
Hfie 1con9{ezustetter
No. 42 - July 15,1993

Contents
Version 8.10 of Icon ... 1

Exploring Natural Language Syntax ... 2

Prograrnming Corner ... 4

Supporting the Icon Project... 5

curort jAnalysi Back Issues ... 5

From Our Mail... 6

Ordering Icon Material... 9

Version 8.10 of Icon
Yes, there's another version of Icon. This one

has something we think most Icon programmers
really will appreciate—a built-in preprocessor. It
also has some improvements to the graphic facili­
ties ("X-Icon").

Version 8.10 presently is available for MS-DOS,
OS/2, UNIX, and VMS.

The Preprocessor

The preprocessor is comparatively simple. It
provides facilities for defining constants, includ­
ing files, and conditional compilation. It does not,
however, support macro definitions with argu­
ments.

The syntax of preprocessor directives is simple
and reminiscent of the C preprocessor. Each di­
rective must appear on a separate line and start
with a $. Preprocessor directives can be freely
intermixed with lines of Icon code.

Examples are:

$def ine Gap 2

$include 7usr/icon/lib/motif.icn"

$ifdef _MSDOS
prompt :=open("CON\ "w")

$endif

Built-in definitions include all the implementa­
tion attributes given by &features. For example,
as suggested above, a program can be specialized
to a particular platform.

Graphics Features

In Version 8.10, we've added graphics function­
ality, eliminated some features whose effects can
be obtained in other ways, and changed the way
a few things are handled.

Should You Upgrade?

Ii you're actively using Icon, we suggest that
you upgrade to Version 8.10. Once you start using
the preprocessor, you'll find it simplifies pro­
gramming and makes your programs easier to
understand and maintain. In some cases, it will let
you eUminate global identifiers and make your
programs smaller. In addition, preprocessor di­
rectives will start appearing in Icon program li­
brary material.

If you're using the graphics facilities of Icon,
you'll definitely want Version 8.10, since there are
some incompatibilities in graphics facilities be­
tween Version 8.10 and earlier versions. Version
8.10 of the Icon program library also contains
several programs and procedures that require
Version 8.10 graphics facilities.

The rest of the library is unchanged from Ver­
sion 8.8 (there are no preprocessor directives in
the library at present).

The UNIX and VMS distribution packages con­
tain the library, so if you get one of these, you
don't need to get the library separately.

TREE&FOX: Exploring Natural
Language Syntax
Editors' Note: The following article describing an
application of Icon in linguistics was contributed by
Dr. Manfred fahn, English Seminar, University of
Cologne, D-50923 Cologne, Germany.

For well over 30 years, the formal theory of
natural languages has been dominated by the
writings of Noam Chomsky [1]. His ideas about
deep and surface structures, generative rules,
acceptability and grammaticality, structure-pre­
serving transformations, innate universals, and
language-specific parameters have influenced
disciplines as far apart as philosophy, psychol­
ogy, microbiology, and the study of literature.
His essentialist approach also continues to appeal
to programmers involved in the slow progress
toward better grammar checkers, parsers, natural
language generators or machine translation.

Parsing a sentence like (1) is an elementary
exercise for any student of linguistics:

Mary saw John. (1)

Some people intuitively work top down, begin­
ning by dividing the sentence into its two major
constituents, Mary + saw John, a noun phrase
(NP) and a verb phrase (VP). The VP is then
further split into a verb (V) and another NP.
Others go bottom up, first categorizing the indi­
vidual words as nouns or verbs, then combining
these to make up the larger phrases. Both strate­
gies usually lead to a tree diagram.

Anyone who uses trees as a means of visual
representation, be it in linguistics or elsewhere,
has a love-hate relationship with them. Trees are
ideally suited to represent hierarchical structures,
but they are difficult to draw, cumbersome to
print, and they do not edit gracefully. The first
program in the TREE&FOX package, TREES, is a
simple tool that uses the pseudographics charac­
ters of the extended IBM/ASCII character set to
display or print trees. In computational terms,
given a high-level language like Icon, the data
structure underlying a tree is usually based on
strings, lists, or user-defined records [2]. In
TREE&FOX, all programs are built around
"treestrings" like the following, which encodes a
parsing of (1):

(SXNP.MaryMVP.CV.sawMNP.John))) (2)

In a "treestring", each nonterminal category is
any label after an opening bracket (that is, S, NP,
VP, V, NP), and any item preceded by a comma
(Mary, saw, John) is a terminal item.

