
Icon Implementation Notes*

David R. Hanson
Walter J. Hansen

TR 79-12a

Icon is a new general-purpose programming language intended
for nonnumeric applications, especially those involving string
and structure processing. This report describes some aspects of
the Ratfor implementation of Icon, Version 2.0. Included are a
brief overview of the implementation, an explanation of the
translator organization and generated code, a description of the
runtime environment, and a summary of programming conventions and
peculiarities.

July 1979, revised February 1980

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant
MCS75-01307.

Icon Implementation Notes

L. Introduction,

Icon is a new general-purpose programming language intended for nonnumeric
applications, especially those involving string and structure processing.
Much of the philosophical basis of Icon comes from its predecessors, SN0B0L4
[1] and SL5 [2]. This report describes some aspects of the implementation of
Version 2.0 of Icon. Further details concerning the language and its use may
be found in Refs. [3-5]; additional implementation details are given in Refs.
[5,6].

The Icon system consists of two major parts: a translator and a runtime
system. The translator compiles an Icon program into a program in the target
language. The runtime system contains all of the routines referenced by this
program. Currently, Fortran is the target language. Thus, running an Icon
program requires translating it into Fortran, compiling the Fortran program,
and loading it with the previously compiled routines from the runtime system.

!• The Translator

The translator transforms Icon source text into Fortran code. This code
consists mainly of calls to subroutines that implement the semantics. Each
Icon procedure is translated into a corresponding Fortran subroutine. There
is also a Fortran subroutine, generated by the translator, that controls
transfer of control. The format of the generated subroutines is described in
Appendix A.

The translator consists of three parts: the lexical analyzer, the parser,
and the code generator.

1A The Lexical Analyzer

The lexical analyzer makes two passes. The first pass builds the symbol
table, procedure and record blocks, and resolves undeclared identifiers. In
addition, it processes include statements and generates a listing if
requested. The results of the first pass are data structure tables and a file
containing the source text broken down into tokens (no declaration information
is included). The format of each line of the file is

token subtype

where "token** is a number representing a token and "subtype** is a number
representing additional information about the token. For example, if token
represents a literal (INT, FLOAT, or STRING), subtype is the index of the
literal in the appropriate literal table. If token represents an operator
class (INFIX, PREFIX, SUFFIX), subtype describes the specific operator. If

- 1 -

token signifies an identifier (ALPHA), subtype is the index of the identifier
in the identifier table. If token represents a keyword (LEXKEY), subtype
identifies the specific keyword. Finally, subtype is the same as token for
reserved words and keywords. Locations of newlines in the source program are
also noted in the token file by including a token representing newline (NEW-
LINE) with the line number as the value of subtype.

The second pass reads from the token file a token at a time as requested by
the parser.

1*2 The Parser

The parser is a recursive descent parser, derived from a context-free gram­
mar for the language. In general, this grammar contains left-recursive pro­
ductions. These are transformed using the technique described in Ref. [7].
As an example of this technique, the production (note the left recursion)

MULOP • -> MULOP •*» EXPOP

becomes

MULOP — >
MULOPP -->

EXPOP MULOPP
»*» EXPOP MULOPP
eps

Appendix B contains a transformed grammar for Icon.

Recursive descent is usually implemented by writing a recursive procedure
for each nonterminal in the grammar [8], Since Icon is implemented in Ratfor,
implementation of recursive procedures was not possible. Instead, a methodol­
ogy that explicitly simulates recursion is used. As a result, the entire
parser is contained in one subroutine. Recursive procedures are simulated
using labeled code segments, explicit push and pop operations, and a computed
goto for dispatching to return points. The general form of the parser subrou­
tine is as follows.

2 -

repeat {
call pop(case)
goto (...

labels for all nonterminal routines
and all possible return points
• • •) • case

nonterminall
... code ...
next

nonterminal
... code ...
ca l l push(return21)
goto nonterminalx

return21
. . . code . . .
next

nonterminaln
... code ...
next

}

The nonterminal code segments are written in much the same way as would
recursive procedures in the usual implementation of recursive descent. As the
code segments above indicate, the main difference is the need to stack the
return label prior to "calling" a code segment for another nonterminal. For
example, the code segment for multiplication operators derived from the syntax
fragment given above is as follows.

MULOP
call push(MULOPP)
goto EXPOP * "call"

MULOPP
while (token == OMUL) {

c a l l push(MULOPPl)
goto EXPOP

MUL0PP1
continue
}

next

The parser operates on a single Icon procedure and returns a parse tree for
that procedure. The parse tree is a directed graph of connected nodes gen­
erated during parsing. Each node may have from one to eight fields depending
on the semantics of the object represented by that node. The information
placed in these fields is constrained by type: labels, pointers, and data.
Data may not be placed in pointer fields nor pointers placed in data fields.
The value of the variable ptree is the pointer to the current parse tree.
When invoking other nonterminal functions the value of ptree must be saved on

- 3 -

the stack along with the return label. Unlike the return label, which is
popped automatically, the saved value ptree must be popped explicitly. A node
is assigned to ptree upon the completion of the processing for each nontermi­
nal. For example, for the multiplicative operators the "continue" in the
above code is replaced by

ptree = node5(CINFIX, t, tn, e, ptree)

where e is a pointer to the parse tree for the left side of the operator and
ptree (inside the function call) is a pointer to the right side.

In addition to ptree, there are several other important variables global to
the parser.

The value of the variable fail indicates whether or not an expression can
fail. As described in Section 3.3, expressions that can fail require addi­
tional code to drive them. This, in turn, requires that an additional node be
produced during parsing to indicate the need for the driving code. Thus, many
of the nonterminal code segments in the parser save and restore fail if neces­
sary.

The value of the variable var indicates whether not an expression is a
variable. This value is used in those code segments that deal with operators,
such as assignment, that change the value of program variables.

The value of the variable type indicates the data type of the current
expression. Type is used to determine which runtime type conversions, if any,
are required.

The values of the variables brklab and nxtlab contain the labels used in
break and next expressions. A zero value indicates an improper context for
break or next.

1*2 The Code Generator

The code generator produces the Fortran code for a single Icon procedure.
It takes as input the parse tree and generates code while traversing the tree
in preorder. Since tree traversal is a recursive process, the recursion is
simulated using a technique similar to that used in the parser. The targets
of the recursive calls in the parser are determined by the grammar and are
constant. The targets in the code generator, however, are determined by the
configuration of the parse tree. This is handling by placing the label of the
next code segment on the stack in addition to the return point. The general
form of the code generator is as follows.

- 4 -

call push(CDONE) * set end marker
call push(heap(ptree+NTYPE)) * type of first node
while (ptree > 0) {

call pop(case) * current node or label
goto (...

labels of parse tree nodes
and of return points
• • •) , case

Cnode
el = heap(ptree+NPTRl) * leftmost subtree
call push(ptree) * save current parse tree
call push(Cnodel) * save return point
call push(heap(el+NTYPE)) * type of first node
ptree = el * reset parse tree
next

Cnodel
call pop(ptree) * restore parse tree
call printx(**C output coden0**, 0, 0)
next * "return**

CDONE * end marker
break
}

Appendix C gives the form of the generated code for each language construct.

1A The Runtime System

The bulk of the Fortran program generated by the translator consists of
calls into the runtime system. The runtime system is a set of subroutines
that implements the built-in operations in the language. There are also many
utility subroutines, including the storage management subsystem, for example.

Operation of the runtime system revolves around a system stack. Functions
in the runtime system get their arguments from the stack and leave results
there. Activation records for procedures are also placed on the stack. In
addition, the storage management system uses the stack as a starting point for
locating accessible data objects during reclamation.

Generators are implemented using the common two-stack model for implement­
ing backtracking [9]. The second stack, called the control stack, is used to
hold information associated with dormant generators. The system stack could
be used to hold this information without the elaborate threading [10] required
in more general cases. This simplification, which is used in Ucon (a more
recent implementation of Icon for the PDP-11), is possible because the seman­
tics of Icon generators imply that the two stacks operate in parallel.

The following sections describe the representation of data, the organiza­
tion of storage at runtime, and the operation of some of the subroutines in
the runtime system.

- 5 -

3.1 Data Representation and Storage Organization

Storage is represented by the Fortran array mem. Mem is divided into five
regions roughly corresponding to the division of data types into classes.
These regions are depicted in Figure 1.

string
region

strbas

strfrp

+ +

string
qualifier
region

+ +

integer
region

sqlbas

intbas

+ +

heap
region

hepbas

hepfrp

stack
region

+ ,_+

sp

stkbas

theend

Figure 1. Storage Regions.

