
“Mosaic Will Kill My Network!”
Studying Network Traffic Patterns of Mosaic Use

Jeff Sedayao, Software Systems Engineer

Intel Corporation

Abstract

Mosaic frightens many network administrators. With a mere click of a mouse button, a user can cause megabytes of

multimedia objects to enter a network. This is of great concern in many environments where networks are heavily uti-

lized. But what are the typical network effects of a Mosaic users? How can we minimize any negative affects and still

give users good performance? Through examination of packet traces, analysis of log files, and simulation of an HTTP

proxy server. we discover the effects of running Mosaic. First, we attmept to construct a network profile of an “aver-

age” Mosaic user at Intel. We take a look at the characteristics of common HTTP operations and the sizes of URLs

that users retrieve. With this information in hand, we recommend some ways to improve performance and minimize

the utilization of network resources. Finally, we discuss areas for future investigation.

Introduction

Mosaic frightens many people. Network administrators fear that their networks will drown in an every increasing tide

of multimedia objects. Managers worry that employees will spend all of their time browsing Web sites around the

planet. While to some these views may seem alarmist, they are valid concerns in many environments. In any case, the

following questions must be asked: what are the network effects of Mosaic use? How can Mosaic performance be

improved? How can any negative effects of running Mosaic be minimized? This paper attempts to answer these ques-

tions.

We take the following approach. First, we try to construct a profile of an average Mosaic user. We then look at the

characteristics of the URLs people access. Next, we examine what a typical Mosaic transaction demands of a net-

work. With this data, we discuss ways performance can be improved and network impact minimized.

 To answer our questions, we have available two resources. First, we have the log files of a CERN proxy server at

Intel. This proxy server is used by about 800 people at Intel. The logs contain information on the size and origin of all

the URL’s accessed for the past four months. Very few if any users of the proxy also use the no caching pragma, so

our record of the what people requested was very complete. Second, we could utilize a Network General Sniffer (tm)

to get packet traces for analysis. This tool allows us to see exactly what happens on the network during Mosaic ses-

sions.

Given these tools, we set out to look at what Mosaic use does to our network. In the first part of this paper is an

attempt to profile the “average mosaic” user. The next section characterizes typical Mosaic transactions. With the data

from the first two sections, we suggest ways that network managers, Web publishers, and Web browser implementors

can improve performance and be less demanding on the networks and the Internet. The final section describes areas

for future research.

Profiles of Mosaic use

Our first instinct was to go through the log files and determine the average number of requests and the average num-

ber bytes that the user put on the network. Since the vast majority of Mosaic users at Intel, are using PC’s or Unix

workstations, one user per client is a reasonable assumption. With this information, an analysis was run. The average

number of HTTP requests made was up being 3.5 requests per user per day!

 This number doesn’t seem particular useful. Indeed, the whole notion of an “average Mosaic user” intuitively does

not seem useful or correct. It is hard to imagine that anyone would make 3.5 requests per day (the half request would

be particularly difficult). It seems more likely that people would use Mosaic a lot on a few days, not at all on some

days, and a little on others. Simply starting up Mosaic with a home page containing in-lined images can result in three

or four HTTP requests. The same analysis was then applied on a weekly basis. This new analysis would determine the

number of accesses made per week by users using Mosaic that week. The results seemed odd. Although the number

of total HTTP requests rises (figure 1), then number of requests per user per week declines (figure 2).

 After some thought, the result does not seem odd. We installed Mosaic to be a tool to help people do their jobs. After

exploring the Web and learning how to use Mosaic, Intel workers settle down to look at the URLs that are needed for

their job or are of pressing personal interest. They are, after all, paid and rewarded for doing their jobs, not browsing

around with Mosaic. This result should be reassuring to managers who fear that their employees will idle away all of

their time with Mosaic. Accesses may increase in the future, however, as more and more internal information

becomes available on Intel’s internal Web, making Mosaic an integral part of the workplace.

We wanted to get an estimate of the local network traffic load that Mosaic users put on the network. The proxy server

logs contain information on the size of URLs brought in. Unfortunately, the logs do not distinguish between a server

refusing to provide information and a proxy server cache hit. Also, the logs do not record the amount of data brought

in on gopher requests. These problems were dealt with as follows. Gopher was such a small part of the URLs

accessed (less than 5%) that it could safely be ignored. To solve the other problem with the logs, we constructed a

crude simulation of a proxy server. The simulation read in the log files, kept a cache of URLs and URL sizes, and then

recorded the amount of data pulled in off the Internet and then resent on our Local Area Network (LAN) to Mosaic

clients. The results were similar to those for the number of requests. Total traffic had a rising trend while the amount

of bytes moved per user had a falling trend (figure 3).

