
HDFS

A Hierarchical Disc Filing System for the BBC
Microcomputer

Angus Duggan

c
 AJCD 31 October 1991

CONTENTS 1

Contents

1 Introduction 5

2 Differences between DNFS and HDFS 5

3 Disc organisation 6
3.1 Files : 6
3.2 Directories : 6
3.3 Permissions : 7
3.4 Auto-booting : 7

4 Disc management 7
4.1 Formatting and verifying : 8
4.2 Loading and saving : 8
4.3 Copying and renaming : 8
4.4 File handling : 9
4.5 Compacting and extending : 9

5 Command syntax 10

6 Filing system commands 12
6.1 *ACCESS afsp (LXWR) : 12
6.2 *ATTRIB fsp (load exec) (len) (LXWR) : : : : : : : : : : : : : : : : : 12
6.3 *BUILD fsp (A) : 12
6.4 *COMPACT (dsp) (D) : 13
6.5 *COPY <fsp fsp/afsp dsp> (C) : 13
6.6 *CREATE fsp (load exec) (len) (LXWR) (D) : : : : : : : : : : : : : : 13
6.7 *DEDIT (drv) start (+)end ((+)offs) (R) : : : : : : : : : : : : : : : 13
6.8 *DELETE fsp : 14
6.9 *DFIND (drv) start (+)end <string/fhexg> : : : : : : : : : : : : : : 14
6.10 *DIR (dsp) : 14
6.11 *DRIVE drv (S/D/A) (C) : 14
6.12 *DUMP fsp : 14
6.13 *ENABLE : 14
6.14 *EXTEND fsp : 15
6.15 *FEDIT fsp (offs) (R) : 15
6.16 *FFIND fsp (offs) <string/fhexg> : : : : : : : : : : : : : : : : : : : 15
6.17 *FORMAT drv <40/80> <X/A> <S/D> (skew) : : : : : : : : : : : : : : : 15
6.18 *FREE (dsp) : 15
6.19 *INFO afsp : 16
6.20 *LIB (dsp) : 16
6.21 *READ (drv) addr start (+)end (D) : : : : : : : : : : : : : : : : : : : 16
6.22 *RENAME <fsp fsp/afsp dsp> (C) : 16
6.23 *TITLE string (dsp) : 16
6.24 *TYPE fsp (C) : 16
6.25 *VERIFY drv <40/80> <X/A> <S/D> : 17
6.26 *WILD :˜ˆ.*? : 17

2 CONTENTS

6.27 *WIPE afsp (A) : 17
6.28 *WRITE (drv) addr start (+)end (D) : : : : : : : : : : : : : : : : : : 17

7 Utility Commands 18
7.1 *CLOSE : 18
7.2 *DISC, *DISK : 18
7.3 *GOIO addr : 18
7.4 *KEYS : 18
7.5 *MEDIT start (+)end ((+)offs) (R) : : : : : : : : : : : : : : : : : : : 18
7.6 *MFIND start (+)end <string/fhexg> : : : : : : : : : : : : : : : : : : 18
7.7 *MODE dec : 18
7.8 *MOVE start (+)end addr : 19
7.9 *ROMS : 19
7.10 *VDU <string/f((+/-)dec) (,/;)g> : : : : : : : : : : : : : : : : : : : 19

8 Other commands 19
8.1 *. : 19
8.2 */fsp : 19
8.3 *CAT (dsp) : 19
8.4 *EXEC fsp : 20
8.5 *HELP (HDFS/UTILS) : 20
8.6 *LOAD fsp (addr) : 20
8.7 *OPT dec(,dec) : 20
8.8 *RUN fsp : 20
8.9 *SAVE fsp start (+)end (exec (load)) : : : : : : : : : : : : : : : : : 21
8.10 *SPOOL (fsp) : 21

9 The Disc, File, and Memory Editors 21

10 OSWORD 22
10.1 A=&7B Move a block of memory : 22
10.2 A=&7C Multiple track 8271 command : : : : : : : : : : : : : : : : : 23
10.3 A=&7D Read cycle number : 23
10.4 A=&7E Read directory size : 23
10.5 A=&7F Single track 8271 command : : : : : : : : : : : : : : : : : : 24

11 Vectors 24
11.1 OSFILE : 25
11.2 OSARGS : 26
11.3 OSBGET : 27
11.4 OSBPUT : 27
11.5 OSGBPB : 27
11.6 OSFIND : 29
11.7 FSCV : 29

CONTENTS 3

12 Errors 31
12.1 Escape (&11) : 31
12.2 Bad end (&B0) : 31
12.3 Bad start (&B1) : 31
12.4 Bad length (&B2) : 31
12.5 Bad range (&B3) : 31
12.6 Not empty (&B4) : 31
12.7 Too long (&B5) : 32
12.8 Bad wild char (&B6) : 32
12.9 Find what? (&B7) : 32
12.10 Bad edit mode (&B8) : 32
12.11 Parameters (&B9) : 32
12.12 Wrong format (&BA) : 32
12.13 Not readable (&BB) : 32
12.14 Not executable (&BC) : 32
12.15 Too big (&BD) : 32
12.16 Cat full (&BE) : 32
12.17 Can’t extend (&BF) : 33
12.18 Too many open (&C0) : 33
12.19 Not writable (&C1) : 33
12.20 Open (&C2) : 33
12.21 Locked (&C3) : 33
12.22 Exists (&C4) : 33
12.23 Drive fault EE at DD/TT (&C5) : 33
12.24 Dir full (&C6) : 34
12.25 Disc fault EE at DD/TT (&C7) : 34
12.26 Disc changed (&C8) : 34
12.27 Disc read only (&C9) : 34
12.28 Bad track (&CA) : 34
12.29 Bad option (&CB) : 35
12.30 Bad name (&CC) : 35
12.31 Bad drive (&CD) : 35
12.32 Directory (&CE) : 35
12.33 Not found (&D6) : 35
12.34 Syntax: : : : (&DC) : 35
12.35 Channel (&DE) : 35
12.36 EOF (&DF) : 35
12.37 Bad command (&FE) : 35

13 Compatibility 36

A Overview 38

B Installation 38

C Command Summary 39

D 8271 commands 40

4 CONTENTS

E Catalogue Format 42

F Memory Usage 42
F.1 Zero page : 42
F.2 NMI workspace : 43
F.3 Absolute workspace : 43
F.4 Private workspace : 44

G Benchmarks 44
G.1 SAVE 32K : 45
G.2 LOAD 32K : 45
G.3 OPEN : 45
G.4 BPUT 32K : 46
G.5 BGET 32K : 46
G.6 MOVE : 46
G.7 GBPB : 46
G.8 SHIFT : 46

5

1 Introduction

The Hierarchical Disc Filing System, HDFS, which this manual describes is designed
to work with the Intel 8271 Floppy Disc Controller chip fitted in older BBC micro-
computers. It is compatible with the Acorn 1.20 DNFS,1 and provides some extra
functionality.

This manual will assume that the user is familiar with the operation of disc drives,
and that the disc interface, disc drive(s) and ROM are installed (see appendix B for
details of how to install the ROM). A simple introduction to floppy discs can be found
in appendix A. Users who are familiar with the Acorn 1.20 DNFS should read the next
section, which will outline the major differences between HDFS and the DNFS. Users
not familiar with the DNFS should miss out this section on first reading.

2 Differences between DNFS and HDFS

The HDFS has some real advantages over the DNFS. These include:

Hierarchical directories The HDFS has a fully hierarchical directory structure, allowing
more than the 31 files per disc side of the DNFS.

40/80 track switching If the HDFS is used with an 80 track disc drive, it can automatically
detect 40 track discs, and read and write to these discs without manual intervention.

Advanced tube support The HDFS includes the Acorn Tube Support code, with the extra
feature of being able to turn off the Tube from software.

Sideways RAM support All of the memory moving, loading and saving operations can
access any sideways ROM socket, allowing multiple banks of sideways RAM to
be supported.

Large files If the HDFS is used with double sided disc drives, it can split files across both
sides of the same disc, allowing files up to 400k long.

Low memory loading The HDFS can load files into memory which would normally take
too much space, automatically disabling itself after the file is loaded.

Open files The HDFS supports a total of six open files simultaneously, one more than the
DNFS.

More commands The HDFS has many more commands than the DNFS, including a fully
featured disc, file, and memory editor, disc and memory searching, memory block
moving, and a lot more.

DNFS compatibility The HDFS is also able to read, write, and format DNFS compatible
discs.

1The majority of programs designed to work under DNFS 1.20 will work under HDFS with no change.
Where changes have been required, it has usually been because the program’s author(s) have made invalid
assumptions about command parsing or memory usage.

6 3 DISC ORGANISATION

3 Disc organisation

Throughout this and the following sections, a distinction will be made whenever there
are differences between the two supported file structures; the Acorn DNFS format, and
the HDFS native format. In cases where no distinction is made, the file structures are the
same.

3.1 Files

Data is stored in named files by the disc filing system. These files have certain features
which are common across filing systems; they are accessible in the same way by a set
of operating systems commands.

In both the DNFS and HDFS, files have certain features; they are held in contiguous
areas on the disc, have the same attributes, and the maximum length of filenames is 7
characters.

A file’s attributes are its length, start sector address, load address, execution address,
and permissions.

The maximum length of a file is determined by the amount of free space available
in the directory; this can be up to 200K for the DNFS, and up to 400K for HDFS. The
DNFS allocates 18 bits to the file length, whereas HDFS allocates 19 bits.

The start sector address determines where the file is held, relative to the start of the
directory. There are 10 bits allocated to the start sector by DNFS and 11 bits by HDFS.

The load address determines whereabouts in memory the file is placed when it is
loaded. There are 18 bits allocated to the load address by both HDFS and DNFS; if the
high-order bits (above 16) are all 1’s, the low-order 16 bits are used to refer to an address
in the I/O processor memory, if a second processor is fitted.