All source-language values have a uniform representation: an index into
mem (indices into mem are often referred to as pointers). The type of a value

- 6 -

is determined by the region to which it refers, e.g. if the value is within
the bounds specified by intbas and hepbas, it is an integer.

The structure, allocation algorithm, and reclamation technique of each
region is determined by the kind of data stored in that region.

Integers are represented by pointers into the integer region. Each cell in
the region contains one integer. The lower portion of the region houses a
range of permanently allocated integers; the typical range is -1 to 100. A
linked list of free cells in the integer region is maintained; allocation con­
sists of simply returning the first free integer on this list.

Strings are represented by pointers into the string qualifier region. A
string qualifier is a two-cell block containing the length of the string and
the character offset from the beginning of mem to the first character in the
string. The actual string is stored in the string region [11,12], A qualif­
ier for the null (zero-length) string is permanently allocated as the first
qualifier in the qualifier region. Allocation of qualifiers is similar to
allocation of integers; a linked list of free qualifiers is maintained. For
the string region, a free space pointer is maintained (strfrp, see Figure 1).
Allocation is done by simply incrementing strfrp by the amount of the request.

All aggregates (e.g. lists, tables, records) are stored in the heap.
Storage in the heap is allocated in self-identifying blocks. All pointers
into the heap point to the head of a block. There are four block layouts,
depending on whether the block contains pointers (called "floating addresses**)
and is varying or fixed size. The four variations are shown in Figure 2.

- 7 -

+ +
I block code I
+ +

I back reference I
+ +
I size I
+ +

data

varying size,
pointers

+ +

I block code I
+ . +

I back reference |
+ +

I I
I data I

I I
+ +

fixed size,
pointers

+ +
I block code I

size

data

varying size,
no pointers

+ +
fixed size,
no pointers

Figure 2. Block Layouts.

Allocation in the heap is performed by incrementing the free space pointer
hepfrp (see Figure 1) by the amount of the allocation request.

The stack grows from stkbas backwards towards hepfrp (see Figure 1); sp
indicates the top of the stack. Variables and values on the stack are
represented by two-cell blocks as depicted in Figure 3.

offset

base

•+
l<-
-+

I
-+

sp

Figure 3. Stack representation of variables and values.

The meanings of base and offset are summarized in Table 1.

- 8 -

Table 1. Base and Offset for Variables and Values.

base base size
symbol

-7

offset meaning

>0

0

-1

- 2

-3

- 4

-5

TVNONE

TVLCL

TVPOS

TVRAND

TV SUBS

2

2

2

2

2

2

6

- 6 TV SUB J

TVTBL

- 8 TVARRY 6

<0 va lue i s mem(base-offse t)

value i s o f f s e t

not used

<0 value i s mem(cfp+offset)

value i s &pos

value is &random

<0 value is substr(s,i,l):
-offset-1 is i
mem(sp+2) is value of s
-mem(sp+3)-2 is 1
mem(sp+4) is offset for s
mem(sp+5) is base for s

<0 value is substring of &subject:
-offset-1 is i
mem(sp+2) is value of s
-mem(sp+3)-2 is 1
-mem(sp+4)-l is new &pos or
mem(sp+4) is 0 if &pos is to
be positioned at end of the
replacement string

mem(sp+5) is 0

<0 value is a table element t[e]:
-offset is hash bucket offset
mem(sp+2) is t
mem(sp+4) is e

<0 value is open list element a[i]:
-offset-1 is i
mem(sp+4) is a

Negative values of base indicate "trapped variables"; these represent kinds of
access that requires special processing [13]. Note that several of the
trapped variables occupy 6 stack cells.

Since the stack is used by the reclamation routines to locate accessible
data, it is essential that "junk" — anything that is not a valid pointer —
never get pushed onto the stack. There are, however, cases in which it is
necessary to push arbitrary integer data, such as return labels, onto the
stack. This is done by preceding such data by -1 and a count of the number of
junk cells that follow. For example, Figure 4 shows the stack configuration

- 9 -

after pushing the junk values 52 and -104.

+ +

I -104 |< sp
+ +

I 5 2 I
+ +

I 2 |
+ +

I " I I
+ +
I I
/ . /
/ . /
/ . /
| |< stkbas
+ +

Figure 4. Stack Configuration After Pushing 52 and -104.

Figures depicting the representation of all types of data are given in
Appendix E.

3.2 Reclamation

Reclamation of storage in each region consists of identifying the accessi­
ble data in that region, and restructuring the region so that the space occu­
pied by inaccessible data is made available for reuse. Determining the acces­
sible data in any region starts by examining the contents of a set of loca­
tions that may contain pointers; these locations are called tended locations.
The tended locations include the system stack and about two dozen specific
locations in the labeled common ctend.

Reclamation in the integer region consists of "sweeping** the tended loca­
tions and the heap for integers. Prior to sweeping, a bit map of the integer
region is pushed onto the stack; this is used to record accessible integers.

Reclamation in the qualifier region is similar to that in the integer
region. The bit map is not needed, however. Accessible qualifiers are
"marked" by setting their location fields to -(location+1) (the location field
of free qualifiers is -1).

Reclamation in the string region consists of sorting pointers to the active
qualifiers by their location fields, and compacting accessible strings into
the lower part of the string region. The complete algorithm is given in Ref.
[12].

Heap reclamation is performed using the SITBOL compactifying garbage col­
lection algorithm [13]. There is an important aspect of this scheme that had
a significant effect on the implementation. The marking phase of the algo­
rithm constructs a linked list of pointers to every accessible block. For
each such block, this list begins at its type code field (see Figure 2). One

- 10 -

problem is that pointers are simply indices into mem and consequently pointers
to the tended locations in ctend are not easily represented. In order to
address the tended values, the values in ctend are copied to reserved loca­
tions at the base of the stack prior to marking, and the updated values are
copied back upon completion.

The second problem is that pointers are indistinguishable from type codes,
which terminate the linked lists mentioned above. Thus, the heap must be
positioned in mem so that all pointers into the heap have values greater than
the largest type code value.

Further details concerning reclamation are given in Ref. [6],

1*3 Handling Failure

The system stack holds intermediate results. This presents a problem in
the implementation of the immediate termination of an expression; it is neces­
sary to be able to discard partially computed results that are no longer
relevant. On entry to any expression that may fail (and only those expres­
sions), the current height of the system stack is saved. When evaluation of
the expression is completed (with either success or failure), the stack height
is reset.

For any expression that may fail, the generated code is

call xmark(MAXLABELS*p + n)

<code for expression>

n call xdrive

where p is the procedure number. The code

if(signal.eq.O)goto 1

is emitted following every operation that may fail. In every procedure, the
Fortran statement

1 label=flabel

precedes the goto switch yard; thus transfer to the failure point is effected
by transfer to label 1.

The purpose of xmark is to save the current heights of the system and con­
trol stack, the current value of flabel, and set flabel to the argument.
These data are saved on the stack as depicted in Figure 5. The current
heights of the system and control stacks are given by the values of marksp and
markcp, respecitively. In order to avoid problems during heap reclamation,
marksp and markcp are saved as offsets from the base of the appropriate stack.

- 11 -

+ +
I old flabel |< sp
+ +
I old marksp |
+ ,__+
I old tnarkcp I
+ +
I 3 I
+ +
I "I I
+ +
| |< new marksp
+ + (an offset)

Figure 5. Stack after Call to xmark.

Using the current value of marksp, xdrive resets the stack heights and flabel
to their saved values.

The routines xmark and xdrive are also used with generators; see Section
3.6.

1A Loop?

The possibility of break and next appearing within loops is similar in
nature to the possibility of failure in expressions. It is necessary to be
able to discard partially computed results on the stack that are no longer
relevant. Thus, every loop begins with

call xlpbeg

and ends with

call xlpend

The purpose of xlpbeg is similar to that of xmark; it saves the appropriate
data on the system stack as illustrated in Figure 6. The variable lptop is an
offset to the saved data.

- 12 -

+ +
I cp (as offset) |< sp
+ +

I markcp |
+ +

I marksp I
+ +

I flabel I
+ +

I cp (as offset) I
+ +

I markcp |
+ +

I marksp I
+ +

I flabel I
+ +

I old Iptop |
+ +

I 9 I
+ +

I - 1 I
+ +

| |< new Iptop
+ + (an offset)

Figure 6. Stack after Call to xlpbeg.

