
1

No. 53 – August 1, 1997

Icon in Java

Todd Proebsting, Gregg Townsend, and Denise
Todd have begun development of an entirely new
implementation of Icon. The new system targets
the Java Virtual Machine and so provides plat-
form independence for translated Icon programs.
This system includes an Icon translator written in
Icon and a run-time system written in Java.

The Java Virtual Machine (JVM) is a platform-
independent execution environment for programs
distributed as Java class files. Class files include
executable code (a compact stack-machine byte
code) and linking information, much like ordi-
nary object files. JVM implementations execute
class file code either through interpretation or by
compilation to directly executable machine code.
JVM implementations also provide services like
garbage collection and thread support in addition
to a large set of library procedures.

Although the JVM was designed for Java, it can
also support other languages. The new Icon trans-

lator reads Icon source files and writes Java class
files. Combining these with the run-time system
produces a Zip file that is composed entirely of
class files and can be run on any platform sup-
porting Java. (JVM implementations are freely
available for every major computer system.)

This system is as complete an implementation
as is possible given the limitations of the Java
Virtual Machine. The system does not support
kbhit(), for instance, because there is no such
functionality in the JVM. Otherwise, the system
implements the full Icon language. It does not,
however, support graphics or large integers.

Development began in the Fall of 1996, with
Denise Todd’s implementation of the lexical ana-
lyzer and parser for Icon. (Denise recently gradu-
ated from The University of Arizona with an MS
in Computer Science.) This past Spring Todd
Proebsting implemented the rest of the translator.
Todd Proebsting and Gregg Townsend concur-
rently developed the run-time system. The trans-
lator uses a new mechanism for evaluating gen-
erators and performing goal-directed evaluation
[1]. The run-time system is also a new design: It is
completely object-oriented, with each of Icon’s
primitive types implemented as its own class,
which greatly simplified the design.

A proof-of-concept implementation is now fully
functional, validating the basic idea and the over-
all framework. Much work remains to bring the
performance to a practical level; the initial imple-
mentation emphasized expediency over efficiency.
Public availability will be announced at a later
date.

Reference

1. Todd Proebsting, “Simple Translation of Goal-
Directed Evaluation”, Proceedings of the ACM
SIGPLAN 1997 Conference on Programming Lan-
guage Design and Implementation (PLDI).

Contents

Icon in Java .. 1

Icon Documentation in Japanese.................. 2

Handbook of Programming Languages...... 2

Icon Analyst Promotional Offer 2

Program Visualization Course...................... 2

2

Icon Documentation in Japanese

Hiroshi Shinohara has graciously supplied
documentation for Icon in Japanese.

You can get it from our FTP site:

ftp:cs.arizona.edu

From there cd /icon/contrib/Japanese and get
README.

Handbook of Programming
Languages

In the last issue of the Newsletter, we mentioned
a planned multi-volume work on programming
languages. We now know a little more about it. It
is to be published by Macmillan Technical Pub-
lishing. Five volumes are projected:

1. Object-Oriented Languages

2. Tools and Little Languages

3. Imperative Languages

4. Functional and Logic Languages

5. Page Description Languages

Volume 1 is scheduled to appear by the end of this
year, Volumes 2 and 3 in 1998, and Volumes 4 and
5 in 1999.

The section on Icon, which will run about 100
pages, already has been submitted to the pub-
lisher.

Icon Analyst Promotional Offer

The Icon Analyst is now starting its eighth
year of publication.

We would like to increase the number of sub-
scribers, but we know that the cost of subscrip-
tion discourages some potential new subscribers.

So, for a limited time, we’re offering a discount
for new subscriptions — $18 for one year, 28% off
the normal subscription price of $25. (Overseas
postage is $10 extra; we can’t discount that.)

For this, you get six issues crammed full of
interesting material about Icon and its applica-
tions. The Analyst is published in 8.5"×11" for-
mat, with at least 12 pages per issue. The current
issue is 16 pages.

If you need more convincing, check out the Icon
Web site, where there are contents listings and
permuted indexes of past issues.

