
Kermit: Speci�cation and Veri�cation

�

James K. Huggins

y

July 13, 1995

Kermit is a popular communication protocol. We formally specify Kermit and verify it. As far as

we know, this has not been done yet, though the alternating bit and sliding window protocols, used by

Kermit, have been speci�ed and veri�ed by many authors [Kr, SL, LM]. Our main goal is a faithful readable

speci�cation which allows one to formalize the intuitive veri�cation proof without much overhead.

In his foreword to [DaC], Donald Knuth writes \I hope that many readers of this book will be challenged

to �nd high-level concepts and invariant relations by which various versions of the Kermit protocol can be

proved correct in a mathematical sense." We believe our speci�cation and veri�cation meets this challenge.

We use the evolving algebra approach. Section 1 gives a self-contained introduction to evolving algebras;

a fuller de�nition can be found in [Gur]. We use the term \ealgebra" (read e-algebra) as an abbreviation for

\evolving algebra". We begin with ealgebra speci�cations and veri�cations of two more abstract communi-

cations protocols used by various versions of Kermit: the alternating bit protocol and the sliding window

protocol. The nice feature of the ealgebra approach is that the road from an intuitive proof to a precise one

is very short; there is little overhead. Then we will present a series of ealgebras for the Kermit protocol,

�lling in the pieces where necessary to show how Kermit uses the abstract protocols.

As usual with protocols, we prove theorems dealing with properties of safety (\bad things don't happen")

and liveness (\good things do happen"). Our safety theorems are of the form \Every state reachable in any

relevant run satis�es property �" and are proved by induction on relevant runs. It is usually obvious that

relevant initial states satisfy �; more work is required to show that the transition rules preserve �. The

liveness theorems have the form \Every fair run has such and such property."

Acknowledgments. Yuri Gurevich directed this study; his comments throughout its development were

numerous and extremely helpful. Frank da Cruz made useful comments on a later draft.

1 Evolving Algebras

An ealgebra A is an abstract machine. The signature of A is a (�nite) collection of function names, each of a

�xed arity, that are used to describe A. A state of A is a set, the superuniverse, together with interpretations

of the function names in the signature. The superuniverse does not change as A evolves; the interpretations

of the functions may.

Formally, a function of arity r (i.e. the interpretation of a function name of arity r) is an r-ary operation

on the superuniverse. We often use functions with r = 0; such functions will be called distinguished elements.

Examples of such distingushed elements are true, false, and undef , which appear in every ealgebra and are

known as logical names. Functions may be de�ned only on a part of the superuniverse; such partial functions

are represented by total functions where f(a) = undef means f is unde�ned at the tuple a. Relations are

represented as Boolean-valued functions.

A universe U is a special type of function: a unary relation usually identi�ed with the set fx : U (x)g. The

universe Bool = ftrue; falseg is an example (in fact, Bool is a logical name appearing in every ealgebra).

�

Originally in Speci�cation and Validation Methods, ed. E. B�orger, Oxford University Press, 1995. Reprinted by permission

of Oxford University Press.

y

EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, huggins@umich.edu. Partially supported by ONR

grant N00014-91-J-1861 and NSF grant CCR-92-04742.

1



2 2. THE ALTERNATING BIT PROTOCOL (ABP)

When we speak about a function f from a universe U to a universe V , we mean that formally f is a unary

operation on the superuniverse such that f(a) 2 V for all a 2 U and f(a) = undef otherwise. We use self-

explanatory notations like f : U ! V , f : U

1

� U

2

! V , and f : V . The last means that the distinguished

element f belongs to V .

An external function is also a special type of funciton: its values are determined outside of the scope of

the algebra, and may change from state to state without being updated by the ealgebra itself.

We de�ne transition rules recursively:

� An update instruction is a transition rule and has the form

f(t

1

, : : :, t

r

) := t

r+1

where each t

i

is a closed term (i.e. a term containing no free variables) in the signature of A. The

meaning of the instruction is the obvious one: Evaluate all terms t

i

in the given state, and change the

value of f at tuple (t

1

; : : : ; t

r

) to the value of t

r+1

.

