Temporary Variable Allocation in the Presence of Goal-
Directed Evaluation

Kenneth Walker

Department of Computer Science, The University of Arizona

1. Introduction

The maintenance of intermediate results during expression evaluation in the Icon programming language [1] is
more complicated than it is for conventional languages, such as C and Pascal. Janalee O’Bagy explains this in her
dissertation [2]:

*‘Generators prolong the lifetime of temporary values. For example, in
i = find(s1,82)

the operands of the comparison operation cannot be discarded when find produces its result. If
find is resumed, the comparison is performed again with subsequent results from find(s1,s2), and
the left operand must still be available.”

Two basic approaches have been used in language implementations to store intermediate results. On a stack-
based machine, operations implicitly use the stack to store and retrieve intermediate results. Operations are executed
in such a way that only the top elements of the stack need be pushed and popped. Expressions in conventional
languages translate naturally into code for a stack-based machine. This not true of Icon. The code in a stack-based
implementation of Icon is forced to make a copy of part of the stack at critical points in execution, in anticipation of
possible backtracking later on [2,3]. In spite of this, earlier implementations of Icon, with the exception of a partial
implementation by Thomas Christopher (4], use a stack-based virtual machine.

The alternate approach to language implementation is to use a ‘‘register-based’’ machine. In this implementation
model, intermediate results are stored in explicit locations. These locations may or may not be actual machine regis-
ters. In any case, they may be viewed as temporary variables. A translator typically uses one temporary variable for
several intermediate results. A correct allocation of temporaries to intermediate results insures that a live result (that
is, one that might still be needed) is not overwritten by another result.

Temporary variable allocation consists of two problems: determining the lifetime of intermediate results, that is
liveness analysis, and determining a correct and efficient mapping of intermediate results to temporary variables
based on this liveness information. In a straightforward implementation of conventional languages, liveness analysis
is trivial: an intermediate result is computed in one place in the generated code, is used in one place, and is live in
the contiguous region between the computation and the use. In such languages, determining the lifetime of inter-
mediate results only becomes complicaled when certain optimizations are performed, such as common subexpres-
sion elimination across basic blocks and code motion [5,6]. However, this is not true in Icon. In the presence of
goal-directed evaluation, the lifetime of an intermediate result can extend beyond the point of usc. Even in a
straightforward implementation, liveness analysis is not trivial.

Icon programs contain many places where goal-directed evaluation is bounded; Christopher uses this fact to
deduce bounds on the lifetimes of intermediate results in his temporary variable implementation of Icon. However,
this approach produces a very crude estimate of these lifetimes. This report addresses the problem of *‘fine-

1PD81 -1- May 7, 1990

grained’’ liveness analysis in the presence of goal-directed evaluation. In its most general form, liveness analysis
requires iterative methods to solve. However, goal-directed evaluation imposes enough structure on the liveness
problem that, at least in the absence of optimizations, iterative methods are not needed to solve it. This report
presents a simple and accurate method for computing liveness information for intermediate results in Icon. The
analysis is formalized in an attribute grammar.

The liveness information is used by a ‘‘register’” allocator to make efficient use of temporary variables. How
this allocation is done depends on details of the machine model, implementation conventions, and decisions of how
much work is reasonable to obtain good reuse of temporary variables. This report presents a brief discussion of
these allocation issues.

2. Motivation

As noted in the introduction, stack-based implementations of Icon must copy portions of the stack during pro-
gram execution. To illustrate the amount of copying done, an Icon interpreter was instrumented to count the number
of bytes copied and run on an Icon program that makes a moderate use of generators (this program is a prototype
type inference system and was run with an Icon solution to the eight queens problems as its input). The interpreter
copied 750,960 bytes of stack while executing 754,914 icode instructions (see [3] for a description of icode instruc-
tions). This copying is a small part of the cost of instruction execution in the interpreter. However, an optimizing
compiler can significantly reduce other costs in program execution, increasing the significance of this copying.
Therefore, a better method for handling intermediate results is desirable in such a compiler. Another motivation for
changing implementation models is that a stack-based implementation limits the amount of code optimization that
can be performed.

Using a model that employs explicit temporary variables can eliminate the need to make copies of intermediate
results. This is because operations in such a model do not implicitly consume their operands. If a potentially infinite
supply of temporary variables is available and the number used has no impact on the cost of execution, then it is rea-
sonable to allocate one for each intermediate result. However, in realistic implementations it is desirable to reuse
temporary variables where possible.

