recent

Rldiger Hanke

recent

COLLABORATORS

TITLE :

recent

ACTION

NAME

DATE

SIGNATURE

WRITTEN BY

Ridiger Hanke

July 7, 2022

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

recent

Contents

1

recent 1
1.1 Welcome to recent.library L e e e e 1
1.2 UserIntro o o o 1
1.3 Installation e e e e 2
1.4 Troubleshooting e e e 3
1.5 Future o e e e 3
1.6 Contact 4
1.7 Using recent.library in your program it e e e e e e e e e e e e e e e 4
1.8 Library Functions e e e e e e 5
1.9 AllocRecentHandle e 6
1.10 FreeRecentHandle e 6
1.11 CloseRecentHandle e e 7
1.12 AddRecentFile e e 7
1.13 AddRecentGroup i e e e e e 8
1.14 GetRecentInfo L e e 9
1.15 SaveRecentList e e e 10
1.16 SetRecentSize L e e e 11
1.17 GetRecentMenu oottt e e e e e e 11
1.18 Recentlnfo Structure L e e 12
1.19 Style Guide e e e 13
1.20 Developer Help o e 14
1.21 Tutorial L e 14
1.22 Group ID LSt o o o e e e e e 18

recent 1/19

Chapter 1

recent

1.1 Welcome to recent.library

recent.library 0.9 and this guide are copyright (c)1999 by Ridiger <
Hanke

recent.library User Guide

Introduction
Installation
Troubleshooting
Future
Contact
recent.library Developer Guide
Using recent.library in your program
Developer Help
Library Functions
Style Guide
A Quick Tutorial

recent.library was written using the DevPac 2 assembler and GoldEd <
6.2.0

1.2 User Intro

Welcome to recent.library

recent 2/19

recent.library is an AmigaDOS library that helps application programmers
keeping track of the most recently opened files. Programs using
recent.library can offer you a menu option to quickly select a file
you opened with the program lately. While this can be achieved without
a library, programs using recent.library offer the user more than just
access to recent files from the menu bar:

In the works is a program for Workbench/DOpus that allows the user
accessing his recently used files without having to load the application,
for example to quickly copy them to disk or start them with another
program, e.g. viewing a picture with a fast image viewer instead of
loading the entire image processing application. This tool will allow
to see the recent files sorted by the application you used them in,
or by file type.

Notice that other than in Wxxxxxx you will be able to access all
"recent files" list of your applications from Workbench. Wxxxxxx
usually stores a small number of entries from any application
in its start menu. So if you haven’t started a program in awhile, or
made heavy use of other programs, that program’s recent files are
rather sooner than later kicked out of that list and you have to
start the application again to get faster access to them.

recent.library is Freeware. That means, feel free to copy it
for anybody, but please leave the archive intact and always
distribute the guide with the library. If you are a developer and
want to use it in your own program, special rules apply. See the
Distribution

section in the Developer’s Guide for more info.

To Index

1.3 Installation

Installing recent.library
To be able to use recent.library, you need at least AmigaOS 2.0.

To install, run the provided script, or to install it manually,
enter a shell and type in the following:

CD <PATH> [where <PATH> is the path you extracted the
recent.lha archive to]

COPY recent.library LIBS:

MAKEDIR ENVARC:Recent

The last step is very important, otherwise no recent lists will
be saved.

To Index

recent 3/19

1.4 Troubleshooting

Troubleshooting & Bugs

I have tested recent.library with a test program that did almost
anything to it that I thought could ever occur, but you never know
if there really isn’t a bug or two left (after all, it’s 100%

assembler, so...). Well, there’s certainly as the programmer himself
is usually the worst tester, and I have no contact to other Amiga
fans (heeello... still anybody out there?!?), so I didn’t have any

testers. However, I think I tested it thoroughly enough to ensure
that it will perform fine in everyday use and not cause some
serious errors by the dozens. In my test programs, it worked stable
and without errors.

If you discover a bug in recent.library please email or write
me. I will remove it as fast as I can. See
Contact
for how to
contact me.

