

________ ___ ___ ______Pascal-P and PCD System

_________________Referance Manual

Version 3.1.9

Last modified (87/01/26)

Introduction Ch. 1-1 Pascal-P Manual v3.1.9

Chapter 1

Introduction

This system has been designed for maximum "friendliness", and to
avoid unexpected responses and "surprises". The interior design is
highly structured, and easily customizable. Close adherance to the
ISO standard (with slight extension other than available standard
procedures, all compiler detectable) is enforced. The system is
portable to other machines.

Pascal-P is a modification of the P4 Pascal compiler developed by
Amman, Nori, and Jacobi at the Institut fur Informatik at the at the
Eidg. Technische Hochschule in Zuerich. It was adapted for use on
the HP3000 by Grant Munsey, Jeff Eastman, and Bob Fraley of
Hewlett-Packard Labs, 3500 Deer Creek Rd, Palo Alto, Calif. 94304.
It has been further adapted for use with a generalized machine
independent P-code interpreter, and for 8080 native code generation,
by C.B. Falconer, 680 Hartford Tpk., Hamden, Conn. 06517, USA.

The revised compiler, interpreter, standard procedures, system
interfaces, and the present 8080 and P-code code generators (in
Pascal) are due to C.B. Falconer, as are any errors therein.

At present the system executes on the HP3000 or on CPM systems with
a minimum of 48k memory (Compilation of the compiler requires 63k
under CPM). Using the identical compiler it generates code for:

HP3000
P-code interpreter (machine independent)
8080 native code

from the same source files, controlled
by various compile time commands.

| The P-code codefiles are executable under CPM, or (unchanged)
| without any disc system when interpreters are linked to appropriate
| device drivers. Similarly native code files can be linked to the
| same drivers, when maximum speed is required. Such combinations are
| suitable for dedicated systems, and are especially attractive when
| accuracy is critical, because of the extensive compile time and
| run-time error checking available. In addition such programs can be
| ported to wildly differing machines and CPUs. Contact C.B.
| Falconer for further information and licensing.

Such system features as separate compilation, i/o redirection,
program segmentation, virtual code-memory, debug and tracing

Introduction Ch. 1-2 Pascal-P Manual v3.1.9

capabilities are incorporated. No distortion of the Pascal source
is required. Program profiles require the addition of about 6 lines
in the source text.

Standard Pascal

This manual is NOT an exposition of the standard
Pascal language. The recommended reference
manual is "Programming in Pascal", by Peter
Grogono. Further useful references are "Pascal
User Manual and Report", by Jensen and Wirth,
and the ANSI and ISO standards (which are hard
reading).

This system implements ISO and ANSI standard
Pascal, except for GOTO out of procedures, and
passing procedures/functions as parameters.

A fairly extensive set of utilities are available, all written in
| Pascal, including various non-portable CPM system programs.
|
| . UCSTOCPM which transfers UCSD Pascal text files to the CPM
| system.
|
| . DISKCOPY which makes complete copies of floppy disks).
|
| . TRANSFER which copies files to and from MS/PCDOS format
| disks.
|
| . ANSWER, BYE, ENDCALL which implement a remote controlled
| RCPM system, and which can automatically limit execution
| to a user defined program.
|
|
| . programs from PUG (Pascal Users Group) such as..
|
| . COMPARE which compares text files and resynchronizes after
| differences.
|
| . REFRENCE which shows Pascal program structure and
| procedure referances.
|
| . ID2ID which replaces identifier names from a list.
|
|
| . portable programs such as..
|
| . RNF, the text formatter which prepared this manual.
|

|

Introduction Ch. 1-3 Pascal-P Manual v3.1.9

| . BINHEX which converts binary files to Intel hex format
| records.
|
| . PAGER which paginates, labels and dates listings.
|
| . FILEDUMP which lists binary files in hex notation.
|
| . PLOTPROF which plots profiles of program execution.
|
| . XREF which prepares a cross-referance of Pascal programs.
|
| . PCDISASM which dis-assembles "pcd" codefiles.
|
| . WSTOTEXT which converts WordStar document files into
| standard formats.
|
| . LDIR which list library directories, including datestamps
|
| . LSETDATE which sets datestamps in LU format libraries.
|
| . XREFC which cross-references C programs.
|
| . XREFASM which cross-references assembly programs, and
| adapts to various machines with an external file
| (available for 8080, Z80, 8086)
|
|
| . system programs such as..
|
| . ASSMPCD, the .PCD code generator
|
| . ASSMAP, the native code generator
|
| . TUNE, which dynamically configures code/data space usage
| in .PCD programs.
|
| . LINKER, a machine independant linker, incidentally used to
| link .RBM (relocatable binary modules) into .PCD code
| files.
|

This manual was written on a wide variety of text editors and
finally printed by RNF, a text formatter analogous to the Unix
Runoff, and written in Pascal. (The original author of RNF is
unknown).

P-code codefiles can be as large as 127 (31 under CPM) segments,
each containing a maximum of 127 procedures in a maximum of 32
Kbytes of code. Thus the absolute maximum program file is
approximately 4 megabytes (992 kbytes under CPM). This permits
large application systems to be created and automatically
manipulated by the run-time memory management system. For

| comparison the compiler occupies less than 42 Kbytes in 28 segments,

|

Introduction Ch. 1-4 Pascal-P Manual v3.1.9

| and can execute in approximately 6K of codespace. Virtually full
| compilation speed is attained in approximately 20K of codespace

under CPM.

Codefiles are automatically searched over two disks, and one library
file under CPM. Since P-code utilities tend to be small, the
library system provides significant improvement in disk space
utilization by eliminating allocation fragmentation. This can have
dramatic effects when the disk allocation unit is large, e.g. hard
disks with a 4 kilobyte allocation unit. The use of library code
files under CPM has the additional advantage of permitting
date-stamping. Upgraded programs may be tested without affecting
the original, since the search order prefers a file.

PCD codefiles may optionally be segmented and execute in a virtual
memory space. The run-time system automatically performs segment
loading and unloading on demand, and chooses segments for discard on
a least-recently-used algorithm. Program files can specify the
amount of real memory to be allocated for code loading. All code is
read directly from diskfiles, and is always re-entrant and pure.
Thus no additional disk space need be allocated to the virtual
memory system.

Getting Started Ch. 2-1 Pascal-P Manual v3.1.9

Chapter 2

Getting Started

CPM version

This chapter is directed towards CPM 2.2 users.
Other systems must make slight modifications,
especially MS/PCDOS users.

2.1 Files needed.

To compile and execute Pascal programs you should have available:

1. RUNPCD.COM (and possibly RUNPCDI.COM). These are
distributed as INTERP.COM and INTERPI.COM, and may be
renamed as is, or customized for access to system timers.

2. PASCALP.PCD, the compiler

3. either ASSMPCD.COM or ASSMPCD.PCD. The .PCD version is
much more compact, but significantly slower in execution.

4. (optional) EF (no extension). The error messages file for
compilation.

5. (optional) PCDHELP.PCD, which is executed by RUNPCD
whenever no code file is specified. This gives on-line
information.

6. Your favorite text editor.

For .COM file generation under CPM you will also need:

1. SLRMAC.COM from SLR systems (Z80ASM may also be used).

2. SLRNK.COM from SLR systems

3. PASCLIB.SLR. The run-time library.

Getting Started Ch. 2-2 Pascal-P Manual v3.1.9

4. CPMLINK.SLR. The master interface to CPM

5. (optional) HEAPMARK.SLR (allows reduced object size when no
use of the DISPOSE procedure is made).

6. (optional) ERRMSGL.SLR (allows more elaborate run-time
error messages. The "L" stands for long.)

Also recommended, for convenience:

1. JOB.COM. The improved replacement for SUBMIT.

2. JOBS.LBR (or extractions of COMPILE.JOB and/or
PASCPREP.JOB) to allow single command compilation.

ASSMPCD and ASSMAP.COM

If you use these rather than the .PCD versions
simply omit the "runpcd " prefix for them in the
following.

2.2 Creating .PCD programs

To compile the source program YOURPROG.PAS to a .PCD file, do:

runpcd pascalp (yourprog.pas, con, yourprog.tic)

where "con" (the console) will receive the list file, and
"yourprog.tic" will receive the temporary intermediate code. At
completion enter:

runpcd assmpcd (yourprog.tic,yourprog.pcd)

If JOB.COM and COMPILE.JOB are available (COMPILE.JOB may be a
component of JOBS.LBR) this can all be simplified to:

job compile yourprog

At completion YOURPROG.TIC may be erased. To then execute yourprog,
enter:

runpcd yourprog

Getting Started Ch. 2-3 Pascal-P Manual v3.1.9

2.3 Creating .COM programs

To compile the source program YOURPROG.PAS to a .COM file, do:

runpcd pascalp (yourprog.pas, con, yourprog.tic)

just as for a .PCD file. If you have saved the .TIC file from a
previous compilation (above) this step can be eliminated.

runpcd assmap (yourprog.tic, yourprog.mac)

Again, at completion YOURPROG.TIC may be erased, unless required to
create a .PCD executable file. If you are going to use Z80ASM in
place of SLRMAC add "[64]" to the above command line, replace ".mac"
with ".z80", and replace "slrmac" with "z80asm" in the following
step. The resultant intermediate source file will be about 10%
larger, but the final code will be unchanged.

slrmac yourprog.@@z/rf

will assemble the .MAC source file. At completion YOURPROG.SLR will
have been created, and the .MAC file is no longer needed. (If you
have not configured SLRMAC to use the .SLR extension, change the
extension accordingly)

slrnk /a:100,cpmlink,yourprog,pasclib/s,yourprog/n,/e

will do the complete linking, and leave you with YOURPROG.COM.

Again, if JOB.COM and PASCPREP.JOB are available (PASCPREP.JOB may
be a component of JOBS.LBR) this can be simplified to:

job pascprep yourprog

YOURPROG can then be executed just like any other program.

2.4 Using PCDS.LBR

Any .PCD file may be stored in PCDS.LBR, and RUNPCD will find and
load it whenever no file.PCD is found. Since .PCD files tend to be
small, this can result in significant savings in disk storage.

Getting Started Ch. 2-4 Pascal-P Manual v3.1.9

2.5 Connecting files to programs

The standard input and output may always be redirected by including
">outputfile" and/or "<inputfile" on the command line. This applies
to both .COM and .PCD programs. Other external files should have
been described in the program header line, and are simply described
as parameters to the program by suitable replacements within
parenthesis in the command line. Any unspecified file will be
attached to the default name, which is the name used in the source
program, with no extension. The standard input and output must be
text files, but other files may be of any type.

Standard device file names available (on CPM) are:

1. CON the console for output, keyboard for input. Lines are
buffered and input lines can be edited.

2. KBD The console for output, keyboard for input. No
buffering.

3. RDR The system RDR: device. Input lines are buffered, but
may not be edited.

4. PUN The system PUN: device. No buffering.

5. LST The system LST: device. No buffering.

6. AUX The system RDR: device, no input buffering.
All these file are textfiles.

2.6 Using CCP+ (and possibly DOS+)

If you have installed CCP+ in your system, together with
CCPXTEND.SYS, you can omit the "runpcd" prefixes. The system will
automatically execute RUNPCD if no .COM file is found.

Program File Preparation Ch. 3-1 Pascal-P Manual v3.1.9

Chapter 3

Program File Preparation

3.1 Line Numbers and Line Length

| Source files for Pascal-P are normally variable line length Ascii
| files, with or without FRONT numbering (described below). By

default any characters past the first 80 of a line are ignored, and
treated as comments.

Source lines containing an initial string of 8 digits are treated as
numbered, and the line numbers retained and processed by the
compiler. These 8 digits are not included in the 80 (or other, see
w compiler option) character line length limitation. The compiler
assigns sequential line numbers to un-numbered source (but see
$include below).

3.2 Indentation coding

Source files may use data compression for indentation, consisting of
an initial "DLE" (chr(16)) followed by the printing character
chr(ord(' ') + indentationcount). This both compresses source code
storage, and speeds up compilation by eliminating scanning of
unnecessary blanks. The utility programs "EXPAND" and "COMPRESS"
can be used to control this formatting. The above line length
limitation applies to the expanded source line.

3.3 Comments

Comments follow the standard Pascal conventions using either (* and
) or { and } as delimiters. Note that "(" cannot be terminated by
"}", nor can "{" be terminated by "*)". This is a deliberate
deviation from the ISO standard.

Program File Preparation Ch. 3-2 Pascal-P Manual v3.1.9

3.4 File inclusion

A line beginning (at the extreme left, apart from line number) with
"$include filename" causes that file to be included in the
compilation at that point. The remainder of the line is listed but
ignored. If the included file is unnumbered further line numbers
are assigned at the next multiple of 1000 plus 1.

