
@c -*-texinfo-*-

Triton

Release OpenTriton 2.0

Developer Documentation

c© 1993-1998 by Stefan Zeiger.

All rights reserved.

1

Chapter 1: Introduction 2

1 Introduction

1.1 Overview

The Triton GUI creation system offers an easy way to create good looking GUIs for your

applications. It can be used with a variety of programming languages. Support for SAS/C is

included directly in this package. Check out the AmiNet directory ‘dev/gui’ or the Triton Home

Page at http://home.pages.de/~szeiger/triton.html for support files for other languages

and development systems.

If you have released a Triton support package for a new language or development system,

please contact me for inclusion into the list on the Triton home page.

This document describes how to use Triton in your own applications by providing you

with some overview topics and a step by step introduction. It does not describe in detail

the functions, structures, tags, etc. which are used, so you should always look them up in

the autodocs file (see Section 1.4 [Introduction - Autodocs], page 3) and the C header file

‘Developer/Include/libraries/triton.h’.

The examples in this document assume that you’re using the C support files with the SAS/C

compiler. There may be differences in other languages or even with other C development systems.

1.2 OOP Internals

Although Triton offers a mostly procedural API, it is based on an object-oriented system.

As a Triton user you will never see Triton objects directly, but instead reference them through

ID numbers.

1.3 Class Tree

The following classes are available in Triton:

Chapter 1: Introduction 3

Object Abstract root class
‘-- DisplayObject Abstract class for window contents

+-- Button BOOPSI button gadget
+-- CheckBox GadTools CheckBox
+-- Cycle GadTools Cycle and MX gadget
+-- DropBox AppIcon dropping box
+-- FrameBox Framing or grouping box
+-- Group Triton’s layout engine
+-- Image Image
+-- Line 3D line
+-- Listview GadTools Listview
+-- Palette GadTools Palette gadget
+-- Progress Progress indicator
+-- Scroller GadTools Scroller
+-- Slider GadTools Slider
+-- Space Empty space
+-- String GadTools String gadget
‘-- Text Text

Descriptions for all classes can be found in the Triton autodocs (see Section 1.4 [Introduction

- Autodocs], page 3) under triton.library/class_<classname>.

1.4 Autodocs

Documentation on all Triton classes and ‘triton.library’ functions can be found in the

Triton autodocs file ‘Developer/Autodocs/triton.doc’. The function descriptions follow the

usual syntax as used in the AmigaOS autodocs. The Triton classes are listed with the prefix

triton.library/class_ and are described using the following keywords:

• NAME

The name of the class and a short description.

• SUPERCLASS

The superclass. If the comment (no attributes inherited) is added, all attributes (see

below) are described in this autodoc clip. Otherwise all attributes of the superclass are

inherited.

• SYNOPSIS

The tags which invoke the creation of an instance of the class. If the tags are enclosed in

parantheses the class is abstract and no instances can be created.

• ATTRIBUTES

The attributes which are created for every instance of the class. All attributes are listed with

their tag names, except for the default attribute which is listed as <Default>. See above for

superclass attributes. A comment in square brackets denotes if an attribute can be specified

in a creation taglist, modified later with TROM_SETATTRIBUTE or TR_SetAttribute() or

queried with TROM_GETATTRIBUTE or TR_GetAttribute().

Chapter 1: Introduction 4

• APPLICATION MESSAGES

This section describes all application messages (TRMS_...) which objects of this class are

currently able to send. If no messages are described, this doesn’t mean that none are sent.

Not all class descriptions have this section yet.

• OBJECT MESSAGES

This section describes all messages which can be sent to instances of this class. Deferred

messages are listed in parantheses. Inherited messages are not listed.