The purpose of xlpend is similar to xdrive; it uses Iptop to restore the data
saved by xlpbeg. It also insures that null is returned by the loop expres­
sion.

The break expression simply causes a transfer to the statement containing
the call to xlpend (see Appendix C). The fl£X£ expression, however, calls
xnext and then transfers to the code for the first statement in the loop. The
routine xnext resets cp, markcp, marksp, and flabel using the data saved in
the stack at Iptop. It also discards partially computed results by setting sp
to Iptop - 11, which was the value of sp upon entry to the loop (after the
call to xlpbeg). This latter action is actually incorrect for every loops;
see Section 3.6.

As an example, consider a loop of the form

while ... is {
• • •
break,
• • •
next
• • •
}

The general form of the generated code is

- 13 -

call xlpbeg
23001 continue

... * evaluate condition
if(signal.eq.O)goto 23002

goto 23002
...

call xnext
goto 23001

* break

* next

goto 23001
23002 call xlpend

*• do next iteration

Note that two copies of cp, markcp, marksp, and flabel are saved; this is
necessary for proper execution of next in the every loop. This is described
further in Section 3.6.

1*5 Procedure Activation

Activation records for procedures are placed on the system stack. Figure 7
shows the layout of activation records.

- 14 -

+ +
I return label l< sp
+ +
| marksp I
+ +

I markcp I
+ +

I flabel I

+ +

I lptop I
+ +
I cp (as offset) |
+ +
I 6 I
+ +

I -1 I
+ +
I I
+ last local +
I I
+ +
I I
/ . /
/ . /
/ . /
I I
+ +
I I
+ first local +
I I
+ +
I I
+ last argument +
I I
+ +
I I
/ . /
/ . /
/ . /
I I
+ +

I I
+ first argument +
I I
+ +

| procedure |< cfp
+ , +

I old cfp(offset)|
+ +

Figure 7. Layout of Activation Records for Procedures.

The base of the current activation record is indicated by cfp. Local

- 15 -

variables and arguments are accessed using offsets from cfp. Specifically,
formal parameters are considered local variables, and the value of local vari­
able i is found at mem(cfp-2*i).

Note that the values of local variables occupy two cells in accordance with
the convention described in Section 3.1. The physical location of a local
variable changes if the stack is moved. Thus, local variable i (as opposed to
its value) is represented as shown in Figure 8 (see also Figure 3 and Table
1).

+ +
I -2*i |<-
+ +
I - 2 I
+ +

sp

Figure 8. Stack Representation of Local Variable i.

Note that the value of -2*i is never -1, which would confuse the reclamation
routines.

3.6 Generators

When a generator is invoked, it produces its first value and then prepares
for the possibility of reactivation. This preparation involves saving data
related specifically to the generation of alternatives (such as the bounds and
increment in the £o. generator) and partially computed results that might oth­
erwise be consumed before the generator is reactivated. A second stack, the
control stack, is used for saving these kinds of data.

The data saved for a dormant generator is taken from the system stack. The
precise amount of data saved is determined by the value of marksp. Specifi­
cally, sp and marksp delimit that portion of the system stack that contains
partially computed results and data relevant to the generation of alterna­
tives. For any expression containing generators, calls to xmark and xdrive
are generated as they are for expressions that may fail. The call to xmark
establishes the value of marksp that is used when data is pushed onto the con­
trol stack.

A generator "prepares for reactivation" by pushing any data it may need
onto the system stack and calling save. This call causes all data from sp to
marksp to be pushed onto the control stack. The layout of that data is dep­
icted in Figure 9.

- 16 -

+ +

I label |< cp
+ +
| n | (number of cells saved)
+ +
I 2 I
+ +

I - 1 I
+ +

I I
/ n saved data /
/ cells from the /
/ system stack /
I I
+ +

Figure 9. Control Stack after Call to save.

The label saved on the control stack (see Figure 9) is the label of the call
to the generator. As described below, this is used to transfer control back
to the generator so that it can generate alternatives.

Dormant generators are activated by a call to xdrive. Subroutine xdrive
performs different functions depending on whether dormant generators exist or
not. If the signal is failure and there are no dormant generators, xdrive
behaves as described above (see Section 3.3). If dormant generators exist
upon failure, xdrive activates the most recently suspended dormant generator.

The general outline of xdrive is as follows.

subroutine xdrive
if (signal == 0 & dormant generators exist) {

label = reactivation label of dormant generator
restore system stack from top of control stack
}

else { * expression succeeded or has no alternatives
label = 0
pop and save expression value off of system stack
reset cp and sp from marksp and markcp
restore marksp, markcp, & flabel from data saved by xmark
push expression value onto system stack
}

return
end

The value of label after a call to xdrive indicates whether a generator is to
be reactivated. If label is non-zero, it is the label to which control should
be transferred. If label is zero, execution continues without transfer of
control (note that xdrive does not change signal). Every call to xdrive is
followed by the statement

if(label.ne.O)goto 2

- 17 -

in order to reactivate the dormant generator. Subroutine xdrive detects the
presence of dormant generators by noting that the size of the control stack
has increased since the last call to xmark. This is accomplished using the
value of markcp set by xmark.

As mentioned above, generators save local data that is needed to compute
alternatives by pushing this data onto the system stack and calling save.
When the generator is reactivated, the system stack is restored to its state
just prior to the call to save so that the generator may retrieve these saved
data. A call to a generator results in Fortran code of the form

L call x????(MAXLABELS*p+L)

where p is the current procedure number and L is the reactivation label. In
order to avoid having to write two routines for every generator (one for the
initial activation and one for reactivation), the value of signal is used to
determine the current phase of a generator. If the signal indicates success,
the generator is being activated for the first time; it initializes itself and
computes its first value. If the signal indicates failure, the generator is
being reactivated; it restores its local data (now on the top of the system
stack) and computes its next value. A general outline of this scheme is

subroutine x????(lab)
if (signal == 1) { * initial call

initialize local variables
}

else { * reactivation call
signal = 1 2 assume success
restore saved local variables
}

generate next value
if (generation succeeded) {

push local variables onto system stack
call save(lab)
pop local variables off system stack
push generated value onto system stack
}

else
signal = 0 * generation failed

return
end

Note that the reactivation label -- the argument to a generator subroutine --
is passed along to save. The initialization of local variables usually
involves using additional arguments passed on the system stack. These argu­
ments are not saved, however. The information they convey is usually stored
in local variables (perhaps in a different form) and saved by calling save.
The form in which the local data is saved varies from generator to generator.
For example, the Jtfi generator simply saves the current value and the limit as
integers on the stack preceded by the -1 flag and a cell count.

As an example, the generated code for the expression

- 18 -

x + 2 < (1 is 5)

is as follows, assuming the expression appears in procedure number 1 and MAX-
LABELS is 1024.

call xmark(1028) * set 4 as failure label
call xlocal(l) * push x as a variable
call xderef * dereference to get value of x
call xcnumr * convert value to numeric
call xpintg(l) * push integer literal **2"
call xadd * add value of x + 2
call xpintg(2) * push integer literal "1*"
call xpintg(3) * push integer literal "5**

5 call xto(1029) * generate 1 12 5
if (signal.eq.0)goto 1 * failure if io. is exhausted
if(xncmp(junk).ge.0)goto 1 * compare top 2 numeric values
signal=l * reset signal after comparison

4 call xdrive * here on failure
if(label.ne.0)goto 2 * jump to reactive generator

Alternation (|) requires a different implementation than other generators.
Consider the expression el I e2; if alternation were treated like other gen­
erators, the generated code would be something like

<evaluate el>
<evaluate e2>

L call xalt(MAXLABELS*p+L)

The problem here is that if el fails, e2 would not be evaluated. In addition,
e2 is evaluated "too early** — it should only be evaluated if a subsequent
expression fails. The actual code for el | e2 is of the form

L if(signal.eq.0)goto 23001 * if failure evaluate e2
call save(MAXLABELS*p+L) * save current state
<evaluate el>
goto 23002 * skip over e2

23001 signal=l * here on subsequent failure...
<evaluate e2> * reset signal and evaluate e2

23002 continue

Generators are reactivated by xdrive only upon subsequent failure in the
expression in which they appear. The every expression causes repeated activa­
tion of generators even if they succeed. Since every e is equivalent to

e & (1 = 0)

and every el djj e2 i s equ iva l en t to

el & {e2; 1 = 0 }

every is implemented by simply setting the signal to 0 before the call to
xdrive, thereby causing xdrive to reactivate dormant generators.