� A guarded rule is a transition rule and has the form

if t

0

then R

0

elseif t

1

then R

1

.

.

.

elseif t

k

then R

k

endif

where each t

i

is a closed Boolean-valued term and each R

i

is a rule. The meaning of the instruction is

the obvious one: execute R

j

where j is the smallest value for which t

j

is true in the given state. If no

such j exists, do nothing.

� A block (or sequence) of transition rules is a transition rule. To execute a block, execute all rules

in the block simultaneously. If no two rules conict (i.e. attempt to modify the same tuple of the

same function), the e�ect of executing the sequence is the union of the e�ects of executing each rule

individually. If two rules conict, no updates are made and the algebra halts.

A distributed evolving algebra A consists of a set of agents, each of which has a corresponding program

(i.e. a transition rule). We call a function common if all agents interpret the function name in the same

way; private functions may be interpreted di�erently by di�erent agents.

A sequential run is a sequence of states; each state (except for its external functions) is obtained from

its predecessor by �ring some collection of non-conicting agents simultaneously.

2 The Alternating Bit Protocol (ABP)

The alternating bit protocol (ABP), �rst proposed in [BSW], is a simple protocol at the heart of many

communication protocols currently in use. Each agent participating in the protocol (we will call them

\sender" and \receiver", though both agents send and receive messages) has a private synchronization bit.

The sender has data which she sends to the receiver. The receiver sends an acknowledgment message for

each datum received. Messages are marked with a synchronization bit to distinguish between data which

has and has not been received by the receiver.

We present a generalized version of the ABP which sends an in�nite sequence of data between the two

agents and prove its correctness, using sequential runs throughout. An ABP which sends a �nite sequence

of data and terminates can easily be developed from our more general version.

As an aid to comprehension, we use feminine pronouns to refer to the sender and masculine pronouns to

refer to the receiver.



2.1 Function Descriptions 3

2.1 Function Descriptions

2.1.1 Common Functions

Our agents send messages, each comprising a datum and a synchronization bit, through a network. This

leads to universes of messages, data, and bits. We represent each communication path between agents as a

queue of messages; this leads to a universe of queues. (Note that by \queue" we mean the abstract datatype

and not a particular physical device.) We also make use of the universe of integers.

We use the functions Msg: data � bits ! messages, Bit: messages ! bits and Data: messages ! data

to compose and decompose messages, respectively. (That is, ifMsg(d,b) = m, then Bit(m) = b and Data(m)

= d .) The distinguished element Null: data is a datum used as a placeholder for acknowledgment messages

(in which the only important information is the bit, not the datum). The function Flip: bits ! bits ips a

bit to its opposite value. That is, Flip(0) = 1 and Flip(1) = 0 .

For queues, we use the functions Append: queues � messages ! queues, Head: queues ! messages, and

Tail: queues ! queues with the obvious meanings. The distinguished element EmptyQueue: queues is a

queue containing no messages. We denote Append(a,b) by a ++ b. An external function Shrink: queues

! queues returns a queue obtain by deleting zero or more messages from the input queue, essentially at

random, while maintaining the relative ordering of the remaining messages.

For integers, we use the standard in�x addition function +, as well as the constant 1.

The function Timeout: Bool is used to generate re-transmissions of messages.

2.1.2 Private Functions

Each agent has a distinguished element SenderInMsg, ReceiverInMsg: messages which holds the current

message being processed by the agent, and a distinguished element SenderBit, ReceiverBit: bits which holds

the agent's synchronization bit. Distinguished elements SenderQueue, ReceiverQueue: queues store messages

waiting to be processed.

The data that the sender sends is stored in a function SenderFile: integers ! data; the receiver stores

all data received in a corresponding function ReceiverFile: integers ! data. The distinguished functions

SenderNo, ReceiverNo: integers indicate the current datum being sent or received.

2.2 Module Speci�cations

We use abbreviations De�ned(t), Unde�ned(t), Clear(t) for t 6=undef , t = undef and t := undef respectively;

here t is a term.