Chapter 2: Writing Applications 5

2 WritingApplications

2.1 Applications

In order to use ‘triton.library’ you must first of all open it, like any other shared library,

as described in the Amiga ROM Kernel Reference Manual, volume Libraries. Before quitting,

you have to close it again. The following code makes sure that you can use functions from

‘triton.library’ release 1.2 or higher:

#include <libraries/triton.h>
#include <clib/triton_protos.h>
#include <pragmas/triton_pragmas.h>

struct Library *TritonBase;

int main(void)
{
if(TritonBase=OpenLibrary(TRITONNAME,TRITON12VERSION))
{

/* Use functions from triton.library... */
CloseLibrary(TritonBase);

}
else
{

/* React on the error... */
}
return 0;

}

All Triton programs are based on a Triton application structure (struct TR App). This

structure is the connection which keeps all Triton parts of your application together. Before

using any other Triton functions, you have to create a Triton application, and you must delete it

again before your program quits (and before you close ‘triton.library’ of course). Any Triton

application must have at least a short name, which is used by Triton to identify the application.

All other tags are optional. A typical code segment could look like this:

struct TR_App *myApp;

Chapter 2: Writing Applications 6

if(myApp=TR_CreateAppTags(
TRCA_Name, "MyApp",
TRCA_Release, "1.0",
TRCA_Version, "42.113",
TRCA_Date, "3.11.94",
TAG_END))

{
/* Use myApp for other Triton functions... */
TR_DeleteApp(myApp);

}
else
{
/* React on the error... */

}

The linker library ‘triton.lib’ offers an easier way to open ‘triton.library’ and create a

Triton application structure. The two examples from above can be combined into the following

short version:

#include <libraries/triton.h>
#include <proto/triton.h>

int main(void)
{
if(TR_OpenTriton(TRITON12VERSION,

TRCA_Name, "MyApp",
TRCA_Release, "1.0",
TRCA_Version, "42.113",
TRCA_Date, "3.11.94",
TAG_END))

{
/* The opened application is called ’Application’ */
TR_CloseTriton();

}
else
{

/* React on the error... */
}
return 0;

}

2.2 Projects

A Triton Project is the next smaller entity of a Triton GUI. Currently a project contains

exactly one Intuition window, but in future versions of Triton it could be possible to attach

more windows to a project. Upon opening a project, you have to specify all objects which are

to be displayed in the window, the window’s menu and some tags describing window properties.

Chapter 2: Writing Applications 7

At first you have to specify the window properties, then the menus and finally one (!) object.

Normally this object will be a group which contains other objects or groups.

Note that all tags are optional. You may just as well open a window without any tags. This

will result in a small window, consisting only of the close and depth gadget and a small dragging

bar, being opened over the default public screen’s title bar.

As with naming Triton applications, you should give each project at least a unique ID which

is used by Triton e.g. for remembering the window dimensions.

Opening and closing a project without any objects and menus could look like this:

struct TagItem dummyTags=
{
TRWI_Title, (ULONG) "A dummy window",
TRWI_ID, 42,
TAG_END

};

void dummyFunction(void)
{
struct TR_Project *dummyProject;

if(dummyProject=TR_OpenProject(Application,dummyTags))
{

/* Opened successfully */
TR_CloseProject(dummyProject);

}
else
{

/* React on the error... */
}

}

Of course, this way of opening a project via a static TagItem list doesn’t allow insertion of

object parameters or localized strings. Since you need these features most times, you should

instead use a dynamic TagList which is built on the stack at runtime. Be sure to set a large

enough stack! Some development systems offer automatic stack setting in their startup code,

which comes handy in those situations. Please do not rely on the user to set the stack!

Note that it is currently not possible to use TAG_MORE, TAG_SKIP and TAG_IGNORE with Triton

taglists.

And now back to our code, this time with a dynamic list. Imagine a function STRPTR

GetLocStr(int num) which gives you a localized string.

Chapter 2: Writing Applications 8

void dummyFunction(void)
{
struct TR_Project *dummyProject;

if(dummyProject=TR_OpenProjectTags(Application,
TRWI_Title, (ULONG) GetLocStr(MSG_WINTITLE_DUMMY),
TRWI_ID, 42,
TAG_END))

{
/* Opened successfully */
TR_CloseProject(dummyProject);

}
else
{

/* React on the error... */
}

}

The ID 42 in the above examples has been chosen randomly. This is no problem as long as

you stick to this ID in future updates of your application. Otherwise the window dimensions

would be wrong and the user would have to adjust them again.