The execution address determines where the computer jumps to start a program that
is run from the disc. As with the load address, 18 bits are allocated to the execution
address, and if the high-order bits of the execution address are all 1’s, the address referred
to is in the I/O processor.

If there is no second processor fitted, the load and execution addresses always refer
to the I/O processor.

A file’s permissions determine whether the file can be read, written, executed, or
deleted.

3.2 Directories

Directories are used for partitioning files.
In the DNFS, directory names are a single character prefix which may be used to sort

the files into different types. The “current directory” is a single prefix character which
is added to all filenames which do not specify a directory. There may be no more than
31 files per disc in the DNFS. The directory information for the DNFS takes two sectors
(512 bytes).

HDFS supports hierarchical, nested directories. These directories are held in contigu-
ous blocks, exactly like files. Directory names must be between 2 and 7 characters long,
and appear like normal filenames in the directory listing. Each of these directories, as
well as the disc’s root directory, may contain 31 files and sub-directories. HDFS director-

3.3 Permissions 7

ies have all of the normal file attributes, and also a flag which marks them as directories
rather than files.

The length of a directory determines how much space is available for files and sub-
directories inside the directory. It will always be a whole number of sectors (a multiple
of 256 bytes), and 2 sectors (512 bytes) will be used for the directory information.

The load and execution addresses are meaningless for directories.

The readable and writable permissions are meaningless for directories.

3.3 Permissions

The HDFS supports the full range of permissions for files; they may be marked as readable,
writable, executable, and/or locked (not deletable). The characters R, W, X, and L are used
to indicate these in directory listings.

The readable and writable permissions refer to the file-handling operations OSFIND,
OSBPUT, OSBGET and OSGBPB. Unwritable files can still be saved to, and unreadable
files can still be loaded.

HDFS directory permissions are the same as for files except that the readable and
writable flags are meaningless. The executable flag has a special meaning; when a
directory is executed, it is made the current directory, and the directory options are used
to determine whether to search for and load, run, or *EXEC a file called !BOOT, in the same
way as the auto-boot facility. This facility allows applications to be organised within
directories, and set up and run by simply executing the directory.

The DNFS only supports the locked permission. In DNFS, locked files are unwritable,
and all files are readable and executable.

3.4 Auto-booting

Both the DNFS and HDFS support the auto-boot facility; if SHIFT-BREAK is pressed, and
BREAK is released first, the filing system will look at the root directory’s options to
determine whether to search for and load, run, or *exec a file named !BOOT. The values
of the options for each of the possibilities is given in section 11.7.

To allow the HDFS and DNFS to co-exist in a machine, each filing system checks
whether certain keys are held down before initialising on a BREAK. If there are no keys
held down, the filing system in the higher priority socket will take control.

The DNFS will not initialise if any other key than D is pressed with BREAK.

HDFS recognises two keys, H and I. The H key causes a normal initialisation. The
I key initialises the computer for I/O processor operation only, if a second processor
is present. This has the same effect as turning the second processor off, in software.
CTRL-BREAK must be pressed to re-activate the second processor.

4 Disc management

The following sections contain some tips about disc and file management.

8 4 DISC MANAGEMENT

4.1 Formatting and verifying

New discs need to be formatted before they can store data. This lays down the track and
sector structure on the disc, so that data can be located and written or read.

The tracks on the disc are arranged in concentric bands, each containing 10 sectors
of 256 bytes. The sectors are numbered from 0–9 within each track, but the sectors
numbers along a radius on the disc are not the same; this is because the drive takes a
fixed amount of time to step between tracks, during which the disc keeps turning. A few
sectors are missed while the step occurs, so the disc would have to do another revolution
to get back to the first sector. The discs are arranged with a skew to avoid this, so that
the first sector will be next under the drive head after the drive has stepped. The skew
value is normally 3, but disc drives which step from track to track very slowly may need
higher skews to perform best, and fast disc drives may be able to use a smaller skew.

The built in formatter in HDFS allows discs to be formatted double or single sided, 40
or 80 tracks, and with an HDFS catalogue or an Acorn catalogue. Double sided and 80
tracks can be used on all but a few old disc drives. The drive characteristics can be set
using the keyboard links described in appendix B. Note that HDFS assumes that 80 track
drives are being used, and single stepping mode should be enabled if 40 track drives are
being used (see 6.11).

The choice of Acorn or HDFS format catalogues depends on whether the data must
be readable on a computer which is not running HDFS. Most disc filing systems support
the Acorn catalogue format, and so it should be used for discs which will be used to
interchange data between machines. The HDFS format should be used when a large
number of files may be put on the disc, or when a larger contiguous free space is
desirable, i.e., for all other discs.

Never try to format a disc with more tracks or sides than it is rated for. Discs are all
made by the same manufacturing process, and low density discs are simply discs which
failed tests for high density storage. It is likely that discs formatted with more tracks or
sides than they are rated for will lose their data.

After formatting a disc, it is a good idea to verify it to check that there are no errors.
A small percentage of discs will not format correctly, and may need re-formatting. If a
disc fails to format after a few tries, it should be discarded.

4.2 Loading and saving

All of the normal loading and saving commands used by language ROMs are supported
by HDFS, as well as the operating system *SAVE and *LOAD commands. A file name must
be given when using these operating system commands; no default name is assumed.

4.3 Copying and renaming

Files can be copied between discs and directories or duplicated using the *COPY command.
The *RENAME command is almost identical, except that it deletes the original copy of the
file. These commands use the I/O processor memory as a buffer while copying files, and
so should not be used if you have valuable data in memory which has not been saved.

It is possible to copy files from disc to disc with one disc drive. In this case the
computer will prompt for the source or destination disc each time it has finished reading
or writing data. If the wrong disc is inserted, the transfer will be stopped with an error

4.4 File handling 9

message. If this happens, or if the transfer is aborted, the disc catalogues will not be
changed.

It is possible to copy or move files larger than the memory buffer with *COPY and
*RENAME. They load as much as possible into the memory at a time, and so require the
least number of disc changes possible.

There is no specific command for making backups of discs, but *COPY and *RENAME
can be used to copy a set of files into a directory to achieve this end.

4.4 File handling

All of the normal file opening, closing, and get and put byte commands used by language
ROMs are supported, as well as the operating system OSGBPB routine for transferring
blocks of data to and from files. Full random access to files is possible, using the
sequential pointer.

Files can be opened for input, output, or update (input and output). Files opened for
input cannot be used for output, and files opened for output cannot be used for input. The
HDFS only allows access for input or output if the appropriate read or write permissions
are set. Acorn format discs always have read and write permission on files. The HDFS

allows up to six files open simultaneously.
When a new file is opened for output, it is located in the largest gap in the directory to

allow it space to grow. A maximum of &4000 bytes are allocated to that file immediately,
and more space can be claimed if it is available later. If more than one new file is opened,
the second file will probably be allocated immediately after the first file, limiting the first
file’s length to &4000. If several large files are to be created by a program, the *CREATE
command or OSFILE entry &7 can be used to make sure that enough space is allocated
for each of them.

When a file is opened for output with the same name as an existing file, an attempt
is made to delete the existing file, and its space is re-used. Files which are opened for
update or input must exist already.

If the sequential pointer of a file is moved past the end of the file, the file will be
extended as necessary by padding with zero bytes.

The OSGBPB call should be used whenever possible, to reduce the overheads asso-
ciated with accessing files.

4.5 Compacting and extending

After a while, discs tend to get fragmented, with lots of short gaps separated by files.
The space can be recovered into one contiguous block using the *COMPACT command.
This shuffles all of the files and directories down so that there are no gaps between them,
leaving all of the space at the end.

Directories can be shrunk to fit the files that they contain using the*COMPACT command.
This is especially useful when the files in a directory are not being changed at all, e.g., for
program directories which are finished, or games directories. The executable directory
feature of HDFS can be used to make these into self-contained applications which can be
*RUN.

If a file has run out of space to grow, the *EXTEND command can be used to move it
into the largest gap on the disc, where it may have more space to grow. This command

10 5 COMMAND SYNTAX

can be combined with *COMPACT for maximum effect; the sequence *EXTEND, *COMPACT,
and then *EXTEND will ensure that the maximum amount of space left in the directory is
available for the file to grow into.

Both the *COMPACT and *EXTEND commands overwrite the I/O processor memory, and
so should not be used if you have valuable data in memory which has not been saved.

5 Command syntax

Some conventions are followed in the descriptions of the command syntax given. The
syntactic elements in the descriptions are:

dsp This is a directory specification.

For DNFS directories, a directory specification is an optional drive specification
followed by a single character directory name. If the drive specification is present,
it should be separated from the directory name by the directory separator character
(default ‘.’).

An HDFS directory specification is an optional drive specification followed by
a series of directory names, each separated by the directory separator character
(default ‘.’). HDFS directory names are similar to filenames, but can be between
2 and 7 characters long. The drive specification refers to the root directory of the
drive, and the directory names are relative to that point (or the current directory if
no drive specification is given).

The root directory character (default ‘˜’) can be used to refer to the root directory of
the current drive. The parent directory character (default ‘ˆ’) indicates the parent
of the current directory. A sequence of parent directory characters separated by
directory separator characters can be used to refer to a directory much higher in
the hierarchy.

In both cases, if a drive specification is given, it must be immediately preceded by
a drive prefix character (default ‘:’).

The maximum length of a directory specification (including separator characters)
is 31.

fsp This is a file specification. It consists of an optional directory specification,
followed by a file name. The file name can be between 1 and 7 characters long,
and should be separated from the directory specification by a directory separator
character (default ‘.’), if one is present.

The maximum length of a file specification (including separator characters) is 31.

In some cases, a file specification can also refer to a directory; the descriptions of
the commands below state when this is possible.

afsp This is an ambiguous file specification. An ambiguous file specification is the
same as a file specification, but includes at least one wild card character. The wild
card characters are the glob character2 (default ‘*’), which matches any number of
characters, and the query character (default ‘?’), which matches any one character.