The "i" compiler option, (See compiler options) avoids the line
number control and may be combined with other options on the same
line.

At present the master file and two (2) levels of inclusion are
available.

3.5 Characters and Identifiers

The compiler recognizes both UPPER and lower case letters. A tab
| character is treated as a space, but listed as a tab char. A tab is
| considered a single character in evaluating line length. The

compiler considers names which differ only in the case of letters to
be identical. The underbar character "_" is considered to be
alphabetic in names. Only the first 8 characters of names are
significant, although reserved words are checked for exact spelling.
Thus "procedur" and "procedure" are distinct, but "procedur" and
"procedures" are not distinct. The 8 character names are retained
throughout any linking/loading processes which may follow. However
non-global procedures use compiler assigned unique names, rather
than user names, thus avoiding name collisions in any following
assembly and linkage operations.

3.6 Integers and Sets

Integers are currently limited to the range -32768..32767, although
32768 may not be used as a constant in a source program. Sets are
limited to the range 0..127. This allows the complete ASCII
character set.

3.7 Editors

The CP/m based systems are completely compatible with source files
| prepared by most editors (but do not use Wordstar under the "D"
| option, use the "N" option), and with files prepared by the various

UCSD editors. The significant line termination character is the

Program File Preparation Ch. 3-3 Pascal-P Manual v3.1.9

<CR>, and <LF> is ignored. Line indentation coding is identical to
that of the UCSD system, but is controlled by application programs,
and thus not forced. Note that source files must not have the
eighth bit set in characters, and must not contain non-printing
characters outside of dle, cr, lf and tab.

CAUTION

For efficiency reasons the compiler (and many
other utilities) do not check for EOF except
after EOLN. Files with EOF in unterminated
lines are illegal according to the various
Pascal standards, and will cause run-time
errors. Thus source files should always be
terminated by a final end-of-line. WordStar
users should especially note this, and not
inject a final space.

Compiler Switches & Options Ch. 4-1 Pascal-P Manual v3.1.9

Chapter 4

Compiler Switches & Options

Pascal-P recognizes commands placed in "pseudo-comments" of the form
(*$...*) or {$...}. Options are separated by commas with no
intervening spaces. Unrecognized options will generate a warning.

Compiler options never affect the sense of the compiled program, but
may alter the run-time environment.

The following options are available (* marks defaults):

@nnnn (nnnn is an unsigned integer) Sets initial value
for compiler generated labels. Used with
separate compilations so that internal procedure
names are unique to segments. Default 0. Misuse
can cause unusable code. Always assign
increasing values, and allow for usage in earlier
modules.

B+ * (default). Assign normal file buffer space.

B- Assign no file buffer space beyond that required
for file flags and access to f^. Normally used
only with 8080 and P-code interpreter systems for
device files which are accessed directly.

Bnnn nnn is an unsigned integer. Assign nnn units of
file buffer space. Useful for special i/o
drivers. Note that this option takes effect
during the file type definition.

C+ * (default). Emit object code.

C- No object code. Useful for source syntax checks.

D+ * (default) Emit run-time checks.

D- No run-time checks.

Compiler Switches & Options Ch. 4-2 Pascal-P Manual v3.1.9

E+ Listing page eject.

E- Ignored.

H+ Accept extensions which allow compilation of
source for Per Brinch Hansens Solo system. Also
sets the S- option, see below. In this mode the
" is recognized as a comment delimiter (start and
end), VAR, CONST and TYPE declarations may be
intermixed and "local" global variables may be
declared (invisible to earlier portions of the
source file), "OR" may be used in place of "+"
for set union, and characters may be defined
within strings by (:nn:) where nn is the ordinal
value of the character. All but "(:nn:) within
strings and the "local module" VARS are normally
executed with warnings in other modes.

H- * (default) Reject the above extensions. If the
system was in the H+ or S- modes it is left in
the S- mode.

I'filename' A second method for including other source
files. This can appear with other options in a
single line (which must contain the *) or } char-
acters). This mode avoids the line number
setting to a multiple of 1000 mentioned above,
and will not be tracked by the XREF
cross-referencer program unless the appropriate
option bits are set.

L+ * (default). Generate a listing file.

L- suppress listing until an L+ command encountered.

N+ * (default). Emit source line numbers in object
code.

N- No tracing line numbers.

P+ * (default). Allow use of nonstandard std procs.

P- Warnings whenever any non-standard "standard
Procedure" encountered.

Compiler Switches & Options Ch. 4-3 Pascal-P Manual v3.1.9

S+ * (default) Warnings and/or errors signalled for
any use of nonstandard Pascal features, but not
including use of nonstandard "standard
procedures".

S- enables use of nonstandard Pascal features
including definition of character constants by
(:nn:), where nn is the ordinal value of the
character, use of the substring construct
ARRAY[VAR FOR CONST], use of the second parameter
in reset/rewrite and equivalent procedures, use
of "OTHERWISE" in case statements.

S'segmentname' Controls segmentation of the generated code.
Must appear outside the BEGIN END; of a procedure
and before the BEGIN of the main program block.

T+ Print compiler internal tables, showing
variables, types, etc.

T- * (default) Suppress table printing.

W+ * (default) Truncate input source at 80 characters.

W- Truncate input source at 72 characters

Wnnn (nnn is an unsigned integer). Truncate input
source at nnn characters. nnn <= 108.

X+ save option setting for future restoration. This
allows modules to set options as desired, without
affecting option settings for the including text.

X- restore option setting saved by previous X+.
Note that only one level of storage is available.
An X- without a preceding X+ restores the default
settings.

Y+ Not for user use. Enables ic listing on prr
file, and renders that file unusable for code
generation. For compiler debugging only.

Y- * (default). Normal compiler operation.

Z+ Not for user use. Controls phase-in of new
features, which may vary or be nonexistent, and
may not work.

Compiler Switches & Options Ch. 4-4 Pascal-P Manual v3.1.9

Z- * (default). Undocumented features etc. are
disabled.

^+ As T+, except that pointer variables and types
are traced through all nesting levels.

^- * (default) No effect unless ^+ was in effect, when
effectively sets T+ option.

The Translation Process Ch. 5-1 Pascal-P Manual v3.1.9

Chapter 5

The Translation Process

5.1 Translation Steps

Pascal source programs are translated into runable programs in two
or more steps shown schematically below (The PCODE is legible text
in a .TIC file):

PCD interpreters (no intrinsic procedures or segmentation):

SOURCE----->PCODE----->PCD=PROGRAM
! !

PASCALP ASSMPCD

PCD interpreters (intrinsic procedures or segmented):

SOURCE----->PCODE----->RBMFILE(s)----->PCD=PROGRAM
! ! !

PASCALP ASSMPCD LINKER

8080 Native code:

LIBRARY----\
SOURCE----->PCODE----->ASSY------>SLRFILE------>PROGRAM

! ! ! !
PASCALP ASSMAP SLRMAC SLRNK

HP3000 (native code):

SOURCE----->PCODE----->SPL----->USL----->PROGRAM
! ! ! !

PASCALP ASSMSPL SPL SEGMENTER

On File Sizes

You can expect .TIC files to be roughly the same
size as the Pascal source files. For .COM
generation the .MAC file will usually be about 3
to 4 times the size of the .TIC file.

The Translation Process Ch. 5-2 Pascal-P Manual v3.1.9

| 5.2 The Compiler Header, showing files used
|
| PASCALP (source, list,prr, ef, input, output) [parm]

PascalP may be operated directly by making the appropriate
substitutions in the program header. The pre-defined jobs below

| combine compiler and assembly execution into one command, and are
normally most convenient. A useful specification of source is
"CON", which allows entry of options and inclusion of the main
program, for example:

(*$n-,d-,i'yourprog.pas'*)

to suppress line numbers and run-time checks when compiling
"yourprog.pas". This type of operation avoids any editing of source
files. See the "x" option under Compiler Switches, for a mechanism
to set options in specific program areas without affecting the
overall option settings. Similar "stub" files may be defined for
convenient compilation with various modes set.

5.3 Pre-defined Jobs

| Under CPM the submit files COMPILE.JOB, PASCPCD.JOB and PASCPREP.JOB
| capture the complete (compilation assembly linkage) process into one
| command. COMPILE.JOB simplifies entry to one filename.

NOTE

"JOB" is similar to the standard CPM "SUBMIT"
utility, but allows nested jobs, interactive
entry, execution with any default drive
assignments, specification of default
parameters, uses the comma as a parameter
delimiter, and allows "quoted string"
parameters. It will also perform the same drive
searches as the overall Pascal file system. It
is an enhancement of "SUPERSUB".

5.4 Compilation Commands

Using the supplied programs and job streams simplified compilation
commands are available.

The Translation Process Ch. 5-3 Pascal-P Manual v3.1.9

5.4.1 CPM: Typical commands are:

A>JOB PASCPCD source list object scratch

(where scratch and object may be identical)
or

A>JOB COMPILE source <<with no extension>>

5.5 Options

| A number of options have been added to control the compilation
| process. These options are specified by PARM values in the command.

Multiple options may be specified by adding the corresponding
values. (Under CPM parm is a number enclosed by "[]" outside the
fileparameter section of the command line.)

PARM Meaning

2 Generate procedure tracing code

4 Continue after compiler errors/warnings

8 Cross-compile (16 bit on 8 or 8 on 16 bit
machines)

5.5.1 Under CPM

If no "8" bit is set code for an 8 bit machine (Pcd interpreter or
8080 native code) is generated. The following apply:

16 Force a relocatable PCD file. (Programs with
neither intrinsics, externals, nor segmentation
will normally generate an executable PCD file,
which cannot be linked to external procedures.

64 For .PCD generation, over-ride segmentation
commands and force generation of a single segment
code file. For .COM generation, cause the
intermediate assembly source file to be generated
in Zilog rather than Intel mnemnonics. This
increases the file size by about 10%.

128 Echo the compiler listing on the TIC (temporary
intermediate code) file for subsequent listing
during the assembly phase. This option greatly
enlarges the TIC file size. If converted to
executable PCD via ASSMPCD a complete listing can

The Translation Process Ch. 5-4 Pascal-P Manual v3.1.9

be extracted on "codelist" file. See the job
file PASCPCD.JOB, which installs all these
options. Similarly, if converted to assembly
source with ASSMAP, the original compilation
listing appears as comments.

|
|
|
| 5.5.2 Under other systems (e.g. HP3000)
|
| Slightly different conventions apply. Omitted from this manual.

5.5.3 Procedure Tracing

Compiled programs normally do not contain procedure tracing
messages. If procedure tracing is desired use the "2" bit option,
and run the program with an odd value of PARM specified. Messages
of the form "ENTER procedurename" and "EXIT procedurename" will be

| generated automatically. At present this feature is suppressed,
| because most systems cannot conveniently supply sense switches for
| control, however custom interpreters can be supplied which enable
| the feature. The messages are indented to reflect the dynamic

procedure level. Therefore messages from recursive procedures may
disappear to the right.

5.5.4 Where options take effect

Of the above "bit" options, only the 4, 8 and 128 bits (no error job
aborts, byte object machine, and echo listing on P-Code file) are
directly implemented on the compiler. The remaining options are
passed to the various assembly programs which generate final code.

Microsoft .REL format

While it is possible to use this format, it is
not supported because a: Names are limited to 6
characters, and extremely confusing errors can
result from name collisions; b: The LIB80
program is unreliable, and loses portions of
large libraries, thus making maintenance of
PASCLIB.REL impracticable.

SLR Systems format and librarian avoids all
these problems, and is also an order of
magnitude faster. Unfortunately the SLR

The Translation Process Ch. 5-5 Pascal-P Manual v3.1.9

programs will only execute under Z80 processors
(while the PascalP system can execute under
8080, 8085, and v20 processors).

Compiler Error Messages Ch. 6-1 Pascal-P Manual v3.1.9

Chapter 6

Compiler Error Messages

6.1 General

The compiler produces error codes, and lists them after the
offending line on both output and pasclist formal files. If the L-
option is in effect output to pasclist is suppressed. If the
translation file (formally "ef", normally EF. under CPM) is
available a list of error code translations follows. Note that the
position indicated in the source line is that in which the error was
detected, and that the actual error may occur earlier.

6.2 Action after errors

If any errors are found the compiler will set JCW (job control word)
to the error state, and if warnings are found it will set JCW to the
warn state. See the procedure SETJCW under Extensions. This is
very useful when executing long compilations under the various batch

| mechanisms (JOB or SUBMIT under CPM). Under CP/M SETJCW to a
| negative value causes any submit job to be cancelled on program
| termination, and the warn state is ignored.