In order to not use IDs twice, it can be useful to enumerate them:

enum windowIDs {WINID_DUMMY=1, WINID_FOO, WINID_BAR};

Note that window IDs must be different from 0. 0 is equal to no ID at all.

See the autodoc clip triton.library/TR_OpenProject() for details about the supported

tags.

2.3 Menus

Any project definiton may contain menus. The menu tags must follow the window tags

immediately, before the object tags. If a menu has an object ID, the TRAT ID tag must be the

last one in the menu definition.

Object IDs are more than Project IDs. Project IDs are used only internally by Triton. As

an application programmer, you have to reference Projects by a pointer to their struct TR_

Project. Objects instead are referenced only through object IDs. The same is true for menus,

which use ordinary object IDs.

A typical menu defintion could look like this:

Chapter 2: Writing Applications 9

TR_OpenProjectTags(...
TRMN_Title, (ULONG) "Project",

TRMN_Item, (ULONG) "?_About", TRAT_ID, 1,
TRMN_Item, (ULONG) TRMN_BARLABEL, TRAT_ID, 2,
TRMN_Item, (ULONG) "Q_Quit", TRAT_ID, 3,

...);

The title of a menu item or sub-item can be TRMS_BARLABEL to insert a standard separator

bar. Keyboard shortcuts can be specified by beginning the menu label with the shortcut key

followed by an underscore character and the real menu label. These simple shortcuts (with the

right Amiga key) are processed automatically. You can create a so-called ’extended shortcut’ by

starting a label with an underscore character, then the text for the shortcut, another underscore

and the menu label. These extended shortcuts are only displayed with AmigaOS 3.0 or higher

and they are not managed automatically. You have to listen to incoming keyboard events in

order to handle these shortcuts yourself.

See the Menus window of the Triton demo application for a more detailed example on menus.

2.4 Objects

The heart of every Triton GUI is objects. Currently only instances of subclasses of the

DisplayObject class can be created. See Section 1.3 [Introduction - Class Tree], page 2, for a

short list of all classes. Detailed descriptions can be found in the autodocs.

Objects are created by inserting an object tag into a project definition. For example, a

checked CheckBox object with an ID of 99 can be created the following way:

TROB_CheckBox, NULL,
TRAT_Value, (ULONG) TRUE,
TRAT_ID, 99,

All available tags are listed in the autodocs. The <Default> tag’s value has to be inserted

directly in the TROB_<Class> tag as its data. All other tags are inserted normally after the

initial class tag.

Note: It is useful to enumerate object IDs as with project IDs. But in contrast to project

IDs, object IDs may be used more than once. If you use an object ID several times within the

same project, the objects with that ID will be linked together and whenever an attribute (only

selected attributes, notably TRAT_Value!) of one object changes, this change will be broadcast

to all other objects with that ID as if you had notified them yourself with TR_SetAttribute().

This is particularly useful to link a CheckBox gadget and a checkable menu item together.

Chapter 2: Writing Applications 10

See the Connections window of the Triton demo application for a more detailed example on

attribute broadcasting.

2.5 Layout

Triton’s layout engine is implemented through the Group class. Space objects also play an

important role because (apart from a few exceptions) groups don’t contain any ’empty’ space.

Instead this space is covered by instances of class Space. See the example below for details

about spaces.

Group objects can create both vertical and horizontal groups, depending on whether they are

created with TRGR_Vert or TRGR_Horiz.

Four different layout types are available for each instance of Group (adjustable with the group

flags). They affect the primary direction only:

1. TRGR_PROPSHARE: Expands all objects proportionally to their minimum size. All spaces

retain their minimum size and are not resizable. Non-resizable non-space objects do also

retain their minimum sizes (well, they don’t really have a choice, do they? ;).

2. TRGR_EQUALSHARE: Same as TRGR_PROPSHARE except that all non-space objects have the

same size. Their minimum size equals the biggest minimum size of the individual objects.

3. TRGR_PROPSPACES: All non-space objects retain their minimum sizes all the time and do

not get stretched. Instead the spaces are stretched proportionally to their minimum sizes.