The sender examines each acknowledgment message sent to her by the receiver. If the sender receives

an acknowledgment whose bit matches her synchronization bit, she knows that her last message arrived

successfully, and she can now send a new message (with a new bit). Any messages received whose bit does

not match her synchronization bit are discarded.

To insure against message loss due to an unreliable network, the sender also re-sends her last message

when a timeout signal occurs. We also use this behavior to begin the communication process; during any

run, no transition rules will �re until a timeout signal occurs, at which point the sender will send her �rst

message.

The receiver acknowledges every message he receives from the sender by re-transmitting the bit from the

received message. Additionally, if the bit received matches his synchronization bit, the receiver records the

datum from the message in his output �le, and updates his �le marker and synchronization bit to be ready

to accept the next datum from the sender. The sender and receiver modules are given in Fig. 1.

Agents communicate by placing messages into queues (SenderQueue, ReceiverQueue) and by reading

messages placed into reception variables (SenderInMsg, ReceiverInMsg). Two communications modules,

shown in Fig. 2, transfer messages between these queues and reception variables.

If the communications network were reliable, no further modules would be needed. However, messages

may be lost, although not corrupted or re-ordered. As a result, we need to generate timeout signals to enable



4 2. THE ALTERNATING BIT PROTOCOL (ABP)

Module: Sender

Rule: ReTransmit

if Timeout then

ReceiverQueue :=

ReceiverQueue ++ Msg(SenderFile(SenderNo),SenderBit)

Timeout := false

endif

Rule: ProcessAck

if De�ned(SenderInMsg) and Bit(SenderInMsg) = SenderBit then

ReceiverQueue :=

ReceiverQueue ++ Msg(SenderFile(SenderNo+1),Flip(SenderBit))

SenderBit := Flip(SenderBit), SenderNo := SenderNo + 1

endif

Rule: ClearMessage

if De�ned(SenderInMsg) then Clear(SenderInMsg) endif

Module: Receiver

Rule: AcceptDatum

if De�ned(ReceiverInMsg) and Bit(ReceiverInMsg) = ReceiverBit then

ReceiverFile(ReceiverNo) := Data(ReceiverInMsg)

ReceiverNo := ReceiverNo + 1, ReceiverBit := Flip(ReceiverBit)

endif

Rule: AcknowledgeMessage

if De�ned(ReceiverInMsg) then

SenderQueue := SenderQueue ++ Msg(Null,Bit(ReceiverInMsg))

Clear(ReceiverInMsg)

endif

Figure 1: ABP sender and receiver modules.



2.3 Run De�nitions 5

Module: SenderCommunicate

if Unde�ned(SenderInMsg) and SenderQueue 6=EmptyQueue then

SenderInMsg := Head(SenderQueue)

SenderQueue := Tail(SenderQueue)

endif

Module: ReceiverCommunicate

if Unde�ned(ReceiverInMsg) and ReceiverQueue 6=EmptyQueue then

ReceiverInMsg := Head(ReceiverQueue)

ReceiverQueue := Tail(ReceiverQueue)

endif

Figure 2: ABP sender and receiver communication modules.

the sender to re-transmit messages. We present three modules which describe this behavior in Fig. 3.

Module: SenderLoseMessage

SenderQueue := Shrink(SenderQueue) endif

Module: ReceiverLoseMessage

ReceiverQueue := Shrink(ReceiverQueue) endif

Module: Timeout

if SenderQueue = ReceiverQueue = EmptyQueue

and SenderInMsg =ReceiverInMsg = undef then

Timeout := true

endif

Figure 3: Network loss and timeout modules.

2.3 Run De�nitions

We now wish to prove the correctness of the ABP. We cannot prove that any of the protocols to be discussed

here are correct for all runs; most protocols assume, for example, that both agents satisfy some initial

conditions. Consequently, we restrict our attention to certain types of runs. Call a run � regular if its initial

state satis�es a speci�ed set of initial conditions. The initial conditions for the ABP are shown in Fig. 4.

