
WHAT IS FAST AND HOW DOES IT WORK?

What is FAST? It is a new transient program for the CP/M
(*) disk operating system. FAST is used in conjunction with
other transients to speed up their execution. Of course,
nothing but a hardware change can increase the rate at which
your CPU executes instructions. But, most transients are
"disk bound", that is, they spend a large percentage of
their total execution time just waiting for the information
they need from the disk. FAST uses this fact to increase
execution speed by reducing the time spent waiting for the
disks. This is accomplished by using two different types of
buffering. Firstly, portions of the disk which are
frequently accessed (the directory) are held in a buffer,
eliminating the need to seek to read them. Secondly, disk
accesses are grouped together in time to reduce the amount
of time lost to rotational latency and head load delay.

HOW TO USE FAST

The normal CP/M command to assemble a file with the name
MUMBLE.ASM is:

A>ASM MUMBLE

To perform the same function under FAST, simply type:

A>FAST ASM MUMBLE

Thus, in its simplest form, FAST can be used as a prefix to
any normal CP/M command. This will load FAST which will
link itself to your operating system and allocate its disk
buffers. Then the transient ASM.COM is loaded and given
control. The fact that FAST is in the system is totally
transparent to the transient, except for the reduced memory
size. Messages will be printed just before and after the
transient is executed to indicate that FAST is in control.
After execution, you should see something like this on your
terminal:

A>FAST ASM MUMBLE
Beginning execution under FAST N.NN
CP/M ASSEMBLER - VER 1.4
1234
056H USE FACTOR
END OF ASSEMBLY
Execution under FAST now complete
A>

Where N.NN is the version number of FAST that you are using.

FAST Users Manual 5/29/79 Page 2
Command line options

COMMAND LINE OPTIONS

The buffering action of FAST may be altered with the use of
command line options. This is accomplished by following the
FAST command with an option string enclosed in square
brackets ("[" and "]"). A valid option string must consist
of a drive specification followed by one or more buffering
mode specifications. This group may be repeated for
buffering of multiple drives. Examples of typical option
strings will be given below.

Explicitly specifying the buffering mode is desirable to
reach the best trade-off between speed of execution and
memory usage. In general, as more buffering is used,
execution speed will increase. However, more buffering
means more memory usage. The type of buffering selected
should be tailored to the disk usage patterns of the
transient being executed. For instance, write buffering
will offer no speed improvement when a transient only reads
the disk.

One thing that FAST must know is which disk drive is to be
buffered. This is communicated to FAST simply by using the
single letter name of the desired drive (e.g. "A" for disk
drive A). As a convenience, the current default drive may
be specified with the commercial at sign ("@").

The second thing which FAST must know is which mode of
buffering is to be used. FAST supports three different
buffering modes. Each mode may be used individually or in
combination with other modes to offer the fastest execution.
The three modes available are:

Seek buffering
Read buffering
Write buffering
Yes (all of the above)

The type of buffering desired is communicated to FAST by a
single letter in the option string. The letter is simply
the first letter of the word which describes the type of
buffering (capitalized above). The operation and
application of each mode will be discussed below.

Thus, a typical FAST command line might look like this:

B>FAST [ASWBSR] ASM MUMBLE.BAA

In this example, the .ASM source file is on drive B so read
and seek buffering have been specified for that drive. The
A drive, on the other hand, is to receive the result of the
assembly (the .HEX and .PRN files), so it gets write and
seek buffering.

FAST Users Manual 5/29/79 Page 3
Command line options

BUFFERING MODE DESCRIPTIONS

Seek buffering causes the disk directory to be read into a
buffer the first time a drive is accessed. From then on,
all reads from and writes to the directory can be carried
out without moving the disk head from its current position.
Thus, transients which access the directory frequently will
be sped up considerably by seek buffering. Transients which
fall into this category are those which deal with many
different files simultaneously, perform operations with
temporary files and rename them, read or write large (more
than 16K) files, and those which perform random disk I/O.
In particular, ASM.COM, MAC.COM, PIP.COM, and ED.COM are
examples of such transients.

Read buffering causes an entire track from the disk to be
read into a buffer the first time any sector is read from
that track. This increases execution speed because CP/M
typically reads most of one track before going on to the
next one. Additionally, the time required to read a whole
track is a fairly small percentage increase over the time
required to read a single sector. The net effect is that
less time is spent waiting for the rotational latency of the
disk. This mode of buffering is most beneficial to
transients which read disk files sequentially. As a matter
of fact, it may slow down transients which read files in a
random access mode. Fortunatlly, the vast majority of CP/M
transients read the disk sequentially. Examples of such
transients are ASM.COM, MAC.COM, PIP.COM, and BASIC-E.COM
(if the BASIC program doesn't do random I/O!!).