4. TRGR_ARRAY: This group builds the top group of an array. In order to create an array, you

have to set up an outer TRGR_ARRAY group (horizontal for a column array, vertical for a

line array) and fill it with single objects (notably spaces) or TRGR_PROPSHARE groups in the

opposite direction. All elements of the inner groups will be aligned to build an array. Inner

groups which have the flag TRGR_INDEP set will not be aligned. This flag is mainly used to

insert named separator bars (created with TROB_Line and TROB_Text) into an array.

Currently the only objects which are treated as spaces in the above scheme are instances of

class Space.

The behaviour of the group in its secondary direction can be changed, too. Two additional

flags are available for that purpose. In most cases you may want to set both of them:

1. TRGR_ALIGN: All resizable objects (i.e. resizable in the secondary dimension of the group)

are strechted to fit the full space occupied by the group.

2. TRGR_CENTER: All non-resizable objects are centered in the group. Without this flag they

get aligned to the left or top border.

Chapter 2: Writing Applications 11

It is also possible to keep a group at its minimum size and now allow it to be stretched in

either or both directions. This can be accomplished with the TRGR_FIXHORIZ and TRGR_FIXVERT

flags.

A group can be created like any other object. It takes other objects as its arguments. Every

group has to be terminated with a TRGR_End tag. A typical horizontal group, which contains a

CheckBox, a space and again a CheckBox, would look like this:

TRGR_Horiz, TRGR_PROPSHARE|TRGR_ALIGN|TRGR_CENTER,

TROB_CheckBox, 0,
TRAT_ID, 1,

TROB_Space, TRST_NORMAL,

TROB_CheckBox, 0,
TRAT_Value, TRUE,
TRAT_ID, 2,

TRGR_End, 0

See the Groups window of the Triton demo application for a more detailed example on groups

and arrays.

2.6 Macros

The C header file ‘Developer/Include/libraries/triton.h’ contains many macro defini-

tions which make creating a Triton GUI much easier. With the help of the preprocessor Mac2E,

these macros are also available in AmigaE. Other languages or compilers may support similar

or different macros or none at all. If no macros are available in your development system, you

have to do it the traditional way. If you can use macros, use them.

The static taglist definition can be written a bit simpler with macros:

ProjectDefinition(dummyTags)
{
/* Insert project tags here */

};

But the main use for macros are the tags themselves. For example, the tags from the dummy

window example (see Section 2.2 [Tutorial - Projects], page 6) would look like this:

WindowTitle("A dummy window"),
WindowID(42),
EndProject

Chapter 2: Writing Applications 12

Have a look at the macro definitions and the supplied demo applications for more detailed

information about the macros.

2.7 Polling Loop

After creating a GUI you have to handle user input. In order to accomplish this task, Triton

offers a polling system which resembles the Intuition IDCMP polling system. A basic polling

loop looks like this:

void handleDummyWindow(void)
{
BOOL closeMe=FALSE;
struct TR_Message *trMsg;

/* Open the window... */

while(!closeMe)
{

TR_Wait(Application,NULL);
while(trMsg=TR_GetMsg(Application))
{
switch(trMsg->trm_Class)
{

case TRMS_CLOSEWINDOW:
closeMe=TRUE;
break;

case TRMS_ACTION:
switch(trmsg->trm_ID)
{

case ID_FOO:
/* Do something... */
break;

case ID_BAR:
/* Do something... */
break;

}
break;

case TRMS_NEWVALUE:
switch(trMsg->trm_ID)
{

/* New value is in trMsg->trm_Data */

Chapter 2: Writing Applications 13

case ID_MYCHECKBOX:
/* Do something... */
break;

case ID_MYSLIDER:
/* Do something... */
break;

}
break;

case TRMS_ERROR:
puts(TR_GetErrorString(trMsg->trm_Data));
break;

}
TR_ReplyMsg(trMsg);

}
}

/* Close the window... */
}

Note: Don’t forget to reply all messages!

You could add a switch() for the project which sent the message if you have more than one

project opened, but a better way is to use unique object IDs. This does also yield the advantage

that moving an object from one window to another does not require any change in the message

handling.