Our safety properties will be proved over regular runs.

Communication may not be possible even in a regular run. The sender might never receive a timeout

when one is needed, or a communications module might be too active, throwing away all messages sent

by one agent. The latter corresponds to the real-world situation where the underlying communications

medium breaks down; obviously, no protocol can succeed under those conditions. Thus, we must make

certain minimal assumptions about the underlying medium in order to complete our proofs. Essentially, we

wish to exclude the \unfair" conditions described above.



6 2. THE ALTERNATING BIT PROTOCOL (ABP)

8x � 0 ReceiverFile(x) = undef SenderNo = ReceiverNo = 0

SenderInMsg = ReceiverInMsg = undef SenderBit = ReceiverBit

ReceiverQueue = SenderQueue = EmptyQueue

Figure 4: Initial conditions for the ABP.

For our purposes, it seems su�cient to require only that certain agents (which we will call positive agents)

cannot be prohibited from making a move inde�nitely. We consequently de�ne an in�nite sequential run �

to be fair if for every positive agent X and every tail �

0

of �, if X is enabled in�nitely often in �

0

, then X

must make a move in �

0

. For the ABP, the only agents which are not positive are SenderLoseMessage and

ReceiverLoseMessage. Our liveness properties will be proved for fair runs.

2.4 Proof of Correctness

We begin with a few notational de�nitions:

� SQ (respectively, RQ) is the sequence of messages in SenderQueue (ReceiverQueue).

� SIM (respectively, RIM ) is SenderInMsg (ReceiverInMsg) except when the latter is unde�ned, when

it is the empty sequence.

� Bit(S), where S is a message sequence, is the natural extension of the Bit function from messages to

sequences of messages.

� + denotes concatenation of message sequences.

Most of our invariant conditions are proved by induction over the number of moves in a run; we will

simply say \by induction" in such cases.

Lemma 1 In any reachable state, Bit(SIM +SQ+RIM +RQ) has the form (F lip(SenderBit))

�

(Sender-

Bit)

�

.

Proof. By induction. Initially, the speci�ed bit sequence is empty. We consider all moves that a�ect

functions present in the invariant.

ClearMessage empties SenderInMsg , eliminating the �rst bit in the bit sequence. This does not a�ect the

truth of the invariant.

ReTransmit appends a copy of SenderBit to ReceiverQueue, maintaining the invariant.

ProcessAck ips SenderBit and appends a copy of the new value of SenderBit to ReceiverQueue. Since

Bit(SenderInMsg) = SenderBit when ProcessAck �res, we know (by the inductive hypothesis) that all bits

of the bit sequence must be copies of SenderBit . Thus, after ProcessAck completes, the bit sequence will

have the form ((Flip(SenderBit))

x

SenderBit) for some x, satisfying the invariant.

AcknowledgeMessage, SenderCommunicate, ReceiverCommunicate, SenderLoseMessage, and ReceiverLose-

Message transfer bits between or remove bits from various functions but do not alter the order of any of the

bits in the bit sequence, preserving the invariant. 2

Lemma 2 In any reachable state in which SenderInMsg or SenderQueue contains a message � such that

Bit(�) = SenderBit, SenderBit = Flip(ReceiverBit).



2.4 Proof of Correctness 7

Proof. By induction. Initially, both SenderInMsg and SenderQueue are empty. We consider all moves that

a�ect functions present in the invariant.

ProcessAck ips SenderBit . Lemma 1 shows that all bits in SenderQueue will be copies of Flip(SenderBit)

after ProcessAck �res.

AcknowledgeMessage places a copy of Bit(ReceiverInMsg) into SenderQueue. If this new bit is Flip(Sender-

Bit), then (by Lemma 1) the bit sequence of SenderQueue has the form F lip(SenderBit)

�

and the invariant

is maintained.

If not, then Bit(ReceiverInMsg) = SenderBit . If SenderBit = ReceiverBit at this time, then rule Accept-

Datum must also �re, ipping ReceiverBit and yielding SenderBit = Flip(ReceiverBit). Otherwise, we have

SenderBit = Flip(ReceiverBit) both before and after AcknowledgeMessage �res, maintaining the invariant.