There also is a sample copy that shows what a
typical Analyst looks like and a list of topics
planned for future issues. Recently we’ve added
on-line services for subscribers, including color
images from the Analyst. You’re welcome to
check these out, although since this material is
designed to supplement printed copies of the
Analyst, there is no context for the images. To get
to the images, start with the Icon home page:

http://www.cs.arizona.edu/icon/

In the Documentation section of our home page,
follow the link to The Icon Analyst. On that page,
follow the link Supplementary material for sub-
scribers. On that page you’ll find links to issues of
the Analyst (right now, there is only Icon Analyst
43).

The discout subscription offer only applies to
persons who have not previously subscribed to
the Analyst or who have not subscribed for at
least one year. This offer is good only until Octo-
ber 1, 1997. Act now.

Subscriptions at the promotional rate start with
Issue 43, August 1997.

Incidentally, if we get enough new subscrip-
tions, we may be able to lower the standard
subscription rate to everyone’s benefit.

$18 is not much when spread over a year — only
$3 an issue. Take advantage of this offer; you’re
not risking much and you may get a substantial
return on your “investment”.

To get the special pricing, be sure to mention
this promotional offer.

Program Visualization Class

Last spring semester, we taught a graduate-
level course on program visualization.

The term “software visualization” now is used
more frequently than “program visualization”,
but “software visualization” and ”scientific visu-
alization” have the same initials and we decided
there would be less confusion if we used “pro-
gram visualization”. Besides, it made file naming
easier.

The class first surveyed the major areas of visu-

3

alization and the techniques used in them:

Scientific visualization, which is concerned with
the physical universe, real or imagined, ranging
from molecules to interstellar gas.

Mathematical visualization, which is concerned
with mathematical objects and concepts. Math-
ematical visualization usually is classified with
scientific visualization, but the subjects and tech-
niques used are sufficiently dissimilar that we
decided to separate them.

Information visualization, which is concerned with
databases and other large collections of data.

Algorithm animation, which is concerned with
algorithms.

Program visualization, which is concerned with
what goes on during the execution of a program.

Algorithm animation and program vis-
ualization may seem similar, but algorithm ani-
mation concentrates on specific algorithms like
sorting, while program visualization is concerned
with all aspects of program behavior. Many of the
techniques used in algorithm animation, how-
ever, are applicable to program visualization.

Following this survey, the techniques and prob-
lems related to program visualization were pre-
sented.

The body of the course consisted of studying the
visualization of various aspects of program be-
havior and designing new techniques and visual-
izations.

As you might expect, the course used Icon both
as a subject of investigation and as a tool. Icon is
particularly suitable for program visualization,
since it has high-level facilities that cannot easily
be related to the underlying architectures of the
computers on which it runs. Features such as
automatic storage management, generators and
goal-directed evaluation, and string scanning are
particularly good candidates for visualization.

The large collection of visualization tools re-
lated to Icon that already existed provided con-
siderable leverage and allowed much more terri-
tory to be covered than would have been possible
otherwise.

MT Icon [1] was used to obtain information
about running programs, and Icon’s graphics fa-
cilities allowed students to produce visual dis-
plays with a minimum of effort.

Students designed and implemented individual

visualization projects in lieu of a final exam.

Thirteen students enrolled. All completed the
course and all projects were good to excellent —
a considerable improvement over the first offer-
ing of this course 3 years ago. The availability of
better tools is the probable reason for the im-
provement. As is typical of student projects, how-
ever, only a few were fully functional and robust.

Brief descriptions of the student projects, to-
gether with representative images, follow.

Reference

1. The MT Icon Interpreter, Clinton L. Jeffery, Icon
Project Document IPD169, Department of Com-
puter Science, The University of Arizona, 1992.

The Icon Newsletter

Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

Editors

The Icon Newsletter is published three times a
year and is available on the World Wide Web. To
receive printed copies, contact:

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

e-mail: icon–project@cs.arizona.edu

and

© 1997 by Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

All rights reserved.

®

Bright Forest Publishers
 Tucson Arizona

4

Jeffrey Miller: ifp (Icon front panel)
visualizes Icon’s virtual machine.
Various information is shown in the
top part of the display. There are four
monitoring channels below, allow-
ing four different kinds of activity to
be monitored simultaneously. Many
kinds of events can be monitored,
including various types of expres-
sion evaluation, allocation, and even
virtual machine instructions.