The proxy server logs provide data to characterize URLs brought into the server’s cache. This data gives insight

about Mosaic network traffic. Table 1 shows a list of the top 10 domains that Intel users accessed. The “local” domain

is for traffic going to internal Web servers.

Despite the existence of several Web servers internal to Intel containing such things as on-line job listing and chip

simulator interfaces and despite the fact that most people point their home page inside of Intel, queries to outside of

the company forms the bulk of requests. Four of the top 10 domains are countries outside of North America. Table 1

Table 1: Top 10 domains accessed

Domain Occurences % Total

edu 121126 30.68

com 120338 30.48

local 45145 11.48

nl 17283 4.38

net 14589 3.7

gov 10148 2.57

fr 10139 2.57

ch 8297 2.10

uk 5488 1.39

ca 5204 1.32

shows that there is no locality in Mosaic accesses. Indeed, Mosaic and the Web are abstractions that hide network

concerns from the user. This is important to know. Network designers often rely on locality of access to segment

machines together. Mosaic is totally without locality. Caching proxy servers can help, but the servers will need to per-

form wide ranging accesses at some point.

The size and frequency of objects accessed is important. Table 2 shows the ten file types most frequently pulled from

the Internet into the proxy server. Total traffic is the product of the frequency and the average size.

GIF files are the most frequently accessed type of file, followed by html files. While the average size of a gif file is

19413.508 bytes, there is tremendous variation. Table 2 shows that multimedia nature of Mosaic traffic. Images (GIF,

XBM, and JPEG), video (MPEG), and sound (AU) all are being moved through the network because of Mosaic. Note

that the htm extension is also an HTML file. GIF files and XBM files are common because they are native in-line

images formats in the Web.

Table 3 shows the 10 ten extensions of files sorted by total traffic.

Table 2: Top 10 File Extensions by Average Size

Type Frequency Average Size
Standard

Deviation
Total Traffic

gif 33378 19413.508 59989.442 647984086

html 18926 4302.440 15926.050 102246583

jpg 1951 75315.573 102576.154 146940682

xbm 1619 3326.491 13396.082 5385589

htm 805 6172.908 44303.098 4969191

mpg 659 622351.082 685805.078 410129363

txt 337 23220.125 58770.052 7825182

au 233 610052.112 1849714.549 142142142

ps 141 210336.475 286788.542 29657443

jpeg 57 63566.474 87362.260 3623289

Table 3: Top 10 File Extensions Sorted by Total Traffic

Extension Frequency Average
Standard

Deviation
Total Traffic

gif 33378 19413.508 59989.442 647984086

mpg 659 622351.082 685805.078 410129363

jpg 1951 75315.573 102576.154 146940682

au 233 610052.112 1849714.549 42142142

html 18926 5402.440 15926.050 102246583

ps 141 210336.475 286788.542 29657443

GIF files generated the most traffic. This is not surprising, considering that they are the most frequently accessed type

of file. MPEG video clips produced the next most traffic. The average MPEG file is very large - 622351.082 bytes.

Although there were only 659 distinct mpg files, they generated a tremendous amount of traffic. Note that the MOV

file extension are video clips in the QuickTime (movie format). ZIP and Z extensions are for compressed files, which

are often archives.

 Another source of traffic comes from the Common Gateway Interface (CGI) scripts. These scripts are used to get

forms input and to execute programs on a Web server. Analysis of our logs found 9392 unique scripts that were exe-

cuted. These scripts generated 170 Megabytes of traffic, which would place it third in the list of URL types in total

traffic, behind GIF files and MPEG clips. Scripts are notable in that their results cannot be cached. The top 3 most fre-

quently accessed URLs going through the proxy server are scripts. They account for 11% of all requests made

through our proxy server. This implies that the 11% of the requests cannot be cached and must go out to the Internet.

Characterizing Mosaic Transactions

What happens to the network when a Mosaic user clicks on some highlighted item? We took a packet trace to see how

Mosaic clients, proxy servers, and Web servers behave when requests are issued. Since all our Mosaic clients go

through a proxy server, we also record the proxy server’s behavior. The following is the sequence of events for a suc-

cessful HTTP GET request:

1. Client sets up a TCP connection to a proxy server.

2. The proxy server sends an acknowledgement.

3. The client sends a GET command.

4. The proxy server does a DNS lookup of the name of the machine associated with the IP address of the client.

5. The proxy server does a DNS lookup of the IP address of the name it just received. This is done to verify the infor-

mation received in the previous step.