If an application using recent.library should suddenly go crazy
and display wrong entries in the recent file menu, or simply crash,
try deleting the file in the ENVARC:Recent/ drawer that matches
the application’s name. Notice that the chance that this might
happen is very very slim as recent.library does more checks than
some other libraries. It does even check memory pointers before
freeing if the memory was really allocated, although there is no
way to get to that point without the memory being allocated, etc.
NULL-pointers passed by careless application programmers can’t
irritate it, too. However, I cannot catch EVERYTHING stupid a
programmer might throw at it.

To Index

1.5 Future

The Future of recent.library
Yes, it has some, really ;-)

We’re living in a time where more and more people jump ship and
leave the Amiga. Granted, with Gateway and the new AI president,
it doesn’t look like a glorious future. I once said, maybe if the
Amiga would be finally dead I would go for a Mac, but now that
it looks like all hope is lost, I can’t stand the thought of
leaving "my" Amiga.

recent

4/19

In short, you can be sure that I’1ll be further developing
for the Amiga, and that the support, development and bug
fixes for recent.library will continue.

However, recent.library seems pretty ok as is; if you are
using it, whether as a developer or user, and think that you
need additional functionality, please write me. You’ll find my
address under

Contact

What is currently planned is a tool for Workbech/DOpus
that will allow you to access all recent files from all your
applications that support recent.library sorted by application
or by filetype.

To Index

1.6 Contact

Contact Information

If you need to contact me, be it praise for the library (very
welcome) or bug reports (not so welcome but hey, yes, I’'1l
fix it!), write to:

Ridiger Hanke
Goerdelerstr. 40
48151 Miinster
Germany

Email: tomjoad@muenster.de

To Index

1.7 Using recent.library in your program

Using recent.library in your program

recent.library makes most sense if a broad number of
programs are using it. I hope it will make life for the
already hard-hitted Amiga users a bit easier. Thus I’'ve
decided to make as little restrictions about using the
library in your own program as possible.

As you may have read in the User Guide, recent.library is
Freeware. I give all programmers of Amiga software, no
matter whether Public Domain, Shareware or commercial, the

recent

5/19

permission to use recent.library in their program and
distribute the recent.library binary on the media their
software comes on, provided:

- you point out at some point in the documentation or
during the installation that the program is using
recent.library, and its copyright

- the binary is left unchanged

- you send me a postcard or email that your program is
using recent.library. When my webpage is ready, I will
list all programs using the library there.

In this case, you can include the binary in the regular
install process (you don’t need to point out to the user
he must install recent.library if it’s not on his computer
but can simply copy the library into LIBS:) and keep it
stored wherever it best fits. Remember to create a
ENVARC:Recent directory if necessary. However, if there is
still room on the media your software comes on, I’d be

grateful if you’d put the full archive into an "Extras" or
so directory.

To Index

1.8 Library Functions

Library Function overview

AllocRecentHandle
FreeRecentHandle
AddRecentFile
AddRecentGroup
GetRecentInfo
SaveRecentList
SetRecentSize
GetRecentMenu
CloseRecentHandle
Structures
RecentInfo

To Index

recent

6/19

1.9 AllocRecentHandle

AllocRecentHandle
BOOL AllocRecentHandle(STRPTR appname, APTR xrecentHandle);

Offset: -30 (recent.library)

Input:

appname (a0) : Name of your application. It is copied into an
internal buffer so it can be a temporary string

recentHandle (al): A pointer to an APTR that will receive the address
of the allocated handle

Output:

TRUE if the function was successful, FALSE otherwise.

Description:

Allocates a handle required for all other library functions. The
function will also test if there’s a recent file list for your
application stored on disk and load it if it exists.

Appname serves two purposes. First, it is the name under which

the recent list will be saved by the library, so the name should
uniquely identify your program (not just "Texteditor", "Paint
program"). At the same time, all restrictions for AmigaDOS file
names apply for the string (no more than 32 chars, no ’':’, '/’ etc.)

Second, appname will be used by the later Workbench tool which
allows the user to access all recent files from Workbench as

the drawer name for recent lists stored by your program. It
should thus be conveniently readable to human beings (not
all-uppercase or all-lowercase, usual convention is first letter
of a word in the name uppercase, and the remaining letters
lowercase) . Ideally, write it as you would write it on the
package or in the manual.