Just as goal-directed evaluation complicates the use of a stack-based model of execution, it also complicates
determining the length of time that an intermediate value must be retained in a temporary variable. This is because
goal-directed evaluation creates implicit loops within an expression. In O'Bagy’s example in the introduction, the
start of the loop is the generator find and the end of the loop is the comparison that may fail. An intermediate result
may be used within such a loop, but if its value is computed before the loop is entered, it is not recomputed on each
iteration and the temporary variable must not be reused until the loop is exited.

The following fragment of Icon code contains a loop and is therefore analogous to code generated for goal-
directed evaluation. 1] through ¢4 represent intermediate results that must be allocated to program variables.

tl = &time

every 1 to 3 do {
12 := read()
3=t + 2
write(13)
)

4 =8

Separate variables must be allocated for 1] and 12 because they are both needed for the addition. Here, x is chosen
for ¢1 and y is chosen for 2,

IPDS! -2- May 7, 1990

x = &time

every 1 1o 3 do {
y = read()
3=x+Yy
write(13)

}
4 =8

x cannot be used to hold ¢3, because x is needed in subsequent iterations of the loop. Its lifetime must extend

through the end of the loop. However, ¥y can be used because it is recomputed in subsequent iterations. Either vari-
able may be used to hold ¢4,

x = &time

every 1 to 3 do {
y = read()
y=x+y
write(y)

}
x =8

Before temporary variables can be allocated, the extent of the loops created by goal-directed evaluation must be
estimated. Suppose O’Bagy’s example

i = find(s1, s2)
appears in the following context

procedure p(s1, s2, i)
if i = find(s1, s2) then retumn i + *s1
fail
end
The simplest and most pessimistic analysis assumes that a loop can appear anywhere within the procedure, requiring
the conclusion that an intermediate result in the expression may live to the end of the procedure. Christopher’s
analysis notices that the expression appears within the control clause of an if expression. This is a bounded context;
implicit loops cannot extend beyond the end of the control clause. His allocation scheme reuses, in subsequent
expressions, temporary variables used in this control clause. However, it does not determine when temporary vari-
ables can be reused within the control clause itself.
The analysis presented here locates within the expression the operations that can fail and those that can generate
results. It uses this information to accurately determine the loops within the expression and the intermediate results
whose lifetimes are extended by those loops.

3. Liveness Analysis
It is instructive to look at a specific example where intermediate values must be retained beyond (in a lexical

sense) the point of their use. The following expression employs goal-directed evaluation to conditionally write sen-
tences in the data structure x to an output file, If f is a file, the sentences are written to it; if f is null, the sentences
are not written.

every write(M, Ix, ".")
In order to avoid control structures at this point in the discussion, the following equivalent expression is used in the
analysis:

write(M, Ix, ".") & &fail

This expression can be converted into a sequence of primitive operations producing intermediate results (¢/, 22, ...).
For convenience, the opcrations are expressed in Icon:

IPD81 -3- May 7, 1990

(

—] = Write,

'—tz =1,
13 :=\12,

4 =X,
15 =144,
VW 7 = 11(13,15,16),
P 48 = &fall

)

Whether or not the program variables and constants are actually placed in temporary variables depends the machine
model and implementation conventions, and clearly a temporary variable is not needed for &fail. However, tem-
porary variables are needed if the subexpressions are more complex; intermediate results are shown for all subex-
pressions for explanatory purposes. (Note that Icon does not quite capture the semantics of the primitive operations;
technically, ¢1, 12, and ¢4 should be variable references, not dereferenced values.)

When the &fail is executed, the ! operation is resumed. This creates an implicit loop from the ! to the &fail, as
shown by the arrow in the above diagram. The question is: What intermediate results must be retained up to the
&fail? A more instructive way to phrase the question is: After &fail is executed, what intermediate values might be
reused without being recomputed? From the sequence of primitive operations, the answer is clearly ¢/, 3, and 4. 12
is not used within the loop, t5 and (6 are recomputed within the loop, and (7 and ¢8 are not used. The lines in the
diagram to the left of the code indicate the lifetime of the intermediate results. The dotted portion of each line
represents the region of the lifetime extending beyond the result’s use.