6.3 Some conditions causing errors/warnings

The compiler will always generate a warning if the standard files
INPUT or OUTPUT are reset or rewritten (or the equivalent). These
files are normally the user console, and cannot be reread nor can
the effects of previous writes be erased.

While NIL is implemented as a predefined type, the compiler will
forbid any attempts to redefine it, thus giving it the effective
status of a reserved word.

In general the compiler will generate warnings where the actual
meaning is unambiguous (e.g. use of a feature in the wrong mode,

Compiler Error Messages Ch. 6-2 Pascal-P Manual v3.1.9

attempts to reset input, etc.) and errors wherever the possibility
of a mis-spelling or faulty punctuation exists.

6.4 Accessing Error Messages

Under CPM the error message file is accessed as file "EF" with a
blank extension. If this file is not on the default or system disks
it should be specified on the command line with the appropriate disk
identifier, otherwise no translation will occur. The error message
file may be modified freely (one line per error) to install other
languages, clarify errors, etc.

Features Not Implemented Ch. 7-1 Pascal-P Manual v3.1.9

Chapter 7

Standard Pascal Features Not Implemented

At present the following features of ANSI standard Pascal have not
been implemented. All except "GOTO"s are planned for eventual
inclusion.

1. Procedures/functions as parameters.

2. GOTO's leading out of procedure/function bodies.

3. Read/write for non-text files.

7.1 Packing

| "PACKED" variables may or may not necessarily be packed. At present
| no items are packed no more than one item per byte.

The standard procedures PACK and UNPACK may be used, but may
actually simply transfer variables.

PACKED and UNPACKED variables are not distinguished at present,
although the parameters to PACK and UNPACK must be correctly
declared. Thus standard Pascal errors in usage of such variables
probably will be undetected.

7.2 Set of Char

A set of char is available, but any attempt to include graphics
characters in that set {e.g. chars with ordinal values larger than
127} will result in a run-time error (if checking is enabled) or
compilation errors for constants.

Features Not Implemented Ch. 7-2 Pascal-P Manual v3.1.9

7.3 Separate Compilation

The compiler will handle partial source programs for separate
compilation. This facility is described in the chapter on Language
Extensions under "Procedure Calls". S- mode is required.

The PROGRAM statement is optional under S- mode. If it is omitted,
INPUT and OUTPUT files are still available.

7.4 Files in Structured Variables

The user must give special consideration to ARRAYS OF FILE, RECORDS
with file components, and pointers to FILE types or other types with
FILE components. Before any programmatic reference to these items
it is necessary to call the standard procedure FILEINIT(f) for each
and every file component. After this the system will function
normally, except that no automatic file close on exit from the block
in which the file was declared will occur. Again the user must
specifically execute the standard procedure CLOSE(f) for each file
opened (via reset/rewrite and equivalent procedures). Under CP/m,
if the file has only been used for reading (opened via RESET or
EXISTS) the final close is not necessary. However inclusion of the
close statement will avoid portability problems, and possible
problems if program modifications are made later.

7.5 Reads of Real Variables

On input, reads of real variables do not insist on a leading digit,
but will accept values starting with ".". This is deliberate, and
avoids nuisance run-time errors.

Runtime File Assignments Ch. 8-1 Pascal-P Manual v3.1.9

Chapter 8

Runtime File Assignments

8.1 General

A number of run time errors can occur while running Pascal programs.
The messages are generally accompanied by a source code line number
if the N+ option was in effect on compilation. File errors are also
accompanied by the file name.

Files named in the Program line of the Pascal source are external to
| the Pascal program. They may be defined by the run command, or may

be temporary or permanent user files. Files declared within
procedures are unnamed temporary files (unless opened with a second
parameter in the opening RESET or REWRITE, as described below). The
files "input" and "output" normally connect to the user's console.

8.2 On 8080/z80 under CPM:

The program command line is normally of the form:

d>RUNPCD program (fileparameters) [parm]; <inputfile >outputfile

(with "RUNPCD" omitted for .COM files) but is not restricted to
that, i.e. use of the command line is entirely under the control of
the application program. Any section after "program" may be
omitted, and defaults apply. The file parameters replace the files
mentioned in the Pascal PROGRAM heading. If omitted the Pascal
internal filename is used. Files input and output cannot be
redirected by this mechanism, but use the "Unix" flavored "<" and
">" (comesfrom and goesto) redirection commands. By default input
and output connect to the users console. Parm is an integer in the
range 0..32767, with a default value of 0. Use is up to the
executing program, however odd values are used to cause an initial
debug trap, and to enable various run-time debugging aids. Thus it
is suggested that application programs rely primarily on even
values.

Runtime File Assignments Ch. 8-2 Pascal-P Manual v3.1.9

8.2.1 CPM device files

Under CPM and other systems the following device files are normally
available (and their names cannot be used for other files). Unless
mentioned these are text files. Any devicefile may be used
interchangably with a disk file of the same type.

| CON the system console, buffered for input
| or output.

KBD the system console keyboard, without
buffering or echoing of input. Correct
use of this file requires either
modification to CPM 2.2. or
(interpreters 2.8 up) prevents use of
the CNTRL-P CPM function. This avoids
loss of input characters during console
output. See the STATUS procedure.

RDR The system "reader" device, line
buffered.

PUN The system "punch" device

LST The system "list" device

AUX Identical to RDR device with no line
buffering. <lf>s are translated to
<nul>. See STATUS procedure.

NUL a null file (bit bucket). Any type.

CMD A one line file containing the run
command line.

Various other device files can exist at various installations.
Examples are:

KBB Identical to KBD, except that
"reset(kbb)" causes all console i/o to
be performed through interrupt driven
buffers. The close operation on kbb
(either specifically performed or by
exit from the declaring procedure)
restores the normal unbuffered drivers.

AD1..AD8 A set of 8 analog/digital converters.
FILE OF real.

RS1, RS2 Direct access to RS232 i/o ports. See
STATUS.

Runtime File Assignments Ch. 8-3 Pascal-P Manual v3.1.9

R1B, R2B As RS1 and RS2, but buffered via
interrupt system. These files will not
cause "waits" in the executing program,
unless the buffers fill or are empty.
This can be pre-checked with the STATUS
function.

8.2.2 File Redirection

| Under CPM file redirection is available, by substituting the desired
files in the program header. Files not specified by this method
default to the Pascal filename. A pair of commas can skip file
redirection for any one file. Note that INPUT and OUTPUT connect to
"CON" by default and cannot be redirected by this mechanism, but
that the sequence

A>RUNPCD progfile(whatever) <inputfilename >outputfilename

will redirect INPUT and OUTPUT.

NOTE

| The "lf" character is normally ignored on input.
However input of a lf will cause the STATUS
function to return a 2 bit (see below) because
the hardware is physically loaded. If a get is
now performed the system will flush the lf and
perform the following get automatically. This
can cause unexpected delays when performing
direct device I/O. For this reason some device
drivers are modified to translate lf into nul
and the user must specifically discard it. The
AUX file translates all lf's into nulls for this
reason.

8.2.3 Under CPM the file search order is:

1. The default disk, if no drive specified,

2. The system disk.

and then, for code files (.PCD) to be executed only:

3. within the library file PCDS.LBR on the default disk.

4. within the library file PCDS.LBR on the system disk ONLY
when no library was found on the default disk.

Runtime File Assignments Ch. 8-4 Pascal-P Manual v3.1.9

If a drive has been specified the search is limited to the specified
drive. If the modified CCP and JOB (for submit) files are installed
this search order is implemented at all levels, otherwise it is
limited to Pascal program executions.

Files INPUT and OUTPUT default to "CON" (the console) under CPM.
See above for run-time re-direction.

Language Extensions Ch. 9-1 Pascal-P Manual v3.1.9

Chapter 9

Language Extensions

9.1 Standard Procedures

The following standard procedures have been added to the required
Pascal set. Their use usually does not require the S- mode (See use
of fname below), and most can normally be replaced (for portability)
by user written procedures. {} enclose optional parameters. If P-
mode is in effect all procedures not in the standard Pascal set will
be flagged by warnings.

NOTE

The standard procedures required by the various
Pascal Standards are not discussed here.

In the following fname may be a character string (e.g. 'fname') or
a reference to a packed array of char terminated with a blank. Use
of fname in calls to reset, rewrite, exists, appendto, update
requires S- mode. Note that fname should always be terminated with
a blank. Fname should normally begin with an alphabetic character,
and contain only alpha-numeric characters. Lower case characters
are automatically upshifted before use, but a string variable will
not be affected.

9.1.1 File Access

At present APPENDTO is parsed, but not implemented at run-time.

RESET(VAR f{, fname});
REWRITE(VAR f{, fname});

have been extended to allow the optional 2nd. parameter. This
causes attachment to the named external file.

EXISTS(VAR f{, fname}) : boolean;
is equivalent to "reset", but does not cause a run-time error if the
operation fails. It returns true for success, else false.

Language Extensions Ch. 9-2 Pascal-P Manual v3.1.9

APPENDTO(VAR f{, fname});
is equivalent to "rewrite", but opens a file for append access. The
file must pre-exist, and any further writes append to that file.

UPDATE(VAR f{, fname});
is equivalent to rewrite/reset, but allows direct access to records
of a fixed record size file. f may not be a text file. See
REPOSITION.

RENAME(VAR f, fname) : boolean;
renames the previously opened file f to fname. Returns true if
successful. Also closes the file automatically. Failure may be
caused by a previously existing file named "fname", (on the same

| disk drive under CPM), by illegal fname, by f not being open, and by
f being a device-file rather than a disk file.

PURGE(VAR f);
purges the previously opened file f. f must be a disk file.

CLOSE(VAR f);
closes the previously opened file f

FILENAME(f, fname : packed array[1..28] of char);
returns the actual system file name to fname. f must be open.
Under CPM, if the file is open on other than the default drive, or a
drive was specified when opened, that drive id is returned in fname.
Fname is returned upshifted.

STATUS(f) : integer;
returns 0 if the file is not open, otherwise an odd value. Negative
values signify some form of error. For positive values various bit
positions have special significance, and are especially useful with
device files:

1 = file is open;
2 = a get will function without waits;
4 = put will function without waits
8 = writeln will function without waits.

9.1.2 File read/write procedures

OVERPRINT(f, ...);
PROMPT(f, ...);

are syntatically identical to the standard writeln procedure.
Overprint causes output without a following line feed, and prompt
causes output without a following carriage return or line feed. In

| all cases the output buffer is flushed to the output device. Prompt
| should be used whenever a line that has not been completed by
| "writeln" is intended to appear on the output device (typically the
| console). Without this the message will probably remain within a
| system buffer.

Language Extensions Ch. 9-3 Pascal-P Manual v3.1.9

READX(f, VAR) : boolean;
is similar to read for integer or real variables, but does not
create a run-time error when bad input is found. It returns true
when no valid input was supplied, otherwise false. Only one
argument may be read, as opposed to read(f, VAR, VAR,..);

| READ(f, VAR a : PACKED ARRAY[1..?] OF char);
| The read procedure has been extended to allow input of strings.
| Input will continue until either the string is full, or eoln is
| encountered. In any case the final character in the string will be
| a nul (chr(0)), and any remaining portion of the string will be nul
| filled. Note that this means that the maximum length of the
| received string is one less than the declared string length. No
| automatic readln is executed, so that long input lines may be
| completely received by multiple reads, or flushed by readln. If
| eoln is true at completion, the complete line was read. The length
| of the input line can be discovered with the LENGTH function.

| LENGTH(VAR a : PACKED ARRAY[1..?] OF char) : integer;
| is effectively a special application of the SCANFOR function, with
| some parameters automatically supplied by the compiler. It is used
| to discover the length of text lines read into arrays. Note that
| this describes the actual length of the string, and that proper
| storage with the terminating marker requires one extra byte.

| STRINGCP(VAR s1,s2 : PACKED ARRAY[1..?] OF char) : integer;
| compares strings read by the above string read procedure, or other
| strings terminated by a nul (chr(0)) byte. Returns +1, 0, -1 for s1
| greater, equal, or less than s2. Comparison does not include any
| characters past the length of the shorter string, and a string
| identical to a shorter string up to the lenth of the shorter string
| is considered larger.