Library Functions

To Index

1.10 FreeRecentHandle

FreeRecentHandle
voilid FreeRecentHandle(APTR xrecentHandle);

Offset: -36 (recent.library)

recent

7/19

Input:
recentHandle (al): A pointer to the handle that was obtained through

AllocRecentHandle

Description:
Frees all memory allocated for the handle, and sets your recent
handle to NULL so that you don’t have an invalid pointer.

Library Functions

To Index

1.11 CloseRecentHandle

CloseRecentHandle
void CloseRecentHandle (APTR *recentHandle);
Offset: -78 (recent.library)

Input:
recentHandle (al): A pointer to the handle that was obtained through
AllocRecentHandle
Description:
Saves the current recent list to disc, frees all memory allocated
for the handle, and sets your recent handle to NULL so that you
don’t have an invalid pointer. It is essentially a shortcut for
calling both
SaveRecentList

and
FreeRecentHandle

Library Functions

To Index

1.12 AddRecentFile

AddRecentFile
BOOL AddRecentFile(APTR recentHandle, ULONG groupID, STRPTR filename
Offset: —-42 (recent.library)

Input:

)i

recent 8/19

recentHandle (a0): The handle that was obtained through

AllocRecentHandle
grouplID (dl) :
ID
of the file group you want to add the file to
filename (al) : Name of the file to add to the list

Output:
TRUE if the function was successful, FALSE otherwise.

Description:

Adds the given file to the group in your recent handle. The file name
may be relative, but recent.library will try to set a lock on it, so

the file must really exist. You need not worry about this as the
function will be able to lock any file you can open in your program

(you don’t need to give it absolute paths), but it is not possible to
enter "fantasy" entries. The file will be added into the recent list as
the most recently accessed file. If the file already existed in the
list, it receives the latest datestamp, so you should call this function
also when the user selects a file from the list of recent files!

Library Functions

To Index

1.13 AddRecentGroup

AddRecentGroup
BOOL AddRecentGroup (APTR recentHandle, ULONG groupID, UBYTE maxEntries);

Offset: —-48 (recent.library)

Input:
recentHandle (a0): The handle that was obtained through
AllocRecentHandle
grouplID (d0) :
ID
of the file group you want to add.
maxEntries (dl) : Maximum number of entries this group can hold
Output:

TRUE if the function was successful, FALSE otherwise.

Description:

recent.library allows you to divide your application’s recent
file lists into groups. You can’t add files directly to

the handle, but rather into specific groups. A group collects
files of a certain file type. It allows you to hold different
filetypes for different menus (e.g. images and brushes in a
paint program, or text files and macros in an editor) with a
single handle.

recent 9/19

Notice please that you aren’t free to set group IDs as you
like or may not simply set it to 0 if you have only one list to
take care of in your program. See the

list of group IDs

for an
overview of currently assigned values. If you can’t find a
group that matches the filetype of the files you want to
enter,

contact me

and tell me what filetype you want to
store in the recent list. I will send you your ID via email
asap, unless I’'m on vacation on the same day. Do not create
own IDs by using a number not in the list of group IDs!

Finally, it should be noted that a handle cannot hold more
than one group of the same ID. Yet, if you try to add a
group that is already contained in the handle, the function
will return TRUE. This is because the groups may have been
created by

AllocRecentHandle

already, and you are unable to tell

whether it has already opened an old configuration file and
created the groups or whether you will have to add the groups
yourself. Notice that the number of entries the group can
hold is NOT affected by this function if the group already
existed.

Library Functions

To Index

1.14 GetRecentinfo

GetRecentInfo

LONG GetRecentInfo(APTR recentHandle, ULONG grouplD, struct RecentInfo * <
recentInfo, UBYTE arraySize);

Offset: -54 (recent.library)

Input:

recentHandle (a0): The handle that was obtained through
AllocRecentHandle
grouplID (dO) =
ID

of the file group you want info about. For more
information, consult
AddRecentGroup
recentInfo (al): A pointer to an array of
RecentInfo
structures
which will be filled with information. Can be NULL to
query the required array size (see description)

recent 10/19
arraySize (d2) : The size of the array of
RecentInfo
structures
Output:

The function returns the number of structures written into the array.
This do not necessarily have to be the number of allocated recent file
slots! Do not use array elements beyond this number as they aren’t
valid.