A notation that emphasizes intermediate results, subexpressions, and execution order is helpful for understand-
ing how liveness is computed. Both postfix notation and syntax trees are inadequate. A postfix notation is good for
showing execution order, but tends to obscure subexpressions. The syntax tree of an expression shows subexpres-
sions, but execution order must be expressed in terms of a tree walk. In both representations, intermediate results are
implicit. For this discussion, an intermediate representation is used. A subexpression is represented as a list of expli-
cit intermediate results followed by the operation that uses them, all enclosed in ovals. Below each intermediate
result is the subexpression that computes it. This representation is referred to as a postfix tree. The example above is

shown as
17 18 E

t] 3 5 6 invoke (&fail)

Cwrite 2 \ 214 1)

In this notation, the execution order of operations (which includes constants and references to program variables) is
lefi-to-right and the backtracking order is right-to-left. In this example, the backtracking order is &fail, invoke, ".", !,
x, \, f, and write.

IPD81 -4 - May 7, 1990

As explained above, the use of an intermediate value must appear in an implicit loop for the value to have an
extended lifetime. Two events are needed to create such a loop. First, an operation must fail, initiating backtrack-
ing. Second, an operation must be resumed, causing execution to proceed forward again. This analysis computes the
maximum lifetime of intermediate results in the expression, so it only needs to compute the rightmost operation
(within a bounded expression) that can fail. This represents the end of the farthest reaching loop. Once execution
proceeds beyond this point, no intermediate result can be reused.

The intermediate values of a subexpression are used at the end of the subexpression. For example, invoke uses
the intermediate values in

<} 13 5 16 invoke

In order for this use to be in a loop, backtracking must be initiated from outside; that is, beyond the subexpression
(in the example, only &fail and & are beyond the subexpression).

In addition, for an intermediate value 10 have an extended lifetime, the beginning of the loop must start after the
intermediate value is computed. Two conditions may create the beginning of a loop. First, the operation itself may
be resumed. In this case, execution continues forward within the operation. It may reuse any of its operands and
none of them are recomputed. (Whether an operation actually reuses its operands on resumption depends on its
implementation, but it is conservative to assume that it does.) The operation does not have to actually generate
more results. For example, reversible swap can be resumed to reuse both of its operands, but it does not generate
another result.

The second way to create the beginning of a loop is for a subexpression to generate results. Execution continues
forward again and any intermediate results to the left of the generative subexpression may be reused without being
recomputed. Remember, backtracking is initiated from outside the expression. Suppose an expression that can fail is
associated with 16. This creates a loop.with the gencrator associated with t5. However, this particular loop does not
include invoke and does not contribute to the reuse of ¢/ or 3.

A resumable operation and generative subexpressions are all resumption points within an expression. A simple
rule determines which intermediate results of an expressions have extended lifetimes: If the expression can be
resumed, the intermediate values with extended lifetimes consist of those to the left of the rightmost resumption
point of the expression. This rule refers to the ‘‘top level’’ intermediate results. The rule must be applied recur-
sively to subexpressions to determine the lifetime of lower level intermediate results.

It sometimes may be necessary to make conservative estimates of what can fail and of resumption points (for
liveness analysis, it is conservative to overestimate what can fail or be resumed). For example, invocation may or
may not be resumable, depending on what is being invoked and, in general, it is not known until run time what is
being invoked (for the purposes of this example analysis, it is assumed that the variable write is not changed any-
where in the program).

In the example, the rightmost operation that can fail is &fail. Resumption points are ! and the subexpressions
corresponding to the intermediate values £5 and (7.

Once the resumption points have been identified, the rule for determining extended lifetimes can be applied. If
there are no resumption points in an expression, no intermediate values in that expression can be reused. Applying
this rule to the postfix tree above yields ¢/, 13, and ¢4 as the intermediate values that have extended lifetimes.

4. An Attribute Grammar

To cast this approach as an attribute grammar, an expression should be thought of in terms of an abstract syntax
tree. The transformation from a postfix tree to a syntax tree is trivial. It is accomplished by deleting the explicit
intermediate results. A syntax tree for the example is

IPD81 -5- May 7, 1990

Several interpretations can be given 1o a node in a syntax tree. A node can be viewed as representing either an

operation, an entire subexpression, or an intermediate result.