Of course, the "treestring" format is too error-
prone for users to handle directly. Instead, TREES
allows users to write down "tree plans" such as
(3), in which structural dependencies are indi­
cated by indentations:

NP
Mary

VP
V

saw
NP

John

(3)

TREES reads (3) from a text file, converts it to
(2), and then prints or displays (4).

NP
1

VP

Mary saw

NP

John

(4)

The second program in TREE&FOX is FOX, a
"frame-oriented X-bar Parser". FOX illustrates a
multi-pass bottom-up approach towards natural
language input such as (1). Looking up the words
in a lexicon, FOX learns that John and Mary are
NPs and that saw is the past tense of a transitive
verb which requires a subject and an object NP.
Acting on this information, the parser builds an
initial sequence of partial trees, which may still
contain unsaturated nodes (nodes prefixed by a
question mark). Using a natural extension of the
"treestring" notation, a sequence of subtrees can
be represented as in (5):

((NP.Mary), (S,?NP,(VP,(V,saw),?NP)),NP,John)
(5)

Icon programmers will immediately see that all
that is needed to turn (5) into (2) is a procedure

that replaces the two unsaturated nodes in the
central tree by the satellite trees.

Of course, "Mary saw John" is a trivial example,
and most sentences cannot be expected to work
out quite as smoothly. However, for a program
consisting of 1,200 lines only, FOX makes some
creditable efforts. For example, it manages "What
did John's sister's niece promise that she would
do?", a sentence whose correct X-bar representa­
tion can keep a human parser busy for some time.
However, having no semantic intuitions of any
kind, FOX typically founders when the input
string contains ambiguous words or floating ad­
juncts whose attachment options are not specified
in the lexicon.

TREECAD, the third program in the package, is
a didactic tool allowing an interactive guided tour
of current issues in syntactic theory. The vision
here is that a Linguistics 101 instructor connects
his 386 portable to an overhead color LCD and
clicks a friendly TREECAD icon under Windows
3.1. From a corpus file he displays a standard X-
bar tree, explaining the roles and characteristics
of specifiers, heads, complements and adjuncts.
He demonstrates that all X-bar structures can be
generated from a small set of rewrite rules, some
universal, some language-specific. He may gen­
erate an abstract X-bar tree and ask his students to
supply suitable terminals. He may display sev­
eral subtrees and explore possible ways of com­
bining them. Introducing the concept of govern­

ment, he might point the mouse arrow to a node
and ask, If this were a governor, which nodes
would be governees? (Click: TREECAD high­
lights the governees.) For added flexibility,
TREECAD can copy, cut, mirror, and rename
structures, execute Chomsky-adjunctions and
movement transformations as well as undo or
redo a sequence of steps. Of course, tinder Win­
dows, additional windows can be accessed (see
the figure below), and all or part of the display can
be exported either to a word processor or to a
pixel-oriented drawing package like Paintbrush.

Subscribers to the Icon Newsletter can get a
copy of TREE&FOX via the Icon RBBS or by FTP.
Note that since FOX and TREECAD write/read
directly to/from the VGA screen and make exten­
sive use of the DOS interface functions, they can
only be run from an ordinary (non-386) MS-DOS
version of Icon.

References

1. The most accessible introductions to Chomsky's
theories are Liliane Haegeman, Introduction to
Government and Binding Theory, B. Blackwell, 1991,
and Andrew Radford, Transformational Grammar:
A First Course, Cambridge University Press, 1981.

2. See The Icon Programming Language, second edi­
tion, Chapters 14 and 15.

Editors' Note: The package mentioned above is in
/icon/contrib/treefox.lzh in our FTP area and at the
corresponding place on our RBBS.

i —
NP

TreeCad
IP

Tbar

PI
I

UP

I
Ubar

NP
*

NSp n Nbar
I

H

Notepad TREECAD.TXT
File Edit Search Help

M-command
Go from node A upwards to the
first maximal projection.
Every node down from there is
a B, m-commanded by A (except
nodes dominating ft, or
dominated by A).