- 19 -

Specifically, the generated code for the expression

every el An. e2

is of the form

call xlpbeg * begin a loop
call xmark(MAXLABELS*p+L)
<evaluate el>
call xpop * discard value of el
call xevery * reset saved control stack height
<evaluate e2>
call xpop * discard value of e2

23001 continue
signal=0 * force failure

L call xdrive * reactivation generators in el
if(label.ne.0)goto 2

23002 call xlpend * end of loop

The sole purpose of xevery is to reset the second copy of cp, markcp, marksp,
and flabel saved by xlpbeg (see Figure 6). The values of these variables
saved by xlpbeg do not reflect the data accumulated by the evaluation of el.
If a next expression appears in e2, the failure label, system stack, and con­
trol stack must be restored to the state that they had immediately following
the evaluation of el. The second copy of this data saved by xlpbeg is used
for this purpose and xevery simply records the current values of cp, markcp,
marksp, and flabel after every activation of el.

As mentioned in the previous section, however, xnext resets sp, which
amounts to discarding partially computed results that may be required for com­
puting alternatives of el. The reason this action does not cause problems is
that upon return from xnext, control is transferred to the statement labeled
23001 (see above), signal is set to 0, and xdrive is called. If el has more
alternatives, xdrive resets sp from the current value of marksp, which was
reset by xevery. Thus, resetting sp in xnext has no effect in every loops. A
better technique would be to treat every loops differently from the other loop
contructs. In particular, the duplicate copy of the data saved by xlpbeg (see
Figure 6) is needed only for every loops, and most of the complications to
break and next are caused by the generative aspects of every.

kx Programming Conventions and Peculiarities

There are a number of less-than-obvious programming conventions and pecu­
liarities in the implementation of Icon that deserve discussion. Most of
these are due to the use of Fortran as an implementation language.

4_J Stability

All routines in the implementation are classified as either stable or
unstable. An unstable routine is one that has the potential of causing a rec­
lamation in some region; a stable routine is one that can never cause a recla­
mation. A routine is unstable if it calls an unstable routine.

- 20 -

This convention is very important because failure to place pointers in
tended locations prior to calling unstable routines leads to time- and data-
dependent bugs that are very difficult to locate. Thus, the usual technique
is to push local variables that contain pointers onto the system stack before
calling an unstable routine and to pop them off upon return.

LMI Galling Unstable Routines

Actual arguments to Fortran subroutines and functions are passed by refer­
ence. This mechanism has induced a particular programming convention for cal­
ling unstable routines.

To illustrate the problem, consider the call

z = cat(mem(sp), mem(sp+2))

which appears to concatenate the two values at the top of the stack and assign
the result to z. The problem is that if cat is unstable (assume it is), the
value of sp may change midway during its execution due to a reclamation. If
this occurs, the addresses of the actual arguments are no longer valid.

In implementations of Fortran that use call by reference for all arguments
(e.g. CDC FTN [15]), references to the actual arguments after the reclamation
access what appears to be junk. Some implementations of Fortran (e.g. DEC
Fortran-10 [16]), use call by value-result for scalar arguments. In this kind
of argument transmission, the value of the actual argument is fetched upon
entry to the routine and stored in a local variable. Upon exit, the final
value of the local varible is stored in the actual argument. After the recla­
mation in this case, not only do references to the actual argument access
junk, but the assignment upon exit overwrites the wrong data in mem.

These problems are avoided by writing the above call as

x = mem(sp)
y = mem(sp+2)
z = cat(x, y)

and not using the values of x and y after the call to cat.

Similar comments apply to statements such as

call f(g(x), y)

where g(x) returns a pointer and f is unstable. In this case, the value of
g(x) is stored in an untended temporary location. Note, however, that this
statement is safe if f copies its arguments to tended locations upon entry;
this "trick** is not used.

As a result of these problems, there are very few routines that have cal­
ling sequence like cat above. Most unstable routines do not take tended argu­
ments as Fortran arguments, but use the system stack for the transmission of
tended arguments and results.

- 21 -

4^2 The Stack

Since the stack grows backwards, the sequence to push x onto the stack is

sp = sp - 1
mem(sp) = x

This code does not check for overflow, however. Overflow has occurred when
the stack pointer (sp) equals the heap free pointer (hepfrp). Thus, the
correct sequence to push x is

if (sp == hepfrp)
... overflow ...

sp = sp - 1
mem(sp) = x

This sequence is tedious, and is avoided by the use of stkchk. The call
stkchk(n) insures that there are at least n cells of available stack space.
Thus, to push several values onto the stack, stkchk is called to insure enough
room followed by code to push each value. For example, the following code
pushes x and y onto the stack as junk.

call stkchk(4)
mem(sp-l) = -1
mem(sp-2) = 2
mem(sp-3) = x
mem(sp-4) = y
sp = sp - 4

The pushes are written in this fashion to avoid repeated decrements of sp. In
a reference like mem(sp-3), most Fortran compilers will absorb the -3 into the
address portion of the instruction. As a result, the above sequence usually
generates good code using the value of sp (in a register) as an offset from 4
different addresses.

As shown in Appendix C, there are no calls to stkchk in the generated code.
The translator estimates the amount of stack space required to execute a pro­
cedure, and stkchk is called during procedure invocation to insure sufficient
stack space.

Acknowledgements

Icon was designed by Ralph Griswold, David Hanson, and Tim Korb. Cary
Coutant, Walter Hansen, and Steve Wampler made valuable suggestions. The ver­
sion of Icon described in this report was implemented by the authors and Tim
Korb. Some of the material in this report, especially that concerning the
implementation of generators, was adapted from of Tim Korb*s PhD dissertation
C53.

References

1. R. E. Griswold, J. F. Poage and I. P. Polonsky, Ihs. SNQgQIA Programming
Language. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1971.

22 -

2. R. E. Griswold and D. R. Hanson, "An Overview of SL5", SIGPLAN Notices
12, 40-50 (1977).

3. R. E. Griswold, D. R. Hanson and J. T. Korb, "The Icon Programming
Language: An Overview", SIGPLAN Notices 14_, 18-31 (1979).

4. R. E. Griswold and D. R. Hanson, Reference Manual JLfiJ. £h£ Icon Program­
ming Language. Tech. Rep. TR79-la, Dept. of Comp. Science, Univ.
Arizona, Tucson, 1980.

5. John T. Korb, Ifce, Design, .&M Implementation •&£ a Goal-Directed Program­
ming Language. PhD Dissertation, Tech. Rep. TR79-11» Dept. of Comp. Sci­
ence, Univ. Arizona, Tucson, 1979.

6. D. R. Hanson, "A Portable Storage Management System for the Icon Pro­
gramming Language", Software -- Practice a M Experience. to appear
(1980).

7. A. V. Aho and J. D. Ullman, Principles of Compiler Design. Addison-
Wesley, Reading, MA, 1977.

8. N. Wirth, Algorithm? + Pata Structure? = Program?. Prentice-Hall, Engle-
wood Cliffs, NJ, 1971, Chap. 5.

9. C. J. Prenner, J. M. Spitzen, and B. Wegbreit, "An Implementation of
Backtracking for Programming Languages", SIGPLAN Notices 1, 36-44
(1972).

10. D. G. Bobrow and B. Wegbreit, "A Model and Stack Implementation of Mul­
tiple Environments", Communications of the ACM 16. 591-603 (1973).

11. D. R. Hanson, "A Simple Technique for Representing Strings in Fortran
IV", qQmmunJQatiQns s£ ite ASH 1Z, 646-647 (1974).

12. D . R. Hanson, I M Manipulation jpl Varying-Length String Pata in Fortran
IV. Tech. Rep., Dept. of Comp. Science, Univ. Arizona, Tucson, 1975.

13. D. R. Hanson, "Storage Management for an Implementation of SN0B0L4,"
Software -- Practice a M Experience I» 179-192 (1977).

14. D. R. Hanson, "Variable Associations in SN0B0L4," Software — Practj.ee
.aM Experience £., 245-254 (1976).

15. Fortran Extended Reference Manual. Control Data Corp., Sunnyvale, CA,
1978.

16. ZoitiaQ-ljO. Language Manual, Order code DEC-10-LFORA-B-D, Digital Equip­
ment Corp., Maynard, MA, 1974

17. B. G. Ryder, "The PFORT Verifier," Software -- Practice ̂ M Experience
4_. 359-377 (1974).

- 23 -

http://Practj.ee

Appendix A. Format of the Generated Icon Program

The following code is an example of the overall structure of the Fortran
code generated by the translator.

