
World Wide Web Network Traffic Patterns

Jeff Sedayao

Intel Corporation, 2250 Mission College Blvd

Santa Clara, CA 95052

Abstract

The World Wide Web (WWW) generates a significant and

growing portion of traffic on the Internet. With the click of

a mouse button, a person browsing on the WWW can gen-

erate megabytes of multimedia network traffic. WWW’s

growth and possible network impact merit a study of its

traffic patterns, problems, and possible changes. This

paper attempts to characterize World Wide Web traffic pat-

terns. First, the Web’s HyperText Transfer Protocol

(HTTP) is reviewed, with particular attention to latency

factors. User access patterns and file size distribution are

then described. Next, the HTTP design issues are dis-

cussed, followed by a section on proposed revisions. Bene-

fits and drawbacks to each of the proposals are covered.

The paper ends with pointers toward more information on

this area.

1.0 Introduction

The World Wide Web [1] has been called the “killer app”

of the Internet. Whole new businesses are being created to

make advertising and information available on the Web.

World Wide Web traffic is growing at the rate of over 20%

PER MONTH [2]. With such an incredible growth rate, it

is becomes critical for network engineers and technology

managers to understand the impact of World Wide Web

traffic on networks. In fact, some network administrators

fear the World Wide Web because they fear its traffic

implications.

 This paper attempts to characterize the network impact of

the Web. The first section reviews the HyperText Transfer

Protocol (HTTP) [3], the protocol used by the World Wide

Web. User access patterns are also covered. The next sec-

tion examines the issues caused by HTTP and the use of

the Web. The last major section of the paper describes cur-

rent attempts to deal with those Web traffic issues.

2.0 World Wide Web Traffic
Characteristics

To understand the World Wide Web’s traffic characteris-

tics, a brief understanding of the HyperText Transfer Pro-

tocol (HTTP), the protocol used by WWW, is necessary.

HTTP is designed to be a simple request/response proto-

col. A client opens up a connection to the server, sends a

request, gets a response, and then closes down the connec-

tion. Two key elements are the Uniform Resource Locator

(URL) [4] and the method. The URL is a construct that

provides information on the network location of some

document on the Internet, including what server it lives on

and how to access it. The method describes a specific

action for a server to take.

 The most common HTTP request (and the one we will

focus on) uses the “GET” method. A client first sets up a

connection (usually through TCP [5]) to the target Web

server. Next, the client sends GET (the method) followed

by a series of definitions of what data formats it will

accept. The server processes the request and sends a

“meta-description” of the document to the client, followed

by the document itself. The document (also known as a

page) can be a variety of things. It can be a form, an

image, text, or a video or audio clip. After receiving the

information, the connection is closed.

Copyright (c) 1995 Institute of Electrical and Electronics Engineers.
Presented at Spring CompCON 95 in San Francisco.



 What happens on the packet level with a Get Request?

Pamanabhan and Mogul [6] describe this in their study of

HTTP. The client opens the TCP connection, resulting in

an exchange of packets between client and server. That is

one round trip. The HTTP request is then sent and docu-

ments received. This is the second round trip. For each

URL retrieved, there are two round trips between the cli-

ent and server.

WWW documents may contain “inline images”. These are

images within a document. Web browsers process these

images in the following way. First, they send a GET

request for the document. Then they must send another

HTTP GET request for each unique image. Thus a docu-

ment (also known as a page) will see 2n + 2 packet round

trips, where n is the number of unique images in that docu-

ment.

 This is only HTTP generated traffic. Another study of

Web traffic [7] notes that Domain Name Service [8]

(DNS) queries are also made on each HTTP request. A cli-

ent needs to do a DNS name to address lookup on each

URL. It does this to obtain the network address of the

server it must access. The server, in turn, may look up the

name associated with the client’s network address and

then look up the name to verify that the name is associated

with that network address. All three DNS requests can

result in packet round trips between the client network and

the server network. The following is a summary of the

steps in a single HTTP request:

1. DNS name to address lookup.

2. Connection set up.

3. DNS address to name lookup.

4. DNS name to address lookup.

5. Send HTTP request and received page.

 Each of these can result in packet round trips. Some, like

steps 1, 4, and 5, can result in more than one packet round

trips.