This analysis associates four attributes with each node (this ignores attributes needed to handle break expres-

sions). The goal of the analysis is to produce the lifetime attribute. The other three attributes are used to propagate
information needed to compute the lifetime.

resumer is either the rightmost operation (represented as a node) that can initiate backtracking into the subex-
pression or it is null if the subexpression cannot be resumed.

failer is related to resumer. It is the rightmost operation that can initiate backtracking that can continue past the
subexpression. It is the same as resumer, unless the subexpression itself contains the rightmost operation that
can fail.

gen is a boolean attribute. It is true if the subexpression can gencrate multiple results if resumed.

lifetime is the operation beyond which the intermediate value is no longer needed. It is either the parent node,
the resumer of the parent node, or null. The lifetime is the parent node if the value is never reused after the
parent operation completes. The lifetime is the resumer of the parent if the parent operation or a gencrative
sibling to the right can be resumed. A lifetime of null is used to indicate that the intermediate value is never
used. For example, the value of the control clause of an if expression is never used.

Attribute computations are associated with productions in the grammar. The attribute computations for failer

and gen are always for the non-terminal on the left-hand side of the production. These values are then used at the
parent production; they are effectively passed up the syntax tree. The computations for resumer and lifetime are
always for the attributes of non-terminals on the right-hand side of the production. resumer is then used at the pro-
duction defining these non-terminals; it is effectively passed down the syntax tree, lifetime is usually saved just for
the code generator, but it is sometimes be used by child nodes.

IPDS1 -6- May 7, 1990

Primary Expressions

Variables, literals, and keywords are primary expressions. They have no subexpressions, so their productions
contain no computations for resumer or lifetime. The following are the atribute computations for a literal. A
literal itself cannot fail, so backtracking only passes beyond it if the backtracking was initiated before (to the right
of) it. A literal cannot generate multiple results.

expr = literal {
expr.failer := expr.resumer
expr.gen := false

}

Another example of a primary expression is the keyword &fail. Execution cannot continue past &fail, so it must
be the rightmost operation within its bounded expression that can fail. A pre-existing attribute, node, is assumed to
exist for every symbol in the grammar. It is the node in the syntax tree that corresponds to the symbol.

expr = &fail {
expr.failer := expr.node
expr.gen := false

}

Operations with Subexpressions

Addition provides an example of the attribute computations involving subexpressions. The following diagram
shows how resumer, failer, and gen information would be passed through the postfix tree.

]
: gen
failer ! resumer
-, 2 JERIE> SRR
\ /
\ [
\ [
A]
Y
\ | | K
\ 1 | ’
\ [} [[}
\ 1gen gen ’
' ! ! ,/ resumer

‘\<expr1 >< (expré)‘
resumer failer

This information would then be used to compute lifetime information for ¢I and 2. The next diagram shows how
the attribute information is actually passed through the syntax tree.

IPDS! -7~ May 7, 1990

resumer ? gen

Y .

failer ?
!

!
]

L 4 P

7 “
gen .- failer “

~
s, resumer “~ gen
AN N

The lifetime attributes are computed for the roots of the subtrees for expry and expra.

The details of the attribute computations depend, in part, on the characteristics of the individual operation.
Addition does not fail, so the rightmost resumer, if there is one, of exprz is the rightmost resumer of the entire
expression. The rightmost resumer of expry is the rightmost operation that can initiate backtracking that continues
past expr2. Addition does not suspend, so the lifetime of the value produced by exprz only extends through the
operation (that is, it always is recomputed in the presence of goal-directed evaluation). If exprz is a generator, then
the result of expry must be retained for as long as exprz2 might be resumed. Otherwise, it need only be retained until
the addition is performed. expry is the first thing executed in the expression, so its failer is the failer for the entire
expression. The expression is a generator if either €xpry or exprz is a generator (note that the operation | is logical
or, not Icon’s alternation control structure):

expr = expry + expr2 {

expra.resumer .= expr.resumer

expra.lifetime := expr.node

expri.resumer := exprz.failer

if expra.gen & expr.resumer # null then
expry .lifetime := expr.resumer

else
expry.litetime := expr.node

expr failer := expr.failer

expr.gen := (expri.gen | expra.gen)