1 subroutine icon
2 common /craain/signal,label.flabel*line
3 integer signal,label,flabel»line
4 integer xcmp,xlcmp,xncmp,xcomp
5 integer s(NS+l), p(NP+l), g(NG+l), i(NI+l), 1(NL+1)
6 real r(NR+l)
7 data s/NS, .../
8 data g/NG, .../
9 data p/NP, .../
10 data i/NI, .../
11 data 1/NL, .../
12 data r/NR, .../
13 call sinit(s,g,p,i,r,l)
14 call xglobl(l) * 1 = main procedure global
15 call xderef * get the procedure value
16 call xcproc * convert to procedure and go to it
17 call xinvok((NP+l)*MAXLABELS,0)
18 goto 23001
19 1 call pi
20 goto 23001
21
22
23
24 i call pi
25 goto 23001
26
27
28
29 NP call pNP
30 goto 23001
31 NP+1 return
32 23001 kk=label/MAXLABELS
33 goto (1,2 NP),kk
34 call syserr(29hicon: illegal internal label.)
35 return
36 end
37
38
39
40 subroutine pi * one for each Icon procedure
41 common /cmain/signal,label,flabel,line
42 integer signal,label,flabel,line
43 integer xcmp,xlcmp,xncmp,xcomp
44 goto 2
45 3 continue
46
47 . * generated code (see Appendix B)
48
49 1 label=flabel

- 24 -

50 2 ifQabel/MAXLABELS . n e . i) r e t u r n
51 kk=mod(label,MAXLABEL)
52 g o t o (l , 2 , 3 n) , kk
53 c a l l s y s e r r (2 7 h p i : i l l e g a l i n t e r n a l l a b e l .)
54 r e t u r n
55 end

The numbers in the following explanation refer to line numbers in the above
program skeleton.

2-3, 41-42: The labeled common cmain contains the global identifiers refer­
enced by the compiled code; it serves to communicate current status informa­
tion to and from the runtime system. Signal is the current value of the sig­
nal, label is used for transfer of control much like a location counter, fla­
bel contains the label to which control is transferred upon failure, and line
is the line number in the source program of the current focus of execution.

4,43: These routines are called for comparisons; they return integers.

5-12: These arrays contain initialization data. The general format is that
the first element contains a count of the number of data elements that follow.
The array s contains the characters appearing in string literals and identif­
iers. Each string is terminated by an EOS character. The array p contains
control data for each procedure; g contains global identifier names as indices
into s; i contains literal integers; 1 contains literal strings as indices
into s; and r contains literal reals.

13: Sinit initializes storage and copies the data appearing in s, g, p, i, r,
and 1 into the appropriate Icon storage regions.

14-18: This is code to invoke the main procedure much in the same way that
other procedures are invoked. The return point, labeled NP+1 where NP is the
number of procedures, causes a return to the Fortran main program, which ter­
minates execution.

19-23: Labels that may be targets for transfer of control are composed of two
parts, a procedure number p and an internal (Fortran) label i. A label is
represented by p*MAXLABELS+i. Whenever control leaves a procedure, it returns
to the subroutine icon, which serves to transfer control to another procedure.
The code in this section accomplishes this kind of transfer.

40,44-45: Each Icon procedure is translated into a Fortran subroutine named
pi, where i is the procedure number. The procedure entry point is in line 44,
but execution begins by transferring to the local "switch yard** in case the
procedure was suspended.

46-48: Generated code for the procedures as described in Appendix B.

49-52: This is the local goto "switch yard" that is used to transfer control.
The label 1 causes the current value of flabel to be used; transfer of control
upon failure is effected by transfer to this label. If the target is not in
the current procedure, a return to subroutine icon is made, otherwise control
is transferred as indicated by the local label portion of the value of label.

- 25 -

With two exceptions, the Fortran code generated by the Icon translator con­
forms to the Fortran standard as embodied in the PFORT verifier [17].

The most serious exception is in the data statements illustrated in lines
7-12 above. It is assumed that arrays can be initialized by data statements
of the form

data a /value of a(l), value of a(2) value of a(N)/

or, if the array is large, by data statements of the form

data (a(k),k=l,100) /value of a(l), ..., value of a(100)/
data (a(k),k=101,200) /value of a(101), value of a(200)/
data (a(k),k=201,N) /value of a(201) value of a(N)/

The ANSI standard form requires explicit specification of each element of the
array, i.e.

data a(l) /value of a(l)/
data a(2) /value of a(2)/

• • •
data a(N) /value of a(N)/

If the form of the data statements causes problems, it can be changed by modi­
fying the translator routine outds, which is called to output most data state­
ments. Exceptions are the array r (see line 12 above), which is output in
outhdr, and field offset arrays, which are described below.

The second exception concerns the use of block data subprograms. If
records are used in an Icon program, arrays containing field offsets are gen­
erated and placed the labeled common cflds. A block data subprogram is gen­
erated that initializes these arrays. The problem is that, in this case,
there are two block data subprograms — the one that initializes cflds and one
that initializes other runtime data used by every Icon program. Having more
than one block data subprogram is contrary to the ANSI standard and may cause
problems. If so, the offset arrays can be made local to each Fortran pro­
cedure (corresponding to each Icon procedure) by modifying the translator rou­
tine outfld. This routine is called to output the common statement in each
subroutine and may be modified to output the data statements in place of the
common statement. Note that the arrays are output directly by outfld; outds
is not called. Thus, if the form of data statement mentioned above causes
problems, outfld will need to be modified.

- 26 -

Appendix B, A Grammar for Xcon

The following grammar for Icon is left-factored and has no left-recursive
productions. The code segments in the parser for each non-terminal are
derived from the productions in this grammar. Language constructs processed
by pass one, such as record and global declarations, are not shown.

PROC
INIT

SLIST
SLISTP

DEXP
EXP

AND
ANDP

ASSIGN
ATYP

TOBY
TOBYP

BY

OR
ORP

RELOP
RELOPP

CONCAT
CONCATP

ADDOP
ADDOPP

— >
— >

1
-->
-->

1
1

-->
-->

1
-->
-->

1
-->
-->

1
1
1
1

-->
-->

1
— >

1
-->
-->

1
-->
-->

1
1
1
1
1
1
1
1
1
1

— >
— >

1
-->
— >

1
1
1

Drocedure INIT SLIST
jjaitiai DEXP
eps
DEXP SLISTP
»;f DEXP SLISTP
<newline> DEXP SLISTP
eps
EXP
AND
eps
ASSIGN ANDP
'&» ASSIGN ANDP
eps
TOBY ATYP
'*:=" ASSIGN
": = :" ASSIGN
'<-' ASSIGN
"<->" ASSIGN
eps
OR TOBYP
Ifi OR BY TOBYP
eps
b_i OR
eps
RELOP ORP
1 I * RELOP ORP
eps
CONCAT RELOPP
»=' CONCAT RELOPP
"~=" CONCAT RELOPP
»<» CONCAT RELOPP
"<=" CONCAT RELOPP
f>' CONCAT RELOPP
">=" CONCAT RELOPP
"==" CONCAT RELOPP
"~==** CONCAT RELOPP
"===" CONCAT RELOPP
"-===" CONCAT RELOPP
eps
ADDOP CONCATP
"II" ADDOP CONCATP
eps
MULOP ADDOPP
•+* MULOP ADDOPP
•-• MULOP ADDOPP
"++" MULOP ADDOPP
"—" MULOP ADDOPP

- 27 -

MULOP
MULOPP

EXPOP
ETYP

SUFFIX
SUFFIXP

PREFIX —>

PRIME — >

PRIMEP —>

ELSEX

DOX

RETX

— >

-->

— >

» + »
t _ t

* = »
» i»

eps
EXPOP MULOPP
•*• EXPOP MULOPP
»/• EXPOP MULOPP
'***" EXPOP MULOPP
SUFFIX ETYP
»A» EXPOP
eps
PREFIX SUFFIXP
»+» SUFFIXP
,-» SUFFIXP
fails SUFFIXP
eps