(Haegeman 1991:125)

we +t2 saw the boy with the telescope

show ops edit system

|hi|cc |PIC |gv JGu | |adj |nou | |cpyI cut|gen|mir|ren| |un|Re|sv| qui

TREECAD Under Windows

Programming Corner
When Icon is run
from the command
line, arguments are
passed to the main
procedure in the
form of a list of
strings, one for each
argument. This is the
main way in which
information is passed
to a program that is

run from the command line. For example, if a
program that is named tabulate begins with

procedure main(arglist)
limit := integer(arglist[1])
bound := integer(arglist[2])

and tabulate is called as

tabulate 15 30

limit is set to 15 and bound is set to 30. A more
sophisticated program might issue an error mes­
sage for a non-integer value and provide defaults
for omitted arguments.

Command-line arguments can be used in any
way you like. If you use a standard format that is
supported by the Icon program library procedure
optionsO, other Icon programmers will know
how to specify options without special documen­
tation and you can take advantage of the power­
ful features provided by optionsO-

optionsO was originally written by Bob
Alexander. Gregg Townsend and Bob subse­
quently made a number of improvements. The
description of optionsO that follows is based on
the documentation in their program. There are
more features than described here. See the pro­
gram for complete documentation.

options(arglist, optstring) separates and inter­
prets options given in arglist. Option names and
values are removed from arglist and returned in
a table.

Options are introduced by the character -. An
option name is either a single printable character,
as in -n, or a string of letters, as in -geometry.
Valueless single-character options may appear in
combination, for example as -qtv.

Some options require values. Generally, the

option name is one argument and the value ap­
pears as the next argument, as in -F file.txt.
However, with a single-character argument name
(as in this example), the value may be concat­
enated: -Ffile.txt is equivalent to the form above.

Options may be freely interspersed with non-
option arguments. An argument of - is treated as
a non-option. The special argument — termi­
nates option processing. Non-option arguments
are retained in the original argument list for inter­
pretation by the caller.

The argument optstring is a string specifying
the allowable options. This is a concatenation,
with optional spaces between one or more option
specifications of the form -na me % where - intro­
duces the option name and is either a string of
letters or any single printable character. % is one
of the following flags:

! no value is required or allowed
: a string value is required
+ an integer value is required

a real value is required

The leading - may be omitted for a single-
character option. The ! flag maybe omitted except
when needed to terminate a multi-character name.
Thus, the following optstrings are equivalent:

"-n+ - t -v -q -F: -geometry: -silent"
"n+tvqF:-geometry:-silent"
"-silent! n+tvqF:-geometry:"

If optstring is omitted or null, any single letter
is assumed to be valid and to require no data.

optionsO returns a table that contains the op­
tions that were specified. The keys are the speci­
fied option names. The assigned values are the
data values following the options, converted to
the specified type. A value of 1 is stored for
options that accept no values. The table's default
value is &null.

Upon return, the option arguments are removed
from arglist, leaving only the non-option argu­
ments.

Obviously, optionsO is a very capable proce­
dure. The question is how to use it. Here's an
example from the Icon program library.

The program rsg.icn generates randomly con­
structed sentences from a context-free grammar.
It has three options:

-s i set the seed for random numbers to i

-I i limit sentences to at most i characters,
default 1,000

-t enable tracing

The portion of rsg.icn that handles these op­
tions is

link options

procedure main(args)

opts := options(args, "s+l+t")
&random:=\opts["s"]
limit :=\opts["l"] 1 1000
trace :=\opts["t"]

Strings from the command line are passed to
mainO in the list args, which in turn is passed to
optionsO.The secondargumenttooptionsO speci­
fies that only three command-line options are
allowed, and that -s and -I must have integer
arguments. Thus, optionsO returns a table with
entries for " s"," I", and" t". These entries are used
in setting variables, as shown.

The non-null test succeeds if the option is present
on the command line. Thus, &random is assigned
a value only if -s appears on the command line.
Similarly, limit is set to the value given on the
command line, if -I appears, or to 1000, the de­
fault, if it doesn't. Finally, trace is assigned the
value 1, provided by optionsO, if - t appears on
the command line.

Obviously, there's some overhead in setting up
a program to use optionsO- The investment usu­
ally is well worth the effort. We suggest you try it.

Supporting the Icon Project
We're very pleased with the response to our

article in the last Newsletter about helping the
Icon Project with its financial problems.

Some of you have added something extra when
ordering and we've had several new subscribers
to the Analyst, source-code updates, and pro­
gram-library updates.