REPOSITION(f, integer);
repositions file f at record (integer) for further random access.
The file must have been opened with the "UPDATE" procedure, and must
not be a text file. After reposition a get(f) may be performed to
read the desired record, or a put(f) can write into the desired
record. A sequence of gets or puts will act as if the file was
sequential. To switch from get to put (or from put to get)
REPOSITION must first be executed. Under CPM repositioning to a
point past the end of file will extend the file and fill the new
record with binary zeroes. This allows the use of "sparse" files in
databases. The record size is defined by the Pascal declaration of
the file.

|

Language Extensions Ch. 9-4 Pascal-P Manual v3.1.9

| 9.1.3 Unsigned arithmetic.
|
|
| These procedures operate on values stored as integers, but will not
| cause integer overflows, and treat all values as unsigned. The use
| of the type declaration "unsigned = integer;" is suggested. You
| should imagine the appropriate arithmetic operator inserted between
| the parameters.
|
| UADD(u1, u2 : unsigned) : unsigned;
| USUB(u1, u2 : unsigned) : unsigned;
| UMULT(u1, u2 : unsigned) : unsigned;
| UDIV(u1, u2 : unsigned) : unsigned;
|
| UCMP(u1, u2 : unsigned) : integer;
| compares two unsigned values, returning +1, 0, or -1 for u1 greater,
| equal, or less than u2.

9.1.4 Miscellaneous Procedures

SIZEOF(VAR or TYPE id) : integer;
a pseudo-function returning the storage requirements of the item in
the units of the executing system.

TYPEID(expression) : typeid;
a pseudo-function, converts expression to a value of type typeid.
Expression and typeid must occupy the identical storage space.
Primarily used as the inverse of "ORD" to convert an integer to an
enumerated type. Other uses are possible, but dangerous. Use of
this function requires the S- mode.

TERMINATE;
terminates program execution whenever executed.

SETJCW(integer);
sets the system job control word. Causes a running job to terminate
at program completion if set to a negative value. No effect in
interactive processing.

DATER(VAR dl : PACKED ARRAY[1..15] OF char);
returns the current date and time formatted as:

yy/mm/dd hh:mm (with a trailing blank)

NOTE

This meets ISO standards and collates in
ascending time order. If no system timers exist
the string "00/00/00 0:00 " is returned.

Language Extensions Ch. 9-5 Pascal-P Manual v3.1.9

ASL(i, n) : integer;
ASR(i, n) : integer;
LSL(i, n) : integer;
LSR(i, n) : integer;

These functions provide various integer shifts. The arithmetic
shifts may cause overflows.

ALLOCATE(VAR p : ^something);
is functionally identical to NEW, except that no heap overflow error
(and attendant abort) will occur. If the allocation fails p will be
set to NIL. Thus the application program can detect that a failure
occurred, and take remedial action.

| GETMEM(VAR p : ^something, size : integer);
| is functionally identical to ALLOCATE, except that the user can
| specify the size of memory to be allocated (in bytes). This is
| UNSAFE in that no protection now exists against storing items too
| large for the assigned memory. S- mode is required. The assigned
| storage may be released with DISPOSE or RELEASE.

DEBUG;
accesses the system debugger, and is system dependant. On the
HP3000 this is the "debug" subsystem. Under CPM the entire system
should be executing under DDT or the equivalent, because control is
transferred via memory location 038H after the state of the
P-machine is displayed.

DELAY(seconds : integer);
pauses the executing program for seconds. If the system has not
been customized to the clock speed (under CPM) the delay period may
be in error. Other implementations (e.g. time shared) may pause a
process.

RANDOM(VAR seed : integer) : real;
returns a pseudo-random number in the range 0 to less than 1. The
number is depandant on the input value of seed, which should not
otherwise be altered.

MASK(integer, integer) : integer;
performs a bitwise AND over the integers. No overflows can occur.

CRC(char, VAR integer);
incorporates the byte valued character in a CRC checksum, using the
polynomial x^16 + x^12 + x^5 + 1. Useful for communication systems.

MARK(p);
Where p is of any pointer type. Marks the heap in the current
state. The variable p should not be altered until the corresponding
"release".

RELEASE(p);
Releases all items created by NEW since the corresponding MARK(p).

Language Extensions Ch. 9-6 Pascal-P Manual v3.1.9

NOTE

Mark and release are found on many Pascal
systems, but are not standard.

9.1.5 System Programming Procedures

These procedures are used in various system programs, and are
generally useful. They insulate against various run-time
environments.

MERGEREAL(hi, lo : integer) : real;
MERGEBYTES(hi, lo : integer) : integer;
SPLITREAL(r : real; VAR hi, lo : integer);
SPLITBYTES(i : integer; VAR hi, lo : integer);

insulate between differing object machine storage assignment order
and patterns. Programs using these are portable, while use of
variant records is not. (byte is used as a synonym for char). For
example

i := mergebytes(ord(hibyte), ord(lobyte));

is completely machine independent.

NOTE

A "standard real" for the system is defined as
the bit pattern used on the HP3000 (sign, 9 bit
exponent offset by 256, 22 bit significand with
an implied leading 1 bit), which is not quite
identical to the IEEE standard. All real
constants in PCD files are of this form, and are
automatically converted to resident form at
execution time. Native code files use whatever
form is resident.

For systems programs format conversions are performed by:

STDREAL(r : real) : real; (* resident to standard *)
MYREALSTD(r : real) : real; (* std to resident *)
REAL8080(r : real) : real; (* resident to 8080 *)
MYREAL80(r : real) : real; (* 8080 to resident *)

In general the output of these functions is only usable for
assignment or manipulation by the split/merge byte/real procedures
above.

The sequence
r := real8080(myrealstd(standardreal));

will convert standard reals to 8080 reals on all machines.

Language Extensions Ch. 9-7 Pascal-P Manual v3.1.9

POINTERTO(variable);
allows generation of a pointer to that variable. S- mode is
required. Note that whenever such a pointer is assigned d- mode
should be in effect, because the "pointed to" variable is not in the
heap, and "invalid pointer" run-time errors will occur. This is
non-standard Pascal, and should be avoided wherever possible.

MOVETO(VAR char, char; integer);
MOVEUP(VAR char, char; integer);

are NON-PORTABLE in general. These avoid all type checking, and
allow mass moves of storage content between arrays. The char
parameters can be supplied by integer variables, pointers, etc. as
desired. No run-time checks are made. Usage is thus inherently
unsafe, but provides an escape from rigid Pascal type and bounds
checking. MOVETO moves the lower addressed elements first, and can
be used to move arrays downwards within themselves. MOVEUP moves
the higher addressed elements first, and can be used to move arrays
upwards within themselves. "integer" is the number of storage
elements to move, in terms of character storage units. The first
parameter is the destination (thus "moveto"), and the second the
source.

SCANFOR (char; VAR char; max : integer) : integer;
SCANWHILE (char; VAR char; max : integer) : integer;

are again machine dependant and NON-PORTABLE. NO CHECKING ON the
VAR char is performed. Thus this may be supplied by an array
referance, or by a referance to an item within an array of char., or
any other variable. It is treated as a pointer to element 1 of an
array [1..max] of char if max is positive, and as a pointer to
element -1 of the array [-max..-1] if max is negative. 0 is
returned if the searched-for element is not found (or only found for
scanwhile), else the index (measured as above) of the searched
element. Note that negative values of max cause backward searches,

| and return negative, or 0, values. Scanwhile can be considered a
| search for an element NOT equal to char. No storage is ever altered

by the search, which simply returns information.

9.1.6 Special procedures

These allow for precise control of CPM systems, and are
non-portable. They should therefore normally be avoided.

PEEK(n) : integer;
GETPORT(n) : integer;

are functions returning 0..255

POKE(n, i);
PUTPORT(n, i);

are procedures storing 0..255.

INTERRUPTS(onoff : boolean);

Language Extensions Ch. 9-8 Pascal-P Manual v3.1.9

controls the interrupt system.
SYSCALL(fnct : integer; parm : integer) : integer;
IOCALL(entryno : integer; data : integer) : integer;

allow for direct connection to CPM services. The parm and data
parameters are not checked, so that any type which fits in a single
16 bit word may be used. In particular, to satisfy CPM
requirements, these may be pointers generated by the POINTERTO
standard procedure (s- mode required). With these procedures
interface procedures to the system may be generated, thus isolating
system dependant features from the application. Note that no
protection against misuse exists.

9.1.7 Super Special Procedures

These are available when suitable connectors have been installed,
and are thus not generally portable. However standard connector
locations exist in the interpreters and run-time packages. See the
file CPMLINK.MAC.

CPUTIME(VAR t : ARRAY[0..1] OF 0..maxint);
TIMECLK(VAR t : ARRAY[0..1] OF 0..maxint);

return (timeclk) time of day in millisecs after midnight, or
(cputime) central processor time used. Under CPM the procedures are
identical. ARRAY[0] is the less significant part.

TIMESET(hour, min : integer);
DATESET(VAR d : array[0..2] OF integer);
DATEGET(VAR d : array[0..2] OF integer);

provide for Pascal program control of system timers. On the HP3000
timeset and dateset are illegal (reserved for system). ARRAY[0] is
day, ARRAY[1] is month, ARRAY[2] is year. By convention dateset to
an array of zeroes stops the time of day clock.

STARTINTERVALTIMER(interval : integer; where : ^boolean);
STOPTIMER;

provide for timed input systems. Startintervaltimer causes the
boolean "where" to be unconditionally set to TRUE at "interval"
periods. This can be used as a flag to acquire a value from A/D
converter files, etc. Stoptimer disables this. Not available on
HP3000.

STARTPROFILER(interval : integer; where : ^storage);
initializes the profiler subsystem, and allows measurement of

| program dynamic execution. The main program must include
| PROFILER.INC file, declare the auxiliary constants, and call the

initializing, stopping, and dumping procedures. The utility program
"PLOTPROF" can then create an execution time histogram. This
subsystem provides information to guide program optimization, and
can avoid wasting effort on pointless optimizations. Note that the

Language Extensions Ch. 9-9 Pascal-P Manual v3.1.9

profiler, at present, is incompatible with STARTINTERVALTIMER, since
the identical timer hardware is used.

9.2 File System

The file system contains provisions for files as components of
structured types, including pointers to files. Use of files in such
types requires specific user use of the standard procedure
FILEINIT(f) to initialize the file control blocks before any other
use of the file is made, and of the standard procedure CLOSE(f) to
close the file. The compiler performs the equivalent procedures on
directly declared files (e.g. f : text) automatically, but does not
detect the presence of the file types within structured variables.

The file system of standard Pascal has been extended to allow direct
access and attachment to files. Additional carriage control
procedures have been added.

A second parameter may be added to RESET and REWRITE. This
parameter is a character string containing the external file name in
internal format. The last character of this string must be a blank.

Execution of "write(f,'string':0)" and equivalent statements is a
null operation. This is non-standard Pascal, and is never flagged.
If string is a single character (ex. write(f,'a':0)) an error
occurs. The maximum string length or field size is 255, however
multiple writes may create any length of line.

REPOSITION (file, integer) will reposition a file to the indicated
record. A subsequent GET will begin at this record, while a
subsequent PUT will write to this record. Note that REPOSITION will
not modify the EOF flag; it is ignored in determining the validity
of the next GET or PUT. Future changes are possible.

Under CPM all disk files are mapped into CPM standard formats and
packed into successive 128 byte file records. File items may cross
sector and extent boundaries.

Two new formatting procedures have been added. OVERPRINT (file)
writes the buffer without advancing the line. The next line will
print on top of this one. The procedure PROMPT (file) writes the
current line without repositioning the carriage. This allows a
subsequent READLN to read from the same line as the output message.
Both OVERPRINT and PROMPT deal with the current line (buffer)
contents. Like PAGE, the file parameter is optional. Note that
lines output by the PROMPT procedure will not have trailing blanks
removed.

STATUS(file) returns an Integer value. It is zero if the file has
not yet been used, and odd if the file is open. It returns a

Language Extensions Ch. 9-10 Pascal-P Manual v3.1.9

negative value for errors (device and system dependant. STATUS can
be used to determine whether, for example, a "rewrite" was
successful.

NOTE

a rewrite failure always causes an error
message, however the system normally allows up
to 5 non-fatal run-time errors to occur before
aborting.

9.3 Lazy I/O

The "lazyio" system is implemented. This allows normal use of
interactive files (e.g. CON) while meeting the Pascal standards for
reset, readln, etc. These normally perform logical access to the
following character of the file, which is then available for look
ahead via eof, eoln, f^ references. The system postpones the
physical input of that character/condition until it is actually
referenced, thus allowing natural use of prompting messages, etc.
While not yet provided, the implementation is such as to allow
implementation of a single level UNGET(f) procedure (for textfiles
only).

Note that some programming care must be taken to avoid referring to
eof, eoln, f^ until such prompts have been made.

Thus any text file may be routed to/from interactive devices (e.g.
console), with no special programming considerations.

9.4 Procedure Calls

The procedure call syntax has been extended to allow reference to
separately compiled programs and to procedures written in other
languages. The word "FORWARD" is replaced by "EXTERNAL" for
separately compiled procedures, and by "INTRINSIC" for procedures in
other languages.

