
Statement of intent: L-Soft to develop LISTSERV for unix

August 22nd, 1993

The reference number of this document is GM-9308-1.

Abstract: Due to strong demand from the academic market, L-Soft international intends to develop a
unix® version of its LISTSERV product, in addition to the VMSTM and Windows NTTM versions that
were already planned. In this document, you will learn more about L-Soft's plans for the unix® version
- what to expect and when, how the unix® code will be developed, and so on.

Statement of intent

In order to better meet the needs of the academic community, L-Soft international intends to develop
a unix® version of its LISTSERV product, which will provide:

• Full compatibility with the other implementations, upon final completion and with the exceptions
noted below and in the remainder of this document.

• Staged availability, with roughly the same milestones as for the VMSTM version. See below for
more information on the expected time scale.

• No NJE support, due to the lack of robust NJE implementations for unix®.

• System/hardware support based on actual customer demand. Within reason, we will port the code
to any unix® flavour for which there is a sufficient customer base. We will not, however, support
16-bit machines or other small systems with "tiny" unixes.

• We may provide no support, or only partial support, for systems which are not "8-bit clean". In
particular, 7-bit systems will not be able to participate in the global LISTSERV backbone.

This statement of intent adds to rather than subtracts from our existing plans. Support for VMSTM and
Windows NTTM remains a strategic goal for the short and mid terms, respectively, and our plans
regarding these operating systems are unchanged by the present announcement. We are simply
adding unix® to the list of supported environments.

Mandatory legalese:

L-Soft international ("Licensor") makes no warranty, express or implied, in this
announcement. In particular, Licensor does not guarantee the results of the development
described in the present document in any respect, nor does Licensor represent or warrant
that the development will ever be completed or produce usable and/or functional software,
nor, in fact, that the development will ever be undertaken or even attempted. In no event
shall Licensor be liable for damage consequential or incidental to non-completion, late
completion, or failure of the development to meet the expectations of any particular
customer, even if Licensor had been advised of the possibility of such damage.

L-Soft international does not endorse or approve the use of any of the product names or trademarks
appearing in this document.

Background information and development overview

The current (VM) version of LISTSERV is comprised of three main components:

1. The so-called "P-REXX Library", a low-level function library callable from PASCAL which
provides, among other things, dynamic string manipulation functions similar to those available in

the REXX language. The P-REXX library is mostly system-independent and, with the exception of
certain file manipulation functions, it can be easily ported to any system supporting 32-bit integers
and pointers. The file system functions will require additional work on unix® but can still be
ported. Under VM, the P-REXX library is implemented in S/370TM assembler and PASCAL (about
10,000 lines of code).

2. "Application" PASCAL code, most of which interfaces with the operating system only through the
P-REXX library. A number of VM-specific interfaces are, however, provided by system-specific
PASCAL code, plus some assembler interfaces which we will ignore for the purposes of this
introduction, as they exploit VM-specific features which are not relevant to other environments.
This PASCAL code totals about 34,000 lines.

3. REXX code, which like your average REXX program issues a system command every 5 lines and
is thus not portable to any other system (the reason for having REXX code is that LISTSERV was
originally written in REXX). There are about 19,000 lines of REXX, of which only 13,000 would
need to be ported (the rest corresponds to initialization code, user exits, and functions such as the
UDD or the RSCS line monitor which will not be ported to other systems).

L-Soft's strategy is to use the exact same source code for the system-independent parts of all
implementations. This obviously decreases development costs, but above all it ensures full
compatibility and consistency across the supported systems. So we will convert the remaining REXX
code to PASCAL, port the library to all supported systems, and use that for all the system-
independent code. System specific code will be implemented in the language which is most practical
for the target system. A simple PASCAL preprocessor/translator will be developed to convert VS
PASCAL language extensions to VAXTM PASCAL equivalents, so that the VM source code can be
used directly under VMSTM. For unix®, we will have to use a different technique, which will be
described in the next section.

Once the system-specific code is written and the library has been ported, we should be in a position to
build a first prototype, which will be fully compatible with the VM version for whatever functions are
entirely implemented in PASCAL at that time, but will not support any of the functions that are still
written in REXX on VM. This first prototype is unlikely to be robust enough to be released as a
product, and it might still be missing a number of important functions, so "staged availability" will
probably begin with the next prototype, which we expect to release 3-6 months later together with a
new version of the VM code. This first usable version (code name "patchwork") is expected to be on
the same level as the VM version for list-related functions, but it will only implement a limited subset
of the file server functions and will not include any of the database functions. In other words, it will
probably offer about the same level of functionality as the public domain list managers, but with full
compatibility with LISTSERV and a higher degree of flexibility for list management.