 What are typical WWW access patterns? We looked at

records of WWW activity at Intel over 32 weeks. The

most common type of document or object is the Graphic

Interchange Format [9] (GIF). This makes sense because

GIFs are used as inline images in Web documents. The

mean size of a GIF file is about 17005 bytes, and with a

median size of 4513 bytes. GIF files also generated most

of the WWW traffic into Intel, followed by MPEG files (a

video format). MPEG files averaged 609146 bytes in size.

This indicates a traffic distribution that is greatly skewed

between many small objects (GIFs) and a number of very

large objects (MPEG videos).

3.0 Traffic Issues

To discuss traffic issues, we need to define two terms -

bandwidth and latency. Bandwidth is the amount of data

that can be moved through a network link during a given

time. It is usually described in units of bits/second.

Latency is the time it takes data to travel from a given

point in a network to another given point in the network. It

is usually described in units of seconds or milliseconds.

The lower limit to any network latency is governed by the

speed of light. The network latency between San Fran-

cisco and New York will never be less than 13.7 millisec-

onds, now matter how big the network bandwidth on a

connection between the two cities.

 One of the things that a first time Web user notices is that

when he clicks on an anchor (indicating a hypertext link),

he never knows how long it will take to load that page.

The page may be a short page, or it may be a long page

filled with in-lined images. This is because Web Page

authors rarely indicate the size of the page pointed to by

the anchor. Many WWW users find it disturbing when

they have to wait unpredictable amounts of time for pages

to load. From a network perspective, the result is also a

bursty unpredictable traffic mix. As described above, traf-

fic varies between small objects (mostly) and very large

objects.

 The HTTP protocol has a number of problems. It was

designed to be as stateless as possible. GET requests are

treated independently by an HTTP server. This makes

HTTP servers easier to write. Unfortunately, this also

brings in a number of inefficiences and leaves HTTP per-

formance dependent on network latency. For each HTTP

request, a minimum of two round trips is necessary. With

worse case DNS lookups, up to five round trip times could

be needed for the HTTP request. Spero’s analysis of HTTP

[10] concludes that the two Round Trip Times (RTT) form

the lower bound for the total transaction time of an HTTP

request. No matter how big the network bandwidth is

between client and server, the network latency between

client and server determines minimum time to process a

request.

 Inline images make the problem even worse. For each

page with inline images, a separate HTTP request must be

made for the page and then for each unique image. Thus a

single document could have from 1 to any number of

HTTP requests associated with it. The minimum time to



load the document would be (2n + 2) * latency, where n is

the number images in the page. This can also be expressed

as (n + 1) * RTT.

 A TCP feature called “slow-start” [11] causes inefficient

use of available network bandwidth. Slow start is a feature

of TCP that causes the amount of data sent to be small and

then increase. A TCP connection will first send a small

amount of data. As acknowledgements of packets come in,

the window gets bigger and bigger. Unfortunately, most

HTTP connections are very short lived. The most common

object is a GIF file (median size of 4513 bytes). Many

TCP connections used in HTTP will not be at full throttle

before they are terminated.

 While GIFs generate the most traffic, MPEG video clips

generate the next most traffic. This skewing of traffic

between lots of small images and fewer but very large

video clips presents a difficult challenge for network

administrators. HTTP wants both low latency yet high

bandwidth networks. Network bandwidth can be increased

(often at very high cost), but there are absolute lower

bounds on latency.

 A final inefficiency involves TCP protocol states on the

server. TCP specifications require that a system that has

closed a connection maintain connection information for

four minutes [5]. The large number of connections could

cause a server to have its connections table filled with

“TIME-WAIT” state connections.