ClearMessage, SenderCommunicate, and SenderLoseMessage remove messages from or transfer messages

between SenderQueue and SenderInMsg , which does not a�ect the invariant. 2

Lemma 3 In any reachable state, if either ReceiverInMsg or ReceiverQueue contains a message � such that

Bit(�) = Flip(SenderBit), then SenderBit = ReceiverBit.

Proof. By induction. Initially, both ReceiverInMsg and ReceiverQueue are empty. We consider all moves

that a�ect functions present in the invariant.

ProcessAck ips SenderBit . ProcessAck implies that Bit(SenderInMsg) = SenderBit . By Lemma 2,

SenderBit = Flip(ReceiverBit). Thus, ipping SenderBit yields SenderBit = ReceiverBit , maintaining the

invariant.

ReTransmit appends a message with a copy of SenderBit to ReceiverQueue, which does not a�ect the

truth of the invariant.

AcceptDatum ips ReceiverBit . AcceptDatum implies that Bit (ReceiverInMsg) = ReceiverBit . If Bit(Re-

ceiverInMsg) = SenderBit , all of the messages in ReceiverQueue have copies of SenderBit (by Lemma 1),

and ipping ReceiverBit does not a�ect the invariant.

Otherwise, Bit(ReceiverInMsg) = Flip(SenderBit), which implies that Flip(SenderBit) = ReceiverBit .

But this cannot occur: the induction hypothesis implies that SenderBit = ReceiverBit .

Modules AcknowledgeMessage, ReceiverCommunicate, and ReceiverLoseMessage remove messages from or

transfer messages between ReceiverQueue and ReceiverInMsg , which does not a�ect the invariant. 2

Lemma 4 In any reachable state, the following are true:

SenderBit = ReceiverBit ! SenderNo = ReceiverNo;

SenderBit = F lip(ReceiverBit) ! SenderNo + 1 = ReceiverNo:

Proof. By induction. Initially, SenderBit = ReceiverBit and SenderNo = ReceiverNo=0. We consider all

moves a�ecting functions in the invariant.

ProcessAck ips SenderBit and increments SenderNo. By Lemma2, ProcessAck only �res when SenderBit

= Flip(ReceiverBit); by the induction hypothesis, SenderNo + 1 = ReceiverNo. Flipping SenderBit and

incrementing SenderNo yields the other condition.

AcceptDatum ips ReceiverBit and increments ReceiverNo. By Lemma 3, AcceptDatum only �res when

SenderBit = ReceiverBit ; by the induction hypothesis, SenderNo = ReceiverNo. Flipping ReceiverBit and

incrementing ReceiverNo yields to the other condition. 2

Lemma 5 In any reachable state, for any message � contained in either ReceiverInMsg or ReceiverQueue,

Bit(�) = SenderBit ! Data(�) = SenderFile(SenderNo), and Bit(�) = Flip(SenderBit) ! Data(�) =

SenderFile(SenderNo�1).

Proof. By induction. Initially, no messages exist in ReceiverInMsg or ReceiverQueue. We consider all moves

that a�ect functions present in the invariant.



8 2. THE ALTERNATING BIT PROTOCOL (ABP)

ProcessAck ips SenderBit and increments SenderNo. We must have Bit(SenderInMsg) = SenderBit in

order for ProcessAck to �re; by Lemma 1, all messages � under consideration have Bit(�) = SenderBit .

By the induction hypothesis, we also have Data(�) = SenderFile(SenderNo). Incrementing SenderNo and

ipping SenderBit thus results in Bit(�) = Flip(SenderBit) and Data(�) = SenderFile(SenderNo�1), as

desired.

Additionally, a new message �

0

is appended to ReceiverQueue. After ProcessAck �res, we will have Bit(�

0

)

= SenderBit and Data(�

0

) = SenderFile(SenderNo), as desired.