2Named after its UNIX equivalent.

11

drv This is a drive specification. A drive specification is merely a number indicating
which disc drive to use. Up to four surfaces are supported by HDFS, and the drive
numbers for these are between 0 and 3. With double sided drives, drive number
2 and 3 refer to the reverse sides of drives 0 and 1. These drive numbers are not
generally used with HDFS, which can treat both sides of a double-sided drive as
one disc.

If a drive specification appears in an optional context, it must by prefixed by the
drive prefix character (default ‘:’).

load, exec, addr These are hexadecimal memory addresses. A nominal 32-bit address-
ing range is used; if the top 16 bits are &FFFF, the bottom 16 bits are used to
address the I/O processor memory. If there is no second processor, all addresses
always refer to I/O processor memory. I/O processor addresses in the range
&8000–&BFFF refer to sideways ROM sockets; the ROM socket accessed by
these addresses can be set with *OPT 3.

Only 18 bits of the load and execution addresses are stored in HDFS format direct-
ories, so many addresses above the stored range will produce the same results.

len This is a hexadecimal file length. HDFS stores 19 bits of the file length, whereas
DNFS stores 18 bits.

start, (+)end, (+)offs These are hexadecimal addresses, usually of disc sectors, but
sometimes memory addresses. If the optional plus signs are used for the end
or offset sectors, they are treated as offsets from the start address.

Sector addresses in HDFS are 11 bits long, DNFS sector addresses are 10 bits long.

LXWR This is a permissions specification; any combination of the characters L, X, W,
and R (including none of them) can appear.

string Strings are delimited by double quotes ‘"’. Any printing character can appear in
a string, and the normal operating system escape sequences can be used to insert
non-printing characters. The vertical bar ‘|’ is used to make a control character
from the character that follows it, the sequence ‘|!’ sets the high bit of the character
or control character that follows, and the sequence ‘|?’ is used to represent the
DELETE character (&7F).

The length of the string accepted is dependent on the context in which it appears.

hex Hexadecimal numbers are accepted by some commands, usually in a sequence of
numbers. These can be 1, 2, 3, or 4 byte numbers.

dec Decimal numbers are accepted by some commands. These numbers should be
positive, and less than 65536 (2 bytes).

skew This a hexadecimal number which is used to set the track skew when formatting
discs. It should have a value between 0 and 9.

:˜ˆ.*? This specification is only used once, for the *WILD command. Six characters are
required, none of which are the same as any of the others.

12 6 FILING SYSTEM COMMANDS

Any other numbers or single characters appearing in the syntax are literals, and should
be specified exactly as shown.

Note that some file specifications may be valid for DNFS and HDFS, whereas others
(which include directories) are valid only for DNFS or HDFS.

There are several “Meta-characters” which modify the syntactic elements:

f: : :g Curly braces indicate that the part of the description between the braces may be
repeated as many times as necessary. There are limits on the maximum number of
repetitions possible, which depend on the context in which it appears.

<: : :> Angle brackets are used to group alternatives (see the forward slash, below)
which are not optional (i.e., at least one of the alternatives must appear).

(: : :) The part of the description between the parentheses is optional, and may be omitted
entirely.

: : : /: : : The parts separated by forward slashes are alternatives; one and only one of
them should be specified.

6 Filing system commands

This section describes the filing system commands available. These commands are only
active when HDFS is the current filing system. The syntax of each command is given in
the section title.

All of these commands may be prefixed by “H” to distinguish them from similar
commands in other ROMs.

The output of these commands cannot be *SPOOLed (the *SPOOL file is actually turned
if output is generated by these commands).

6.1 *ACCESS afsp (LXWR)

This command changes the permissions on the files or directories specified.

6.2 *ATTRIB fsp (load exec) (len) (LXWR)

The attributes of a file can be changes with this command. The file’s length cannot be
made longer than the space available for it. As files are held in contiguous blocks, the
space available is the number of sectors used by the file plus the number of sectors free
immediately after it.

6.3 *BUILD fsp (A)

Simple text files can be created with this command. Lines are read in, and written to the
file. The A flag indicates that the file should be appended to, rather than overwritten.

Due to space limitations, there is a limit of 63 characters per input line.
The execution address of files created with *BUILD is set to &FFFFFFFF, because it

is assumed that they will be used for *EXECing.

6.4 *COMPACT (dsp) (D) 13

6.4 *COMPACT (dsp) (D)

This command compacts the directory specified, or the current directory if no directory
is given. Files are moved together so that the maximum amount of free space is left in
the directory. If the D flag is given, the directory specified will be shortened so that there
is no free space left.

This command overwrites the contents of the I/O processor memory, so it should not
be issued if there is valuable data in memory which has not been saved.

6.5 *COPY <fsp fsp/afsp dsp> (C)

Files or directories can be copied between different directories or discs with this com-
mand. Files or directories can also be copied to a different name on the same disc with
the command. There are two different forms for this command; if two filenames are
specified, the contents of the first file will be copied into to the second. If an ambiguous
file specification and a directory specification are given, all of the files matching the
ambiguous file specification will be copied into the directory. Either a DNFS or an HDFS

directory can be given, and files can be copied between HDFS and DNFS discs.
The C flag prompts to change the disc between reading and writing files, so files can

be transferred to other discs with one disc drive.
The maximum amount of information is read or written each time the disc is changed,

so the fewest number of disc changes possible will be used.
This command overwrites the contents of the I/O processor memory, so it should not

be issued if there is valuable data in memory which has not been saved.

6.6 *CREATE fsp (load exec) (len) (LXWR) (D)

This command creates a new file entry or directory, but does not actually write any data
into it. If the load and execution addresses and the length are not specified, they default
to zero.

The D flag indicates that a directory is to be created; in this case, the length must be a
whole number of sectors, greater than two. A new catalogue is initialised in the first two
sectors of the directory. Note: when creating directories, at least one of the attributes
LXWR should be given, otherwise the D flag may be mistaken for the directory’s length. It
is a good idea to make directories bigger than required initially, as they can be shrunk to
fit the files easily later, and files can be shuffled around inside them.

The file or directory’s length cannot be made longer than the space available for it.

6.7 *DEDIT (drv) start (+)end ((+)offs) (R)

This command invokes the disc, file, and memory editor on the section of the disc
specified by the start sector, up to but not including the end sector. If an offset is
supplied, the cursor will be placed at that point initially.

The R flag invokes the editor in read-only mode, which can be used to view the data
but not change it.

If no disc drive is specified, the current drive is used.

14 6 FILING SYSTEM COMMANDS

6.8 *DELETE fsp

This command deletes the file or directory specified. Directories cannot be deleted
unless they are empty. Locked files or directories cannot be deleted.

6.9 *DFIND (drv) start (+)end <string/fhexg>

Data on a disc can be searched for with this command. The sector and byte address
of each occurrence of the data is displayed. The search performed by this command is
optimal.

The data to search for is specified by a string or a sequence of hex numbers. The
maximum length of the string or sequence of hex numbers is 31 bytes.

The area of the disc to search is delimited by the start and end sector addresses.
If no disc drive is specified, the current drive is used.

6.10 *DIR (dsp)

This command sets the current directory to the directory name specified. If no directory
name is specified, it lists the contents of the current directory.

6.11 *DRIVE drv (S/D/A) (C)

This command sets the current drive, or affects the parameters of a drive.
If the S, D, or A flags are given, the drive is set into single step, double step, or auto-step

mode. Single step mode should be used for 40 track drives; HDFS otherwise assumes
that 80 track drives are used, and will try to double step. The double step mode allows
40 track discs to be read on 80 track disc drives. Normally auto mode is enabled, in
which double stepping will be used for 40 track discs. The single or double-step modes
may also be necessary when a disc has a copy protection scheme which alters the normal
track layout or number of sectors per disc. The default value of the single and double
step mode for all drives can be set with the keyboard links described in appendix B.

The C flag disables sector address checks, which normally prevent access to sectors
outside the range on the disc. This may be needed to allow some elaborate copy-
protection schemes to work.

6.12 *DUMP fsp

A hexadecimal dump of the file is displayed by this command, with an ASCII repres-
entation beside it. In 80-column display modes, 16 bytes are shown per row. In 40 and
20-column display mode, 8 bytes are shown. The dump shows the address of the row
(relative to the start of the file), the byte values in hexadecimal, and then their ASCII
representation. Non-printable characters appear as dots. Bytes past the end of the file
appear as asterisks.

6.13 *ENABLE

This command does nothing; it is allowed for compatibility with DNFS.

6.14 *EXTEND fsp 15

6.14 *EXTEND fsp

This command ensures that the file or directory specified has the largest space possible to
grow into, without shuffling other files around. This may involve moving the file itself.
The sequence *COMPACT, then *EXTEND, and then *COMPACT again will usually create the
maximum space possible for growth.

This command overwrites the contents of the I/O processor memory, so it should not
be issued if there is valuable data in memory which has not been saved.

6.15 *FEDIT fsp (offs) (R)

This command invokes the disc, file, and memory editor on the file specified. If an offset
is supplied, the cursor will initially be placed at that point relative to the start of the file.
The cursor will not be allowed to move outside the bounds of the file.

The R flag invokes the editor in read-only mode, which can be used to view the data
but not change it.

6.16 *FFIND fsp (offs) <string/fhexg>

Data in a file can be searched for with this command. The address of each occurrence
of the data relative to the start of the file is displayed. The search performed by this
command is optimal.

The data to search for is specified by a string or a sequence of hex numbers. The
maximum length of the string or sequence of hex numbers is 31 bytes.

An offset can be given to start the search part way through the file. Note that if a
sequence of hex numbers is given the offset must be specified, otherwise the first number
will be treated as the offset.

