(signal - 1) 
if (signal .eq. 0) goto FAIL 

* evaluate expression 
* invert signal 
* check failure 

list ( [ <expl> : ] <expu> ) [ initial <exp> ] 

<expl> 
<expu> 
<exp> 
call xmarry(0 or 1) 

* evaluate lower bound 
* evaluate upper bound 
* evaluate initial value 
* make list 

tgbje ( <exp> ) 

<exp> 
call xmtabl 

* evaluate table size 
* make the table 

stack ( <exp> ) 

<exp> 
call xmstak 

* evaluate stack size 
* make the stack 
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<record name> ( <expl>, •••» <expm> ) 

<expl> * evaluate first field 

<expm> 
call xmrecd(t,k,m,n) 

* evaluate last field 
* make record, t = record type, 
* k = record name, 
* n = number of fields 

<exp> . <identifier> 

<exp> 
call xfacc(fi) 

* evaluate record expression 
* fi = field offset array 

<integer> 

call xpintg(n) * n = integer offset 

<real> 

call xpreal(n) * n = real offset 

<string> 

call xpstrg(n) * n = string offset 

<local identifier> 

call xlocal(n) * n = identifier offset 

<global identifier> 

call xglobl(n) * n = identifier offset 

A <body> is 

[ <decl> ]... C <dexp> ]... 

A <decl> is 

Igcal C <ident> , ]... 
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A <literal> is 

string not containing double quote 
* string not containing single quote ' 
{ digit }... 
{ digit }... . C digit ]... 

A <ident> is 

{ alpha } [ alpha | digit | underscore { alpha | digit }...] 
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Appendix D. Built-in Operators. Functions, and Keywords 

This appendix contains a list of the Icon built-in operations. The follow­
ing information is included with each operation. 

argument information 
type of the returned result 
failure indication 
generator indication 

The argument information is either the datatype expected or the default if no 
argument is given (from which the type may be deduced). Note that all genera­
tors may fail. 

£*1 Built-in Operators 

+( — convert to numeric 
+any -> numeric 

call xnumr 

-( — negate 
•numeric -> numeric 

call xneg 

:( — tab over matched string 
:string -> string 

call xtabm generator 

*( — negate character set 
'cset -> cset 

call xnotc 

!( -- access structure 
!any -> variable 

call xbang generator 

)+ — increment 

variable+ -> variable 

)- — decrement 

call xdupl 
call xderef 
call xcnumr 
call xpone 
call xadd 

call xdupl 
call xderef 
call xcnumr 
call xpone 
call xsub 

variable- -> variable 
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)A( — power 
numeric A numeric -> numeric 

call xpower 

)*( — multiplication 
numeric * numeric -> numeric 

call xmul 

)+( — addition 
numeric + numeric -> numeric 

call xadd 

)-( — subtraction 
numeric - numeric -> numeric 

call xsub 

)/( — division 
numeric / numeric -> numeric 

call xdiv 

)**( — character set union 
cset ** cset -> cset 

call xunion 

)—( — character set difference 
cset -- cset -> cset 

call xdiff 

):=( — assignment 
variable := any -> any 

call xasg may fail 

):=:( — value swap 
variable :=: variable -> any 

call xswap may fail 

)<( — .It. predicate 
numeric < numeric -> numeric 

xncmp(junk) 

)<=( — .le. predicate xncmp(junk) 
numeric <= numeric -> numeric 

)=( — .eq. predicate 
numeric = numeric -> numeric 

xncmp(junk) 

)==( — .eq. string 
string == string -> string 

xlcmp(junk) 

41 -



)>( — .gt. predicate 
numeric > numeric -> numeric 

xncmp(junk) 

)>=( — .ge. predicate xncmp(junk) 
numeric >= numeric -> numeric 

) I |( — concat 
string |I string -> string 

call xcat 

)~=( — .ne. predicate xlcmp(junk) 
numeric ~= numeric -> numeric 

)~= = ( — #ne# string 
string ~== string -> string 

xlcmp(junk) 

)===( — .eq. structure 
any === any -> any 

)~===( — .ne. structure 
any ~=== any -> any 

xcmp(junk) 

xcmp(junk) 

)<-( — reversible assignment 
variable <- any -> any 

call xrasg generator 

)<->( — reversible swap 
variable <-> variable -> any 

call xrswap generator 

C.2 Built-in Functions 

any — match character 
any(cset:****,string:&subject, 

integer:&pos or l,integer:0) -> integer 

call xany may fail 

bal — match balanced string call xbal generator 
bal(cset:&ascii,cset:"(".cset :**)**» 

string:&subject,integer:&pos or l»integer:0) -> integer 

center — center text in string call xcent 
center(string:*"*,integer:0»string:** *') -> string 
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close — close object call xclose 
close(any:file#table,or array) -> argument 

copy — copy structure call xcopy 
copy(any:null) -> argument 

cset -- convert to character set call xcset 
cset(any:null) -> cset 

display -- display symbol table call xdisp 
display(integer:!) -> null 

find — find string call xfind generator 
f ind( string :****, string :&subject, 

integer:&pos or l,integer:0) -> integer 

image -- convert to string image call ximage 
image(any:null) -> string 

integer -- convert to integer call xnumr may fail 
integer(any:null) -> integer if (signal .eq. 0) go to FAIL 