}

/expr provides an example of an operation that can fail. If there is no rightmost resumer of the entire expression,
it is the rightmost resumer of the operand. The lifetime of the operand is simply the operation, by the same argu-
ment used for exprz of addition. The computation of failer is also analogous to that of addition. The expression is a
generator if the operand is a generator:

expr = /expn (
it expr.resumer = null then
expr.resumer = expr.node
eise
expri.resumer = expr.resumer
expry.litetime = expr.node
expr.failer := expry.failer
expr.gen := expri.gen

}

lexpr differs from /expr in that it can generate multiple results. If it can be resumed, the result of the operand
must be retained through the rightmost resumer:

IPD81 -8- May 7, 1990

expr = lexprn {

if expr.resumer = null then {
expry.resumer = expr.node
expry.lifetime := expr.node
}

else {
expr.resumer = expr.resumer
expri lifetime = expr.resumer
}

expr.failer ;= expr .failer

expr.gen := true

}

Control Structures

Other operations follow the general pattern of the ones presented above. However, control structures require
unique attribute computations. In particular, several control structures bound subexpressions, limiting backtracking.
For example, not bounds its argument and discards the value. If it has no resumer, then it is the rightmost operation
that can fail. The expression is not a generator:

expr = not expry {
expry.resumer = null
expry.lifetime = null
if expr.resumer = null then
expr.failer := expr.node
else
expr.failer := expr.resumer
expr.gen := false

expry; expr2 bounds expry and discards the result. Because the result of expry is the result of the entire expres-
sion, the code generator makes their result locations synonymous. This is reflected in the lifetime computations.
Indeed, all the attributes of expr; and those of the expression as a whole are the same:

expr = expry ; exprz {
expry.resumer = null
expr.lifetime = null
expra.resumer := expr.resumer
expra.lifetime = expr.lifetime
expr.failer := expra.failer
expr.gen := exprz.gen

}

A reasonable implementation of alternation places the result of each subexpression into the same location: the
location associated with the expression as a whole. This is reflected in the lifetime computations. The resumer of
the entire expression is also the resumer of each subexpression. Backtracking out of the entire expression occurs
when backtracking out of exprz occurs. This expression is a generator:

IPD81 -9- May 7, 1990

expr ;= expr | exprz {
exprz.resumer:= expr.resumer
exprz.lifetime := expr.lifetime
expri.resumer := expr.resumer
expry.lifetime = expr.lifetime
expr.failer := expra.failer
expr.gen := true

}

The first operand of an if expression is bounded and its result is discarded. The other two operands are treated
similar to those of alternation. Because there are two independent execution paths, the rightmost resumer may not
be well-defined. However, it is always conservative to treat the resumer as if it is farther right than it really is; this
just means that an intermediate value is kept around longer than needed. If there is no resumer beyond the if expres-
sion, but at least one of the branches can fail, the failure is treated as if it came from the end of the if expression
(represented by the node for the expression). Because backtracking out of an if expression is rare, this inaccuracy is
of no practical consequence. The if expression is a generator if either branch is a generator:

expr = if expry then expr, else exprs {
expra.resumer = expr.resumer
expra.lifetime := expr.lifetime
expra.resumer := expr.resumer
expra.lifetime := expr.lifetime
expry.resumer = null
expry.lifetime := null
if expr.resumer = null & (expry.failer = null | exprafailer # null) then
expr.failer := expr.node
else
expr.failer = expr.resumer
expr.gen := (expra.gen | exprs.gen)

The do clause of every is bounded and its result discarded. The control clause is always resumed at the end of
the loop and can never be resumed by anything else. The value of the control clause is discarded. Ignoring break
expressions, the loop always fails:

expr = every expry do exprz {
expra.resumer = null
expra.lifetime = null
expri.resumer := expr.node
expry.lifetime := null
expr.failer := expr.node
expr.gen := false

Handling break expressions requires some stack-like attributes. These are similar to the ones described in [2,7].

The attributes presented here can be computed with one walk of the syntax tree. At a node, subtrees are pro-
cessed in reverse execution order: first the resumer and lifetime attributes of a subtree are computed, then the sub-
tree is walked. Next the failer and gen attributes for the node itself are computed, and the walk moves back up to
the parent node.

5. Using Liveness Information

An allocation of intermediate results to temporary variables must meet several constraints, some of which may
be dictated by the implementation model. The implementation model includes such things as the memory available
along with its usage conventions. It also includes primitive instructions and invocation conventions. To avoid the
complexities of classical register allocation, which involves allocating from a fixed finite pool of “‘cheap’” memory
locations along with an unbounded pool of ‘‘expensive’’ memory locations, this discussion assumes an unbounded

IPD81 -10- May 7, 1990

pool of uniform cost. This can be implemented by placing the temporary variables for each procedure in its pro-
cedure frame.