4.0 Proposed Solutions

The problems described above have been widely dis-

cussed. A number of solutions have been proposed. This

section discusses the pro’s and con’s of a number of solu-

tions.

4.1 Be Careful and Smart with Cache

 This solution [7] proposes that Web page authors, Net-

work administrators, and WWW browser authors do a

number of things to minimize the number of TCP connec-

tions necessary and thus minimize transaction time. Web

authors can keep in-lined images to a minimum and make

pages that are cachable. Network administrators can set up

Proxy Caching Servers [12]. Proxy Caching Servers get

Web information on behalf of clients. They cache pages,

so that if a page or URL has been requested before, a client

can immediately get the cached page rather than waiting to

get it from the Internet. It is also a good idea to deploy

caching DNS servers on or near the caching servers. This

will reduce the latencies involved with DNS lookups. Web

Browsers can cache pages and images. Many browsers do

just that, reducing the amount of network traffic and time

needed to load a page.

 These ideas have a number of benefits. They can be done

immediately and effectively with existing software and

protocols. There are a few drawbacks to consider. Caching

doesn’t work for dynamically changing data like stock

quotes (stock quotes are a very popular use of WWW)

Also, these strategies don’t address the fundamental prob-

lems with HTTP. Items that are not cached will still be

affected by network latencies and will experience extra

delay caused by looking through a cache and going

through the proxy server.

4.2 Parallel GETs

 Another performance-enhancing tactic is for browsers to

send out GETs for inline images without waiting for the

initial GET to complete. The GETs are basically processed

in parallel as data comes in. This is a big advantage over

browsers that wait for each in-lined image to complete

before getting another one. But like the previous idea, it

doesn’t deal with the fundamental problems of HTTP.

Total transaction time will still have a lower bound of (n +

1)*RTT , where n is the number of images in a document.

In fact, it can make matters worse for Web servers and

proxy caching servers. Many server implementations

spawn a process for each URL. Instead of processes being

smoothly created one after another, large batches of pro-

cesses are created almost simultaneously. This process

burstiness can really impact a server.

4.3 URNs

 Uniform Resource Names (URNs) [13] are constructs

under development by the Internet Engineering Task Force

(IETF). They are unique and permanently assigned names

for resources. URNs map to a number of URLs. A browser

or proxy server could permanently cache a number of

URNs. It potentially could look for and access the URL

that had the smallest network latency.

 URNs are coming, and they will offer better caching per-

formance. Still, for uncached URNs, the HTTP protocol

problems have not been solved. Doing the URN to URL

mappings will add latency to HTTP requests. Also, while

URNs are coming, the infrastructure for resolving URNs

is not yet available.



4.4 GETLIST and GETALL

 Pamanabhan and Mogul [6] propose two new methods.

GETLIST would get a list of URLs. GETALL would get

all the URLs (images) in-lined in a page. These two meth-

ods solve the connection problem by transferring all the

needed URLs in one connection. If images were already

cached, the GETLIST method would be used to get only

the images needed. These two methods would create

longer lived connections and reduce both the number and

the relative cost of setting up a connection. Some draw-

backs to this approach are that changes in existing WWW

servers and clients would have to be made. Also, adding

these commands would make clients and servers more

complex, as much more state would have to be managed.

4.5 HTTP Session Layer

 Spero [14] proposes adding a session layer to HTTP in a

new protocol called HTTP-NG (HTTP Next Generation).

This session layer would divide a connection into different

channels. Control messages (HTTP requests and meta-

information) would flow over a control channel. As in the

previous suggestion, this proposal solves connection prob-

lems by adding complexity and state to clients and servers.

There would also be issues with transition, although Spero

proposes a solution using intermediary proxy servers.

Other people are working on session layer based solutions

[15].