Language Extensions Ch. 9-11 Pascal-P Manual v3.1.9

9.4.1 Separate Compilation

Separate compilation is achieved by removing the main program but
leaving the trailing ".". Note that the ";" still terminates the
final procedure. S- mode is required. All procedures defined at
the outermost level may be referenced in another compilation. Such
separately compiled procedures may refer to globals defined within
the source code, but it is up to the user to ensure that such
globals are identical with those used in other modules. The
$include facility (or {$i'name'} pseudo-comment) is useful for this

| purpose. The resultant code files will be RBM (relocatable binary
| module) files under CPM. RBM files can be linked with "LINKER"
| under CPM. See "Program segmentation".

9.4.2 Procedure Parameters

Note that while access to programs written in languages other than
Pascal is permitted by using INTRINSIC, it is up to the user to
create compatible parameters.

Procedure parameters are stacked in the order declared in the
procedure heading. Value parameters are completely evaluated, and
may be of any size. They may be treated as initialized variables,
but may not be used to control FOR loops. A function value is
treated as a parameter preceding all other paramaters, and is not
removed on function exit. The user should NOT assume a default
functional value, but should always explicitly set it.

9.5 Case Default

The syntax of the CASE statement has been extended to allow a
default action to be taken if the expression value is not
represented in the list of labelled statements using an "OTHERWISE"
clause at the termination of the CASE statement (as defined in the
draft ISO standard) This extension requires S- compilation mode. In
the absence of this statement any execution of a case statement with
an undefined case variable will cause a run-time error (with or
without runtime checks enabled).

Language Extensions Ch. 9-12 Pascal-P Manual v3.1.9

9.6 Complex Comparisons

Structured variables may be compared for (in)equality, as in "IF
array1 = array2", but not for other relations. This is an extension
to standard Pascal, and at present is not detected by the S+
compiler option. For future compatibility such use should be
bracketed by the S- S+ options in source code to prevent
generation of warnings. Note that "array1 := array2" is legal
Pascal, enforcing equality.

9.7 Strings

An ISO standard compatible string facility has been included. See
the discussion of READ, LENGTH, and STRINGCP procedures above. The
design is such that programs using these extension may be ported to
any standard Pascal system by writing appropriate procedures.
However, such replacement procedures will have the normal strong
typeing, rather than be universal.

9.8 Substrings

A limited substring facility has been provided. A modified
subscript specifies the initial index and length within a string.
In keeping with normal Pascal philosophy, the substring length must
be a compile-time constant. A[I FOR 10] specifies 10 elements of
array A starting at element I. The substring variable may be used
on either side of an assignment, or as a procedure parameter. The
same notation may be used for arrays of any type, but no further
subscripts or field selections may be applied. This notation is
portable, but more restrictive that the MOVETO and MOVEUP procedures
noted above. S- mode is required.

Program Segmentation Ch. 10-1 Pascal-P Manual v3.1.9

Chapter 10

Program Segmentation

10.1 Overview

Program segmentation is completely independant of program structure,
and is controlled solely by the placement of (*$s'segname'*)
compiler commands. Any procedure, whether nested or global, can be
placed in any segment. All segmentation may be performed after a
program is operational. The source text never need be distorted to
allow segmentation.

Under CPM and the interpreter system no final decision on segmented
operation need be taken until after compilation. The output of the
compiler is a TIC (temporary intermediate code) file which contains
".SEG" pseudo codes, created from the s'segname' commands.

If this is converted into executable code with ASSMPCD no
segmentation will be present in the final file. This is often
useful for debugging. The output from ASSMPCD, however, will be in
relocatable form, and must be passed through LINKER to create an

| executable file (This may be prevented by use of [parm=64] when
| running ASSMPCD). Whenever a ".SEG" pseudo-op is encountered

ASSMPCD assumes that a segmented file is being generated, and
creates such a linkable object file.

Programs created from separately compiled modules will normally be
segmented and use the techniques described in this chapter. The
modules may themselves be segmented. See the chapter on Separate
Compilation.

10.2 PCD segmentation (for interpreter execution)

At present, to implement segmentation the "TIC" file is split into
multiple single segment files with the utility program SPLITTIC.
Splittic will create a file for each named segment in the input
code, with the extension .TIC, and using the segment name truncated

| to 8 characters (or to 7 characters with a user specified prefix
| character). Each of these segment files must now be converted to a

Program Segmentation Ch. 10-2 Pascal-P Manual v3.1.9

RBM (relocatable binary module) with ASSMPCD, just as a single
segment program. The results are then combined into a single

| program file by LINKER. The first file linked must be either
| "SEGS15.RBM" or "SEGS31.RBM", which contains the outline of a
| segment table for a 15 or 31 segment codefile.
|
|
|
|
| 10.2.1 Splitting the TIC file
|
| Execute:
| B>runpcd splittic (ticfilename)
| or
| B>splittic (ticfilename)
|
| and select a suitable prefix character when requested (a CTL-Z
| reply, or redirecting input from nul with "<nul" will omit the
| prefix). The split files will occupy at least as much space as the

original. At completion the original TIC file may be discarded.
The following assumes the selection of a prefix letter "X" (must be
upper case) and that segments are named "segfile". SPLITTIC reports
on the actual filenames created during execution.

10.2.2 Assembly

For each output file generated execute (omit "runpcd " if using the
.COM versions) :

B>runpcd assmpcd (xsegfile.tic,xsegfile.rbm)

10.2.3 Linking

Execute linker as follows:

B>runpcd linker (objfile.pcd, loadmap)

replacing objfile and loadmap with appropriate file names. Loadmap
may be designated con, lst, or a diskfile. The information on it
will be used in the next step, and therefore it should normally not
be routed to the console.

| Reply to the first "filename" prompt with "SEGS15.RBM", and to the
following prompts with the names of the just assembled segments.
Terminate the entries with an empty line. The object file prompt is
a last chance to change your mind on the output file name. The
reply to the "loadpoint" prompt should be "0", and carriage returns

Program Segmentation Ch. 10-3 Pascal-P Manual v3.1.9

can be entered for all other prompts. LINKER will scan the files,
announce that .CODSIZE, .DATASIZ, .SEGS., .WHERE01 through .WHERE15
are undefined, and ask whether more modules are available. Reply
"n". LINKER will now generate the output file and the loadmap. All
intersegment procedure linkages have now been resolved.

NOTE

For programs using more than 15 segments replace
SEGS15.RBM with SEGS31.RBM.

10.2.4 Installing the segment map

The user must patch into the final file the addresses of the
segments in the code file, which are the loadpoint addresses of the
segments in the LINKER output loadmap divided by 128. These are CPM
record numbers in the code file, and are the various ".WHEREnn"
undefined in the preceding step. The addresses are installed at
locations (segmentnum*8) and (segmentnum*8+1), high byte first.
Program "DISKEDIT" can be used for this. The two byte value at
locations 0 and 1 (most significant byte first) must be set to the
negative count of segments present. This is the undefined ".SEGS"
in the previous step. At present no more than 31 segments can be
used, and this section generally assumes a maximum of 15. If errors
are made in calculating these values the program will not load. Any
further operations may be performed by the "TUNE" utility program.

10.2.5 Initial memory allocation

The value at locations 4 and 5 of the codefile must be patched to
specify the total codespace allocated. This is the undefined
".CODSIZE" from the linking step. (.DATASIZ is unused). The run
time system will then automatically swap code segments in and out of
main memory on demand, and select segments for discard based on a
least recently used algorithm. No more than the specified code
space will be used for the program code. A system that buffers disk
tracks will greatly enhance performance.

The critical quantity to be selected is the codespace above. If
this is too small the system will thrash, while if too large
sufficient execution time data space will not be available. It must
be at least as large as the largest single segment in the codefile,
or the program can never be loaded. Normally this space is selected
sufficiently large to hold the main execution portions of the
program without any initialization or rarely used error handling
segments. This will automatically swap such segments out of main
memory, and have negligible performance effects.

Program Segmentation Ch. 10-4 Pascal-P Manual v3.1.9

The user can also control the time span used by the memory
management system by altering byte 2 of the code file (range 2 to
255). This measures time in terms of inter-segment transfers
performed.

NOTE

Since PCD files are quite compact, only the rare
program will require segmentation. Very large
program systems can be written as a collection
of procedures, pass data through a global area,
and be supervised and co-ordinated by a small
outer block using this segmentation scheme.
There will be no necessity for duplicated code
within sections of such a system if suitably
segmented.

10.3 Prestored alternative settings

By convention, alternative settings for the memory management period
and codespace values are stored in locations (8*i+5) and (8*i+6) to
(8*i+7) for i := 1 to numberofsegments. If these values are present
the utility program "TUNE" can be quickly used to alter the
memory-requirements/performance balance of the program. TUNE may
also be used to initially install these values.

The appearance of such a segment map may be examined by:

A>diskedit pascalp.pcd

followed by the command

r0

terminate the program by "q". Use a copy of Pascalp in case of
error.

NOTE

Other areas within the segment map are used by
the memory manager. Therefore at run-time the
map contents will be different.

Numerical input to diskedit is normally decimal,
but may be prefixed by "#" for hexadecimal
input. In some cases characters enclosed by
single quotes may also be used. Diskedit
provides no input line editing, and was built as
a crude tool.

After segment addresses and segment count have been entered via
diskedit, further alterations may be performed by:

Program Segmentation Ch. 10-5 Pascal-P Manual v3.1.9

A>RUNPCD tune (codefilename.ext)
using the unprompted "I" and "D" commands (? gets a prompt). This
is much safer than diskedit.

10.4 The structure of a code file/segment

All executable PCD files begin with a single descriptive integer,
which is stored high byte first, in 2's complement notation.

If this integer is positive the PCD file consists of a single
segment, and the integer is the length of that segment. The segment
proper is enclosed by the integer, an unused word, and (at the end)
a single byte describing the number of transfer vectors. These five
(total) bytes are not included in the length descriptor.

10.4.1 The segment map.

If this integer is negative it must be in the range -1 to -127 (only
-31 for now), and describes the number of segments in the PCD file.
The following is based on a 15 segment limitation. The initial 128
bytes of the file are a segment map, consisting of 16 8-byte entries
which can be described as:

ARRAY[0..15] OF RECORD
CASE n OF

0: (segcount : -1..-15); (* hi byte first integer *)
tunevalue : byte;
entryseg : byte; (* id of outer block *)
codespace : hifirstinteger;
dataspace : hifirstinteger; (* not used yet *));

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15:
(fileaddress : hifirstinteger; (* sector in PCD file *)

initflags : byte;
workarea : ARRAY[1..5] OF byte;)

By convention bytes 3, 4, 5 of workarea are used to store optional
values for tunevalue and codespace. Eventually initflags will be
able to describe segments not to be swapped out and machine language
segments. In operation this byte also holds segment usage history.

The remainder of the PCD file holds segments organized as the single
segment PCD file above, but always filling complete sectors. Thus
the fileaddress value can address 128 * 65536 bytes of code. This
is an absolute limitation on the total size of a code file.
Similarly no segment can reference more than 127 procedures (sum of
internal and external), and no segment can exceed 32K.

Program Segmentation Ch. 10-6 Pascal-P Manual v3.1.9

Data segments are entirely separate, and are addressed via base
registers. The heap and stack areas must be contiguous, but can
range up to 64K total size.

10.4.2 The transfer vector.

The last byte of each segment (located by the segment length
descriptor) holds a count of transfer points. 0 means that only the
main program entry is present. This final byte is preceded by n
(where n is the contents of the count byte + 1) HIBYTEFIRST 16 bit
transfer vectors. They may be of two types (and a code listing will
show the type - See appendix C):

10.4.2.1 PCD transfers.

These vectors are used by the CUP (call user procedure) (and its
variants, CLP and CGP call local and call global) P-codes. If the
value is negative, it is a self-relative pointer to the code within
the segment. If the value is positive, it contains two one byte
fields, holding the segment number and entry number within the
external segment.

10.4.2.2 Intrinsic transfers.

These vectors are used solely by the CIP (call intrinsic procedure)
P-code. It contains the absolute machine address of an external
procedure. Note that the external procedure is called with NO stack
marker, but with the appropriate parameters (and possible function
return value space) allocated on the stack. The intrinsic is
responsible for clean-up.

The zeroth transfer is only used for entry to the main program. In
other segments it will normally point to a CSP STP (halt)
instruction.

FILTERS and CONVENTIONS Ch. 11-1 Pascal-P Manual v3.1.9

Chapter 11

FILTERS and CONVENTIONS

11.1 General

Various "filter" programs are provided. These have the common
characteristic that they use only "input" and "output" files, and
perform some sort of translation of the input file. "Input" and
"output" are always textfiles. Filters have no extraneous files
over which to prompt the user, and no added verbiage is generally
desired on the output, thus they are unable to prompt the user.