As a result, we expect to just about break even
this fiscal year, which ends June 30. We expect to
be able to continue to provide this Newsletter
without charge and to continue to make improve­
ments to Icon.

We sincerely appreciate your support and hope
you find it gratifying as well.

{31am JVttalrjsi Back Issues
Several persons recently started subscribing to

the .Analgst and wanted to get back issues. With
three complete years of publication already past,
the cost of back issues is a bit daunting, however.

We're offering complete sets of the <Artalgsi
(issues 1-18) for $60, $15 off the per-issue price.
Postage is free in the United States, Canada, and
Mexico. There's a $3 additional charge for airmail
delivery to other countries. See the order form on
page 10.

From Our Mail
Is the icon-groupmailing
list moderated?

Yes, it is.
(When a
news group
is moder­
ated, mes­
sages aren't
sent on to group subscribers until they are ap­
proved by the moderator.) We did this because
icon-group was getting duplicate messages from
network news groups. We can intercept and de­
lete messages to icon-group that we consider to
be inappropriate, but so far moderation has been
limited almost entirely to getting rid of duplicate
messages.

Please correct the way my name appears on your
mailing labels. The o has an umlaut, like this: o. The
T£X encoding is \"{o}.

We maintain our mailing list on a Macintosh.
There's no problem on the Macintosh with um­
lauts on vowels — there are characters for these
and other common letters with diacritical marks
— 6, ft, u, c, and so forth. Our labels, however, are
printed on another platform using a dot-matrix
printer that doesn't know about such niceties and
produces barely legible results for plain letters.
We'd have to go to a laser printer to get signifi­
cantly better typography. Unfortunately, labels
are more expensive to produce on a laser printer.
For the time being, at least, all we can do is use
common transliterations like oe for 6. Inciden­
tally, and with no apologies, we don't use TgX.

If I send you a diskette, will you copy Icon onto it for
me?

No. We handle too many orders to make indi­
vidual copies on user-supplied media.

Can I translate an Icon program to C using the Icon
compiler?

Well, in the literal sense, you can. However, the
code the Icon compiler produces is not anything
you'd want to try to modify or maintain. Take a
look at the output from iconc -c and you'll see
what we mean. There are lots of reasons for the
kind of C code the Icon compiler produces. For
example, it must take into account generators and
automatic storage management that occur in al­
most all Icon programs. On the other hand, it's

often possible to translate Icon programs to C by
hand. (Generally speaking, it's easier to translate
C programs to Icon.) A recent update to the Icon
program library contains tools to help with the
clerical aspects of converting code between Icon
and C

Why haven't the Amiga and Atari ST implementa­
tions of Icon been updated from 8.0?

Between Version 8.0 and the current version, 8.10,
extensive changes were made in the way Icon is
implemented. Updating an 8.0 implementation is
a substantial undertaking, and ithasn'tbeen done
yet for the Amiga and Atari ST. We don't have the
resources at the Icon Project to work on these
platforms; help will have to come from elsewhere.

I'd really like to use X-Icon on my Macintosh under
System 7, but there hasn't even been a mention of an
implementation underway. Any hope?

Well, we wouldn't say there's no hope, but such
an implementation doesn't seem likely to us. It
would be a major undertaking and require con­
siderable expert knowledge. So far, no one has
even hinted they're interested in undertaking
such a project.

I was impressed by the images of Icon program visual­
ization tools that you showed in a recent issue of the
^rralrjsi. What would it take to get copies of these
tools?

We're tempted to say "send money". More seri­
ously, it's possible for us to make these tools
available, but it would take a lot of work to
package them for distribution. To use the tools,
you'd need to build a multi-tasking version of X-
Icon with monitoring instrumentation for your
platform (at present, that can be done under UNIX
and presumably it's possible under OS/2 and
VMS). In addition, a color monitor is a virtual
necessity. Despite these problems, we think the
program visualization tools are exciting and we'll
be working on some form of distribution. If you're
interested in being involved, let us know.

Is your next programming language going to be any­
thing like Icon?

We'll pretend we didn't hear that.

Will there be a version of Icon for NT? When?

We expect that Icon will be implemented for NT.
The graphics facilities of X-Icon are particularly
attractive in this context. It's too early to say
when.