If a NULL-pointer is passed for recentInfo, then the size of the array
required to hold the entire recent data is returned.

Description:

Allows you to obtain the list of most recently used files. The
array 1s sorted with the first element being the most recently
used file. Information obtained includes the file name (for
displaying in the menu bar), the full name including path (for
accessing the file), and a DOS datestamp of the last file access.
Note that a maximum of arraySize structures are filled. If
arraySize is smaller than the number of recent entries in the
group, the arraySize most recent ones will be returned. To learn
how large your array needs to be to hold the full recent file
list, pass a NULL-pointer for recentInfo.

Library Functions

To Index

1.15 SaveRecentList

SaveRecentList
void SaveRecentList (APTR recentHandle);

Offset: -60 (recent.library)

Input:

recentHandle (a0): The handle that was obtained through
AllocRecentHandle
Description:

Saves the data stored by the given handle to disk. A "Recent" directory
in ENVARC: must exist or the data will not be saved. You do not have to
call this function if you close your handle with

CloseRecentHandle

instead of

FreeRecentHandle

Library Functions

To Index

recent 11/19

1.16 SetRecentSize

SetRecentSize
BOOL SetRecentSize(APTR recentHandle, ULONG groupID, UBYTE newSize);

Offset: -66 (recent.library)

Input:
recentHandle (a0): The handle that was obtained through
AllocRecentHandle
grouplID (dO) =
ID
of the filegroup for which to change size
newSize (dl) : The new size of the filegroup (i.e. numbers of
entries it can hold)
Output:

TRUE if the function was successful, FALSE otherwise.
Description:
Use this function to set the number of files the recent list of a
certain group can hold. After calling the function, the Menultem
structure obtained from

GetRecentMenu

for this group must not

necessarily be valid any longer.

Library Functions

To Index

1.17 GetRecentMenu

GetRecentMenu
struct Menultem *GetRecentMenu(APTR recentHandle, ULONG grouplD);

Offset: -72 (recent.library)

Input:

recentHandle (a0): The handle that was obtained through
AllocRecentHandle
grouplID (dO) =
ID

of the filegroup for which to create a menu

Output:

recent 12/19

Pointer to Menultem structure if the function was successful, NULL
otherwise.

Description:
This is a small convenience function that generates you menu entries
with the current recent files you can attach to your program’s menu.
Before use you must call the Gadtools function LayoutMenultemsA.
The item returned by the function is a "dummy" item you should not
use. The pointer to the relevant menus is in the SubMenu field. This
is necessary for the layout process. For more information, see the
small

tutorial

Note that the function is somewhat treacherous when the data in
the recent list changes. Before adding files to the list, make
sure the user cannot access the menu bar (remove it, etc.). After
adding files to a group or resizing it, you must call this
function again to get a valid menu. The old menu is outdated in
the moment you make changes to the group, and may even no longer
exist.

Library Functions

To Index

1.18 Recentinfo Structure

RecentInfo

struct RecentInfo
{
STRPTR
ri_Name,
ri_Path;
struct DateStamp
ri_TLastAccess;
}i

ri_Name — The name of the file

ri_Path — The name of the file, with full path

ri_LastAccess - Standard DOS datestamp holding the time of the last
access of this file

Library Functions

To Index

recent

13/19

1.19 Style Guide

Style Guides

Here’s a few things you should obey when using recent.library
in your own programs:

The user should be able to set the size of recent lists
Add options in your preferences menu which allow the user to
set the size for every group of recent lists you use individually.
Changing the size is no hassle, just call the
SetRecentSize
function.

You should default the size of the recent list to a reasonable
number. Good values should be 8-10 for the main file list, and
3-5 for secondary lists. For example, a paint program could
default the image file list to a size of eight and the brush
and palette lists to a size of four.