The programs are generally executed by using the i/o redirection
| facilities ">" and "<" (goes_to and comes_from respectively). A
| minor exception is "TYPETEXT", as detailed below. COPYCOLS also

provides for additional parameters in the command line.

11.2 LINE TERMINATORS

CPM textfiles universally use the convention that lines are
terminated by a <cr><lf> pair. Some systems generate files that
omit the <lf>. Any such files are legible to Pascal programs, and
after passing through these filters will have the conventional line
terminators inserted.

WARNING:

The ISO and ANSI Pascal standards specify, and
for good reason, that an EOF must immediately
follow an EOLN in a non-empty textfile, i.e.
all lines must be terminated by EOLN (normally a
<ret> under CPM). Files created by other
systems may not respect this. WordStar is a
notable offender, where the user must
specifically terminate the last line in a file
and not add any invisible blanks at the end.
When these programs read such files they will

FILTERS and CONVENTIONS Ch. 11-2 Pascal-P Manual v3.1.9

probably abort with a "READ PAST EOF" error.
The cure is to be sure to enter the final
carriage return. Programs can be written to
correct this, but may require an enormous
overhead to check EOF and decide what to do
after every input character.

11.3 INDENTATION CODING

A convention widely used in the system is the "indentation_code",
patterned after the coding used in the UCSD system. This expresses
an indentation, for a text line, as the character 010h, or
control-p, or 16 decimal, or dle (all synonyms) followed by the
printing character (space + number_of_spaces_to_indent). This is
only a convention, rather than forced as in the UCSD system. All
system programs respect this (PASCALP, PAGER, XREF, REFRENCE,
COMPARE, COPYCOLS, TYPETEXT, EXPAND) and perform the output
expansion. This avoids much useless and time-consuming scanning of
blanks in text files. Program COMPRESS creates the indentation code
from plain text. Of the above programs, COPYCOLS, TYPETEXT, EXPAND,
COMPRESS and REFRENCE are all filters for textfiles. Note that
COPYTEXT simply passes on any indentation code.

11.4 NUMBERED LINES

A further convention used in this system is that textfile lines
which have an initial string of 8 digits (all must be digits) are
numbered, and that the first 5 digits are the line number. The
remaining digits express a fractional line number. Programs that
process source text, such as PASCALP, XREF, REFRENCE, COMPARE,
PAGER, XREFASSM respect this convention.

11.5 THE PIP [b] (buffered) OPTION:

To co-operate with PIP, several programs provide for the PIP [b]
buffered option. If the programs are executed with a non-zero value
of parm they will, at intervals, emit a dc3 character and then pause
for approximately parm seconds. At file completion they will emit a
cntrl-z character. These cause PIP to flush buffers and terminate,
and enable simple-minded information transfers in printing
characters. Programs that include this feature are: COPYTEXT,

|

FILTERS and CONVENTIONS Ch. 11-3 Pascal-P Manual v3.1.9

| STRIPNUM (both filters), BINHEX and RBMTOHEX (documented elsewhere).
| The time delays assume execution via RUNPCD on a 2 Mhz machine
| (unless the CPMLINK portion has been customized), or on the HP3000

(or other machines with process blocking). An even value of parm
should normally be specified to avoid an initial debug trap.

WARNING:

some earlier versions of these programs exist
without the delay feature. They should be
replaced when found.

11.6 MINI-MANUALS

11.6.1 COPYCOLS (left_column, right_column) <infile >outfile

copies left_column through right_column from infile to outfile.
Left_column defaults to 1, and right_column to 132 (the maximum).
Indentation codes are expanded before measuring column position.
Lines longer that 132 characters cannot be processed.

11.6.2 COPYTEXT <infile >outfile [optional_parm]

simply copies all input to the output. No indentation codes are
expanded. There is no limit to line length. The PIP [b] option is
supported (see above).

11.6.3 TYPETEXT <infile [>outfile may be specified, but is useless]

copies infile to "output", normally the user console, and halts
every 20 lines until a <ret> is entered. Indentation codes are
expanded, and lines longer that 80 characters are wrapped into
multiple lines. TYPETEXT actually uses another file (KBD) for
non-echoing interaction with the operator. This interaction reduces
its portability. Some versions may wrap at 79 characters to allow
for terminals that wrap at 80 characters without detecting that no
more characters follow. An EndofFile (control-z under CPM) when
<ret> is expected ends the pauses permanently. A control-c at this
point exits the program. [parm] may optionally be specified, and

FILTERS and CONVENTIONS Ch. 11-4 Pascal-P Manual v3.1.9

alters the default pagesize of 20. Use an even number to avoid an
initial debug trap.

11.6.4 EXPAND <infile >outfile

is logically equivalent to COPYTEXT, but expands indentation codes.
There are no provisions for delays etc.

11.6.5 COMPRESS <infile >outfile

is the inverse of EXPAND. Files occupy less disk space, and require
less transmission time after this, but are still perfectly legible
to compilers etc. They remain comprehensible, but not pretty, to
human viewers.

11.6.6 STRIPNUM <infile >outfile

removes any line numbers from infile. See above for the definition
of a line number. The PIP [b] option is supported, see above.

11.6.7 ADDNUMS <infile >outfile [optional_parm]

adds sequential line numbers to a textfile. If a [parm] is
specified it sets the initial line number -1, i.e. the first line
will be numbered one higher. This is consistent with the default
zero value of parm.

11.6.8 WSTOTEXT <infile >outfile [optional_parm]

is a preliminary program. It converts the special characters in a
WordStar document file to the normal Ascii set, removing any un-used
"soft" hyphens, suppressing trailing blanks on lines, etc. In
addition any "dot commands" (i.e. lines beginning with a "."), and
pagination are deleted. EOF is correctly set in the output file
(see the WARNING below). [parm], if specified, serves the same
function as the WordStar ".po" dot command, and inserts blank spaces
at the left of each line. This document was prepared on WordStar
and passed through WSTOTEXT.

FILTERS and CONVENTIONS Ch. 11-5 Pascal-P Manual v3.1.9

11.6.9 REFRENCE <infile >outfile

is a highly specialized filter for showing the structure of Pascal
source programs, and respects indentation codes. It also follows
all $include filename statements, and, if parm=100 was specified,
follows all (*$i'filename'*) include commands. See the Pascal-P
documentation for the specific syntax. REFRENCE is a customization
of a program by Arthur Sale.

All these filters, with the exception of REFRENCE, are small and
simple programs. P-code versions of these filters are all executed
by the prefix "runpcd ". Native code versions are executed as
shown.

RBM files and HEX files Ch. 12-1 Pascal-P Manual v3.1.9

Chapter 12

RBM files and HEX files

12.1 General

The fundamental relocatable binary modules are known as RBM files.
They have been designed to be compatible with the INTEL hex
standard, and to be machine independant, in that the only assumption
made is that the host machine addresses in units of bytes. Modules
cannot exceed 32768 bytes in length, but no restriction on final
code size is made, except that external values must be expressable
in two bytes for arithmetic to be performed. Limitations on name
length have been expressly avoided, although present software
truncates all names to 8 characters.

The structure of RBM files is best explained by first explaining HEX
files.

A HEX file is made up entirely of printing characters, and can be
tranmitted and manipulated as a text file. A record, in a HEX file,
begins with the ":" character, has several fields containing only
the hexadecimal characters '0' through '9' and 'A' through 'F'. The
fields are as follows:

colon The character ":", beginning a record.

length 2 hex characters, describing a value in the range
0 to 255 only. This value specifies the length
of the remainder of the record.

address 4 hex characters, describing an address in the
range 0 to 65535 (under some circumstances this
is considered a signed integer in the range -
32768 to 32767).

type 2 hex characters, describing a value in the range
0 to 255 only. The interpretation of this value
is central to the use of RBM files.

RBM files and HEX files Ch. 12-2 Pascal-P Manual v3.1.9

data (2 times length) hex characters. Interpretation
varies with use.

checksum 2 hex characters, such that when each character
pair since the ":" is considered as a number in
the range (0..255), the sum MODULO 256 will be
zero.

anything except a ":" may follow the checksum, and may be
used for formatting, comments, etc. It is always
ignored.

Note that every data item, after the initial colon, can be expressed
as a one byte value, thus reducing storage requirements,
transmission time, etc. by at least a factor of 2.

The original INTEL standard defined record types 0 and 1. Type 0 is
an absolute load code record, in which "address" describes the
machine address to be loaded with the first byte in the data field.
Type 1 is an end-of-file record, with length always zero, and
address describing an address to which execution control is to be
transferred. Type 0, when length is zero, is treated in the same
manner. By convention, a transfer address of zero in these
end-of-file records signifies that no control transfer is to be
made.

12.2 RBM files

RBM records are exact images of HEX records, except that the leading
colon and trailing checksum have been discarded, and that the
information is presented as 8 bit bytes in place of pairs of
hexadecimal characters. No trailing "anything" field is permitted,
and a new record begins immediately after the previous record ends.
Verification of storage is left up to the storage system on which
the files reside (typically CRC checksums over the storage blocks).
Thus RBM records can be discussed in exactly the same terms as HEX
records, and conversion between the systems is easy.

12.2.1 RBM record types

To preserve compatibility RBM files retain the original INTEL
definitions of record types 0 and 1, and add further types starting
at type 128 (080 hex). In all cases the length byte describes the
number of bytes in the data field, which may be zero. Additional
types are:

RBM files and HEX files Ch. 12-3 Pascal-P Manual v3.1.9

128 Relocatable data record. Exactly analogous to
the absolute data record (0), but the address
field describes the location with respect to the
base of the current module.

129 End module record. Address and length are zero.

130 Relocatable Code Module Header. The relocatable
records which follow are to be placed in a code
segment. The address field describes the total
length of the following code. The data field,
(which may be empty) may hold a name for the
segment of up to 60 characters.

131 Entrypoint descriptor. Address is a value
relative to the base of the current segment.
Data holds the name of the entrypoint, in Ascii
characters.

132 Absolute entry. Address is an absolute value,
which is to be used to resolve any referances to
the name in the data field (again in Ascii
characters).

133 External referance. Address is an index value
used by the linkage records which follow. The
data field holds a name, in Ascii, whose actual
value is described in some other module. Note
that the index in the address field will never be
less than 2, because indices 0 and 1 are reserved
to describe code and data module relative
relocation.

134 Data module header. As type 130, except that the
following data records are to be placed in the
data segment.

135 Alignment Record. Must only occur immediately
after a module header record. Causes the module
to adjust its location so that the absolute
location, modulo the address field, is zero. The
data field is unused.

136 Pcd module entry point. At linkage time this
value must have the high order 8 bits set to the
module number in which it occured, in the range 1
to 127 (only 31 at present). The data field
contains the entry name. These records are used
to describe PCD linkages in terms of
segment/entrynumber pairs. The occurance of such
an entry point causes LINKER to assume that the
output is to be a PCD program.

RBM files and HEX files Ch. 12-4 Pascal-P Manual v3.1.9

137 Equate names. Not presently implemented.
Address field is unused. The data field contains
two Ascii names separated by the "=" character,
as in "name1=name2". Causes all referances to
name1 to be resolved as referances to name2. The
data field should not exceed 60 characters, thus
effectively limiting names to less than 30
characters.

138

thru Reserved, not presently assigned.

143

Types 144 through 159 are reserved as linkage records, in which the
type modulo 16 is used as an operator. The address field (except
for types 152 through 154 below) contains an index, which refers to
an external referance record active within this module (or 0 or 1 to
specify the current code or data segment bases), and the data field
contains a list of 16 bit addresses, in high byte first format,
specifying a location relative to the current module beginning which
is to be adjusted. All operators discard any carrys and borrows,
and thus never cause arithmetic overflows. The operators currently
assigned are:

144 Add lobytefirst words. The value of external
referance is added to the two bytes of the
module.

145 Subtract lobytefirst. The value of external
referance is subtracted from the two bytes of the
module.

146 Add byte. The value of external referance, low
order 8 bits only, is added to the byte of the
module.

147 Subtract byte. The value of external referance,
low order 8 bits only, is subtracted from the
byte of the module.

148 Add high byte. The value of external referance,
high order 8 bits only, is added to the byte of
the module.

149 Subtract high byte. The value of external
referance, high order 8 bits, is subtracted from
the byte of the module.

RBM files and HEX files Ch. 12-5 Pascal-P Manual v3.1.9

150 Add hibytefirst words. Similar to type 144, but
the module contents is treated as a high byte
first integer. Note that this does not affect
the value of the external.