6.17 *FORMAT drv <40/80> <X/A> <S/D> (skew)

New discs can be formatted using this command. The drive must be specified, as well
as the number of tracks to use, whether the extended HDFS catalogue (X) or the Acorn
catalogue (A) are to be used, and whether to format single or double sided (S or D).

Track numbers are printed as each disc track is formatted.
The skew parameter is a measure of how many sectors are skipped when the drive

steps between tracks. The default skew value is 3.
If a disc which is already formatted is in the specified drive, the command will ask

for confirmation before formatting.

6.18 *FREE (dsp)

This command lists the available free spaces in the directory specified, or in the current
directory if no name is given. The start sector and length in sectors of each free block is
displayed, with a summary of the total space available.

16 6 FILING SYSTEM COMMANDS

6.19 *INFO afsp

Information on the files and directories which match an ambiguous file specification is
displayed by this command. This information displayed is the name, permissions, load
address, execution address, length, and start sector of the file or directory.

6.20 *LIB (dsp)

This command sets the current library to the directory name specified. If no directory
name is specified, it lists the contents of the current library.

The current library is searched for commands which are *RUN if they are not found
in the current directory.

6.21 *READ (drv) addr start (+)end (D)

This command reads sectors off a disc into memory. Data from the start sector address
up to but not including the end sector address will be read into memory, starting at the
address given.

The D flag reads sectors which have been saved with the 8271 disc controller chip’s
“deleted data” mode.

The current drive is used if none is given.

6.22 *RENAME <fsp fsp/afsp dsp> (C)

Files can be renamed or moved between different directories or discs with this command.
There are two different forms for this command; if two filenames are specified, the first
file will be renamed to the second. Note that this may involve moving data around if
the files are in different directories. If an ambiguous file specification and a directory
specification are given, all of the files matching the ambiguous file specification will be
moved into the directory. Either a DNFS or an HDFS directory can be given.

The C flag prompts to change the disc between reading and writing files, so files can
be transferred to other discs with one disc drive.

The maximum amount of information is read or written each time the disc is changed,
so the fewest number of disc changes possible will be used.

This command overwrites the contents of the I/O processor memory, so it should not
be issued if there is valuable data in memory which has not been saved.

6.23 *TITLE string (dsp)

The title of a directory can be set with this command. If no directory name is given,
the current directory is used. The title is displayed when the directory is listed. The
maximum length of a directory title is 12 characters.

6.24 *TYPE fsp (C)

This command displays a file as text. All characters are sent to the operating system
OSASCII entry, so control characters in the file may cause unexpected (or perhaps,
desired) effects, such as changing colour, display mode, etc.

6.25 *VERIFY drv <40/80> <X/A> <S/D> 17

The C flag causes non-printing characters to be displayed as their equivalent operating
system escape sequence. Newlines are generated after each RETURN (&0D) character.

6.25 *VERIFY drv <40/80> <X/A> <S/D>

This command verifies that the data on a disc is not damaged. The drive number, number
of tracks, catalogue type, and number of sides to check are required. The catalogue type
is either the HDFS extended catalogue (X) or the Acorn (A) catalogue. Single (S) and
double sided (D) discs can be checked. The track numbers are printed as the command
executes, and a question mark is displayed after any track number on which a verification
error occurred.

6.26 *WILD :˜ˆ.*?

The special characters which divide file specifications can be altered with this command.
Six different characters must be specified, to replace the default characters shown below:

: This is the drive prefix character, which is used before drive specifications in
contexts where they are optional.

˜ This is the root directory character, which refers to the root directory of the current
drive.

ˆ This is the parent directory character, which is used to refer to the parent directory
of the current directory.

. This is the directory separator character, which is used to separate drive specifica-
tions from directory specifications, directory names from each other, and directory
specifications from file names.

* This is the glob character, which matches any number of characters in ambiguous
file specifications.

? This is the query character, which matches any single character in ambiguous file
specifications.

6.27 *WIPE afsp (A)

This command attempts to delete the files specified. It prompts for confirmation of
deletion for each unlocked file which matches the file specification. If this command is
interrupted, no files will be deleted.

The A flag may be used to confirm all of the files for deletion; this has a similar effect
to the *DESTROY command in DNFS.

6.28 *WRITE (drv) addr start (+)end (D)

This command writes sectors to a disc from memory. Data is written at the start sector
address up to but not including the end sector address, from the memory address given.

The D flag writes sectors using the 8271 disc controller chip’s “deleted data” mode.
The current drive is used if none is given.

18 7 UTILITY COMMANDS

7 Utility Commands

These commands are available all the time, even when HDFS is not the current filing
system.

All of these commands may be prefixed by “H” to distinguish them from similar
commands in other ROMs.

7.1 *CLOSE

This command will close all open files on the current filing system.

7.2 *DISC, *DISK

These commands have the same action, which is to select the HDFS as the current filing
system.

7.3 *GOIO addr

This command is similar to the second processor command *GO, which starts execution
at an address in the second processor, except that *GOIO starts execution in the I/O
processor. It is used from the second processor to run programs downloaded into the I/O
processor.

7.4 *KEYS

This command lists the current definitions for active function keys, in a form suitable
for use with the operating system *KEY command.

7.5 *MEDIT start (+)end ((+)offs) (R)

This command invokes the disc, file, and memory editor on the section of memory
specified by the start address, up to but not including the end address. If an offset is
supplied, the cursor will be placed at that point initially.

The R flag invokes the editor in read-only mode, which can be used to view the data
but not change it.

7.6 *MFIND start (+)end <string/fhexg>

Data in memory can be searched for with this command. The memory address of each
occurrence of the data is displayed. The search performed by this command is optimal.

The data to search for is specified by a string or a sequence of hex numbers. The
maximum length of the string or sequence of hex numbers is 31 bytes.

The area of the memory to search is delimited by the start and end addresses.

7.7 *MODE dec

The display mode is changed by this command. It is equivalent to the BASIC command
MODE.

7.8 *MOVE start (+)end addr 19

7.8 *MOVE start (+)end addr

This command moves a block of memory from one address to another. The block
of memory to be moved is delimited by the start and end addresses, and is moved
to the other address given. Overlapping source and destination blocks are detected,
and handled correctly. The source and/or destination address may be in I/O or second
processor memory.

7.9 *ROMS

The ROMS installed in the sideways ROM sockets may be listed with this command. The
ROM socket number, ROM version number, entry points, and title string are displayed
for all sockets. The flags S, L, and R are used to indicate that the ROM has service,
language, and/or relocation entries.

7.10 *VDU <string/f((+/-)dec) (,/;)g>

This command is used to send a string or sequences of bytes to the operating system
OSWRCH entry for display. The syntax of this command may look complicated, but is
exactly the same as BASIC’s VDU command. A string may be displayed, or a sequence
of bytes and words. The numbers in the sequence are positive or negative decimals; a
semi-colon after a number indicates that it to be treated as a word (2 bytes). Commas or
spaces may be used to separate individual bytes.

The maximum length of string or sequence which can be displayed is 31 bytes.

8 Other commands

The commands in this section are recognised by the operating system, and passed to
the filing system through various vectors, primarily OSFILE and FSCV. In some cases,
the parameters are interpreted by the operating system; in others, they are passed to the
filing system to interpret.

8.1 *.

This is shorthand for *CAT.

8.2 */fsp : : :

This is shorthand for *RUN. It allows file specifications including directories to be given
easily, without the operating system mistaking the directory for an abbreviated command.

8.3 *CAT (dsp)

This command lists the catalogue for the directory specified, or the current directory if
none is given. HDFS reports the name of the directory being listed, and then the directory
title, cycle or key number, number of sectors allocated, start sector, boot-up option,
current directory and current library before the actual catalogue.

20 8 OTHER COMMANDS

The catalogue is listed in alphabetical order, with the permissions after each file.
Acorn format (DNFS) catalogues are listed with the current directory first and its’
directory character missing, and then the other directories, in alphabetical order. In HDFS

format catalogues, the flag D next to the permissions indicates that the entry is a directory.
In 80-column modes, four files are displayed on each line; in 20 and 40-column

modes, two files are listed on each line.

8.4 *EXEC fsp

Files can be used as keyboard input with this command. The contents of the file are
operated on exactly as if they had been typed at the keyboard. The main use of *EXEC is
for auto-boot files which run applications.

8.5 *HELP (HDFS/UTILS)

This command prints out the help available from the ROM. With no keyword, HDFS

prints the version number, and the keywords to which *HELP will respond.
If the HDFS keyword is given, the syntax of all of the filing system commands in

section 6 will be printed.
The UTILS keyword causes the syntax of all of the utility commands in section 7 to

be printed.

8.6 *LOAD fsp (addr)

This command loads a file to the address specified, or to its’ own load address if no
address is given. The address may be in I/O processor memory or second processor
memory; if the address is in I/O processor memory, and it would erase the HDFS private
workspace, the ROM filing system (RFS) is invoked after the file is loaded. This allows
large files to be loaded to low memory addresses safely. If the address is in I/O processor
memory, and in the range &8000–&BFFF, the data is loaded into the sideways ROM
socket given by the value of *OPT 3.

8.7 *OPT dec(,dec)

This command sets the filing system options. The numbers determine which option is to
be set, and what its value is to be. Section 11.7 contains a list of what effects the options
have in HDFS.

8.8 *RUN fsp : : :

This command loads and executes a file. The file is loaded to its’ own load address, and
executed at its’ own execution address. The rest of the command line to *RUN is made
available for the program to read through the OSARGS call.

The file is first searched for in the current directory, and then in the current library if
that fails.

In HDFS, files can only be executed if they have execute permission set. Files on
Acorn format catalogues can always be executed.

8.9 *SAVE fsp start (+)end (exec (load)) 21

As a special case, if the execution address is &FFFFFFFF, the file will be *EXECed
instead of run. If a directory is *RUN, it will be made the current directory, and its’
auto-boot options will be used to determine whether to look for a !BOOT file to load, run
or *EXEC.