6. If the URL is not in the cache, then

a. Proxy server does a DNS Look up of the server in the URL.

b. Proxy server sets up connection to server.

c. Server sends an acknowledgement.

d. Proxy server sets up connection to server in the URL.

e. Server begins sending requested data.

7. Data is sent from the proxy server to the client.

8. If the URL was not cached, the proxy server shuts down the connection to the server.

9. The client shuts down the connection to the proxy server.

There are a number of items of interest here. First, there are many DNS lookups associated with a proxy server. The

proxy server looks up the client system’s name from the IP address, and then looks up the IP address based on the

answer it receives in order to verify the answer. It performs at least two DNS lookups for each URL, and three if the

URL is not in the cache. Second, there are at least one (maybe two) TCP connection setups for each URL. Third, the

mov 12 2425062.667 1429724.695 29100752

mpeg 15 1598018.933 3571310.232 23970284

zip 34 390159.647 717634.145 13265428

z 41 245654.293 565730.474 10071826

Table 3: Top 10 File Extensions Sorted by Total Traffic

Extension Frequency Average
Standard

Deviation
Total Traffic

whole process must take place for for EACH of the URLs that are used to display a page. Each in-lined GIF file in a

page must go through this process. Apparently in-lined images were not known when HTTP was created. It would be

more efficient and faster for Mosaic users if all of the items in a page were sent over the same TCP connection. It

does, however, require more state to be maintained in a server. I am told that this issue is well known and may be

addressed in the next version of http.

 Mosaic waits for each GET request to complete before executing the next one. Any delay in the sequence of events

will hurt the performance of a Mosaic user. We had an incident where our nameserver was returning answers to DNS

queries extremely slowly (on a scale of seconds). As a result, the traversing links was extremely slow.

Implications of Mosaic Traffic Patterns

So far, we have profiled a large population of Mosaic users. We also described what happens at the network level

what happens during a typical Mosaic transaction. The questions remain: what does Mosaic use mean for a network

manager? How can system administrators, Mosaic implementors, and Web publishers maximize the performance of

Mosaic while minimize the impact on network? This section tries to answers these questions.

 We need to define Mosaic performance. Let us consider “good performance” to be the ability to bring up pages and

images quickly. Mosaic ceases to be usable if it takes several minutes to bring up each page.

Implications for Network Managers

Mosaic intensively generates many short lived TCP connections. Each image in each page will need at least one TCP

connection set up and tear down. These connections will not live long. The most common URL file type, GIF images,

averages a little more than 19 Kilobytes in size. This is less than one second of transfer time on a T1 leased line, and

much less on an ethernet. There is no locality to these connections. Networks will have to deal with this extremely

fast connection set up and tear down to places all over the planet. Low delay on a network positively impacts Mosaic

performance.

 While dealing with the short-lived connections, Mosaic also brings in long-lived connections that move massive

amounts of data. A multimedia object like an MPEG video clip can be several megabytes in length. High bandwidth

would help Mosaic performance, although when getting data from the Internet, performance is limited by the server

providing the information and the smallest pipe between the server and the client.

 Mosaic demands low delay and high bandwidth, while at the same time providing no locality in access. What is a

network manager to do? One of the best ideas would be to use a caching proxy server. This allows a network manager

to provide some locality in access on a high bandwidth low delay LAN. There are some tradeoffs here. The proxy

server adds some delay for URLs that are not cached or that cannot be cached. Also, because proxy servers (at least

the one from CERN that we use) are very demanding on name servers, the systems running proxy servers should also

be caching name servers.

Implication for Web Publishers

Publishers on the Web can do much to improve performance. One of problem that has been discussed in various

forums is the gratuitous use of images. At least one TCP connection is set up for each image in page. One of the most

annoyingly used graphic is the “ball” image used as bullets in lists of items. We looked through our logs for “ball.gif”

files. We found 536 unique balls. The overhead for each different ball is high (2 connections and 3 DNS lookups with

a proxy server) considering how each ball is typically less than 1 Kbyte in size. Moreover, Web publishers all seem to

use their own balls, so new balls are often brought in even if the exact same image is in the cache. While there may be

reasonable uses for balls of different colors on a page, there are many cases where they are totally unnecessary.

 The point of many Web pages is the graphics. Still, there are ways to minimize the impact of images. Instead of many

separate images that would have to be brought in individually, images can be combined into a single montage that

only needs one TCP connection to view. Web publishers need to trade off presentation ideas with their impact on per-

formance. When a user traverses a link, the user cannot know with certainty how many GET requests will results or

how long it will take to transfer a multimedia file. It would be helpful if publishers give their audience a rough idea of

how long it may take get a URL and let the reader decide whether to traverse a link.