It is currently not very well documented which messages are sent by the different objects. As

a general rule, activateable objects send TRMS_ACTION and objects which have a TRAT_Value or

a similar modifiable attribute, send TRMS_NEWVALUE.

Here is a more detailed description of the message types:

• TRMS_CLOSEWINDOW: The user has pressed the close gadget or the Esc key (if it hasn’t been

disabled with TRWF_NOESCCLOSE).

• TRMS_ERROR: An error occured. TR_Message.trm_Data contains the error code. You can

use TR_GetErrorString() to generate a user-readable error message from this error code.

• TRMS_NEWVALUE: An object’s attribute has changed. TR_Message.trm_Data contains the

new value for the attribute.

• TRMS_ACTION: An object has been activated somehow (e.g. a button has been pressed or

its keyboard shortcut was used instead).

• TRMS_ICONDROPPED: An icon has been dropped over a window. You will get this mes-

sage only if an object in your window reacts on dropped icons or you ask directly for it

by specifying the project flag TRWF_APPWINDOW. Otherwise Workbench will not allow you

to drop icons over a Triton window. TR_Message.trm_ID contains the ID of the object

Chapter 2: Writing Applications 14

over which the icon was dropped or 0 if it was dropped over an object without an ID.

TR_Message.trm_Data contains a pointer to the struct AppMessage which was sent by

Workbench.

• TRMS_KEYPRESSED: A key has been pressed and Triton was unable to identify it (e.g. as a

keyboard shortcut). TR_Message.trm_Data contains the ASCII code (if available, otherwise

0), TR_Message.trm_Code contains the RawKey code and TR_Message.trm_Qualifier the

qualifier bits.

• TRMS_HELP: The user requests help for the object specified by TR_Message.trm_ID or for

the whole window if the ID is 0.

A description of all fields of the TR_Message structure can be found in the C header file

‘Developer/Include/libraries/triton.h’.

2.8 Messages

Sometimes you may wish to query an object’s attribute directly without waiting in a polling

loop and then storing its value somewhere else. This is especially useful for string gadgets. You

should not read their contents when you receive a TRMS_NEWVALUEmessage, because it is possible

to exit a string gadget without triggering such a message. Instead you have to read the contents

directly before you need them.

Attributes can be read with the TR_GetAttribute() function, which will return the value

of an object’s or project’s attribute. Specify the object’s ID or 0 for a project attribute. You

can get the default attribute of an object by setting Attribute to 0. Otherwise set it to an

attribute tag. Checkable menu items support the TRAT_Value attribute which is set to 0 if the

menu item is not checked and a non-0 value if it is checked.

Setting a new attribute works the same way with the function TR_SetAttribute(). Again

you may also modify project attributes. See the autodoc clip for a list of them. After setting a

new attribute the on-screen representation of it will be updated if necessary.

If you want to send custom object messages (TR_SetAttribute() and TR_GetAttribute()

invoke the messages TRDM_SETATTRIBUTE and TRDM_GETATTRIBUTE), you have to use TR_

SendMessage(). The autodocs will tell you which classes accept which messages.

Note: Do not confuse Object Messages (TROM_...) which are sent to Triton objects with

Application messages (TRMS_...) which you receive in your message polling loop.

Chapter 2: Writing Applications 15

2.9 Help

Triton offers two ways of providing help for the user of a Triton application:

• QuickHelp

QuickHelp creates and handles requester bubbles (actually they are implemented as rect-

angular boxes at the moment). All you have to do is provide a TRDO_QuickHelpString

attribute for every object which should have QuickHelp available. Then switch on Quick-

Help with TRWI_QuickHelp (can be set when opening a project or modified later with

TR_SetAttribute()). When the user moves the mouse pointer over an object which has a

QuickHelp string attached, a small window will pop up near the object where the mouse

pointer is located. This window contains the specified QuickHelp string. As soon as the

mouse pointer leaves the borders of the object, the help window will disappear.