With write buffering, sectors that are to be written to disk
are held in a buffer for a time, instead of writing them
immediately. Sectors for any given track are held in the
buffer until CP/M tries to write to a track that is not
buffered. When it is time to change tracks, only those
sectors which were changed are actually written before
clearing the buffers to make room for the new data. This
improves execution speed for the same reasons that read
buffering does, i.e. a whole track can be written in about

the time it takes to write a single sector. Transients
which benifit from this type of buffering typically write to
disk sequentially. Examples include ASM.COM, MAC.COM, and
ED.COM.

DEFAULT PHILOSOPHY

Two of the qualities generally associated with a good
program are versatility and ease of use. FAST has been
written with these two qualities in mind as the primary
design goals. Many times, however, these two goals can be
contradictory. A versatile program is one which is capable
of a wide variety of tasks or one that fits many different

FAST Users Manual 5/29/79 Page 4
Default philosophy

applications. This usually means a program with many user
selectable options. Forcing the user to type the same
frequently used options every time a program is invoked or
committing him to remember a long list of options is
contradictory to the goal of ease of use. This conflict is
resolved by the use of default mechanisms within FAST.

A default mechanism is simply a rule that can be used to
make assumptions about the user's wishes when he has not
stated them explicitly. Thus, versatility has been retained
by allowing the user the ability to specify options
explicitly, while the default mechanism frees the user from
this tedium much of the time. In short, defaults allow
versatility and ease of use to peacefully co-exist in the
same program.

DEFAULT MECHANISMS IN FAST

There are two levels of defaults built into FAST. The first
default mechanism is used when either the drive or buffering
mode is omitted from an option string. If a drive name is
not given, the default drive for CP/M is used (this is
equivalent to "@"). If no buffering mode is specified, read
and seek buffering are used. Thus, the following two
commands would be equivalent.

B>FAST [BRW] LOAD MUMBLE

B>FAST [RW] LOAD MUMBLE

And so would the following two commands.

A>FAST [BRS] PIP B:THIS=B:THAT

A>FAST [B] PIP B:THIS=B:THAT

The second default mechanism comes into play when no option
string is given on the command line. Instead of executing
the transient with no buffering, FAST uses a default option
string to specify the buffering used. This string is [@RS],
giving the user read and seek buffering on the default drive
when no option string is present on the command line. The
user may, at his option, alter the default option to one
which is more suitable for his typical uses. For instance,
if you typically use FAST for assembling and don't have to
worry about running out of memory, a good default string
would be [@RWS]. Conversely, if you are running in a small
memory system, a good choice would be [@R].

FAST Users Manual 5/29/79 Page 5
How to change the default option string

HOW TO CHANGE THE DEFAULT OPTION STRING

The default string is stored in FAST at address 0130H.
Thus, to change the option string, use SID or DDT to change
the existing string. Assuming you have SID this is very
easy:

A>SID FAST.COM
SID VERS 1.4
NEXT PC END
0900 0100 94FF
#S130
0130 5B "[@RWS]
0136 20 .
#^C
A>SAVE 8 FASTX.COM

If you do not have SID, you'll have to use DDT and figure
out the hex for the ASCII string you wish to patch in. Then
use the Substitute command to patch the file as above. In
either case, test the patched file before killing the old
FAST.COM and renaming the new file to FAST.COM.

WARNINGS

N-E-V-E-R CHANGE DISKS WHILE EXECUTING UNDER FAST!!!

Wait until you see the message "Execution under FAST now

complete" before switching disks.

A rather nasty side effect of seek buffering is that it
disables the disk change detection mechanism built into CP/M
version 1.4. This means that you can't expect the operating
system to give the warning message BDOS ERROR ON A: R/O if
you forget and change disks without booting.

This also gives rise to a minor incompatibility with any
transients which use the BDOS reset function (BDOS call 13).
This function is used in transients which allow the user to
change disks without rebooting. The only transient which we
are currently aware of which fits this description is
Microsoft's MBASIC.COM. MBASIC uses this BDOS function only
when the RESET command is used. FAST is compatible with
MBASIC as long as the RESET command is not used.

A good rule to remember is never to use FAST with any
transient which requires user input. Any such transient, by
waiting for your reply, would leave you with the opportunity
to change disks.

FAST Users Manual 5/29/79 Page 6
Warnings

COMPATIBILITY

FAST is fully compatible with the following transients and
can be expected to provide a significant reduction in
execution time.