 Another thing that publishers should think about is the use of CGI scripts. There can be no caching of the results of

running a script. While there are many reasonable uses for CGI scripts, there are some uses that harm performance.

One particular irksome example is the use of a CGI script to deliver MPEG video clips. This may be understandable

if the video clips change on a regular basis. But using CGI scripts means that every time someone wants to see a par-

ticular MPEG file, it has to be copied over the Internet. Even if a user has just seen the MPEG, it has to be down-

loaded all over again. This is not particularly nice to the user, and it certainly isn’t nice to the Internet.

 There are of course tradeoffs when using or not using CGI scripts. CGI scripts are useful when you don’t want items

to be cached. It is a good idea to present rapidly changing information with a CGI script. Another good place to use

scripts is if you want tightly controlled access to information on a server.

One generally useful technique that Web publishers should consider is mirroring. Having mirrors of your information

in different parts of the world can provide much better performance to users. It has the added benefit of making your

information more available to your target audience even if a server goes down.

 In general, Web publishers should not think of networks and the Internet as a mere abstractions. Performance is an

inherent part of the user’s experience. It is highly unlikely that a user will return to a page that takes 20 minutes to

load, even if the page is loaded with pretty pictures.

Implication for Mosaic Implementors

Mosaic and other Web browser implementors can do a number of things to minimize network impact and improve

performance. First, browsers should support proxy servers. Fortunately, most do. Second, implementations should

support a large image cache. Some implementations do not. Third, implementations should make better use of docu-

ments that are cached in the browser. For example, if you use “back” and “forward”, you can go to pages very

quickly. If you do “open” (or even “home”) to one of the same pages that you can go to with “back” and “forward”,

you reload the page. This is slow and generates unnecessary network traffic.

<H2>Directions for Future Work</H2>

While this paper has pointed out a number of problems and ways to alleviate them, there are many areas that still

must be looked at. The upcoming URN technology (RFC currently in draft) may alleviate some of the problems

described. Since objects will live forever, it will be easier for people to reuse and cache them and not have to worry

about constant updates. Perhaps a set of multicolored balls could be defined and used by everyone. In another area,

the HTTP protocol must be followed and pushed to generate fewer connections.

 We built a crude simulation of a caching proxy server, provided as input a trace of actual requests, and then measured

what happened. This is similar to the trace-driven simulations used to study microprocessors and memory caches. It

would be worthwhile to do more detailed simulations of caching proxy servers. The effectiveness of caching strate-

gies like pre-fetching popular URLs could be measured.

 Finally, the tradeoffs of using different presentation techniques need to be investigated. For example, will an

imagemap script be less of a network burden than a page of clickable images? Which is a more effective presenta-

tion? How frequently should my data change before I switch from using files to a CGI script? This research in this

area should yield very useful results.

Acknowledgements

Sniffer is a trade mark of Network General.

Special thanks to Kevin Altis and Sally Hambridge for their comments, and suggestion. Thanks also to W. Wiley of

cisco systems for bringing up important points.

References

Altis, Kevin; Ati Luotonen. ”World Wide Web Proxies.” First International Conference on the World-wide Web.

Geneva, Switzerland. May 1994.

Altis, Kevin. Personal Correspondence.

Masinter, L; Sollins, K. “Functional Requirements Uniform Resource Names”. Draft Request for Comments, Sep-

tember 1994.

Author Biography

Jeff Sedayao received a B.S.E. in Computer Science from Princeton Unversity in 1986 and a M.S. in Computer Sci-

ence form the University of California at Berkeley in 1989. He has worked at Intel Corporation since 1986, spending

most of his time running Intel’s Internet gateways. Reach him at Intel Corp; SC9-37; 2250 Mission College Boule-

vard; Santa Clara, CA 95052-8119. Reach him electronically at sedayao@argus.intel.com.

Author E-mail Address

sedayao@argus.intel.com

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

Figure 1: Total Requests per Week

R

e

q

u

e

s

t

s

Work Week

Requests

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

Figure 2: Requests Per User Per Week

R

e

q

u

e

s

t

s

Work Week

Requests

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

2100000

2200000

2300000

2400000

2500000

2600000

2700000

2800000

2900000

3000000

3100000

3200000

3300000

Figure 3: Average LAN Traffic per User per Week

B

y

t

e

s

Work Week

Bytes Transferred