Recent lists should be put into sub-menus

If you attach them to the main "File" or "Project" menu in the
Windoze way, not every user will thank you. For example, I have
a parttime job in a software company where I'm forced (yes,

you read right) to set the number of recent workspace entries
to 10 and the number of recent files to 15 in the compiler
editor. I think you can guess it doesn’t look very pretty when
I open the Project menu...

Call AddRecentFile () after a file from the recent list was selected

This will give the file the latest datestamp and move it to
the top of the recent list.

Never make up own IDs
I can’t mention often enough how important it is that you choose
a proper ID from the
list of IDs
and do not make up or add own
ones. If you need an ID for a filetype you cannot find in the

list of predefined IDs

, email me and I’'1ll give you a number and
add it to the list. The correct ID is also important for
correct localization later.

Do not use more than one handle for your app

Again, the reason is the future plans of allowing the user to
access recent files from Workbench by application. In addition
to that, ain’t it easier to have Jjust one handle?!?

Check on installation if the directory ENVARC:Recent exists

Create it 1if necessary. Otherwise recent.library won’t save recent

lists to disk.

Uninstall
Don’t forget in your uninstall script to delete the program’s

recent 14/19

recent file list from ENVARC:Recent.

To Index

1.20 Developer Help

Developer Help

The archive contains include files for some Amiga languages
in the developer directory. You’ll have to copy them manually
into the include directory of your compiler/assembler. If you
are using a language or compiler for which I haven’t included
developer information, it should be easy to create correct
include files for your compiler/language. If you have done so,
please send them to me and I’11 include them with the next
release.

To Index

1.21 Tutorial

How to implement recent lists in your program - a short tutorial
For the ones who don’t want to bother reading function
descriptions, here’s a quick way how to add recent menus to
your program:

First include the recent.library include files:

#include "libraries/recent.h"
#include "pragma/recent_lib.h"

On startup, open recent.library:

if(! (RecentBase = OpenlLibrary("recent.library", 0)))
cleanUp();

You now need to allocate a valid RecentHandle:

APTR
recentHandle;

if(!'AllocRecentHandle("CoolEdit", &recentHandle))
cleanUp () ;

"CoolEdit" here is the name of your program. Several things
should be kept in mind for the name. See the description of

recent 15/19

AllocRecentHandle
for more information.

recent.library will check now if there’s a recent list saved
for your program. If it is, it is automatically loaded.

But in case there was none saved, we still can’t do anything with
it unless we put some groups in it. Make a list of filetypes
you want to keep recent lists of in your program. Check out
the

list of group IDs

and add the appropriate IDs to the
handle. CoolEdit obviously is a text editor, so we might have
ASCII text and macro files:

if('AddRecentGroup(recentHandle, RECENT_GROUP_ASCII, 10))
cleanUp(); // error

if ('AddRecentGroup(recentHandle, RECENT_GROUP_MACRO, 5))
cleanUp(); // error

If you can’t find the filetype you want to store in a recent
list in the ID 1list,
contact me
I will send you the ID
number you should use. NEVER make up IDs on your own.

The last parameter is the number of recent files the group can
hold. It is only used if the group doesn’t exist yet. Notice
that when the group already exists (e.g. AllocRecentHandle
finds a saved list), the function does nothing but nevertheless
returns success. Make the values you give AddRecentGroup the
default sizes for recent lists. More information about choosing
reasonable sizes can be found in the

Style Guide

At this point, we’re basically ready to receive files in the
list. But first let’s see how you put the list into the menu
bar (as it might already exist; remember AllocRecentHandle
might have loaded one!). So first you create the menu (most
conveniently done with CreateMenusA () from gadtools.library).
Let’s assume it looks like this:

struct NewMenu

nm[] = { { NM_TITLE, "Project", 0, 0, 0, O },
{ N\M_ITEM, "About...", O, 0, 0, 0 1},
{ NM_ITEM, NM_BARLABEL, O, O, O, O 1},
{ N\M_ITEM, "Open...", 0, 0O, 0, O },
{ NM_ITEM, "Open recent", 0, 0, 0, O },
{ NM_SUB, "Empty", 0, 0, 0, 0 },
{ NM_ITEM, NM_BARLABEL, 0, 0, 0, 0 1},
{ NM_ITEM, "Quit", 0, 0, 0, O 1},
{ NM_END, 0, O, O, 0, O } };