PREFIX
PREFIX
PREFIX
PREFIX
PREFIX

PRIME
»&» KEYWORD PRIMEP
LOCAL PRIMEP
GLOBAL PRIMEP
BUILTIN •(• ELIST »)» PRIMEP
RNAME •(• ELIST •) • PRIMEP
LITERAL PRIMEP
•(• EXP •) • PRIMEP
•<• ELIST •>• PRIMEP
•{' SLIST •}' PRIMEP
if DEXP then DEXP ELSEX PRIMEP
while DEXP ifl DEXP PRIMEP
until DEXP ifl DEXP PRIMEP
every EXP DOX PRIMEP
repeat DEXP PRIMEP
fail PRIMEP
succeed RETX PRIMEP
return RETX PRIMEP
suspend RETX PRIMEP
break PRIMEP
next PRIMEP
stack '(» EXP »)• PRIMEP
table •(• EXP •) • PRIMEP
HS± • (f PROTO •) • AINIT PRIMEP
scan DEXP usj&z DEXP PRIMEP
case DEXP fi£ '{' CLIST f}• PRIMEP
f(f ELIST •) • PRIMEP
•{• EXP »}' PRIMEP
1.• FNAME PRIMEP
eps
else DEXP
eps
ilfl DEXP
eps
DEXP
eps

- 28 -

EL 1ST
ELISTP

LITERAL

ALIST
ALISTP

PROTO

UBX

AINIT

CLIST
CLISTP

CELEM

LLIST
LLISTP

-->
-->

1
-->

1
1 -->

-->

1
— >

1
— >

1
-->

1
— >
-->

1
1

-->

1
-->
-->

1

EXP ELISTP
' ,* EXP ELISTP
eps
INT
FLOAT
STRING
LOCAL ALISTP
',» LOCAL ALISTP
eps
DEXP UBX
eps
,:» DEXP
eps
initial DEXP
eps
CELEM CLISTP
»;» CELEM CLISTP
<newline> CELEM CLISTP
eps
default *:! DEXP
LLIST •:• DEXP
LITERAL LLISTP
1,• LITERAL LLISTP
eps

- 29 -

Appendix C, Syntax and Corresponding Fortran Code

This appendix gives an informal BNF-like description of Icon and the form
of the corresponding generated code. The notation is as follows: curly
braces denote required constructs, square brackets denote optional constructs,
and ellipses following a group denote repetition. No attempt has been made to
show relative precedence in expressions. A nonterminal appearing in the code
denotes its own generated code.

A <procedure> is

procedure <ident> [<header-decl>] <dexpl>... end

LI continue
ca l l xreset(L2)
<dexpO>

L2 continue
<dexpl>
call xpop
call xpnull
call xretrn
goto JUMP

* generate entry label
* reset if initial
* evaluate initial clause
* secondary entry point
* generate procedure body
* pop final value
* generate default return
* and return

A <dexp> is

if <dexp> then <dexpl> else <dexp2>

Fl

F2

<dexp>
call xpop
if (signal
<dexpl>
goto F2
signal = 1
<dexp2>
continue
if (signal

,eq. 0) goto Fl

* evaluate boolean
* throw away value
* jump if <dexp> failed
* evaluate the statment
£ skip second expression
* reset signal to success
* evaluate second expression

,eq. 0) goto FAIL * check failure if necessary

whj,le <dexp> dji <dexp>

Fl

F2

call xlpbeg
<dexp>
call xpop
if (signal .
<dexp>
call xpop
goto Fl
call xlpend

eq. 0) goto F2

* Fl = next, F2 = break lab
* establish loop beginning
* evaluate boolean
discard its value
skip out on failure
evaluate the expression
discard its value
and loop
close down loop

- 30 -

until <dexp> £& <dexp>

Fl

F2

call xlpbeg
<dexp>
call xpop
if (signal ,
signal = 1
<dexp>
call xpop
goto Fl
call xlpend

eq. 1) goto F2

* establish loop beginning
* evaluate boolean
* discard its value
* skip out on success
* remove failure signal
* evaluate the expression
* discard its value
* and loop
* close down loop

every <exp>

LI

call xmark(Ll)
<exp>
call xpop
signal = 0
call xdrive
if (label .ne. 0) goto JUMP
signal = 1

* mark stacks; failure label
* evaluate expression
* throw away value
*• force failure
* iterate
* jump if more alternatives
* loop must succeed

every <exp> dji <dexp>

call xlpbeg
call xmark(Ll)
<exp>
call xpop
call xevery
<dexp>
call xpop

Fl continue
signal = 0

LI call xdrive
if (label .ne. 0) goto JUMP

F2 call xlpend

* establish loop beginning
* mark stacks; failure label
* evaluate the generator
* throw away value
* mark c stack data
* evaluate the expression
throw away value
next label
force failure
iterate

* jump if more alternatives
* close down loop

repeat <dexp>

Fl

F2

call xlpbeg
<dexp>
call xpop
if (signal .
call xlpend

eq. 1) goto Fl

* establish loop beginning
* evaluate expression
* discard value
* loop on success
* close down loop

- 31 -

scan <dexpl> using <dexp2>

<dexpl>
if (signal .
call xderef
call xcstrg
call xscanl
<dexp2>
call xscan2
if (signal ,

eq. 0) goto FAIL

eq. 0) goto FAIL

* evaluate subject
* abandon on failure
* dereference if needed
* convert to string if needed
* setup for scanning
* do scanning
* restore &subject and &pos
* check for failure

case <dexp0> fif { C { <liti>, }... I default : <dexpj>]... }

F2

<dexp0>
call xecase
if (xcomp(nl,tl).ne.O) goto F2
call xpop
<dexpl>
goto Fl
if (xcomp(n2,t2).ne.O .and.

xcomp(n3,t3).ne.O)) goto F3 * check next set of literals
call xpop * discard case expression value
<dexp2> * evaluate expression for lit2
goto Fl * skip remainder of case

* evaluate case expression
* error if <dexp0> fails
* nl = literal, tl = type
* discard case expression value
* evaluate expression for litl
2 skip remainder of case

Fn call xpop
<default expression>

Fl continue

* discard case expr value
* evaluate default

fail

call xpnull
signal = 0
call xretrn
goto JUMP

* push &null
* force failure
* return &null,failure
* computed branch

succeed

call xpnull
signal = 1
call xretrn
goto JUMP

* push &null
* force success
* return &null,succeed
* computed branch

- 32 -

succeed <dexp>

<dexp>
signal = 1
call xretrn
goto JUMP

* evaluate return value
* force success
* return value»success
* computed branch

return

call xpnull
signal = 1
call xretrn
goto JUMP

* push &null
* force success
* return &null,success
* computed branch

return. <dexp>

<dexp>
call xretrn
goto JUMP

* evaluate return value
* return value*signal
* computed branch

suspend

call xpnull
LI call xsusp(Ll)

if (label .ne. 0) goto JUMP
signal = 1

* push &null
* set up for suspend &null
* jump if really suspending
* insure success signal

suspend <exp>

call xmark(Ll)
<exp>

L2 call xsusp(L2)
if (label .ne. 0)

LI call xdrive
if (label .ne. 0)
signal = 1

break

goto JUMP

goto JUMP

X

%
X

X

X

X

X

mark stacks
evaluate the argument
suspend argument
jump if really suspending
extract alternative value
jump if we have any
force success

goto F2 * break from loop (to xlpend)

next

call xnext
goto Fl

* adjust stack heights
* iterate

- 33 -

< [<exp> ,]... >

<expl>
call xderef
<exp2>
call xderef

* compute first element
* dereference if necessary
2 compute second element
5s dereference if necessary

call xllist(n) 2 n = number of elements

<dexp:

LI

call xmark(Ll)
<exp>
call xdrive
if (label .ne. 0) goto JUMP

* mark stacks; failure label
* evaluate expression
2 drive expression to success
* jump if more alternatives

<exp> is

For built-in prefix, suffix, and infix operators and built-in functions,
the code sequences given below are the maximum that may be required. In gen­
eral, the label Ll (both in label position and as argument) is supplied only
if the operation is a generator. The signal test and branch to FAIL is elim­
inated for unconditional operations (note that all generators are condi­
tional). Dereferencing and conversion code is also optional. Dereferencing
is required whenever a variable (either natural or computed, including values
returned by defined procedures) is given when a value is required. A call to
a conversion routine is required when an argument is of the wrong or unknown
type. The conversion routines are

xcintg convert to integer
xcstrg convert to string
xcfile convert to file
xcreal convert to real
xccset convert to character set
xcnumr convert to numeric
xcproc convert to procedure
xcrecd convert to record

<prefix> <exp>

<exp>
call xderef
call xc????

Ll call "opcode*"(Ll)
if (signal .eq. 0) goto FAIL

2 evaluate expression
2 dereference arg if needed
* convert arg if needed
* "opcode" is prefix name
* check failure if needed

- 34

<exp> <suffix>

LI

<exp>
call xderef
call xc????
call "opcode"(Ll)
if (signal .eq. 0) goto FAIL

* evaluate expression
* dereference arg if needed
2 convert arg if needed
* "opcode" is suffix name
2 check failure if needed

<expl> <infix> <exp2>

<expl>
call xderef
call xc????
<exp2>
call xderef
call xc????