Does the Department of Computer Science at your
university offer correspondence courses in Icon ? If not,
are there summer courses I could take?

The University of Arizona doesn't offer any corre­
spondence courses, as far as we know. The De­
partment of Computer Science has undergradu­
ate and graduate programs, but the courses are
available only to regularly enrolled students. Icon
is taught, along with several other programming
languages, in an undergraduate course on com­
parative programming languages. Icon is the fo­
cus of a course on string and list processing that is
available to both upper-division undergraduates
and graduate students. Icon sometimes also is
used in advanced special-topics courses, like a
recent one on program visualization. Summer
course offerings vary from year to year, but usu­
ally are limited to lower-division undergraduate
offerings.

7s anyone building an "Icon machine" with hardware
especially adapted to generators?

Not as far as we know. We hope not. If we see an
advertisement for "Icon in silicon", we're run­
ning for the hills.

I heard a rumor you're writing a book on X-Icon.
Anything to it?

Okay, who leaked this?

Do I have to pay the Icon Project royalties when I sell
applications written in Icon?

No. However, if you wish to make a voluntary
payment, it will be welcome and help support our
work.

How was HOPL-II? I wanted to go but couldn't afford
it.

HOPL-II (the Second History of Prograrnming
Languages Conference), was held in Cambridge,
Massachusetts in April. We found it very interest­
ing. How could it be otherwise for persons who
have been involved in the design and implemen­
tation of programrning languages for so many
years? In addition to the formal presentations,
there were lively panel discussions and, of course,
the chance to meet old friends and make new
ones. We also came away with a lifetime supply of
anecdotes. The sessions were taped (audio but
not video), the conference proceedings are being
prepared, and a book is planned. We'll put a note
in this Newsletter-when we know more.

I've been laid off due to staff reductions at my company.
Do you know of any jobs for Icon programmers?

There seem to be lots of programmers looking for
work these days. We don't have any specific
suggestions, and we honestly can't say that your
Icon experience will be a selling point for you.
However, we know several persons who use Icon
in their jobs (sometimes on the sly) and often do
well compared to their co-workers because of the
edge Icon gives them.

Why aren't there articles on Icon in computer maga­
zines?

Sometimes there are articles on Icon. The most
recent one we know of was a short article by Rich
Morin in the February 1993 issue of Unix Review.
However, you're basically right — there's little
about Icon in computer magazines. The editors of
these magazines tend to fix on topics they per­
ceive to be of wide interest or that are current fads.
These days, topics like C++, object-oriented pro­
gramming, and neural networks get most of the
attention. Of course, we'd like to see more cover­
age of Icon. The problem is how to break through
the current editorial mind set.

I've written some Icon programs that I'd like to sell, but
I prefer programming to marketing. Will the Icon
Project sell my programs for me? What kind of a cut
would it take?

The Icon Project does not engage in commercial
activities.

Many companies need someone to help design their
employee benefit plans. That's my specialty and I'd like
to set up an appointment to show you how I can help
you.

We suppose you got our name from some mailing
list. We hope your other leads are better; we don't
have any employees.

Help! I have an Icon assignment due Monday and I
need to print trees in an attractive way. Please send me
a procedure that does this.

It sounds like you are asking us to do your school
work for you. We try to be helpful, but our user
support doesn't go as far as helping you cheat.

You recently mentioned some interestingfiles thatyou
said are on your FTP area. I tried to get them via your
RBBS but I couldn't find them.

FTP and RBBS are two separate facilities. Files for
FTP reside on one of our central file servers. Our
RBBS runs off a PC (literally) and its files are on
the PC's hard disk. New files are first installed in
our FTP area and later copied to our RBBS. There
sometimes is a time lag, although it usually is only
a few days. Not all of our FTP files are copied to
our RBBS, however. Very large files that are im­
practical to download via a telephone connection
generally are not kept on our RBBS. Our RBBS
disk also has much less capacity than our FTP
server, so some files of limited interest are avail­
able only via FTP. If you have access to electronic
mail, you can get FTP files that way. See the last
Newsletter.

Why do I have to type anonymous then I connect to
your site via FTP? Since anyone can do it, why is any
name needed?

Users who have accounts on our system can con­
nect with their regular login when using FTP.