8.9 *SAVE fsp start (+)end (exec (load))

Blocks of memory can be saved to files with this command. The memory to be saved is
delimited by the hexadecimal start and end addresses. The execution address and load
address of the file saved can be set by the optional exec and load arguments.

If the addresses to be saved are in I/O processor memory, and in the range &8000–
&BFFF, the data is saved from the sideways ROM socket given by the value of *OPT
3.

8.10 *SPOOL (fsp)

This command sends output to the screen to a disc file as well. It can be used to get a
textual representation of almost anything that can be printed into a file.

If no file specification is given, *SPOOLed output is turned off.
In HDFS, filing system commands which produce output turn off *SPOOLed output,

because of potential race conditions.

9 The Disc, File, and Memory Editors

The *DEDIT, *FEDIT, and *MEDIT commands invoke an interactive hex and ASCII data
editor. The user interface is the same for all of these commands.

All of the editing commands can be invoked in read-only mode, which allows viewing
but not alteration of the data.

The display format for the editor is similar to *DUMP; on each row, the address
of the data is displayed at the left, followed by a number of bytes in hexadecimal
representation, and then the same bytes in ASCII representation. The number of bytes
which are displayed on each row is 16 in 80 column display modes, and 8 in 40 column
modes. The editor cannot be used in 20 column modes.

In the file editor, the address displayed is the offset from the start of the file. The disc
editor displays the absolute sector address, and the memory editor displays the absolute
memory address.

The cursor can be moved about using the cursor keys. The left and right keys
move one byte forwards or backwards, wrapping around to the next line at the edges
of the screen. The up and down keys move forward or backward by one row. Larger
movements up and down are possible using SHIFT or CTRL with the cursor keys. SHIFT

with the up and down keys moves the cursor one screenfull forward or backwards. CTRL

with the up and down keys moves the cursor to the start or end of the data. The cursor
can be moved to the start or end of the current line by using CTRL with the left or right
keys. The RETURN key moves the cursor to the start of the next line.

The editor starts with the cursor in the hexadecimal data area. It can be moved
to the ASCII data area by pressing SHIFT with the right cursor key, and back to the
hexadecimal area with SHIFT and the left cursor key. When in the hexadecimal area,

22 10 OSWORD

typing hexadecimal symbols will alter the current byte. In the ASCII area, the code for
the character typed is inserted, and the cursor is moved one place forward. If the editor
is in read-only mode, no alteration is made.

The editor has a buffer of 512 bytes of data which may be modified before it is
updated to disc or memory. The buffer is updated automatically if you move outside
the area which it holds, and it may be copied back at any time by pressing the COPY

key. If an attempt is made to quit the editor while the buffer has not been updated, the
editor will sound the bell, and continue normally. If a second attempt is made to quit
immediately, the editor will then exit.

The ESCAPE key is used to quit the editor.

A summary of the keys recognised is given below:

Key Normal SHIFT CTRL

COPY Update to disc/memory
ESCAPE Quit editor
RETURN Start of next line
 Backward byte Hex area Start of row
! Forward byte ASCII area End of row
" Back row Back screen Start of data
Forward row Forward screen End of data

10 OSWORD

The operating system’s OSWORD entry point is used to provide some functions which
are of general use.

On entry to OSWORD, the accumulator contains a value which determines the
operation to be performed. X and Y contain the address of a parameter block which
is used to pass parameters to and from OSWORD (X low byte, Y high byte). The
parameter block may reside in either the I/O or second processor memory.

The OSWORD codes recognised by HDFS are listed in the following sections.

10.1 A=&7B Move a block of memory

This call has the same effect as the *MOVE command. A block of memory is transferred
from one memory location to another. The source and destination addresses can be in
I/O or second processor memory.

The format of the parameter block is:

10.2 A=&7C Multiple track 8271 command 23

00
01
02
03

Source address of data

04
05
06
07

End address of data

08
09
0A
0B

Destination address

10.2 A=&7C Multiple track 8271 command

This call applies an 8271 disc controller command to a range of sectors on the disc. The
8271 command used determines whether data is read from or written to the disc. The
command code used should be one of the 8271 multiple sector commands; appendix D
lists the 8271 commands.

The parameter block format is:

00 Drive number
01
02
03
04

Source or destination data address

05
06

Start sector

07
08

Number of sectors to transfer

09 8271 command

If the drive number is &FF, the current drive will be used.

10.3 A=&7D Read cycle number

The disc cycle number or key can be read with this call. The disc cycle number is a
number which is used to distinguish discs with similar catalogues. It is normally the
number of times the catalogue on the disc has been written, but on HDFS root directories,
it is a one-byte checksum of the directory.

The format of the result block is:

00 Cycle number

10.4 A=&7E Read directory size

The size of the current directory (in bytes) can be read with this call.
The format of the result block is:

24 11 VECTORS

00
01
02
03

Directory size

10.5 A=&7F Single track 8271 command

This call executes a single 8271 disc controller command, and returns the result code.
The number of parameters required depends on the 8271 command used. The 8271
command used determines whether data is read from or written to the disc; appendix D
lists the 8271 commands. The result code is written into the next location after the
parameters.

The format of the parameter block is:

00 Drive number
01
02
03
04

Source or destination data address

05 Number of parameters to 8271 command, n
06 8271 command
07
...
7 + n

8271 command parameters

8 + n Space for result code

If the drive number is &FF, the current drive will be used.

11 Vectors

Filing systems must provide a series of seven vectors when selected. These vectors point
to relevant routines within the filing system.

The filing system vectors are:

&212 FILEV Operations on whole files
&214 ARGSV Read/write file arguments
&216 BGETV Get one byte from an open file
&218 BPUTV Put one byte to an open file
&21A GBPBV Get/put a block of bytes to/from an open file
&21C FINDV Open/close a file for byte access
&21E FSCV Various filing system control actions

The HDFS supports all of the filing system vectored operations, with a few restrictions.
Some extended operations are also provided; these are marked �.

All of the addresses and file lengths in the parameter blocks are specified least
significant byte first.

11.1 OSFILE 25

11.1 OSFILE

Call address &FFDD, indirected through &212.
On entry, X and Y point to a parameter block in memory (X low byte, Y high byte).

The format of the parameter block is:

00
01

Address of the filename, terminated by RETURN (&0D)

02
03
04
05

Load address of the file

06
07
08
09

Execution address of the file

0A
0B
0C
0D

Start address of data for save, length of file otherwise

0E
0F
10
11

End address of data for save, file attributes otherwise

The accumulator contains a number indicating the action to be performed:

A=&FF Load the named file at the address given in the parameter block if the least
significant byte of the execution address (XY+6) is zero. If this byte is not
zero, load the named file at its own load address.

A=0 Save a block of memory using the name and addresses given in the parameter
block.

A=1 Change the attributes, load and execution addresses of the named (existing)
file.

A=2 Change the load address of the named file only.

A=3 Change the execution address of the named file only.

A=4 Change the attributes of the named file only.

A=5 Read the attributes, load and execution addresses, and length of the named
file into the parameter block.

A=6 Delete the named file.

A=7� Create a catalogue entry for the named (non-existent) file, with the attributes,
load and execution addresses, and length supplied. A check is made to ensure
that the length does not exceed the space available for the file. No data is
written to the file.

26 11 VECTORS

A=8� Create a new directory with the given name, attributes, addresses, and length
supplied. The load and execution addresses are written to the catalogue, but
are not actually used for anything. A check is made to ensure that the length
does not exceed the space available for the file. A new catalogue is initialised
in the directory.

A=9� Change the length of the named (existing) file. A check is made to ensure
that the new length does not exceed the space available for the file.

A=10� Change the attributes, load and execution addresses, and length of the named
file. A check is made to ensure that the new length does not exceed the space
available for the file.

Only the least significant byte of the attributes is used, for the file permissions. There
are two bits for each attribute; if either of the bits are set, the attribute is set.

Bit Bit Meaning
0 4 Not readable
1 5 Not writable
2 6 Not executable
3 7 Not deletable

On exit, the file type is returned in the accumulator:

0 Nothing found
1 File found
2 Directory found

X and Y are preserved. C, N, V, and Z are undefined.

11.2 OSARGS

Call address &FFDA, indirected through &214.
On entry, X points to a four byte zero page control block. Y contains a file handle

(as provided by OSFIND), or zero. The accumulator contains a number specifying the
action required:

Y=0 A=&FF All open files are updated to disc if necessary.

A=0 The current filing system number is returned in the accumulator.
The filing system number for HDFS is 4.

A=1 The address of the rest of the command line is returned in the zero
page control block, giving access to parameters passed by *RUN
or *command. The command line is always in the I/O processor
memory.

Y6=0 A=&FF Update the file to disc if necessary.

A=0 Read the sequential pointer of the file into the zero page control
block.

11.3 OSBGET 27

A=1 Write the sequential pointer of the file from the zero page control
block. If the file is opened for writing or update, and the new
pointer is greater than the length for the file, the file is extended and
filled with zero data bytes to the required length.

A=2 Read the length of the file into the zero page control block.

A=3� Read the maximum length that the file can reach into the zero page
control block. It may be possible to make more space for the file
by shuffling other files around.

On exit, X and Y are preserved. The accumulator is preserved, except when reading
the filing system type. C, N, V, and Z are undefined, and D is cleared.

11.3 OSBGET

Call address &FFD7, indirected through &216.
On entry, Y contains the file handle, as provided by OSFIND.
A byte is read from the point in the file designated by the sequential file pointer.
On exit, X and Y are preserved. The accumulator contains the byte read. C is set if

the end of file has been reached, and indicates that the byte obtained is invalid. N, V,
and Z are undefined.

11.4 OSBPUT

Call address &FFD4, indirected through &218.
On entry, Y contains the file handle, as provided by OSFIND. The accumulator

contains the byte to be written to the file.
The byte is written at the point in the file designated by the sequential file pointer.
On exit, X, Y, and A are preserved. C, N, V, and Z are undefined.