ASM LOAD SUBMIT DUMP MAC
TEX COMPARE MODEM FILES PRINT
COMBINE UNLOAD FROMISIS TOISIS ICOPY
IDIR

FAST is fully compatible with the following transients, but
due to fact that they require user input, some caution
should be exercised when they are used with FAST. As
mentioned above, stopping for input gives the user the
chance to inadvertently change disks which CP/M would not be
able to detect. If the user is able to guard against this
occurrence, he may use FAST with these transients and expect
a significant reduction in execution time.

ED PIP DDT SID MBASIC
XYBASIC BASIC-E RUN WORDMASTER

FAST is fully compatible with the following transients, but
due to the way in which they access the disk, no speed
improvement can be expected.

SYSGEN MOVCPM FAST

Due to an unfortunate memory dependency, STAT (version 1.4)
does not correctly report the number of bytes remaining on
the disk when it is executed under FAST. This is no great
loss because FAST can do little to speed up the execution of
STAT.

FAST MESSAGES

During the course of execution, FAST may print any of
several different messages. Each of these messages is
listed below along with conditions under which it is
printed.

Beginning execution under FAST N.NN
This message is printed after the transient to be
executed under fast has been successfully loaded, but
just before control is transfered to it. This is
simply an informatory message and does not signal an
error condition. In this message, N.NN is the version
number of FAST which you are using.

FAST Users Manual 5/29/79 Page 7
FAST messages

Execution under FAST now complete
This message is printed after the transient has
finished execution and all disk buffers have been
emptied. This too is simply an informatory message
printed under normal conditons.

NO COM FILE
This message is printed when the transient filename
given on the command line cannot be found in the
directory. No recovery action can be taken, so the
execution complete message is printed and FAST
re-boots.

OUT OF MEMORY
This message is printed when the size of the TPA is
exceeded while allocating buffers or while loading the
transient. In either case, no recovery action can be
taken, so the execution complete message is printed and
FAST re-boots. There are several solutions to the out

of memory problem: use less buffering, use smaller
transients, or, of course, buy more memory.

DISK WRITE ERROR
This message is printed when FAST attempts to write
data to disk and gets the unsuccessful completion flag
back from the BIOS. The only recovery action taken is
simply the printing of the message, then execution
continues normally. This usually indicates a serious
error (like a protected disk) and the user should boot
and take corrective measures as soon as possible.

INVALID OPTION
This message is printed whenever an error is detected
in the option string being scaned by FAST. This may be
the option string supplied on the command line or the
default option string in memory in the unlikely event
that it has been incorrectly modified. Some examples
of invalid options are the null option ([]), options
containing invalid characters ([Q]), or options which
specify buffering of the same type for the same drive
twice ([ABA]).

MEMORY HIT
This message is printed whenever FAST attempts to write
to a memory location and cannot read the data it has
just written. The recovery action taken is to print
the message and ignore the error. It is usually an
indicator of hardware problems in your system and
should be looked into immediately. If MEMORY HIT
errors are persistent and you have a ROM monitor in
your system, you can use FAST to help find the memory
at fault. Create a special FAST.COM with a jump to
your monitor patched into location 521H. This location
is called when a memory hit is detected. The HL
register contains the address of the bad byte and a bit
in the A register is set for each bad bit in memory.

FAST Users Manual 5/29/79 Page 8
FAST messages

MEMORY ALLOCATON

When FAST is loaded, it automatically relocates itself to
the top of the TPA (just like DDT and SID). This action
overlays the CCP. A side effect of this is that transients
which normally return to the CCP without booting will boot
when executed under FAST. An example of such a transient
command is LOAD.

As mentioned earlier, the only way a transient can tell that
it is being executed under FAST is that the size of the TPA

is decreased. The amount of memory taken out of the TPA by
FAST is dependant on the number of buffers which are
allocated. The formulas used to determine the amount of
memory used are:

buffers = NTB * (3 + 131 * SPT) + NSB * (3 + 131 * SID)
SID = NDE / 4
mem used = 768 + [buffers]

Where:
NTB is the Number of Track Buffers allocated
SPT is the number of Sectors Per Track
NSB is the Number of Sector Buffers allocated
SID is the number of Sectors In the Directory
NDE is the maximum Number of Directory Entries
[] indicate rounding up the next highest

multiple of 256

For a normal 8 inch IBM compatible version of CP/M, all
these computations can be replaced by a simple estimating
rule:

Allow 768 bytes for FAST code overhead, 3409 bytes
for each track buffer (R or W), and 2099 bytes for
each seek buffer (S).

As an example, FAST executed without a command line option
string will use 768 + 3409 + 2099 bytes. If this sum is
rounded up to the next multiple of 256, the actual memory
usage figure becomes 6400 bytes.