APTR

visualInfo = GetVisualInfoA(myScreen, NULL);

recent 16/19

menu = CreateMenusA(nm, NULL);
if(!menu)
cleanUp();

LayoutMenusA (menu, visualInfo, NULL);

Note that you must free the visualinfo when you don’t need it
anymore. When trying out, I noticed that the function produced
memory leaks under 0S3.0 so you should get the VI at the beginning
and free it at the end of your program, and not get and free it
for every menu layout process.

Now call GetRecentMenu which will return you a pointer to
menu data you must first layout. Then you can add it to
your menu bar. In the layoutTags array, you can provide a
TextAttr structure to change the font in the recent menu

to match the font you are using for the rest of the menu if
you are using a different font than the screen font. If

you are always using the screen font, you can simply omit
this tag:

struct Menultem
*recentItem,
*recentMenu = GetRecentMenu(recentHandle, RECENT_GROUP_ASCII);
struct TagItem
layoutTags([] = { { GIMN_Menu, 0 },
{ GTMN_TextAttr, (ULONG)&myMenuTextAttr 1},
{ TAG_END, 0 } };

if(!'recentMenu)
cleanUp();
layoutTags[0].ti_Data = (ULONG)menu;

LayoutMenuItemsA (recentMenu, visuallInfo, layoutTags);

To connect the item with the rest of the menu, get the
address of the menu item which should hold the submenu.
Important: attach the SUBMENU of the recent menu item that
was returned by GetRecentMenu (). The item itself is only

a dummy to help the layout process:

recentItem = ItemAddress(menu, FULLMENUNUM(O, 3, NOSUB));
if(recentItem)
{
if (recentMenu->SubItem)
recentItem—->SubItem = recentMenu->Subltem;
else
// Recent list is empty - Disable item
recentItem—->Flags &= ~0-ITEMENABLED;

SetMenuStrip (myWindow, menu);

Whenever your progam opens a file that should appear

in a recent list, call after successful processing (you should
not add files the user might have selected but that your
program cannot read because they’re damaged or of the wrong

recent

17 /19

type) :

ClearMenuStrip (myWindow);
AddRecentFile (recentHandle, RECENT_GROUP_xxx, filename);

Where xxx stands for the correct group the file belongs to.
We clear the menu strip before adding the file because after
adding a file to the group or changing the number of entries
a group can hold, the menu returned by GetRecentMenu() is
not necessarily valid any longer. So after adding the file,
call GetRecentMenu() again and attach the resulting menu

to your menu as shown above.

Sometimes, though, you might not want to use GetRecentMenu ()
for some reason, or the user has selected a file from the
recent list and you need the path. In this case, call
GetRecentInfo (). It fills you an array of RecentInfo
structures with everything you need to know. The data

in the array is sorted in the same order as it is in the
menu bar, so if you need the file path to a menu item

the user selected, it has the same index in the array as
it has in the recent list submenu. As good programs should
allow the user to set the number of entries for the recent
list, you should not assume a constant value for the

array size. You don’t have to hold the maximum number

of entries in a variable as you can get it by giving the
GetRecentInfo () function a NULL pointer:

int
maxEntries;
struct RecentInfo
*recentInfo;

maxEntries = GetRecentInfo(recentHandle, RECENT_GROUP_ASCII, NULL, 0);
if (maxEntries == -1)
puts("Error!");
if (maxEntries > 0)
{
// List is not empty
recentInfo = new struct RecentInfo[maxEntries];
GetRecentInfo(recentHandle, RECENT_GROUP_ASCII, recentInfo, maxEntries);

printf ("Most recently opened file: %s", recentInfol[0]->ri_Path);
printf ("Least recently opened file: %s", recentInfo[maxEntries-1]->ri_Path

)
delete recentInfo;

The information returned by this function can also be
helpful to build your own menu strips if you don’t want
to use GetRecentMenul() .