• Manual help

If you set TRWF_HELP when opening a project, you will receive a TRMS_HELP message when-

ever the user presses the Help key. As usual TR_Message.trm_ID contains the ID of the

object for which the user requested help or 0 if no object could be assigned to the help

request (you should normally provide help for the whole window in that case). The most

common way to react on TRMS_HELP is to pop up an AmigaGuide document describing the

object for which the user requested help. If you do not want to provide more extensive

help than you do with the QuickHelp feature (see above), you can also pop up a requester

containing the QuickHelp string for the specified object. The main window of the main

Triton demo application shows how to do that.

2.10 Requesters

Triton offers two requester functions:

• TR_EasyRequest() creates and handles a simple requester with some lines of text (different

text styles are possible) and a row of buttons at the lower end. You should use this function

whenever possible. Not only is it easier to use than TR_AutoRequest(), but it could be

made user-configurable in future Triton releases.

• TR_AutoRequest() is a simple message polling loop which opens a Triton window, waits

until a TRMS_ACTION message comes in and returns the ID of the object which trig-

gered the message. This function is often used in combination with the requester macros

(BeginRequester(), BeginRequesterGads and EndRequester).

Please consult the autodocs for more detailed information about these functions. The main

demo application contains examples for both types of requesters.

Chapter 2: Writing Applications 16

If you need a more sophisticated requester (e.g. a string requester), you have to use your

own message polling loop (see Section 2.7 [Tutorial - Polling Loop], page 12). You may still use

the requester macros though.

Chapter 3: Writing Classes 17

3 Writing Classes

3.1 Class Basics

This chapter contains information on how to create your own custom classes to be used by

Triton. At the moment your classes may inherit only from Object and DisplayObject.

Triton is using a singe class tree. All classes inherit directly or indirectly from Object and

all classes (apart from Object of course) inherit directly from exactly one parent class, their

super-class.

While we’re at it, let’s define another term used in this tutorial: A meta-class in Triton is

a class which is used to dispatch a method to an object. Thus it is either the real class of the

object or one of its ancestors.

As you’ve already learned by using the built-in classes of Triton the API of a class is defined

by class and attribute tags. Note that a class can be bound to more than one class tag. An

example is Group which is bound to TRGR_Horiz and TRGR_Vert. You can make up your own

tags by creating a number based on TRTG_OBJ or TRTG_OAT and adding TRTG_SER(1). Serial

number 0 is used by the built-in classes and serial numbers above 1 will be used in the future

by public custom classes.

The interior of a class consits of a structure conatining whatever internal data the class needs

to keep track of and a number of functions representing the class’ methods.

I suggest you use the following naming conventions:

• All tags use mixed capitalization. Class tags are prefixed by TROB_ (Triton Object) and

attribute tags by TRAT_ (Triton Attribute). In order to avoid naming conflicts it is ad-

visable to repeat the class name in the attribute tag names (example: TRAT_SomeClass_

SomeAttribute).

• The class data structure is named after the class, using mixed capitalization and prefixed

by TROD_ (Triton Object Data).

• The method function names consist of the following parts, separated by underscores: TROM

(Triton Object Message), the class name (using mixed capitalization) and the method name

(upper case).

The method functions return an unsigned long value and take the following arguments:

Chapter 3: Writing Classes 18

1. struct TROD_<Class> * object

This is a pointer to the object on which the method should be performed. It is always

casted to the metaclass type even if it is an instance of a descendant.

2. ULONG messageid

This is the ID of the message that was sent. Currently only a set of pre-defined message

IDs are allowed here. It’s mainly used for finding the correct superclass method to call.

3. struct TROM_<MessageData> * data

This is the data associated with the message. It can actually be of any type. Most of the

standard messages use data structures following the above convention.

4. struct TR_Class * metaclass

This is the class which is currently processing the message, i.e. the class with which

the current method function is associated. You need it for calling superclass methods

(...metaclass->trc_SuperClass...).

3.2 Methods

Methods are performed on Triton objects by sending Object Messages to them.

Descriptions of all messages and the data structures associated with them can be found in

the C header file ‘Developer/Include/libraries/triton.h’.