151 Subtract hibytefirst words. As 150, but external
referance is subtracted from the module content.

Types 152 through 154 are anonymous linkage records. Address
contains the value of the "external", rather than an index to it's
entry record. These records permit construction of one pass
assemblers and codegenerators, by postponing "fixup" operations to
linkage time. Since modules are in their most compact form at
linkage time, and since general code generation always requires a
two pass algorithm at some point, the linkage step is the most
efficient point at which to implement the second pass.

152 Add lowbytefirst fixup linkage.

153 Add hibytefirst fixup linkage.

154 Add byte (8 bits only) fixup linkage.

155

thru Unassigned operators.

159

160

thru Reserved for future use.

191

192 up Available for system dependant special operations
which cannot be handled by the existing types.
No reliance on portablity should be made when
these types are used.

12.3 Utility Programs

The utility programs HEXTORBM and RBMTOHEX perform conversions
between RBM and HEX files, and are principally used to transfer RBM
files over transmission links (e.g. RS232 lines). RBM files are
generated by assemblers, compilers, etc, and linked into executable

RBM files and HEX files Ch. 12-6 Pascal-P Manual v3.1.9

programs by LINKER. LINKER operation is documented separately.
RBMLOAD converts RBM files which contain only absolute loader
records, into program files. HEXLOAD is the equivalent for HEX
files, and similar to the CPM standard program LOAD. However
HEXLOAD and RBMLOAD use the file redirection systems, and are thus
much more flexible. RBMTOHEX also has provisions for co-operation
with the PIP [b] option. See the manual on FILTERS.

The typical execution command is

B>runpcd hextorbm(hexfile, rbmfile)

or

B>runpcd rbmtohex(rbmfile, hexfile); [parm]

For example, to transfer a rbm file named MYFILE.RBM over an RS232
link, such as a modem, on the PUN device, with 10 second delays for
buffer flushing by the receiver, enter:

B>runpcd rbmtohex(myfile.rbm, pun); [10]

If no files can be found for the input files (hexfile or rbmfile)
the programs will prompt for their names, and request confirmation
before purging any previous versions of the destination file.
RBMLOAD and HEXLOAD act in the identical manner.

BINHEX (binfile, hexfile) can be used to convert binary files to
absolute load hex files. By default the origin is set at 0100h.
The output may be converted back to a binary file by HEXLOAD.
[parm] may be used to co-operate with PIP operating with the [b]
option. See "FILTERS".

See the separate documentation on LINKER and its companion SCANRBMS.

LINKER v1.1.4 Ch. 13-1 Pascal-P Manual v3.1.9

Chapter 13

LINKER v1.1.4

13.1 GENERAL

LINKER (and the companion program SCANRBMS, documented separately)
scans relocatable binary module files and forms an absolute load
module. The command structure is flexible, and designed to permit
either interactive operation or complete control in the command
line, using the standard file redirection facilities, together with
the "indirect" and library files detailed below. The "RBM" (See
RBMFILES documentation) format code files are machine independant,
but do expect a byte addressing system with addresses up to 65535.
Byte and word externals/relocation, with either high byte or low
byte first word order, separation of data areas from code areas,
module alignment, segmented .PCD files, and "fixups" from one pass
code generators are catered for. Name length is controlled by a
compile time constant, and is presently set to 8 characters.

File names are accepted up to an empty line. Any filename preceded
by "@" specifies indirect access, i.e. that file contains a list of
files, which may in turn use indirect access.

In interactive (normal) mode, following the empty filename prompts
are made for the output file name, code and data load points. After
the input has then been scanned, if any external names remain
undefined, the operator is prompted for further module names. A
"no" reply here causes any such undefined names to be evaluated as
zero.

A file name beginning with "-" specifies a library file. The
default extension is ".LBR". The name "-" alone specifies the
default library file, which is "RBMS.LBR". Note that the "-" is not
part of the filename, but must directly precede it without any
intervening spaces. The default library file is automatically
selected unless a "-nul" (or other empty or non-existant file) file
name is specified. Note that nul is the system defined bit-bucket,
and always exists.

LINKER v1.1.4 Ch. 13-2 Pascal-P Manual v3.1.9

13.2 SEARCH ORDER:

Files and modules are searched in the following order (unless a
specific drive has been specified, when the search is limited to a
file on that drive):

1: On the default drive.
2: On the system drive.
3: If a module (not a library) is not yet found, it is

searched in the current library. When the library
was selected it used the above search pattern.

If a file is found on other than the default drive, it's name is
revised to show the drive. If a module is found as a file it's name
is upshifted. If found in a library the name is unchanged.

Thus files, modules, indirect files, may exist on up to two drives,
and modules and indirect files may be found as files or as modules.
This allows an existing library module to be re- placed by creating
a file with the same name, without altering the library in any way.
If all is well the library may then be permanently altered with the
public domain LU (library utility) program and the replacement
module file removed.

13.3 BATCH OPERATION:

A numerical input (hex with a leading digit) to the "filename"
prompt is a specification of the load point. A second numerical
input specifies the data load point. Any such numerical input
causes the system to operate in the batch mode, and no further
prompts are output. In particular no opportunity then exists to
resolve undefined labels by adding further modules. Similarly any
end of file on "INPUT" (or the file from which it has been
redirected) causes operation in the batch mode.

13.4 CONNECTION TO PREVIOUSLY LINKED MODULES:

Any file name whose group/extension begins with ".CON" is considered
a connector file. Any such file must contain only absolute entry
points, (NOT CHECKED), and is used only to resolve undefined
external referances at that point in the loading process. A
connector file can be created from the loaded module by specifying

LINKER v1.1.4 Ch. 13-3 Pascal-P Manual v3.1.9

file "cnct" in the run command with PARM=2. Such a "cnct" file is
in RBM format, specifying absolute values.

13.5 RUN-TIME OPTIONS:

Several run-time options may be selected by numerical "parm" values,
specified within "[]" on the command line. For multiple options use
the sum of the values.

Value Effect
2 Generate a "cnct" file with a listing of all entry

points. See above.
4 Generate an output listing (on "loadmap") of the

complete symbol table.
10 Generate output code in "RBM" absolute loader format,

rather than as a "COM" format file. This format is
forced if initialized data segments exist in the input
modules, since a continuous output binary image cannot
be generated.

13.6 MACHINE DEPANDANCIES:

On word addressing machines where an integer occupies only one unit
of storage (e.g. HP3000) the sense of the parm=4 and parm=10 bits
is reversed. Such output is normally used to down-load other
machines, and a binary file is useless. Time and disk space to
generate complete symbol table listings are less critical, and the
table is normally examined later by listing it. In addition, on
such machines no libraries are presently used, nor do drive
specifiers or searches apply.

13.7 EXAMPLE:

To link and relocate modules "a.y" and "b.y" to origin 0100h on
codefile "ab.com"

B>linker (ab.com, con)
LINKER (objfile, loadmap, cnct, input, output); Ver. 1.1.4

LINKER v1.1.4 Ch. 13-4 Pascal-P Manual v3.1.9

filename >a.y
filename >b.y
filename >
Loadfile (code) (default "objfile") = ?
Code address (default 100H) hex = ?
Data address (default after code) hex = ?

<<output showing modules loaded and starting addresses>>

<<output showing the final loadmap, with data relocated>>
<<this output is routed to formal file "loadmap", and >>
<<may contain a symbol table. See parm=4 above >>

Validation A-1 Pascal-P Manual v3.1.9

Appendix A

Validation Suite Results (Preliminary 3.0.79)

Pascal Processor Identification
Machines : 8080 under CPM 2.2, Interpreter 2.2.6

HP3000 under MPE HP32002C.G0.C3
Compiler : Pascal-P V3.0.79 (Revised to 3.1.1)
Level : 0
Date : 8 Mar. 1983
Tests by : C.B.Falconer
Test Version : 3.1

NOTE

system maxset is 127. Tests 6.7.1-9 & 6.7.2.4-6
modified accordingly.

Conformance Tests: HP3000 8080 CPM
================= ====== ========
Number of tests passed = 166 159
Number of tests failed = 13 20

Details of failed tests:

Six primary reasons (apply to both systems) :

1. functional and procedural parameters are not implemented.
Affects tests:

6.6.3.1-4 6.6.3.4-1 6.6.3.4-2
6.6.3.5-1

2. Variables are identified by their initial 8 chars. only.
Affects:

6.1.3-2 6.4.3.5-11

3. (* *) and {} comments are separate, and one type may be
nested within the other, although comments of any single
type may not be nested. Affects:

6.1.9-1

4. GOTO's out of a procedure/function block are not
implemented. Affects:

6.8.2.4-1

5. File types can be used in structured variables, but only if
the system special standard procedure FILEINIT(f) is
executed on each such file, i.e. array of file. Test is
successful with this change. Affects:

6.4.3.5-4

6. CASE table size restricted to 1000 entries. Affects:

Validation A-2 Pascal-P Manual v3.1.9

6.8.3.5-2

Implementation errors detected (both systems):

7. Functional values may only be assigned within the main
function block. Affects:

6.2.2-6

8. Real output formatting is non-standard.
6.9.3.5.1-1 6.9.3.5.1-2

8080 CPM implementation errors detected:

9. In the CPM file environment, for non TEXT files, no
accurate EOF marker is available. Thus eof is not
necessarily set after read-back from a non-text file.
6.4.3.5-11 already failed for identifier length. Affects:

6.4.3.5-5 6.5.3.5-6 6.4.3.5-7
6.4.3.5-8 6.5.3.5-9 6.4.3.5-10
6.4.3.5-11 6.4.3.5-12

NOTE

Except as noted above for system maxset, no
textual changes whatsoever were made to the
validation suite programs.

Compilation Example B-1 Pascal-P Manual v3.1.9

Appendix B

Compilation Example

This is the sole operator input for this example
--

B>job pascpcd typetext.pas con typetext.pcd typetext.pcd
JOB V1.2

B>; PcdCompile source listing pcd tic codelist options
B>; For unsegmented programs with no intrinsic/external calls.
B>; Use "NUL" for any unwanted files
B>; Tic may later be used to create assembly source with ASSMAP.
B>; Tic and pcd may be identical to save disk space
B>; since assmpcd does not use pcd until tic has been read.
B>; Set options 128 for listing on assmpcd listing
B>; (8 bit compiles for 16 bit machine(HP3000) with increasing stack)
B>; (16 bit forces RBM format output on pcd)
B>RUNPCD pascalp (TYPETEXT.PAS,CON,TYPETEXT.PCD);[]

PascalP system Ver. 2.3.0 Copyright (C) 1982
CP/M installation rev. 2.3
PASCALP (pasctext, pasclist, prr, ef, output); V 3.1.0
83/09/07 9:57 PASCAL-P Universal Compiler Ver. 3.1.0

1000 0:d PROGRAM typetext(kbd, input, output);
2000 0:d (* Modification of "EXPAND" to paginate to crts *)
3000 0:d (* and wrap over-long lines into multiple lines. *)
4000 0:d (* Converts textfiles, replacing indention codes *)
5000 0:d (* by spaces. dle, ' '+i represents i spaces *)
6000 0:d (* Revised 14 July 83 to handle the sequences *)
7000 0:d (* dle eoln and dle code eoln *)
8000 0:d (* both are mapped into simply eoln. This avoids *)
9000 0:d (* anomolies generated by a UCSD format editor. *)
10000 0:d (* Assumes no non-printing characters in input *)
11000 0:d
12000 0:d LABEL 1;
13000 0:d
14000 0:d CONST
15000 0:d dle = 16;
16000 0:d pagesize = 24; (* lines *)
17000 0:d linesize = 80; (* columns *)
18000 0:d
19000 0:d VAR
20000 0:d c : char;
21000 1:d linenum,
22000 1:d column : integer;
23000 5:d kbd : text; (* for continue/terminate control
24000 191:d
25000 191:d (*$n-,d- No runtime checks or linenos for speed *)
26000 191:d
27000 191:d (* 1--------------1 *)