Venkata Yella: This pro-
gram visualizes storage
allocation and procedure
activity. The types of al-
location are color coded.
The total amount of allo-
cation by type is shown
in a scrolling region. The
types of allocation to
view can be selected by
the user. Procedure ac-
tivity is shown at the
bottom.

5

Scott Baker: This program visualizes
structures that are the values of variables.
Structures are color coded and shown by
bars whose lengths are proportional to
size. Clicking on a bar brings up another
window with a subset of the functionality
of the main window. There, the values in
the structure are shown. Clicking on a
value brings up another window, and so
on.

Brett Gulledge: “Vines” displays the creation and usage of various kinds of data, represented as objects
on evolving vines. When a procedure is called, the vine branches. Objects start out as flowers and develop
into fruit as they are used by the program. As new vines grow, old ones are covered and wither. Clicking
on an object brings up a dialog with information about it.

6

Todd Rudick: “finealloc”
visualizes the details of struc-
tures as the are created and
used. Clicking on a line in
the code region in which a
structure is created marks
that structure for subsequent
tracing. The histogram re-
gion shows a list of struc-
tures being traced.

Shih-Han Liu: “Tracer”
shows evaluation activ-
ity the source code. Col-
ors code the number of
evaluations on a line.
The source code can be
set to scroll or move to
the currently executing
line. Font size can be
changed to accommo-
date programs of differ-
ent sizes.

7

Xaionan Han: “evMon” visualizes a
variety of program execution events.
Events are represented hierarchically.
At the top level, there are general
categories like expression evaluation.
At lower levels the events become
more specialized, such as function,
operator, procedure, and assignment
activity. Events are color coded and
scroll in the region at the center of the
window. The “ruler” at the bottom
shows the locus of program execu-
tion measured in percentage of pro-
gram length.

Michael Hast: This program recreates the earlier MemMon tool that was lost when the implementation of
Icon changed from memory-monitoring instrumentation to MT Icon instrumentation. Allocation in the
string and block regions is shown, color coded by type and in proportion to the amount of allocation.
Clicking on a rectangle brings up a dialog showing the type of allocation and the amount of space allocated.

8

Ilwoo Chang: “fmp” (file monitor
program) visualizes file activity:
opening, closing, reading, writing,
and seeking. The control window
allows the user to control monitor-
ing. In addition, there may be one or
more file windows showing indi-
vidual files. As data is read and
written, it is shown in the file win-
dow with the current position high-
lighted.

Larry Huebel: “Co-Axe” visualizes co-expression activity. Individual co-expressions are color coded for
identification. Every co-expression action adds a box for that co-expression. Clicking on a box brings up a
dialog with information about the nature of the activity, where in the program it occurred, and so on.

9

Chin Guok: “reach”
visualizes variable
dereferencing and
assignment using a
“piano-roll” display.
The user can select a
variable by clicking
on the roll and then
assign colors for
showing subsequent
assignment and de-
referencing.

Dan Nicolaescu: “bula” visualizes procedure activity. Procedures are laid out on a circle. The sizes of circles
around the procedure nodes indicate how much memory they allocate, and the colors represent the number
of times the procedure has been called. Lines connect procedures that are called and increase in thickness
with the number of calls. Return, failure, and suspension are shown by transient lines of different colors.

10

Brad Traweek: “IDB” (Icon debugger) is a full-fledged Icon debugger. The user can set break points in the
program and then examine the contents of structures when a break point is encountered. There are value
browsers that can be used, for example, to inspect the contents of structures interactively. Clicking on a
value in a structure brings up a browser for that value.

Comments: Brad Traweek’s debugger is unques-
tionably the best of the lot in terms of technical
excellence. Unfortunately, because of the limita-
tions of MT Icon, it requires two passes: one to set
the break points and another to use them. We
hope to overcome these problems at a future date.

Brett Gulledge’s “Vines” is the most original
and interesting visualization we’ve seen. It was
overly ambitious, as he knew, and was not com-
pletely functional at the time projects were due. It
nonetheless ranks with the few outstanding stu-
dent projects that our program visualization
classes have produced.