3.3 Frames

Your own classes can (and should) use the Triton frame primitives for drawing frames (aka

BevelBoxes). All available frame types are listed in the TR_FrameTypes enumeration. Currently

3 different kinds of frame types are available:

1. GadTools BBFT_#? style frames:

The 3 standard frame styles already known from GadTools are also available in Triton:

TRFT_BUTTON is the most basic frame type, a simple raised bevelled box. TRFT_RIDGE is a

double frame as used by GadTools string gadgets. TRFT_ICONDROPBOX is a double frame

with some free space between the two borders as used by standard Amiga icon drop boxes.

2. Additional low-level frame types:

Triton offers some additional frame styles, namely TRFT_XENBUTTON1, TRFT_XENBUTTON2

and TRFT_NEXTBUTTON, which are used to create XEN and NeXT style frames.

3. Abstract frame types:

The third kind of frame types are abstract frame types which do not have a fixed look but

a defined meaning (e.g. a button frame or a group frame). The look of these frame types

can be configured by the user via the Triton preferences editor.

Chapter 3: Writing Classes 19

Before drawing a frame you usually have to know how big the borders will become. This can

be accomplished with the TR_FrameBorderWidth() and TR_FrameBorderHeight() functions.

Then you can draw a frame using TR_DrawFrame(). The parameters of this function are

all quite straight-forward, except for the last one. Its meaning depends on the kind of frame

type. In the case of a low-level frame type, setting inverted to TRUE causes the frame to appear

recessed instead of raised. In the case of an abstract frame type the user preferences decide

whether a frame should be raised or recessed. Setting inverted to TRUE causes Triton to use

the opposite of the user preferences.

3.4 Text

Similarly to the frame primitives there are also text primitives available for writing your own

classes.

The usage is quite straight-forward: First, find out the width of a line of text by calling TR_

TextWidth() if necessary. Second, draw the text into a window using TR_PrintText(). You

should supply the same flags to both functions, selectable from the TRTX_* flags. The following

flags are currently available:

• TRTX_NOUNDERSCORE

Underscores (as specified by the TRWI_Underscore project tag) will not be interpreted and

simply treated as normal text characters.

• TRTX_HIGHLIGHT

The text will be highlighted, i.e. drawn using the pen for highlighted text instead of the

one for normal text.

• TRTX_3D

The text will be drawn in the highlighting color with a shadow to the lower right side.

• TRTX_BOLD

The text will be drawn using the bold (soft)style. Note that this is not supported by all

fonts.

• TRTX_TITLE

This is an abstract style which can be set by the user via the Preferences editor to either

normal, highlighted or shadowed text. It is used for all kinds of titles (e.g. of framing

boxes).

Chapter 3: Writing Classes 20

3.5 Images

You can use TR_AreaFill() for filling an area with one of Triton’s default backfill pattern.

See the AutoDocs for more details.

When you get a TROM_INSTALL message you can assume that your drawing area is filled with

the background color the object’s container (TROD_DisplayObject.tro_BackfillType).

3.6 Color

IF you want to draw your own shapes, other than texts, frames and the other ones which

can be drawn with the primitives, you can use the normal graphics.library and intuition.library

functions. Of course you need to take care of the colors you use yourself. In addition to the

default system pens Triton offers its own pen selection scheme.

You can get a Triton pen with the TR_GetPen() function. As of V6 the following pen types

are available:

• TRPT_TRITONPEN

Triton’s own pens. These are in concept similar to the system pens, but Triton offers some

additional ones. These pens can also be redefined by the user with the Triton Preferences

program.

• TRPT_SYSTEMPEN

The intuition DrawInfo pens. PenData specifies which pen to return.

• TRPT_GRAPHICSPEN

A standard graphics pen. TR_GetPen() will simply return the PenData code as a pen

number.

Chapter 4: Style Guide 21

4 Style Guide

4.1 Guidelines

Please keep the following general rules in mind when designing and implementing a GUI with

Triton:

• Window size

Please make sure that all windows of your GUI fit on a standard PAL Hires screen (640*256

pixels) with ‘topaz.font’ in size 8.

• Keyboard shortcuts

Please add keyboard shortcuts to as many gadgets and menus as possible. It is very annoying

for a user who works without a mouse most of the time to grab his mouse just because you

forgot to add keyboard shortcuts.