As the conversion work progresses on VM, we will keep releasing new versions of the code for unix®

and VMSTM with gradually increasing functionality, until all environments are at the same level and
we are in a position to offer full functionality and compatibility across the entire range. The Windows
NTTM development will start about 6 months before the planned availability of this final version, or
earlier if there is enough demand; at any rate, it will be ready on time for the release of the common
version.

Porting the PASCAL code to unix - technical overview

The only problem with this approach is that PASCAL compilers are not available for all unix®

systems, and that they are at any rate not bundled with unix® and must be purchased separately. In
order to solve this problem, we will need to develop a tool capable of somehow translating our
PASCAL code to object code for the target systems. We plan to use a combination of the
preprocessor we have already mentioned, and the public domain p2c (PASCAL-to-C) translator,

modified as appropriate. While VS PASCAL is not supported by p2c, a feasibility study has shown
that it should be possible and in fact relatively easy for the preprocessor to turn the original VS
PASCAL code into something p2c can handle. If it turns out that we have overlooked a VS PASCAL
feature which p2c does not support under any other name, we will try to find a way around it; if

necessary, we will just modify p2c to support it. We do not expect any serious problem with this high-
level syntax translation.

p2c however is not a full-blown compiler and does not guarantee working code for all possible valid
input programs. We are aware of this restriction and there is not much we can do at this point to
ascertain its potential impact, since we would need to have at least a couple thousand lines of pre-
processed VS PASCAL code, plus all include files and all necessary P-REXX library calls, to be able
to make any serious test. This does not, however, mean that we have to act on blind faith. We have
the source code of p2c, we can make changes to the VS PASCAL source to avoid constructs which
do not translate properly to C, we can make changes to the p2c output before compiling it and, if
everything else fails, we have a backup plan.

But we are reasonably confident that we will not run into insurmountable problems, because our
PASCAL code is pretty straightforward, setting aside the techniques used to call system functions and
bypass type checking (which p2c has no problem translating to C, since they map directly to simple C
constructs). Most of LISTSERV is simple integer arithmetics, array scanning, straightforward control
logic and function calls. We do not use write or read, built-in string operations other than for string

constants, we do not have 3 levels of nested procedures sharing the same identifiers, we do not do
any I/O via PASCAL primitives, do not use overlays, etc. This means we do not need to worry about
compatibility problems between PASCAL read instructions and C sscanf() equivalents, about I/O

error event handlers, about the mapping of built-in string manipulation primitives, and the like. If p2c
does not work on our more complex input programs and we can neither fix p2c nor adjust the source
program's syntax to bypass the problem, we can still make changes to the p2c output manually as a
last resort.

And even if none of this were possible, we will still have the possibility to use genuine PASCAL
compilers where they are available. In particular, there is a PASCAL compiler for DEC'sTM Alpha
AXPTM systems running OSF/1® that is compatible with the compiler we will be using for the VMSTM

development. So even in the very worst scenario, we would still be able to generate object code for at
least one of the major brands of unix® systems.

Rationale for not rewriting LISTSERV in C and abandoning PASCAL

Actually, the general advice L-Soft received from unix® experts in the academic community is that
the VM version should be frozen, the VMSTM and Windows NTTM developments should be
abandoned, and L-Soft should instead concentrate on rewriting everything in C or perl for unix®,
because that is what everyone will be running in a few years and there is little or no need to support
other systems if a unix® version is available, as all universities have unix® systems nowadays. While
this would obviously provide a solution satisfactory to most unix® users, there are two indisputable
problems with this approach (in addition to the controversial character of speculations on the future of
unix®):

1. Rewriting the code in another language will take a lot more time (and cost a lot more money) than
simply writing a preprocessor and using an existing compiler where one is available; in addition, it
is much easier to convert REXX code to PASCAL using the specially designed P-REXX library
than to standard C code based on the standard unix® library. In the best case, L-Soft would be
throwing away 34,000 lines of working, fully tested and debugged code, which furthermore were
guaranteed to be 100% compatible with the existing LISTSERV servers. The money to rewrite
everything from scratch has to be found somewhere.