Being the good programmer that you are, you will of course
include a preferences option to let the user change the
number of entries a recent list of a certain filetype may
hold. When the user closes the configuration dialog with
"OK", call:

recent 18/19

SetRecentSize (recentHandle, RECENT_GROUP_ASCII, newGroupSize);
SetRecentSize (recentHandle, RECENT_GROUP_MACRO, newMacroSize);

Important: The same applies for SetRecentSize as earlier for
AddRecentFile. You must disable the menu bar before calling the
function, and rebuild the menu again thereafter with a fresh
GetRecentMenu () call.

You don’t have to save the number of entries somewhere as you
can obtain them through GetRecentInfo() at any point as shown
above. So there’s really no reason for not letting the user set
the size of his recent list.

Of course, after everything is done, you need to clean up
everything. The standard cleanup code for recent.library would

look like this:

CloseRecentHandle (&recentHandle);
Closelibrary (RecentBase);

The first command saves all recent lists your program uses to
disk, frees all memory allocated by the library, and sets
recentHandle to NULL (thus the pointer to the handle and not
the handle itself in the function call) so that you don’t

accidently work with an invalid pointer.

Enjoy using recent.library!

To Index

1.22 Group ID List

Group IDs currently defined for recent.library

Text-related groups

RECENT_GROUP_ASCII unformatted ASCII text file
RECENT_GROUP_ANST text file with ANSI escape codes
RECENT_GROUP_SCRIPT AmigaDOS script (like startup-sequence)
RECENT_GROUP_AREXX ARexx script

RECENT_GROUP_GUIDE AmigaGUIDE file

RECENT_GROUP_CATALOG Locale catalog

RECENT_GROUP_DOCUMENT Non-ASCII document (AmigaWriter, PDF,...)
RECENT_GROUP_MACRO If your program has own (non—-ARexx) ones
RECENT_GROUP_HTML A hypertext page

Sound-related groups

RECENT_GROUP_SAMPLE Sound sample (e.g. IFF, WAVE,...)
RECENT_GROUP_SCORE Musical score (such as SMUS or CMUS)
RECENT_GROUP_MOD Tracker module (such as OctaMED, ...)

Image-related groups
RECENT_GROUP_IMAGE A bitmap image (e.g. IFF, JPEG, PNG, ...)

recent

19/19

RECENT_GROUP_BRUSH
RECENT_GROUP_VECTORIMAGE
RECENT_GROUP_PALETTE
RECENT_GROUP_MASK

Programming-related groups
RECENT_GROUP_PROJECT
RECENT_GROUP_CSOURCE
RECENT_GROUP_ASMSOURCE
RECENT_GROUP_ESOURCE
RECENT_GROUP_BASICSOURCE
RECENT_GROUP_JAVESOURCE
RECENT_GROUP_REBOLSCRIPT
RECENT_GROUP_INCLUDE
RECENT_GROUP_OBJECTFILE
RECENT_GROUP_LINKLIB

Miscellaneous groups
RECENT_GROUP_EXECUTABLE
RECENT_GROUP_PREFS
RECENT_GROUP_CONFIG
RECENT_GROUP_FONT

A brush (essentially an image, too)

A vector image (e.g. EPS,...)

File containing color information

A mask (usually a one-plane bitmap image)

A project or make file for compilers
A C(++) sourcecode

An assembler source

An E sourcecode

A Basic sourcecode

A Java sourcecode

A Rebol script

Include file

An object file

A link library

All kinds of executable programs
Preferences file

Program configuration

Font (Amiga-Font, TrueType, Postscript...)

	recent
	Welcome to recent.library
	User Intro
	Installation
	Troubleshooting
	Future
	Contact
	Using recent.library in your program
	Library Functions
	AllocRecentHandle
	FreeRecentHandle
	CloseRecentHandle
	AddRecentFile
	AddRecentGroup
	GetRecentInfo
	SaveRecentList
	SetRecentSize
	GetRecentMenu
	RecentInfo Structure
	Style Guide
	Developer Help
	Tutorial
	Group ID List