LI call "opcode"(Ll)
if (signal .eq. 0) goto FAIL

2 evaluate first operand
* dereference arg if needed
2 convert arg if needed
2 evaluate second operand
2 dereference arg if needed
* convert arg if needed
2 "opcode" is infix name
2 check failure if needed

The code for numeric and lexical comparisons uses two functions, xncmp and
xlcmp. These functions compare the top two values on the stack and return -1,
0, or +1» if the top value is less than, equal to, or greater than the value
below it on the stack. This result is then compared to zero using one of the
Fortran comparisons (e.g., .le.).

<expl> <relop> <exp2>

<expl>
call xderef
call xc????
<exp2>
call xderef
call xc????

* evaluate first argument
2 dereference arg if needed
* convert arg if needed
2 evaluate second operand
* dereference arg if needed
2 convert arg if needed

if (x?cmp(junk).??.0) goto FAIL * check relation

<ident> ([<exp> ,]...)

<expl>
call xderef
call xc????
<exp2>
call xderef
call xc????

* built-in procedure
* evaluate first argument
* dereference arg if needed
* convert arg if needed
2 evaluate second argument
* dereference arg if needed
2 convert arg if needed

LI call "opcode"(Ll) * pass correct number of args
if (signal .eq. 0) goto FAIL * check failure

- 35 -

<expl> ([<exp2> ,]...)

<expl>
call xderef
call xcproc
<exp2>
call xderef
<exp3>
call xderef

* procedure call
2 evaluate proc name
* dereference proc
* convert to procedure
* evaluate first arg
* dereference arg if needed
* evaluate second arg
* dereference arg if needed

call xinvok(Ll,n)
goto JUMP

LI if (signal .eq. 0) goto FAIL

* n = number of args
* jump to the procedure
* check failure

{ [<dexp>]... }

<dexp>
call xpop

* generate expression code
* discard value (except last)

<exp0> [<expl>]

<exp0>
<expl>
call xacc
if (signal .eq. 0) goto FAIL

* evaluate list or string
* evaluate subscript
* access list
* check failure

<expl> & <exp2>

<expl>
call xpop
<exp2>

* evaluate left argument
* throw away value
* evaluate second argument

<expl: <exp2>

LI if (signal .eq. 0) goto Fl
call save(Ll)
<expl>
goto F2

Fl signal = 1
<exp2>

F2 continue

* Fl = alternate label
* LI = reactivation label
* evaluate first expression
* skip second expression
* reset for success
* evaluate second expression

- 36 -

<expl> iSL <exp2>

LI

<expl>
call xderef
call xcintg
<exp2>
call xderef
call xcintg
call xto(Ll)
if (signal .eq. 0) goto FAIL

* evaluate from expression
* dereference arg if needed
* convert to integer
* evaluate to expression
* dereference arg if needed
* convert to integer
*• generate values
* check failure

<expl> £o. <exp2> jjy. <exp3>

LI

<expl>
call xderef
call xcintg
<exp2>
call xderef
call xcintg
<exp3>
call xderef
call xcintg
call xtoby(Ll)
if (signal .eq. 0) goto FAIL

* evaluate from expression
* dereference arg if needed
* convert to integer
* evaluate to expression
* dereference arg if needed
* convert to integer
* evaluate by expression
* dereference arg if needed
* convert to integer
* generate values
* check failure

<dexp> iaiis.

<dexp>
signal = iabs(signal - 1)
if (signal .eq. 0) goto FAIL

* evaluate expression
* invert signal
* check failure

list ([<expl> :] <expu>) [initial <exp>]

<expl>
<expu>
<exp>
call xmarry(0 or 1)

* evaluate lower bound
* evaluate upper bound
* evaluate initial value
* make list

tgbje (<exp>)

<exp>
call xmtabl

* evaluate table size
* make the table

stack (<exp>)

<exp>
call xmstak

* evaluate stack size
* make the stack

- 37 -

<record name> (<expl>, •••» <expm>)

<expl> * evaluate first field

<expm>
call xmrecd(t,k,m,n)

* evaluate last field
* make record, t = record type,
* k = record name,
* n = number of fields

<exp> . <identifier>

<exp>
call xfacc(fi)

* evaluate record expression
* fi = field offset array

<integer>

call xpintg(n) * n = integer offset

<real>

call xpreal(n) * n = real offset

<string>

call xpstrg(n) * n = string offset

<local identifier>

call xlocal(n) * n = identifier offset

<global identifier>

call xglobl(n) * n = identifier offset

A <body> is

[<decl>]... C <dexp>]...

A <decl> is

Igcal C <ident> ,]...

38 -

A <literal> is

string not containing double quote
* string not containing single quote '
{ digit }...
{ digit }... . C digit]...

A <ident> is

{ alpha } [alpha | digit | underscore { alpha | digit }...]

- 39 -

Appendix D. Built-in Operators. Functions, and Keywords

This appendix contains a list of the Icon built-in operations. The follow­
ing information is included with each operation.

argument information
type of the returned result
failure indication
generator indication

The argument information is either the datatype expected or the default if no
argument is given (from which the type may be deduced). Note that all genera­
tors may fail.

£*1 Built-in Operators

+(— convert to numeric
+any -> numeric

call xnumr

-(— negate
•numeric -> numeric

call xneg

:(— tab over matched string
:string -> string

call xtabm generator

*(— negate character set
'cset -> cset

call xnotc

!(-- access structure
!any -> variable

call xbang generator

)+ — increment

variable+ -> variable

)- — decrement

call xdupl
call xderef
call xcnumr
call xpone
call xadd

call xdupl
call xderef
call xcnumr
call xpone
call xsub

variable- -> variable

40 -

)A(— power
numeric A numeric -> numeric

call xpower

)*(— multiplication
numeric * numeric -> numeric

call xmul

)+(— addition
numeric + numeric -> numeric

call xadd

)-(— subtraction
numeric - numeric -> numeric

call xsub

)/(— division
numeric / numeric -> numeric

call xdiv

)**(— character set union
cset ** cset -> cset

call xunion

)—(— character set difference
cset -- cset -> cset

call xdiff

):=(— assignment
variable := any -> any

call xasg may fail

):=:(— value swap
variable :=: variable -> any

call xswap may fail

)<(— .It. predicate
numeric < numeric -> numeric

xncmp(junk)

)<=(— .le. predicate xncmp(junk)
numeric <= numeric -> numeric

)=(— .eq. predicate
numeric = numeric -> numeric

xncmp(junk)

)==(— .eq. string
string == string -> string

xlcmp(junk)

41 -

)>(— .gt. predicate
numeric > numeric -> numeric

xncmp(junk)

)>=(— .ge. predicate xncmp(junk)
numeric >= numeric -> numeric

) I |(— concat
string |I string -> string

call xcat

)~=(— .ne. predicate xlcmp(junk)
numeric ~= numeric -> numeric

)~= = (— #ne# string
string ~== string -> string

xlcmp(junk)

)===(— .eq. structure
any === any -> any

)~===(— .ne. structure
any ~=== any -> any

xcmp(junk)

xcmp(junk)

)<-(— reversible assignment
variable <- any -> any

call xrasg generator

)<->(— reversible swap
variable <-> variable -> any

call xrswap generator

C.2 Built-in Functions

any — match character
any(cset:****,string:&subject,

integer:&pos or l,integer:0) -> integer

call xany may fail

bal — match balanced string call xbal generator
bal(cset:&ascii,cset:"(".cset :**)**»

string:&subject,integer:&pos or l»integer:0) -> integer

center — center text in string call xcent
center(string:*"*,integer:0»string:** *') -> string