4.6 MIME Multipart Documents

 HTTP wraps data objects in the MIME [16] multimedia

mail format. One suggestion for eliminating the multiple

connection problem is to transfer a document and all its

images in a multipart MIME type. This could be done in

one connection. This is an elegant solution, but like all the

solutions, it has a few drawbacks. While WWW servers

and browsers are already supposed to be capable of doing

this, few of the popular browsers and servers are. Two

other problems with this scheme need to be considered

[17]: (1) MIME encoding will roughly double the number

of bytes used sent and (2) by loading in a complete docu-

ment, there is no way to stop already cached images or

documents from being reloaded (unlike the GETLIST/

GETALL proposal).

5.0 Conclusion

HTTP and patterns of World Wide Web use create a num-

ber of challenges to network infrastructure. This paper has

covered WWW traffic patterns, the issues raised, and pos-

sible solutions to those problems. Work on this issue is

ongoing. One of the best places to monitor WWW traffic

developments is on the Web itself. In particular, discus-

sions on solving HTTP problems can be examined at the

HTTP-WG mail archives (URL http://www.ics.uic.edu/

pub/ietf/http/hypermail).

6.0 References

[1] Tim Berners-Lee, R. Cailiau, A. Luotonen, H. Nielsen,

and A. Secret. The World Wide Web. Communications

of the ACM. 37(8):76-82, August 1994.

[2] Tony Rutkowski. Internet Traffic. URL ftp://

ftp.isoc.gov/isoc/charts/traffic4.ppt, December 10,

1994.

[3] Tim Berners-Lee. Hypertext Transfer Protocol

(HTTP). Internet Draft draft-ietf-iir-http-00.txt, IETF.

Novermber, 1993. This is working draft.

[4] T. Berners-Lee, L. Masinter & M. McCahill. Uniform

Resource Locators (URL). RFC 1738. December,

1994.

[5] Jon. B. Postel. Transmission Control Protocol. RFC

793. September, 1981.

[6] Venkata N. Padmanabhhan and Jeffrey C. Mogul.

Improving HTTP Latency. Proceedings of the Second

International World-Wide Web Conference, pages 995-

1005, Chicago, October 1994.

[7] Jeff Sedayao. Mosaic will kill my Network! Proceed-

ings of the Second International World-Wide Web Con-

ference, pages 1029-1038. Chicago, October 1994.

[8] P. Mockapetris. Domain names - concepts and facili-

ties. RFC 1034. November 1987.

[9] CompuServe, Incorporated. Graphic Interchange For-

mat Standard. 1987.

[10] Simon E. Spero. Analysis of HTTP Performance

Problems. URL http://elanor.oit.unc.edu/http-

prob.html, July 1994.

[11] Van Jacobsen. Congestion Avoidance and control.

Proceedings of SIGCOMM ‘88 Symposium on Com-

munications Architectures and Protocols. pages 314-

329. Stanford, CA, August 1988.



 [12] Kevin Altis and Ari Luotonen. World Wide Web

Proxies. Proceedings of the First International

World-Wide Web Conference. Geneva, April 1994.

 [13] K. Sollins, L. Masinter. Functional Requirements for

Uniform Resource Names. RFC 1737. December

1994.

 [14] Simon E. Spero. Progress on HTTP-NG. URL http://

www11.w3.org/hypertext/WWW/Protocols/HTTP-

NG/http-ng-status.html.

 [15] Dave Raggett. Minutes from the December 1994 San

Jose IETF (HTTP BOF). URL http://

www.ics.uci.edu/pub/ietf/http/minutes-SJ.txt

 [16] N. Borenstein and N. Feed. MIME (Multipurpose

Internet Mail Extensions) Part One: Mechanisms for

Specifying and Describing the Format of Internet

Message Bodies. RFC 1521. September 1993.

 [17] Mitra. “Re: HTTP: T-T-T-Talking about MIME Gen-

eration”. URL http://www.ics.uci.edu/pub/ietf/http/

hypermail/