Downloading Icon Material
Most implementations of Icon are available
for downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

When they do, they may get access to files that are
not available to everyone. The login name anony­
mous is simply a way of giving anyone access to
a restricted set of public files. It's just a convention
and is used by all FTP sites, not just ours.

Are all these questions for real?

Yes, although we sometimes rephrase questions,
combine similar questions, and provide context.
Not all of the questions come from our mail,
however; some come from personal conversa­
tions.

Ifre Icon 9\[eius[etter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Newsletter is published three times a
year, at no cost to subscribers. To subscribe,
contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602)621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

THE UNIVERSITY or

ARIZONA
TUCSON ARIZONA

6
and

H The Bright Forest Company
I I Tucson Arizona

> 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

http://cs.arizona.edu
mailto:icon-project@cs.arizona.edu

Ordering Icon Material

What's Available

There are implementations of Icon for several
personal computers, as well as for CMS, MVS,
UNIX, and VMS. Note: Icon for personal comput­
ers requires at least 640KB of RAM; it requires
more on some systems. Source code for most
implementations is available.

There also is a program library that contains a
large collection of Icon programs and procedures,
as well as an object-oriented version of Icon that is
written in Icon.

Icon Program Material

Icon programs provided by the Icon Project are
in the public domain.

All program material is accompanied by docu­
mentation in printed and machine-readable form
that describes how to install and use Icon. This
documentation does not, however, describe the
Icon prograrnming language in detail. A book is
available separately.

Personal Computers: Executable files and
source codes are provided in separate packages.
Source code for MS-DOS includes the Icon opti­
mizing compiler, configurations for several C
compilers, and also OS/2. Note: Personal com­
puter distributions are stored in compressed for­
mat, and most diskettes are nearly full. It there­
fore is necessary to have a second drive to extract
the material.

CMS and MVS: The CMS and MVS packages
contain executable files, source code, test pro­
grams, and the Icon program library.

UNIX: The UNIX package contains source code
(but not executable files), test programs, related
software, and the Icon program library. UNTX
Icon can be configured for most UNTX platforms.

VMS: The VMS package contains executable
files, source code, test programs, and the Icon
program library.

Update Subscriptions: Updates to the Icon
source code and the Icon program library are
available by subscription.

Source-code updates are distributed on MS-
DOS diskettes in LHarc format, and are suitable
for compilation under MS-DOS and OS/2 or for

porting to new computers. Each update normally
provides a completely new copy of the source. A
source-code subscription provides five updates.
Updates are issued about three times a year.

Icon program library updates are available for
MS-DOS, the Macintosh, and UNTX. A library
subscription provides four updates. Updates are
issued three or four times a year.

Documentation

In addition to the installation guides and users'
manuals included with the program packages,
there are three books on Icon. One contains a
complete description of the language, another
describes the implementation of Icon in detail,
and a third is an introductory text designed pri­
marily for programmers in the Humanities.

There are two newsletters. The Icon Newsletter
contains news articles, reports from readers, in­
formation of topical interest, and so forth. It is
free and is sent automatically to anyone who
places an order for Icon material. There is a
norninal charge for back issues of the Newsletter.

®fre <3lcmt JVnafgst contains material of a more
technical nature, including in-depth articles on
programming in Icon. There is a subscription
charge for the ^.nal^st.

Payment

Payment should accompany orders and be
made by check, money order, or credit card (Visa,
MasterCard, or Discover). The rninimum credit
card order is $15. Remittance must be in U.S.
dollars, payable to The University of Arizona,
and drawn on a bank with a branch in the United
States. Organizations that are unable to pre-pay
orders may send purchase orders, subject to ap­
proval, but there is a $5 charge for processing
such orders.

Prices

The prices quoted here are good until August
31,1993. After that, prices are subject to change
without further notice. Contact the Icon Project
for current pricing information.

Extra Payment

If you wish to support the Icon Project by
making an additional payment, a line is provided
at the bottom of the order form for this.

Versions

Version information is shown
in parentheses.The symbol +•
identifies recently released mate­
rial.

Ordering Instructions

Media: The following symbols
are used to indicate different types
of media:

O 9-track magnetic tape
[°@ data cartridge
H 5.25" diskette
U 3.5" diskette

Tapes are written at 1600 bpi.
Cartridges are written in QIC-24
format. 5.25" diskettes are 360K.
3.5" diskettes are 720/800K un­
less otherwise noted.