call xintg 

left — left justify in string call xleft 
lef t(string:"**,integer:0»string:" ") -> string 

lge — lexical >= call xlge may fail 
lge(string:***",string:*"*) -> string 

lgt — lexical > call xlgt may fail 
lgt(string:"**,string:"") -> string 

lie -- lexical <= xlcmp(junk) may fail 
lle(string:"",string:****) -> string 

lit -- lexical < xlcmp(junk) may fail 
llt(string:"",string:"") -> string 
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many — span characters call xmany may fail 
many(cset:****,string:&subject,integer:&pos or 1, 

integer:0) -> integer 

map — translate characters call xmap 
map(string: "".string:***",string:****) -> string 

match — match string call xmatch may fail 
match(string:****,string: &subject,integer:&pos or 1» 

integer:0) -> integer 

mod — get remainder call xmod 
mod(numeric:0,numeric:0) -> numeric 

move — move in &subject 
move(integer:0) -> variable 

call xmove generator 

null — check for null 
null(any:null) -> null 

call xnull may fail 

numeric — convert to numeric 
numeric(any:null) -> numeric 

call xnumr may fail 

open -- open object call xopen may fail 
open( any: file, table, or array .string:***") -> argument 

pop — pop off stack 
pop(stack) -> any 

call xpops may fail 

pos — convert to cursor position call xpos 
pos(integer:0,string:Ssubject) -> integer 

may fail 

push — push onto stack 
pushCstack, any) -> any 

call xpushs 

random — compute random integer 
random(integer:!) -> integer 

call xrand 

read — read line 
read(file:&input) -> string 

call xread may fail 
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reads -- read string call xsread may fail 
reads(file:&input,integer:!) -> string 

real — convert to real 
real(any:null) -> real 

call xcreal may fail 

repl — replicate string call xrepl 
repl(string:*"*,integer:0) -> string 

reverse -- reverse string 
reverse (string:****) -> string 

call xrev 

right -- right justify in string call xright 
right(string:**",integer:0»string:** **) -> string 

section -- get section call xsect may fail 
section(variable:&subject,integer:&pos or l»integer:0) -> variable 

size — size of an object call xsize 
size(any:string or list) -> integer 

sort — sort array or table call xsort may fail 
sort(any:null,integer:!) -> argument 

stop -- stop execution 
stop(any list) -> null 

call xstop(n) 
(n = number of arguments) 

string — convert to string 
string(any:null) -> string 

call xstrg may fail 

substr -- get substring call xsubst may fail 
substr(variable:null,integer:0.integer:0) -> variable 

tab — tab through &subject 
tab(integer:0) -> variable 

call xtab generator 

top -- get stack top 
top(stack) -> variable 

call xtops may fail 
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trim -- trim string 
trim(string:"**,cset:" ) -> string 

call xtrim 

type -- datatype of argument 
type(any:null) -> string 

call xtype 

upto -- break to character set call xupto 
upto(cset:****,string:&subject» 

integer:&pos or l»integer:0) -> integer 

generator 

write -- write line 
write(any list) -> string 

call xwrite(n) 
(n = number of arguments) 

writes — write string 
writes(any list) -> string 

call xswrit(n) 
(n = number of arguments) 

zzO, ...» zz9 — system defined call zz?(l»n) generator 
zz?(any list) -> variable (n = number of arguments, 

1 = reactivation label) 

£L2 Keywords 

&ascii -> string 
&clock -> string 
&cset -> cset 
&date -> string 
&input -> file 
&lcase -> string 
&level -> integer 
&null -> null 
&output -> file 
&pos -> variable:in 
&random -> variable 
&subject -> variabl 
&time -> integer 
&trace -> variable: 
&ucase -> string 

teger 
:integer 
e:string 

integer 

call 
call 
call 
call 
call 
call 
call 
call 
call 
call 
call 
call 
call 
call 
call 

xkeywd(KASCIl) 
xkeywd(KCLOCK) 
xkeywd(KCSET) 
xkeywd(KDATE) 
xkeywd(KINPUT) 
xkeywd(KLCASE) 
xkeywd(KLEVEL) 
xkeywd(KNULL) 
xkeywd(KOUTPUT) 
xkeywd(KPOS) 
xkeywd(KRANDOM) 
xkeywd(KSUBJECT) 
xkeywd(KTIME) 
xkeywd(KTRACE) 
xkeywd(KUCASE) 
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Appendix E. Pictorial Description of Icon Data Objects 

The following figures depict the representation of Icon data objects. The 
symbols appearing in the figures correspond to the names used in the implemen­
tation. For types whose exact representation is machine dependent (such as 
csets), the DEC-10 representation is shown. 