11.5 OSGBPB

Call address &FFD1, indirected through &21A.
On entry, X and Y point to a control block in memory (X low byte, Y high byte).

The control block format is:

00 File handle
01
02
03
04

Address of the data

05
06
07
08

Number of bytes to transfer

09
0A
0B
0C

New sequential pointer to be used for transferring data

28 11 VECTORS

The accumulator contains a number indicating the action to be performed:

A=1 Put bytes to disc, using the new sequential pointer

A=2 Put bytes to disc, ignoring the new sequential pointer

A=3 Get bytes from disc, using the new sequential pointer

A=4 Get bytes from disc, ignoring the new sequential pointer

A=5 Get the disc title and boot up option. The data returned is in the format:

00 Length of the title, n
01
...
n

Disc title

n+ 1 Boot up option

The boot option is the value that was set with *OPT or FSCV (see section 11.7).

A=6 Read the current directory and device. The data returned is in the format:

00 1
01 Drive number
02 Length of current directory name, n
03
...
n+ 3

Current directory name

A=7 Read the current library name and device. The data is returned in the same
format as the current directory (A=6).

A=8 Read file names from the current directory. The control block is modified, so
that the file handle byte contains the cycle number or directory key, and the
sequential pointer is adjusted so that the next call with A=8 will get the next
file name. The number of bytes to be transferred is interpreted as the number
of file names to read; for the first call, the sequential pointer should be zero.
The data is returned in the format:

00 Length of filename 1, n
1

01
...
n1

Filename 1

n1 + 1 Length of filename 2, n2

n1 + 2
...
n
1
+ � � �

Filename 2

� � � etc.

A=9� Get spaces from the current directory. The data returned is in the format:

11.6 OSFIND 29

00
01

Start sector of gap 1

02
03

Length in sectors of gap 1

04
05

Start sector of gap 2

06
07

Length in sectors of gap 2

� � � etc.

On exit, X, Y, and the accumulator are preserved. N, V, and Z are undefined. The C
flag set if the end of the file has been reached, or if there are no more file names or gaps
to read. In this case, the number of bytes, names or gaps which have not been transferred
are written back to the parameter block. The address field and sequential pointer are
always adjusted to point to the next byte to be transferred.

11.6 OSFIND

Call address &FFCE, indirected through &21C.
On entry, the accumulator specifies what action is to be performed:

A=0 A file is to be closed:

Y=0 Close all files

Y6=0 Y contains the file handle of the file to close

A6=0 A file is to be opened. X and Y point to the file name (X low byte, Y high
byte). The file name is terminated by RETURN (&0D). The accumulator
indicates what type of access is required:

A=&40 The file is to be opened for input only

A=&80 The file is to be opened for output only. If a file with the same name
exists, an attempt is made to delete it before opening for output.

A=&C0 The file is to be opened for update (input and output). The file will
not be created if it does not exist.

On exit, X and Y are preserved. The accumulator is preserved on closing, and on
opening contains the file handle assigned to the file. If the accumulator is zero on exit,
the file could not be opened. C, N, V, and Z are undefined.

11.7 FSCV

There is no direct address to FSCV, indirect access is through &21E.
On entry, the accumulator contains a number specifying what action is to be per-

formed:

A=0 Perform a *OPT command; X and Y are the two parameters. The value of X
determines what action is taken:

30 11 VECTORS

X=0 Restore default values. The defaults values are:

X Value Meaning
1 0 No filing system messages
2 5 Number of retries
3 &F Sideways ROM socket

X=1 Turn on filing system messages. The value of Y determines the
amount of information given:

Y=0 Turn off filing system messages

Y=1 File name and permissions are displayed

Y=2 File name, addresses, length and permissions are dis-
played

If filing system messages are turned on, they are displayed on most
OSFILE and OSFIND operations, and by some other commands as
well.

X=2 The value of Y is the number of retries made before giving up when
a disc error is detected.

X=3 The value of Y is the ROM socket to be used when loading and
saving to I/O processor addresses in the range &8000–&BFFF.

X=4 The auto-boot option of the current directory is set according to the
value of Y:

Y=0 No action

Y=1 *LOAD !BOOT

Y=2 *RUN !BOOT

Y=3 *EXEC !BOOT

A=1 Check whether end of file (EOF) has been reached. On entry X is the file
handle to be checked. On exit, X is &FF if EOF has been reached, and zero
if EOF has not been reached.

A=2 A */ command has been used. The command whose name follows the ‘/’
character will be *RUN.

A=3 An unrecognised operating system command has been used. HDFS will check
the command against its own filing system commands first, and *RUN the
command if it is not found. On entry X and Y point to the command line (X
low byte, Y high byte).

A=4 A *RUN command has been issued. The file name pointed to by X and Y (X
low byte, Y high byte) will be loaded and executed. As a special case, if the
execution address of the file is &FFFFFFFF, the file will be *EXECed instead.

A=5 A *CAT command has been used. X and Y point to the rest of the command
line.

A=6 Shut down HDFS because a new filing system is taking over.

31

A=7 The lowest and highest possible file handles used are returned in X and Y.
HDFS uses the range &12–&17.

A=8 This call is used whenever an operating system command is about to be
processed. It is used by DNFS to implement the *ENABLE flag. HDFS takes no
action on this entry.

12 Errors

A wide variety of errors can be produced by the HDFS. All of the errors use the BBC’s
normal error reporting mechanism, and so can be trapped within programs easily. The
errors are described in the following sections. The error numbers are given in the section
headings, and where possible are the same as DNFS errors.

12.1 Escape (&11)

The ESCAPE key was pressed to abort an operation. This can only happen at certain
points; it is usually disabled during data transfer.

12.2 Bad end (&B0)

This error occurs the end sector address given for a command is too large, or when the
end sector or memory address given is smaller than the corresponding start address. It
can also occur if a block of memory specified by start and end addressed crosses over
from the second processor space to the I/O processor space.

12.3 Bad start (&B1)

This error occurs the start sector address given for a command is too large, or when the
offset specified to the *FEDIT command is larger than the file length.

12.4 Bad length (&B2)

An attempt was made to create a directory with an invalid length, or modify the length
of a file or directory to a size too big for the available space.

12.5 Bad range (&B3)

An offset was specified to a command which was not between the start and end addresses
given.

12.6 Not empty (&B4)

An attempt was made to delete a directory that was not empty. The contents of the
directory should be deleted first.

32 12 ERRORS

12.7 Too long (&B5)

This error occurs when a string or sequence of hex numbers exceeds the maximum length
allowed.

12.8 Bad wild char (&B6)

This error is produced when the command *WILD is used to try to set wild card characters
which are not all different, printable characters.

12.9 Find what? (&B7)

An empty string was given to the *DFIND, *FFIND, or *MFIND commands.

12.10 Bad edit mode (&B8)

The current display mode is not capable of supporting the disc, file and memory editor.

12.11 Parameters (&B9)

Too many parameters were provided for an 8271 controller command.

12.12 Wrong format (&BA)

This error indicates that an attempt was made to access a disc which was not in a valid
format. This usually occurs when the reverse side of a double sided HDFS format disc is
accessed with drive numbers :2 or :3.

12.13 Not readable (&BB)

An attempt was made to open a file for input which is not marked as readable.

12.14 Not executable (&BC)

A command file was *RUN which is not marked as executable.

12.15 Too big (&BD)

The maximum size of number accepted by any HDFS command is &FFFFFFFF for
hexadecimal numbers, or 65535 for decimal numbers. This error occurs when a number
larger than these limits is specified.

12.16 Cat full (&BE)

There are already 31 entries in the directory catalogue. Partitioning files into sub-
directories can free up some more catalogue space.

12.17 Can t extend (&BF) 33

12.17 Can’t extend (&BF)

A file open for output or update has run out of the available space. This error should
occur less frequently in HDFS than DNFS, because new files are opened in the largest
gap available in a directory.

12.18 Too many open (&C0)

Too many files were opened simultaneously; the maximum number of files which HDFS

can have open at one time is 6.

12.19 Not writable (&C1)

An attempt was made to open a file which is not marked as writable for update or output.

12.20 Open (&C2)

An attempt was made to open a file which was already open, or an operation was required
which cannot be performed on open files. Operations which move file contents cannot
be performed on open files.

12.21 Locked (&C3)

The file or directory is locked, and the operation required cannot be performed without
unlocking it first.

12.22 Exists (&C4)

This error is issued when a file or directory specification which exist was specified in a
context in which a new name was required.

12.23 Drive fault EE at DD/TT (&C5)

This error indicates that an error was detected with the disc drive, and that a transfer
could not be performed. The error code, drive number and track address are given in the
error message.

The error code given indicates what the error was:

0A Late DMA
10 Drive not ready
14 Track 0 not found
16 Write fault

These errors are probably unrecoverable.
The first digit of the drive number indicates which disc surface was being accessed

when the fault occurred. This may not be the same as the drive number for HDFS format
discs, which can span the front and back sides of the same disc. The surface codes are:

34 12 ERRORS

4 Surface 0 (side 1 of drive 1)
8 Surface 1 (side 1 of drive 2)
6 Surface 2 (side 2 of drive 1)
A Surface 3 (side 2 of drive 2)

12.24 Dir full (&C6)

No more space is available in the directory. If it is not the root directory, the directory
may be able to be *EXTENDed, and given a larger length with *ATTRIB.

12.25 Disc fault EE at DD/TT (&C7)

This error indicates that an error was detected on the disc, and that a transfer could not
be performed. The error code, drive number and track address are given in the error
message.

The error code given indicates what the error was:

08 Clock error
0C ID CRC error
0E Data CRC error
18 Sector not found

These errors are probably worth trying again; the maximum number of re-tries can be
set using *OPT 2.

The first digit of the drive number indicates which disc surface was being accessed
when the fault occurred. This may not be the same as the drive number for HDFS format
discs, which can span the front and back sides of the same disc. The same codes as the
drive fault error are used.