Compilation Example B-2 Pascal-P Manual v3.1.9

28000 191:d
29000 191:d PROCEDURE pause;
30000 0:d
31000 0:d BEGIN (* pause *)
32000 0: 2 IF eof(kbd) THEN terminate
33000 11: 4 ELSE readln(kbd);
34000 21: 2 linenum := 1;
35000 25: 2 END; (* pause *)
36000 27: 2
37000 27: 2 (* 1--------------1 *)
38000 27: 2
39000 27: 2 PROCEDURE linewrap;
40000 27: 2
41000 27: 2 BEGIN (* linewrap *)
42000 0: 2 IF column > linesize THEN BEGIN (* linewrap *)
43000 11: 4 column := 1; linenum := succ(linenum);
44000 22: 4 IF linenum > pagesize THEN pause;
45000 32: 4 writeln; END;
46000 37: 2 END; (* linewrap *)
47000 39: 2
48000 39: 2 (* 1--------------1 *)
49000 39: 2
50000 39: 2 BEGIN (* typetext *)
51000 0: 1 reset(kbd); linenum := 1; column := 1;
52000 41: 1 WHILE NOT eof DO BEGIN
53000 50: 3 WHILE NOT eoln DO BEGIN
54000 59: 5 read(c);
55000 67: 5 WHILE c = chr(dle) DO BEGIN
56000 75: 7 IF NOT eoln THEN read(c);
57000 92: 7 IF eoln THEN GOTO 1 (* dle eoln & dle code eoln
58000 103: 9 ELSE BEGIN
59000 106: 9 IF c > ' ' THEN BEGIN
60000 114:11 write(' ' : ord(c)-ord(' '));
61000 125:11 column := column + ord(c) - ord(' '); END;
62000 137: 9 read(c); END;
63000 145: 7 END;
64000 147: 5 write(c); column := succ(column);
65000 163: 5 IF (column > linesize) AND NOT eoln THEN linewrap
66000 182: 3 1: readln; column := 1; linenum := succ(linenum);
67000 198: 3 IF linenum > pagesize THEN pause;
68000 208: 3 writeln; END;
69000 215: 1 END. (* typetext *)

NO. ERRORS=0 WARNINGS=0 Program size(pcode bytes)=288

NO. ERRORS=0 WARNINGS=0 Program size(pcode bytes)=288

Exit Pascal system, Max heap use @9F0C
B>RUNPCD assmpcd (TYPETEXT.PCD,TYPETEXT.PCD,);[]

PascalP system Ver. 2.3.0 Copyright (C) 1982
CP/M installation rev. 2.3
EXECUTABLE Code size (bytes) is 301 = 012D (hex)

Compilation Example B-3 Pascal-P Manual v3.1.9

Exit Pascal system, Max heap use @6E7E
B>era temp0001.$$$
B>

Compilation with codelisting C-1 Pascal-P Manual v3.1.9

Appendix C

Compilation with codelisting

This is the sole operator input for this example
--

B>job pascpcd typetext.pas nul typetext.pcd typetext.pcd con 128
JOB V1.2

B>; PcdCompile source listing pcd tic codelist options
B>; For unsegmented programs with no intrinsic/external calls.
B>; Use "NUL" for any unwanted files
B>; Tic may later be used to create assembly source with ASSMAP.
B>; Tic and pcd may be identical to save disk space
B>; since assmpcd does not use pcd until tic has been read.
B>; Set options 128 for listing on assmpcd listing
B>; (8 bit compiles for 16 bit machine(HP3000) with increasing stack)
B>; (16 bit forces RBM format output on pcd)
B>RUNPCD pascalp (TYPETEXT.PAS,NUL,TYPETEXT.PCD);[128]

PascalP system Ver. 2.3.0 Copyright (C) 1982
CP/M installation rev. 2.3
PASCALP (pasctext, pasclist, prr, ef, output); V 3.1.0

NO. ERRORS=0 WARNINGS=0 Program size(pcode bytes)=288

Exit Pascal system, Max heap use @9F0C
B>RUNPCD assmpcd (TYPETEXT.PCD,TYPETEXT.PCD,CON);[128]

PascalP system Ver. 2.3.0 Copyright (C) 1982
CP/M installation rev. 2.3
ASSMPCD (assmtext, rbmfile, listfile, output) Ver. 1.1.8
; 1000 0:d PROGRAM typetext(kbd, input, output);
; 2000 0:d (* Modification of "EXPAND" to paginate to crts *)
; 3000 0:d (* and wrap over-long lines into multiple lines. *)
; 4000 0:d (* Converts textfiles, replacing indention codes *)
; 5000 0:d (* by spaces. dle, ' '+i represents i spaces *)
; 6000 0:d (* Revised 14 July 83 to handle the sequences *)
; 7000 0:d (* dle eoln and dle code eoln *)
; 8000 0:d (* both are mapped into simply eoln. This avoids *)
; 9000 0:d (* anomolies generated by a UCSD format editor. *)
; 10000 0:d (* Assumes no non-printing characters in input *)
; 11000 0:d
; 12000 0:d LABEL 1;
0006 PGM TYPETEXT
; 13000 0:d
; 14000 0:d CONST
; 15000 0:d dle = 16;
; 16000 0:d pagesize = 24; (* lines *)
; 17000 0:d linesize = 80; (* columns *)
; 18000 0:d

Compilation with codelisting C-2 Pascal-P Manual v3.1.9

; 19000 0:d VAR
; 20000 0:d c : char;
; 21000 1:d linenum,
; 22000 1:d column : integer;
; 23000 5:d kbd : text; (* for continue/terminate control
; 24000 191:d
; 25000 191:d (*$n-,d- No runtime checks or linenos for speed *)
; 26000 191:d
; 27000 191:d (* 1--------------1 *)
; 28000 191:d
; 29000 191:d PROCEDURE pause;
; 30000 0:d
; 31000 0:d BEGIN (* pause *)
0006 FWD PAUSE
; 32000 0: 2 IF eof(kbd) THEN terminate
0006 PRO PAUSE
0006 NTR PAUSE

PAUSE:
0006 F70000 ENT 1,@5
0009 66FF41 LAO 191
000C F00C EOF
000E F8FFF0 FJP @6
; 33000 11: 4 ELSE readln(kbd);
0011 F025 CSP TRM
0013 PAR 0
0013 FAFFEB UJP @7

@6:
0016 66FF41 LAO 191
0019 F01B CSP RLN
001B PAR 1

@7:
; 34000 21: 2 linenum := 1;
001B 01 LDCI 1
001C 73FFFB STOI 5
; 35000 25: 2 END; (* pause *)
001F 00F6 RET 0

@5=0

; 36000 27: 2
; 37000 27: 2 (* 1--------------1 *)
; 38000 27: 2
; 39000 27: 2 PROCEDURE linewrap;
; 40000 27: 2
; 41000 27: 2 BEGIN (* linewrap *)
0021 FWD LINEWRAP
; 42000 0: 2 IF column > linesize THEN BEGIN (* linewrap *)
0021 PRO LINEWRAP
0021 NTR LINEWRAP

LINEWRAP:
0021 F70000 ENT 1,@9
0024 7BFFFD LDOI 3
0027 50 LDCI 80
0028 CB GRTI
0029 F8FFD5 FJP @10

Compilation with codelisting C-3 Pascal-P Manual v3.1.9

; 43000 11: 4 column := 1; linenum := succ(linenum);
002C 01 LDCI 1
002D 73FFFD STOI 3
0030 7BFFFB LDOI 5
0033 E0 INCI 1
0034 73FFFB STOI 5
; 44000 22: 4 IF linenum > pagesize THEN pause;
0037 7BFFFB LDOI 5
003A 18 LDCI 24
003B CB GRTI
003C F8FFC2 FJP @11
003F F301 CGP 1,PAUSE

@11:
; 45000 32: 4 writeln; END;
0041 7A000C LDOA -12
0044 F01D CSP WLN
0046 PAR 1

@10:
; 46000 37: 2 END; (* linewrap *)
0046 00F6 RET 0

@9=0

; 47000 39: 2
; 48000 39: 2 (* 1--------------1 *)
; 49000 39: 2
; 50000 39: 2 BEGIN (* typetext *)
; 51000 0: 1 reset(kbd); linenum := 1; column := 1;
0048 F027 MAI TYPETEXT

TYPETEXT:
004A F70000 ENT 1,@13
004D 01 LDCI 1
004E 01 LDCI 1
004F 5D86 LDCI 134
0051 0C LDCI 12
0052 5C084B424420
0058 20202020 LCA 'KBD '
005C 08AA MVS 8
005E 66FF41 LAO 191
0061 F026 CSP FIN
0063 PAR 9
0063 66FF41 LAO 191
0066 00 LDCA NIL
0067 F019 CSP RES
0069 PAR 2
0069 01 LDCI 1
006A 73FFFB STOI 5
006D 01 LDCI 1
006E 73FFFD STOI 3
; 52000 41: 1 WHILE NOT eof DO BEGIN

@14:
0071 7A000A LDOA -10
0074 F00C EOF
0076 EC NOT
0077 F8FF87 FJP @15

Compilation with codelisting C-4 Pascal-P Manual v3.1.9

; 53000 50: 3 WHILE NOT eoln DO BEGIN
@16:

007A 7A000A LDOA -10
007D F00B CSP ELN
007F PAR 0
007F EC NOT
0080 F8FF7E FJP @17
; 54000 59: 5 read(c);
0083 66FFFF LAO 1
0086 7A000A LDOA -10
0089 F016 CSP RDC
008B PAR 2
; 55000 67: 5 WHILE c = chr(dle) DO BEGIN

@18:
008B 79FFFF LDOC 1
008E 10 LDCI 16
008F B1 EQUC
0090 F8FF6E FJP @19
; 56000 75: 7 IF NOT eoln THEN read(c);
0093 7A000A LDOA -10
0096 F00B CSP ELN
0098 PAR 0
0098 EC NOT
0099 F8FF65 FJP @20
009C 66FFFF LAO 1
009F 7A000A LDOA -10
00A2 F016 CSP RDC
00A4 PAR 2

@20:
; 57000 92: 7 IF eoln THEN GOTO 1 (* dle eoln & dle code eol
00A4 7A000A LDOA -10
00A7 F00B CSP ELN
00A9 PAR 0
00A9 F8FF55 FJP @21
00AC FAFF52 UGO @3
; 58000 103: 9 ELSE BEGIN
00AF FAFF4F UJP @22

@21:
; 59000 106: 9 IF c > ' ' THEN BEGIN
00B2 79FFFF LDOC 1
00B5 20 LDCC ' '
00B6 C9 GRTC
00B7 F8FF47 FJP @23
; 60000 114:11 write(' ' : ord(c)-ord(' '));
00BA 20 LDCC ' '
00BB 79FFFF LDOC 1
00BE 20 LDCC ' '
00BF A0 SBI
00C0 7A000C LDOA -12
00C3 F01F CSP WRC
00C5 PAR 3
; 61000 125:11 column := column + ord(c) - ord(' '); END;
00C5 7BFFFD LDOI 3
00C8 79FFFF LDOC 1

Compilation with codelisting C-5 Pascal-P Manual v3.1.9

00CB 9E ADI
00CC 20 LDCC ' '
00CD A0 SBI
00CE 73FFFD STOI 3

@23:
; 62000 137: 9 read(c); END;
00D1 66FFFF LAO 1
00D4 7A000A LDOA -10
00D7 F016 CSP RDC
00D9 PAR 2

@22:
; 63000 145: 7 END;
00D9 FEB1 UJS @18

@19:
; 64000 147: 5 write(c); column := succ(column);
00DB 79FFFF LDOC 1
00DE 01 LDCI 1
00DF 7A000C LDOA -12
00E2 F01F CSP WRC
00E4 PAR 3
00E4 7BFFFD LDOI 3
00E7 E0 INCI 1
00E8 73FFFD STOI 3
; 65000 163: 5 IF (column > linesize) AND NOT eoln THEN linewra
00EB 7BFFFD LDOI 3
00EE 50 LDCI 80
00EF CB GRTI
00F0 7A000A LDOA -10
00F3 F00B CSP ELN
00F5 PAR 0
00F5 EC NOT
00F6 EF AND
00F7 F8FF07 FJP @24
00FA F302 CGP 0,LINEWRAP

@24:
00FC FE7D UJS @16

@17:
; 66000 182: 3 1: readln; column := 1; linenum := succ(linenum);

@3:
00FE 7A000A LDOA -10
0101 F01B CSP RLN
0103 PAR 1
0103 01 LDCI 1
0104 73FFFD STOI 3
0107 7BFFFB LDOI 5
010A E0 INCI 1
010B 73FFFB STOI 5
; 67000 198: 3 IF linenum > pagesize THEN pause;
010E 7BFFFB LDOI 5
0111 18 LDCI 24
0112 CB GRTI
0113 F8FEEB FJP @25
0116 F301 CGP 0,PAUSE

@25:

Compilation with codelisting C-6 Pascal-P Manual v3.1.9

; 68000 208: 3 writeln; END;
0118 7A000C LDOA -12
011B F01D CSP WLN
011D PAR 1
011D FE53 UJS @14

@15:
; 69000 215: 1 END. (* typetext *)
011F 66FF41 LAO 191
0122 F00A CSP CLO
0124 PAR 1
0124 F024 STP

@13=192

0126 END
0126 FEFAFEDDFF1D
012C 02

0 TYPETEXT 0048 global
1 PAUSE 0006 global
2 LINEWRAP 0021 global

EXECUTABLE Code size (bytes) is 301 = 012D (hex)

Exit Pascal system, Max heap use @6E7E
B>era temp0001.$$$
B>

��e