- 42 -

close — close object call xclose
close(any:file#table,or array) -> argument

copy — copy structure call xcopy
copy(any:null) -> argument

cset -- convert to character set call xcset
cset(any:null) -> cset

display -- display symbol table call xdisp
display(integer:!) -> null

find — find string call xfind generator
f ind(string :****, string :&subject,

integer:&pos or l,integer:0) -> integer

image -- convert to string image call ximage
image(any:null) -> string

integer -- convert to integer call xnumr may fail
integer(any:null) -> integer if (signal .eq. 0) go to FAIL

call xintg

left — left justify in string call xleft
lef t(string:"**,integer:0»string:" ") -> string

lge — lexical >= call xlge may fail
lge(string:***",string:*"*) -> string

lgt — lexical > call xlgt may fail
lgt(string:"**,string:"") -> string

lie -- lexical <= xlcmp(junk) may fail
lle(string:"",string:****) -> string

lit -- lexical < xlcmp(junk) may fail
llt(string:"",string:"") -> string

43 -

many — span characters call xmany may fail
many(cset:****,string:&subject,integer:&pos or 1,

integer:0) -> integer

map — translate characters call xmap
map(string: "".string:***",string:****) -> string

match — match string call xmatch may fail
match(string:****,string: &subject,integer:&pos or 1»

integer:0) -> integer

mod — get remainder call xmod
mod(numeric:0,numeric:0) -> numeric

move — move in &subject
move(integer:0) -> variable

call xmove generator

null — check for null
null(any:null) -> null

call xnull may fail

numeric — convert to numeric
numeric(any:null) -> numeric

call xnumr may fail

open -- open object call xopen may fail
open(any: file, table, or array .string:***") -> argument

pop — pop off stack
pop(stack) -> any

call xpops may fail

pos — convert to cursor position call xpos
pos(integer:0,string:Ssubject) -> integer

may fail

push — push onto stack
pushCstack, any) -> any

call xpushs

random — compute random integer
random(integer:!) -> integer

call xrand

read — read line
read(file:&input) -> string

call xread may fail

- 44 -

reads -- read string call xsread may fail
reads(file:&input,integer:!) -> string

real — convert to real
real(any:null) -> real

call xcreal may fail

repl — replicate string call xrepl
repl(string:*"*,integer:0) -> string

reverse -- reverse string
reverse (string:****) -> string

call xrev

right -- right justify in string call xright
right(string:**",integer:0»string:** **) -> string

section -- get section call xsect may fail
section(variable:&subject,integer:&pos or l»integer:0) -> variable

size — size of an object call xsize
size(any:string or list) -> integer

sort — sort array or table call xsort may fail
sort(any:null,integer:!) -> argument

stop -- stop execution
stop(any list) -> null

call xstop(n)
(n = number of arguments)

string — convert to string
string(any:null) -> string

call xstrg may fail

substr -- get substring call xsubst may fail
substr(variable:null,integer:0.integer:0) -> variable

tab — tab through &subject
tab(integer:0) -> variable

call xtab generator

top -- get stack top
top(stack) -> variable

call xtops may fail

- 45 -

trim -- trim string
trim(string:"**,cset:") -> string

call xtrim

type -- datatype of argument
type(any:null) -> string

call xtype

upto -- break to character set call xupto
upto(cset:****,string:&subject»

integer:&pos or l»integer:0) -> integer

generator

write -- write line
write(any list) -> string

call xwrite(n)
(n = number of arguments)

writes — write string
writes(any list) -> string

call xswrit(n)
(n = number of arguments)

zzO, ...» zz9 — system defined call zz?(l»n) generator
zz?(any list) -> variable (n = number of arguments,

1 = reactivation label)

£L2 Keywords

&ascii -> string
&clock -> string
&cset -> cset
&date -> string
&input -> file
&lcase -> string
&level -> integer
&null -> null
&output -> file
&pos -> variable:in
&random -> variable
&subject -> variabl
&time -> integer
&trace -> variable:
&ucase -> string

teger
:integer
e:string

integer

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

xkeywd(KASCIl)
xkeywd(KCLOCK)
xkeywd(KCSET)
xkeywd(KDATE)
xkeywd(KINPUT)
xkeywd(KLCASE)
xkeywd(KLEVEL)
xkeywd(KNULL)
xkeywd(KOUTPUT)
xkeywd(KPOS)
xkeywd(KRANDOM)
xkeywd(KSUBJECT)
xkeywd(KTIME)
xkeywd(KTRACE)
xkeywd(KUCASE)

- 46 -

Appendix E. Pictorial Description of Icon Data Objects

The following figures depict the representation of Icon data objects. The
symbols appearing in the figures correspond to the names used in the implemen­
tation. For types whose exact representation is machine dependent (such as
csets), the DEC-10 representation is shown.

Integers (DINTG = 1)

-+ + +
•+ >| value |
•+ + +

in the integer region

Strings (DSTRG = 2)

I actual I
I characters |

I I
in the string region

+

+

+-

->|
+-

SLEN

SLOC

I length
•+
I character offset
•+ into string region

in the qualifier region

Reals (DREAL = 3)

+ , +
>| DREAL I
+ +
I RVAL I real number
+ + (occupies 2 cells)

I I
+ + in the heap

- 47 -

Character Sets (DCSET = 4)

-+ +-
•+ >l
•+ +-

I
+

I
+

I
+

I
+

DCSET

CBITS I beginning of cset,
+ 1 bit per character
I (occupies 9 cells)
+
I
+

+ +
in the heap

Table Elements (DTENT = 5, see DTABL)

1 — + - _ .

in a table (DTABL)

.—>|

1

1

1

1

1

in

DTABL

BBREF

EREF

EVAL

ENXT

ETBL

the heap

1

1

1

1

1

1

back reference

reference

value

next DTENT on hash chain

pointer to table (DTABL)

- 48 -

Tables (DTABL = 6)

•+
•+-
,+ + . +

back reference
-+
| size of this block
-+
I type of reference field
•+
I type of value field
•+
I maximum size of table
-+

current size of table
-+

hash bucket[l]
• +

hash bucket[2]
-+
+ > table element block
-+ (DTENT)

I DTABL

1

1

1

1

1

1

1

1

1

BBREF

TSIZE

TREFT

TV ALT

TNMAX

TNSIZ

TBUCK

I 1

I | hash bucketCn]

in the heap

Lists (1-origined, non-expandable; DLIST = 7)

+ + +
+ >| DLIST |
+ + +

I BBREF | back reference
+ +

I LSIZE | s i z e of t h i s b lock
+ +

I LTYPE | type of list elements
+ +

I LELMT | beginning of elements

I I
+ +

in the heap

- 49 -

Lists (arbitrary origin, expandable; DARRY = 8)

+-
>l
+-
I
+-

I
+-

DARRY

BBREF

ASIZE

ATYPE

back reference

I size of this block

I type of list elements
+ +
| AINIT I initial value
+ +
I AOPEN I YES if list is opened
+ +

I ALBND I lower bound
+ +
I AUBND I upper bound
+ +
I AELMT I beginning of elements

File (DFILE = 9)

in the heap

+-
•>l
+-

DFILE

BBREF

FINAM

FSTAT

FNAME

| back reference
-+
I internal (integer) name
-+
I status (see below)
-+
I string name

Status Codes (contents of FSTAT):

FCLOS -1 file is closed
FREAD 0 file is opened for reading
FWRIT 1 file is opened for writing
FRDWR 2 file is opened for reading and writing

- 50 -

Utility block (DUTIL = 10 * not a source-language type)

+ •+ +
•+ >| DUTIL
• + + -

I USIZE
+
I UDATA

size of this block

beginning of non-tended data

in the heap

Procedures (DPROC = 11)

+-
>l
+-

I
+-
i
+-

I
+-

DPROC

BBREF

PSIZE

PENTRY

PSMAX

PPARAMS

PLOCALS

| back reference
+
I s ize of th i s block
+
I entry point (a label)

maximum stack size

number of parameters

I number of locals
+

PSTATIC | number of static locals
+

PNAME I printable name of procedure
+

PIDENTS I printable names of locals

+ +
in the heap

Universal Null (DNULL = 12)

+ +

I 0 +
+ +

- 51 -

Stack (DSTAK = 13)

+ +

+ ,+

Records (DRECD = 14)

+ +
| — + . _
+ +

+ +
>I DSTAK I
+ +
I BBREF | back reference
+ +
I SSIZE | size of this block
+ +
I STYPE | type of s t a c k elements
+ +
I SNMAX | maximum s i z e of s t a c k
+ +

I SSP I stack pointer (an offset)
+ . +
I SELMT | beginning of elements
I I

• •

I I
+ +

in the heap

+ +

>I DRECD |
+ +
I BBREF | back reference
+ +
I DSIZE | size of this block
+ +
I DNAME | record name as literal index
+ +
I DTYPE | type number
+ +
I DFLDS I beginning of fields
I I
• •

• •

I I
+ +

in the heap

- 52

+

+

Tended block (DBLOK =15. not a source-language type)

+ . +
->| DBLOK I
+ . , ,+
I BBREF | back reference
+. . , +

I BSIZE I s i z e of t h i s b lock
+ +

i BDATA | beginning of tended data
I I
• •

a •

I I

in the heap

- 53 -