12.26 Disc changed (&C8)

The disc on which data should have been written has been changed. This can happen
when files are opened and the disc is changed, or when the wrong disc is inserted while
copying files with one disc drive.

12.27 Disc read only (&C9)

An attempt was made to write to a disc which has its write-protect notch covered.

12.28 Bad track (&CA)

A track number which is larger than the current disc can support has been used. This error
sometimes occurs when HDFS double-sided discs are used with a valid track number. In
these cases, specifying the drive number to the command should make it work correctly.

This can also occur when copy-protection schemes are used; an option to the *DISC
command is available to turn off track number checking for these discs.

12.29 Bad option (&CB) 35

12.29 Bad option (&CB)

This error occurs when a *OPT command is used with the code or value out of range. See
section 11.7 for the meaning of the *OPT parameters.

12.30 Bad name (&CC)

An invalid file or directory name has been used. Possible causes for an invalid name are;
wild card characters were used in the directory part, the name is too long, or a directory
or file name part is longer than 7 characters.

12.31 Bad drive (&CD)

A drive number outside the range 0–3 was used.

12.32 Directory (&CE)

A directory specification was given in a context in which only files can be used.

12.33 Not found (&D6)

This error is issued when a file or directory specification which does not exist was used,
in a context in which it was required.

12.34 Syntax: : : : (&DC)

Incorrect command syntax has been used. The correct syntax for the command is shown
in the error message.

12.35 Channel (&DE)

An invalid file handle was used; this may be because the file had been already closed, or
had not been opened successfully.

12.36 EOF (&DF)

An attempt was made to read past the end of a file. An error flag is set on the first attempt
to read past end of file (see section 11.3), and this error is issued on the next attempt to
read.

12.37 Bad command (&FE)

An unrecognised operating system command was issued, and it could not be found in
the current directory or library. This error is also issued by attempts to *RUN non-existent
files.

36 13 COMPATIBILITY

13 Compatibility

The HDFS is compatible with DNFS, but not identical. Most of the commands are the
same, but there are some differences. These are:

Unsupported commands. The following commands are not supported: *BACKUP,
*DESTROY, and *LIST. *BACKUP is replaced by the new syntax for *COPY, and
*DESTROY is replaced by the option to *WIPE. *LIST was not used much, and is not
replaced.

Abbreviations. The differences in the filing system commands means that some abbre-
viations which work with DNFS (e.g., *DE.) will not work with HDFS. The safe
method is to use full command names.

Utility commands. The DNFS utility commands *BUILD, *DUMP, and *TYPE are filing
system commands in HDFS, which means that they can only be used when HDFS is
active. The line length on *BUILD is limited to 63 characters.

Command syntax. There are a few syntax changes. *CAT and *COMPACT take a directory
as an argument instead of a drive. The syntax for *COPY and *RENAME has changed,
so that they take two file specifications or an ambiguous file specification and
a directory specification instead of two drive numbers and an ambiguous file
specification.

A space is needed after all HDFS commands, where it was not necessary in DNFS
e.g., *DIR :0 instead of *DIR:0.

File name syntax. The single character match wildcard in HDFS is normally “?”, instead
of the “#” used for DNFS. It can be changed with the *WILD command if necessary.
The “˜” and “ˆ” characters are also special in HDFS.

No enabling. The *ENABLE command is provided, but is not required by HDFS.

Spooled output. HDFS is not re-entrant, and so it turns off output to the *SPOOL file in
certain circumstances which could cause race conditions. Most DNFS output can
be spooled.

Catalogue reporting. The format of the catalogue displayed by HDFS is slightly different
than DNFS. The current directory and library take more space, and the directory
start sector has been added to the information. File permissions are reported
differently, because HDFS supports permissions for reading, writing, and executing
files.

Display modes. HDFS makes full use of the 80 column modes. Catalogues and data
dumps use the full width of the screen, whereas DNFS just produces 40 column
output whatever the display mode.

The same memory areas are used by HDFS and DNFS; see appendix F for details of
the HDFS memory usage.

Some copy protection schemes which were designed to run under DNFS may not
initially work with DNFS, because of the auto-stepping and sector number checking
features. The extra parameters to the *DRIVE command can be used to disable sector

37

checking, and set the step rate to single or double stepping to allow these schemes to
work. The OSWORD &7F command for access to the 8271 disc controller chip is fully
supported by the HDFS.

38 B INSTALLATION

A Overview

Floppy discs are flat discs made from a similar material to cassette tape, and are mag-
netised to store information.

Floppy discs and disc drives come in many different sizes and formats. The most
popular sizes now are 5.25 inch and 3.5 inch, but 8 inch discs are still available. There
are three things which determine how much information a disc can store; the number of
tracks supported by the disc drive, whether the disc drive is single or double sided, and
the recording density. Information is written on to floppy discs in a series of concentric
bands, or tracks. Most disc drives will be able to read and write 80 of these tracks,
but some older drives may only support 40 tracks. An 80 track disc will store twice
as much information as a 40 track disc. Double sided disc drives have two read/write
heads, one on each side of the disc, and so are able to record twice as much information
as a single sided drive, which has only one read/write head. Note: single sided discs
cannot be inverted to use the reverse side of the disc, except for 3.5 inch discs. The
recording density determines how much information can be stored on each track of a
disc. Single density recording allows 10 sectors of 256 bytes each to be recorded on a
typical disc, whereas double density recording allows up to 18 sectors per track. The
Intel 8271 Floppy Disc Controller chip which HDFS is designed to work with can only
read and write single density discs.

HDFS is designed to work with single or double sided, 40 or 80 track disc drives. The
amount of information which can be stored on a disc is given in the table below.

Tracks
Sides 40 80

Single sided 100k 200k
Double sided 200k 400k

B Installation

When you have inserted the HDFS ROM and turned the machine on, you should see a
message like:

BBC Computer 32K

Hierarchical DFS

BASIC

>

This message indicates that the HDFS is selected as the current filing system. It is
possible to have the DNFS installed as well as the HDFS. In this case, the ROM in the
higher priority socket will take control by default. If the HDFS is in the lower priority
socket, it may be selected by the key combination H-BREAK. The DNFS may be selected
by pressing D-BREAK.

The HDFS also allows commands to be prefixed by “H”, so it can also be selected
unambiguously by the command *HDISC.

39

There are several link switches at the bottom right hand corner of the keyboard PCB;
some of these can be used to set options to HDFS. Links 3 and 4 are used to set the disc
drive characteristics, and links 1 and 2 are used to set the default stepping configuration.

The disc drive timing link positions are:

Link Step Settle Head
3 4 time time load
1 1 4 16 0
1 0 6 16 0
0 1 6 50 32
0 0 24 20 64

The drive stepping configuration links are:

Link
1 2 Action
1 0 Double stepping enabled
0 1 Single stepping enabled
0 0 Automatic double stepping enabled

C Command Summary

This section contains a list of the HDFS commands and their syntax.

ACCESS afsp (LXWR)
ATTRIB fsp (load exec) (len) (LXWR)
BUILD fsp (A)
CLOSE
COMPACT (dsp) (D)
COPY <fsp fsp/afsp dsp> (C)
CREATE fsp (load exec) (len) (LXWR) (D)
DEDIT (drv) start (+)end ((+)offs) (R)
DELETE fsp
DFIND (drv) start (+)end <string/{hex}>
DIR (dsp)
DISC
DISK
DRIVE drv (S/D/A) (C)
DUMP fsp
ENABLE
EXTEND fsp
FEDIT fsp (offs) (R)
FFIND fsp (offs) <string/{hex}>
FORMAT DRV <40/80> <X/A> <S/D> (skew)
FREE (dsp)
GOIO addr
INFO afsp
KEYS
LIB (dsp)

40 D 8271 COMMANDS

MEDIT start (+)end ((+)offs) (R)
MFIND start (+)end <string/{hex}>
MODE dec
MOVE start (+)end addr
READ (drv) addr start (+)end (D)
RENAME <fsp fsp/afsp dsp> (C)
ROMS
TITLE string (dsp)
TYPE fsp (C)
VDU <string/{((+/-)dec) (,/;)}>
VERIFY drv <40/80> <X/A> <S/D>
WILD :˜ˆ.*?
WIPE afsp (A)
WRITE (drv) addr start (+)end (D)

D 8271 commands

This section describes the operations supported by the 8271 floppy disc controller chip.
These commands can be sent to the 8271 using the OSWORD &7F call. Refer to the
8271 FDC data sheet for more information.

Some of the commands in the table below operate on multiple sectors; for these
commands, the sectors must all be on the same track. Other data transfer commands
operate on single sectors only. The commands supported by the 8271 FDC are:

Command Op P1 P2 P3 P4 P5
Scan multi 00 Track Sector Len/Sec Scan step Field length
Scan deleted multi 04 Track Sector Len/Sec Scan step Field length
Write 0A Track Sector
Write multi 0B Track Sector Len/Sec
Write deleted 0E Track Sector
Write deleted multi 0F Track Sector Len/Sec
Read 12 Track Sector
Read multi 13 Track Sector Len/Sec
Read deleted 16 Track Sector
Read deleted multi 17 Track Sector Len/Sec
Read track ID 1B Track 0 NumID
Verify deleted 1E Track Sector
Verify deleted multi 1F Track Sector Len/Sec
Format multi 23 Track Gap 3 Len/Sec Gap 5 Gap 1
Seek 29 Track
Read status 2C
Specify 35 What Step/ Settle/ Load/

Track Track Track
Write register 3A Register Data
Read register 3D Register

The parameters for these commands, and their meanings are:

41

Track This is the track number (normal range 0-79).

Sector This is the start sector on the track (normal range 0-9).

Len/Sec Bits 0–4 indicate the number of sectors accessed (0–9). Bits 5–7 are sector
size (2 for 256 byte sectors).

NumID This is the number of ID fields to transfer.