2. Most of the revenues L-Soft derives from its LISTSERV product come from service licenses paid
by the existing VM sites (as opposed to right-to-use licenses from new customers). Since BITNET
sites have been granted free indefinite access to version 1.7 of LISTSERV, L-Soft would not be
able to make them pay yearly right-to-use charges for the existing version if development were to
be frozen. The only way for L-Soft to collect license fees from its existing customer base is to
keep improving the software its customers are using, i.e. the VM version.

So abandoning the existing PASCAL code and freezing the VM development to concentrate on
writing a unix® version of LISTSERV would significantly increase L-Soft's development costs, while at

the same time making it lose virtually all the income it is now deriving from LISTSERV - not to
mention the risk L-Soft would be taking by betting the product's future on the success of a single
computing environment, for which free competing packages are furthermore available to anyone via
anonymous FTP. Our cost estimate under this scenario calls for about 70-80,000 lines of C code (the
current version of LISTSERV totals over 70,000 lines), representing the work of 4 FTE + one
manager for about 18 months plus touch-up, with a total cost of $300-400,000 - a significantly higher
figure than what we expect to spend to port LISTSERV to three new environments, while at the same
time continuing to receive license fees from existing customers for new releases of the VM version.

Planned availability dates and development chart

In order to give you a better picture of the development plan and time scale, we have put all the
information in one chart - or rather, three charts, one for each year from 1993 to 1995, to avoid page
length problems. These charts call for a few comments before you read them:

• The VM development and REXX to PASCAL conversion is an ongoing effort. When you see
"Development" in the VM column, it means we will be working on whatever is most urgently
needed for the development work on the other systems.

• The reason the unix® development is initially one quarter late is that it is much easier to test the
result of the necessary restructuration and conversion of the VM code on VMSTM, using a
genuine, trustworthy PASCAL compiler and what is generally considered to be the best debugging
environment in the industry, than on a unix® system with p2c. If we find a bug on VMSTM at this
stage, we know it is our code and not a glitch in p2c, and we will get the level of diagnostics and
support one can expect from a quality compiler. Once all the problems have been ironed out, we
will try out the code on unix® with the knowledge that all problems are most likely due to either
our pre-processor, p2c, or the unix® specific code, and not to some VM idiosyncrasy we
overlooked in the system-independent code.

• The time scale is based on L-Soft's current employment plans, on our contractual obligations and
those of our employees, and on the requirements of the other L-Soft product lines and
development projects. It accounts for the fact that the VM version of LISTSERV will continue to
be improved during the course of the porting effort; in other words, this is not the time required to
make a unix® version of release 1.7f with all development activities frozen, but the time we
expect to need to be in a position to offer release 2.0a on four different environments. Finally, as
in any other real world situation, we may slip a deadline due to other projects or plain bad luck,
and conversely we may hire more staff for a new project and end up with some extra manpower
we can use to speed up some of the items in the table.

1993 VM VMS unix Windows NT

3Q93 Release 1.8a
4Q93 Development Port P-REXX library

1994 VM VMS unix Windows NT

1Q94 Development Begin work on
system specific
code

Touch-up library
(file system calls)

2Q94 Release 1.8b First prototype
(not released)

Begin work on
system specific
code

3Q94 Development Touch-up system
specific code;
conduct beta-test
while waiting for
VM development

First prototype
(not released); fix
potential p2c
problems

4Q94 Development Patchwork stage
released

Wait for early
feedback on VMS
Patchwork

1995 VM VMS unix Windows NT

1Q95 Release 1.8c
with new file
server system

Libris stage
released - full file
server functions,
no database

Patchwork stage
released early in
quarter, then
Libris

2Q95 Development Mostly waiting for VM development;
ideal time to start work on NT

Port P-REXX
library and start
writing system
specific code

3Q95 Release 1.8d
with database
functions in
PASCAL

 Compendium stage released
(with database functions)

95% compatibility with VM

Finish system
specific code;
build and test
prototype

4Q95
−

1Q96

Release 2.0a
All common
functions now in
PASCAL

Stronghold stage released

Full compatibility across the entire range

L-SOFT is a trademark of L-Soft international.
Unix is a registered trademark of UNIX Systems Laboratories, Inc.
System/370 is a trademark of International Business Machines Corporation.
Alpha AXP, DEC, VAX and VMS are trademarks of Digital Equipment Corporation.
OSF/1 is a registered trademark of Open Software Foundation, Inc.
Windows, Windows NT and NT are registered trademarks of Microsoft corporation.
All other trademarks, both marked and not marked, are the property of their respective owners.