Integers (DINTG = 1 ) 

-+ + + 
•+ >| value | 
•+ + + 

in the integer region 

Strings (DSTRG = 2) 

I actual I 
I characters | 

I I 
in the string region 

+ 

+ 

+-

->| 
+-

SLEN 

SLOC 

I length 
•+ 
I character offset 
•+ into string region 

in the qualifier region 

Reals (DREAL = 3) 

+ , + 
>| DREAL I 
+ + 
I RVAL I real number 
+ + (occupies 2 cells) 

I I 
+ + in the heap 

- 47 -



Character Sets (DCSET = 4) 

-+ +-
•+ >l 
•+ +-

I 
+ 

I 
+ 

I 
+ 

I 
+ 

DCSET 

CBITS I beginning of cset, 
+ 1 bit per character 
I (occupies 9 cells) 
+ 
I 
+ 

+ + 
in the heap 

Table Elements (DTENT = 5, see DTABL) 

1 — + - _ . 

in a table (DTABL) 

.—>| 

1 

1 

1 

1 

1 

in 

DTABL 

BBREF 

EREF 

EVAL 

ENXT 

ETBL 

the heap 

1 

1 

1 

1 

1 

1 

back reference 

reference 

value 

next DTENT on hash chain 

pointer to table (DTABL) 
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Tables (DTABL = 6) 

•+ 
•+-
,+ + . + 

back reference 
-+ 
| size of this block 
-+ 
I type of reference field 
•+ 
I type of value field 
•+ 
I maximum size of table 
-+ 

current size of table 
-+ 

hash bucket[l] 
• + 

hash bucket[2] 
-+ 
+ > table element block 
-+ (DTENT) 

I DTABL 

1 

1 

1 

1 

1 

1 

1 

1 

1 

BBREF 

TSIZE 

TREFT 

TV ALT 

TNMAX 

TNSIZ 

TBUCK 

I 1 

I | hash bucketCn] 

in the heap 

Lists (1-origined, non-expandable; DLIST = 7) 

+ + + 
+ >| DLIST | 
+ + + 

I BBREF | back reference 
+ + 

I LSIZE | s i z e of t h i s b lock 
+ + 

I LTYPE | type of list elements 
+ + 

I LELMT | beginning of elements 

I I 
+ + 

in the heap 
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Lists (arbitrary origin, expandable; DARRY = 8) 

+-
>l 
+-
I 
+-

I 
+-

DARRY 

BBREF 

ASIZE 

ATYPE 

back reference 

I size of this block 

I type of list elements 
+ + 
| AINIT I initial value 
+ + 
I AOPEN I YES if list is opened 
+ + 

I ALBND I lower bound 
+ + 
I AUBND I upper bound 
+ + 
I AELMT I beginning of elements 

File (DFILE = 9) 

in the heap 

+-
•>l 
+-

DFILE 

BBREF 

FINAM 

FSTAT 

FNAME 

| back reference 
-+ 
I internal (integer) name 
-+ 
I status (see below) 
-+ 
I string name 

Status Codes (contents of FSTAT): 

FCLOS -1 file is closed 
FREAD 0 file is opened for reading 
FWRIT 1 file is opened for writing 
FRDWR 2 file is opened for reading and writing 
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Utility block (DUTIL = 10 * not a source-language type) 

+ •+ + 
•+ >| DUTIL 
• + + -

I USIZE 
+ 
I UDATA 

size of this block 

beginning of non-tended data 

in the heap 

Procedures (DPROC = 11) 

+-
>l 
+-

I 
+-
i 
+-

I 
+-

DPROC 

BBREF 

PSIZE 

PENTRY 

PSMAX 

PPARAMS 

PLOCALS 

| back reference 
+ 
I s ize of th i s block 
+ 
I entry point (a label) 

maximum stack size 

number of parameters 

I number of locals 
+ 

PSTATIC | number of static locals 
+ 

PNAME I printable name of procedure 
+ 

PIDENTS I printable names of locals 

+ + 
in the heap 

Universal Null (DNULL = 12) 

+ + 

I 0 + 
+ + 
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Stack (DSTAK = 13) 

+ + 

+ ,+ 

Records (DRECD = 14) 

+ + 
| — + . _ 
+ + 

+ + 
>I DSTAK I 
+ + 
I BBREF | back reference 
+ + 
I SSIZE | size of this block 
+ + 
I STYPE | type of s t a c k elements 
+ + 
I SNMAX | maximum s i z e of s t a c k 
+ + 

I SSP I stack pointer (an offset) 
+ . + 
I SELMT | beginning of elements 
I I 

• • 

I I 
+ + 

in the heap 

+ + 

>I DRECD | 
+ + 
I BBREF | back reference 
+ + 
I DSIZE | size of this block 
+ + 
I DNAME | record name as literal index 
+ + 
I DTYPE | type number 
+ + 
I DFLDS I beginning of fields 
I I 
• • 

• • 

I I 
+ + 

in the heap 
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+ 

+ 

Tended block (DBLOK =15. not a source-language type) 

+ . + 
->| DBLOK I 
+ . , ,+ 
I BBREF | back reference 
+. . , + 

I BSIZE I s i z e of t h i s b lock 
+ + 

i BDATA | beginning of tended data 
I I 
• • 

a • 

I I 

in the heap 
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