The most fundamental allocation constraint is that two intermeditate results may not be assigned to the same
temporary variable if there is some program point at which they are both live. Another constraint is that, as noted
above, operations such as alternation should have the results of subexpressions placed in the same temporary vari-
able. An example of a model-dependent constraint is the requirement that the arguments of some operations be
stored in consecutive locations.

A simple intuitive approach to temporary variable allocation satisfies the first constraint. This is accomplished
by one pass over the program in execution order. At each point, an intermediate result is produced, an unused tem-
porary variable is allocated for the result and marked in use. When the end of the lifetime of an intermediate result
is reached, the corresponding temporary variable is marked free. The works because a value is live during a contigu-
ous region of the program and the liveness calculations insure that there is a unique end-of-lifetime.

However, the other two constraints demonstrate that variables for different intermediate results cannot always be
allocated independently, These constraints can be met if temporary variables are allocated for all operands when an
expression is encountered. This has the undesirable effect of tying up temporary variables before they actually con-
tain values. This problem can be reduced by marking the variable reserved at the start of the expression and marking
it in use when the operand has used it. A subexpression can allocate a variable that is already marked reserved, as
long as its intermediate result does not live beyond the original need for the variable. As this original need must
occur after the current subexpression is completed, it is conservative to only assign reserved variables to intermedi-
ate results that do not outlive the subexpression.

There is an important difference between the stack model with copying and the temporary variable model. In the
stack model, locations containing operands can be used as work arcas (for dereferencing, type conversions, etc).
This is because the original values have been saved if they might need to be reused. In the temporary variable
model, values are not saved. Separate work locations are sometimes be needed. These locations may be allocated
using the same mechanism used for intermediate results or another mechanism may be used.

The fact that dereferencing and type conversion cannot necessarily be performed in place, potentially under-
mines the ability of the temporary variable model to eliminate the copying of intermediate results. If one of these
conversions actually does work, for instance converting a string to an integer, then it is no more expensive to com-
pute the result into a work area than it is to compute it in place. However, if it turns out that no conversion is actu-
ally needed, then the work area conversion must still copy the value, while the in-place conversion is finished as
soon as it completes the type check. To minimize this copying, liveness information should be used to determine
when in-place conversions can be safely generated. Copying can be further reduced by eliminating unnecessary
conversions. This can be done with information produced by type inference [7].

6. Conclusions

A stack-based model of expression evaluation is not natural for Icon with its goal-directed evaluation. A model
employing explicitly temporary variables can eliminate the large amount of copying of intermediate results that is
inherent in a stack model. The potential drawback of the temporary variable model is the necessity of determining,
at compile time, the lifetimes of intermediate results. This report presents an effective and efficient method of com-
puting those lifetimes.

If classical register allocation is not done, a simple algorithm can be used to allocate temporary variables. How-
ever, if the goal of reducing data movement is to be realized, care must be taken to avoid unnecessary copying of
intermediate results into work areas for dereferencing and other conversions.

Acknowledgements

Ralph Griswold served as the research advisor for this project. Kelvin Nilsen applied the liveness analysis
presented in this report to an implementation model slightly different from the one it was developed for, providing
insight into dependencies on execution models. Ralph Griswold, Kelvin Nilsen, and Janalee O’Bagy reviewed this
report, providing helpful suggestion on the material in the report and its presentation,

IPD81 -11- May 7, 1990

References
1. R.E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, second edition, 1990.

2. J. O'Bagy, The Implemenation of Generators and Goal-Directed Evaluation in Icon, The Univ. of Arizona
Tech. Rep. 88-31, 1988.

3. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

4. T. W. Christopher, Efficient Evaluation of Expressions in Icon, Unpublished Draft, Illinois Institute of
Technology, 198S.

5. A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison Wesley,
Reading, MA, 1985.

6. S. S. Muchnick and N. D. Jones, Program Flow Analysis: Theory and Applications, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1981.

7. K. Walker, A Type Inference System for Icon, The Univ. of Arizona Tech. Rep. 88-25, 1988.

IPD81 -12- May 7, 1990