Scan step Bits 6–7 indicate the scan condition (0 EQ, 1 GEQ, 2 LEQ). Bits 0–5 are the
offset to the next sector in a multi scan.

Field length This is the number of bytes to compare when scanning.

Gap 1 This is the formatting gap between the last sector and the index mark.

Gap 3 This is the syncronisation field formatting gap.

Gap 5 This is the formatting gap between the ID field and sector.

What This value indicates what the other parameters in the command mean. The
values &10 and &18 load surface zero and one bad tracks, and &0D sets the drive
parameters.

Step This is the disc step rate.

Settle This is the disc head settle time.

Load Bits 0–3 are the head load time, Bits 4–7 are the index unload count.

Register This is the register number to read or write.

Data This is the data to read or write to a register.

The result byte returned by the 8271 contains the result value of the command. Bit
5 of the result is a flag which indicates that deleted data was found on the disc. Bits 1–4
contain a completion code which indicates what the final status of the command was:

00 Good completion or scan not met
02 Scan met equal
04 Scan met not equal
08 Clock error
0A Late DMA
0C ID CRC error
0E Data CRC error
10 Drive not ready
12 Write protect
14 Track 0 not found
16 Write fault
18 Sector not found

Note that the scan commands do not behave as specified in the 8271 data sheet. The
memory address of the scan key is not automatically reset each time the scan repeats,
and so the scan key should be duplicated throughout a memory buffer the same size as
the number of sectors being scanned. This behaviour is the same under DNFS and HDFS.

42 F MEMORY USAGE

E Catalogue Format

The format of HDFS and Acorn (DNFS) catalogues differs slightly. The catalogue formats
are similar enough that HDFS discs can be catalogued using DNFS, but no changes should
be made to them. There are two sectors allocated to each catalogue:

Sector 0:
Bytes Data DNFS HDFS

0 Title char 1 b7: Sectors bit 11
1–7 Title chars 2–8

31 �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

8 Filename char 1 b7: Start sec bit 11
9 Filename char 2 b7: Length bit 18
A Filename char 3
B Filename char 4 b7: Directory
C Filename char 5 b7: Not readable
D Filename char 6 b7: Not writable
E Filename char 7 b7: Not executable
F b7: Not deletable b0–6: Directory char b0–6: 0

Sector 1:
Bytes Data DNFS HDFS

0–3 Title chars 9–12
4 Cycle number Key number
5 Entries � 8
6 b0–1: Sectors bits 8–9

b2: 0 b2: Disc sides 1/2
b3: 0 b3: 1

b4–5: Auto-boot option
b6–7: 0

7 Sectors bits 0–7

31 �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

8–9 Load address bits 0–15
A–B Exec address bits 0–15
C–D Length bits 0–15
E b0–1: Start sec bits 8–9

b2–3: Load bits 16–17
b4–5: Length bits 16–17
b6–7: Exec bits 16–17

F Start sector bits 0–7

F Memory Usage

F.1 Zero page

Several zero page areas are used by HDFS.
The NMI workspace from &A0–&A7 is used when the NMI area is claimed for disc

transfers.

F.2 NMI workspace 43

The operating system scratch workspace from &AC–&AF is used for parsing com-
mands.

The filing system scratch workspace from &B0–&BF is used as the main zero page
workspace. The contents are used during HDFS command execution, but are not held
over between commands.

The zero page filing system workspace from &C0–&CF is fully used while HDFS is
active. This area should not be changed by user programs:

C0–C3 Drive information table
C4–C5 Directory start sector
C6 Copy of current drive
C7 Last drive accessed
C8–C9 Command line parameters
CA Last catalogue type
CB Root key of last drive
CC Tube flag
CD Message flag (*OPT 1 value)
CE Number of retries (*OPT 2 value)
CF Sideways ROM number (*OPT 3 value)

F.2 NMI workspace

The NMI workspace in &D00–&D9E is claimed for disc and memory transfers. The
NMI allocation regime is non-greedy; the workspace is returned to its previous owner as
soon as possible. The zero page NMI workspace is also used when the NMI workspace
is claimed.

F.3 Absolute workspace

The absolute workspace in &E00–&11FF is claimed for use by most operations. HDFS

is greedy about absolute workspace; it will not release control of the absolute workspace
until requested by another claimant.

Absolute workspace addresses &E00–&FFF are used to hold a copy of the current
catalogue. This copy is used instead of reading the catalogue off the disc if the disc is
still spinning when an operation is started.

The absolute workspace in &1000–&11FF is used for various purposes:

44 G BENCHMARKS

1000–101F Scratch filename 1
101F–103F Scratch filename 2
1040–105F Current directory
1060–107F Current library
1080–1083 Copy of drive information table
1084–1089 Character table
108A–108F File handle table
1090–109F Command workspace
10A0–10DF String space
10E0–10F5 File info workspace
1100–1115 Open file info 1
1116–112B Open file info 2
112C–1141 Open file info 3
1142–1157 Open file info 4
1158–116D Open file info 5
116E–1183 Open file info 6
11A0–11AF OSGBPB workspace
11B3–11FF Open file workspace

F.4 Private workspace

Seven pages of private workspace are allocated; these will usually be from &1200–
&17FF. The first six pages are used to keep memory buffers for open files. The last page
of private workspace, which is usually in addresses &1800–&18FF, is used for a copy
of vital information which is normally kept in the absolute workspace &1000–&11FF.
This is used when the filing system is shut down and re-activated. This memory page
contains:

00–1F Current directory
20–3F Current library
40–43 Drive table
44–49 Character table
4A–4F File handle table
50–65 Open file info 1
66–7B Open file info 2
7C–91 Open file info 3
92–A7 Open file info 4
A8–BD Open file info 5
BE–D3 Open file info 6
D4 Private workspace validity flag

G Benchmarks

The benchmarks in the tables below indicate how the performance of HDFS compares to
DNFS. There are four columns in each table; the first three columns are results for HDFS

operating on a native HDFS root directory, a single level sub-directory, and an Acorn
format directory. The final column contains results for Acorn’s DNFS 1.20. All of the
times shown are in seconds, most of them timed over 10 repetitions.

All of the tests were performed on discs formatted with a skew of 3.

G.1 SAVE 32K 45

G.1 SAVE 32K

In this test, &8000 bytes were saved to a file. Several variants of this test were performed.
In the tables below, “IO” indicates that the data was taken from the I/O processor, and
“Tube” indicates that the data was taken from the second processor. The keyword
“Spun” indicates that the disc was spinning when the test started, so the drive start-up
time is not counted in the timing. The word “Stop” indicates that the disc was stopped
when the test was started, and the word “New” indicates that a new file entry was used,
rather than writing over an old file.

HDFS HDFS HDFS DNFS
SAVE 32K root sub-dir acorn 1.20
IO, Spun 4.52 4.66 3.83 3.84
IO, Stop 4.82 5.06 4.43 4.40
Tube, Spun 4.54 4.62 3.83 3.87
Tube, Stop 4.73 5.17 4.42 4.49
IO, Spun, New 4.39 4.81 3.84 3.72
IO, Stop, New 4.73 5.04 4.43 4.33
Tube, Spun, New 4.41 4.83 3.84 3.75
Tube, Stop, New 4.85 5.11 4.44 4.37

G.2 LOAD 32K

This test measured the time taken to load &8000 bytes from a file.

HDFS HDFS HDFS DNFS
LOAD 32K root sub-dir acorn 1.20
IO, Spun 3.44 4.03 3.44 3.43
IO, Stop 4.39 4.70 4.30 4.31
Tube, Spun 3.80 4.04 3.80 3.43
Tube, Stop 4.39 4.70 4.30 4.31

G.3 OPEN

The time taken to open a file was measured by this test. There are three variants on this
test, “In” (open for input only), “Out” (open for output only), and “Update” (open for
input and output).

HDFS HDFS HDFS DNFS
OPEN root sub-dir acorn 1.20
In, Spun 0.01 0.40 0.00 0.01
In, Stop 0.50 0.75 0.59 0.54
Out, Spun 0.39 0.79 0.39 0.19
Out, Stop 0.91 1.15 0.99 0.74
Update, Spun 0.01 0.39 0.01 0.00
Update, Stop 0.50 0.74 0.58 0.55

46 G BENCHMARKS

G.4 BPUT 32K

This test measured the time taken to write &8000 bytes into a file, one at a time. There
is one variant on this test, where the second processor’s fast BPUT call was used.

HDFS HDFS HDFS DNFS
BPUT 32K root sub-dir acorn 1.20
Out 54.32 54.36 54.33 55.02
Up 76.04 75.75 76.28 76.03
Fast, Out 28.80 29.23 28.42 29.41
Fast, Update 49.92 49.75 50.46 50.00

G.5 BGET 32K

The time taken to read &8000 bytes from a file one at a time was measured by this test.

HDFS HDFS HDFS DNFS
BGET 32K root sub-dir acorn 1.20
Get 52.70 52.50 52.71 52.86

G.6 MOVE

This test measured how fast the sequential file pointer can be moved.

HDFS HDFS HDFS DNFS
MOVE root sub-dir acorn 1.20
Out 29.15 29.87 29.81 29.60
Up 29.80 29.87 29.80 29.26

G.7 GBPB

There were two variants of this test, where &8000 bytes were read or written to a file
using the OSGBPB call.

HDFS HDFS HDFS DNFS
GBPB root sub-dir acorn 1.20
Read, IO 29.11 29.17 29.12 29.24
Read, Tube 29.14 29.17 29.11 29.24
Write, IO 29.28 29.40 29.28 29.27
Write, Tube 29.27 29.39 29.27 29.28

G.8 SHIFT

This test measured how fast the sequential file pointer could be moved while performing
file operations.

HDFS HDFS HDFS DNFS
MOVE2 root sub-dir acorn 1.20
Read 0.40 0.48 0.40 0.39
Write 0.62 0.68 0.62 0.62