Diskettes are written in MS-DOS
format except for the Amiga, the
Atari ST, and the Macintosh. When
ordering diskettes that are avail­
able in more than one size, specify
the size (the default is shown first).
In some cases, there are several
diskettes in a distribution.

Shipping Charges: The prices
listed include handling and ship­
ping by parcel post in the United
States, Canada, and Mexico. Ship­
ment to other countries is made
by air mail only, for which there
are additional charges as noted in
brackets following the prices. For
example, the notation $15 [$5]
means the item costs $15 and there
is a $5 shipping charge to coun­
tries other than the United States,
Canada, and Mexico. UPS and ex­
press delivery are available at cost
upon request.

Order Codes: When filling out
the order form, use the codes given
in the second column of the list to
the right (for example, AME, ATS,
...).

Executables

Acorn Archimedes (8.0)

Amiga (8.0)

Atari ST (8.0)

MS-DOS (8.10)

MS-DOS 386/486 (8.10)

Macintosh (8.0)

Macintosh/MPW (8.8)

OS/2 (8.10)

Source

Amiga (8.0)

Atari ST (8.0)

MS-DOS & OS/2 (8.10)

Macintosh (8.0)

Macintosh/MPW (8.8)

MS-DOS updates (5)

Complete Systems

CMS (8.0)

MVS (8.0)

UNTX (8.10)

UNTX (8.10)

UNTX (8.10)

VMS (8.10)

Program Library

MS-DOS (8.10)

Macintosh (8.10)

UNIX (8.10)

MS-DOS updates (4)

Macintosh updates (4)

UNTX updates (4)

Books

ARE

AME

ATE

DE +•

DE-386 *•

MET

MEM

OE

AMS

ATS

DS

MST

MSM

SU

CT

MT

UD

UT

UC

VT

DL

ML

UL

LU-D
LU-M

LU-U

The Icon Programming Language

+•

+*

+•

+•

+•

+•

+*

+•

+•

The Implementation of Icon + update

Icon Programming for Humanists +

Newsletters

B or

B
B 1

9 or

9 or

a
a
B

a
B
9 or

y
B
9 or

O

O

B 2

0

m
o

9 or

B
9 or
9 or
B
B2

LB

IB

diskette HB

The Icon Hezosfetter (complete, 1-41)

The Icon Hezosfetter'(back issues, < ;ach)

tElfe (3lcmt jAnaluBl (1 year, 6 issues)

fErje (Scon ^na ios t (complete, 1-'

®r[£ ,31am ,ArtaluBt (back

1400K
21.44M.

issues,
18)

each)

3 Per order, regardless of the number of

INC

INS

IA

IAC

IAS

B

U
B

B

B

B

B
B

s»*2u

$15

$15

$15

$15

$15

$15

$15

$15

$15

$15

$30

$15

$25

$60

$30

$30

$25

$30

$45

$32

$15

$15

$15

$30

$30

$30

$40

$53

$38

$18

$1
$25

$60

$5

^^feS
1 &w.

[$5]

[$5]

r$5]
[$5]

[$5]

[$5]
[$5]

[$5]

[$5]
[$5]
[$5]
[$5]

[$5]
[$15]

[$10]

[$10]

[$5]

[$10]

[$10]

[$H]

[$5]

[$5]

[$5]

[$12]

[$12]

[$12]

[$13]

[$14]

[$10]

[$5]

[$23]

[$10]

[$3]

[$23]

issues purchased.

10

Order Form

Icon Project • Department of Computer Science
Gould-Simpson Building • The University of Arizona • Tucson AZ 85721 U.S.A.

Ordering information: (602) 621-8448 • Fax: (602) 621-4246

name

address

city

(country)

• check if this is a new address

state zipcode

telephone

qty. code

XP

description

Support for the Icon Project

price shipping*

subtotal

Make checks payable to The University of Arizona s a l e s t a x (Arizona residents)

extra shipping charges*

The sales tax for residents of the city of Tucson is 7%. purchase-order processing

It is 5% for all other residents of Arizona.
other charges

• Visa • MasterCard D Discover 0 check or money order total

total

I hereby authorize the billing of the above order to my credit card: ($15 minimum)

card number exp. date

name on card (please print)

signature

"Shipping charges apply only to addresses outside the United States, Canada, and Mexico
^ • ^

11

K&n