• Test your GUI

You should always test your GUI with different font sizes (especially fixed-width and pro-

portional fonts with different heights) and a non-standard window background to avoid

making assumptions about the layout and coloring of your GUI resulting from observed

behaviour, which is quite often wrong. Take special care not to use text spaces for spacing

in your GUI (e.g. in array labels).

• Stack size

If your application requires a stack size above 4096 bytes (e.g. because of a huge TagList

with a Triton project definition which is created on the stack during runtime), make sure

that the stack does indeed have that size. Some development systems offer an automatic

stack setting in their startup code, which comes handy in those situations. Please do not

rely on the user to set the stack!

• And finally:

Don’t forget the Amiga User Interface Style Guide...

4.2 Mailing list

There is a mailing list for discussions and questions about Triton. If you have any problems

with Triton or simply want to get in touch with other developers who are using Triton, you can

subscribe to the list.

In that case, send EMail to majordomo@mail.im.net with any subject and the line subscribe

triton in the body of your message. If you want the list mail to be sent to a different EMail

address (and only if you want this), please use subscribe triton a.different@email.address

Chapter 4: Style Guide 22

instead (after replacing a.different@email.address with the address to send the mail to of

course).

In order to unsubscribe from the list, simply follow the above rules, replacing subscribe by

unsubscribe.

If you need more help, send mail to majordomo@mail.im.net with a line help in the body.

Chapter 5: Odds & Ends 23

5 Odds&Ends

5.1 FAQ

Here are some frequesntly asked questions and their answers:

1. Q: Why shouldn’t I use a simple TR_Wait() for dummy windows?

A: Triton has to process inputs from Intuition. This is done in TR_GetMsg(). But of course

you have to call this functions so that Triton can process its input. After TR_Wait() returns,

you have to run though a while(TR_GetMsg()) loop as usual. An easier way to create a

dummy window is using TR_AutoRequest().

2. Q: How do I handle a progress indicator?

A: As already explained in answer 1, you have to call TR_GetMsg() regularly. When a

progress indicator is displayed, you should update it regularly and run through a while(TR_

GetMsg()) loop every time. See the supplied Progress Indicator demo application for details.

3. Q: How do I activate a string gadget?

A: Beginning with Triton 1.3 (V4) you can use TR_SendMessage(Project,ID,TROM_

ACTIVATE,NULL).

Index 24

Index

A
Answers . 23

Applications . 5

Attribute . 14

Autodocs . 3

C
Class . 17

Class Basics . 17

Class Tree . 2

Color . 20

Color Primitives . 20

F
FAQ . 23

Frame . 18

Frame Primitives . 18

Frequently Asked Questions . 23

G
Get . 14

Guidelines . 21

H
Help . 15

I
Image . 20

Image Primitives . 20

Introduction . 2

L
Layout . 10

Linking . 9

Loop, Polling . 12

M
Macros . 11

Mailing list . 21

Menus . 8

Message . 14

Method . 18

Modify . 14

N
Notification . 9

O
Objects . 9

OOP Internals . 2

Overview . 2

P
Polling Loop . 12

Projects . 6

Q
Query . 14

Questions . 23

QuickHelp . 15

R
Requesters . 15

S
Set . 14

Style Guide . 21

T
Text . 19

Text Primitives . 19

Triton mailing list . 21

Tutorial . 5

i

Table of Contents

1 Introduction . 2

1.1 Overview . 2

1.2 OOP Internals . 2

1.3 Class Tree . 2

1.4 Autodocs . 3

2 Writing Applications . 5

2.1 Applications . 5

2.2 Projects . 6

2.3 Menus . 8

2.4 Objects . 9

2.5 Layout . 10

2.6 Macros . 11

2.7 Polling Loop . 12

2.8 Messages . 14

2.9 Help . 15

2.10 Requesters . 15

3 Writing Classes . 17

3.1 Class Basics . 17

3.2 Methods . 18

3.3 Frames . 18

3.4 Text . 19

3.5 Images . 20

3.6 Color . 20

4 Style Guide . 21

4.1 Guidelines . 21

4.2 Mailing list . 21

5 Odds & Ends . 23

5.1 FAQ . 23

Index . 24