ReTransmit appends a message containing SenderFile(SenderNo) and SenderBit to ReceiverQueue, main-

taining the invariant.

AcknowledgeMessage, SenderCommunicate, and ReceiverLoseMessage remove messages from or transfer

messages between ReceiverInMsg or ReceiverQueue, which does not a�ect the invariant. 2

Theorem 1 In any reachable state, De�ned(ReceiverFile(x)) ! ReceiverFile(x) = SenderFile(x). That is,

any data that has been accepted by the receiver is stored in the correct order.

Proof. By induction. Fix an x. Initially, ReceiverFile(x) = undef .

Only AcceptDatum may change ReceiverFile(x). By Lemma 3, we know that SenderBit = ReceiverBit in

this state; Lemma 4 tells us further that SenderNo = ReceiverNo.

Since Bit(ReceiverInMsg) = SenderBit , we know that Data(ReceiverInMsg) = SenderFile(SenderNo) (by

Lemma 5). AcceptDatum will thus assign ReceiverFile(ReceiverNo) := SenderFile(SenderNo). 2

Lemma 6 In any reachable state, ReceiverNo > 0 ! De�ned(ReceiverFile(ReceiverNo�1)).

Proof. By induction. Initially ReceiverNo = 0 ; ReceiverNo is incremented precisely when ReceiverFile

(ReceiverNo) is modi�ed by AcceptDatum. 2

Lemma 7 In the future of any state of a fair run, the �rst message of SIM+SQ (or RIM+RQ) will eventually

be removed.

Proof. The proof is similar for both cases; we present the case of SenderInMsg and SenderQueue here.

Suppose we have a state in a fair run where SenderInMsg or SenderQueue (or both) is not empty. If

SenderInMsg is not empty, rule ClearMessage is enabled. ClearMessage must eventually �re (by fairness),

emptying SenderInMsg (which satis�es the lemma).

If SenderQueue is not empty, two modules are enabled: SenderCommunicate and SenderLoseMessage. If

SenderLoseMessage �res, it may remove the �rst message in SenderQueue, satisfying the lemma. If not,

SenderCommunicate will be continuously enabled, and by fairness must eventually �re, transferring the �rst

message of SenderQueue into SenderInMsg , where it will eventually be emptied (as shown above). 2

Theorem 2 In any fair run, any data sent is eventually received.

Proof. For any fair run, consider a particular datum being sent by the sender; the item corresponds to

a particular value of SenderNo (say x). Consider the states in this run where SenderNo = x . If at least

one of those states also has SenderBit = Flip(ReceiverBit), by Lemmas 4, 6, and Theorem 1, SenderFile(x)

has already been stored in ReceiverFile(x). Thus, it remains to show that from any state in a fair run

where SenderBit = ReceiverBit and SenderNo = x , we eventually arrive at a state where SenderBit =

Flip(ReceiverBit) and SenderNo = x .

By contradiction, assume that we have SenderBit = ReceiverBit for every state in which SenderNo = x .

Since SenderNo is incremented (by rule ProcessAck) only when Bit(SenderInMsg) = SenderBit, Lemma 2

tells us that rule ProcessAck will never �re, leaving SenderNo and SenderBit unchanged for the rest of the

run.

Consider SIM+SQ . By Lemma 7, the �rst message in the non-empty sequence SIM + SQ + RIM + RQ

will be removed in�nitely often. Since SenderBit never changes, and rule ReTransmit only sends messages

with copies of SenderBit , eventually all messages with Flip(SenderBit) in the system will be removed,



9

leaving only messages with SenderBit . By Lemma 2, all copies of SenderBit must lie in ReceiverInMsg or

ReceiverQueue, so SenderInMsg and SenderQueue will be empty for the duration of the run.

The only rule which can now create new messages is ReTransmit, which requires Timeout = true. Since

messages are always being removed from RIM + RQ , if no copy of the desired message reaches the receiver,

eventually ReceiverInMsg and ReceiverQueue will be empty, continuously enabling module Timeout. By

fairness, Timeout will eventually �re, enabling rule ReTransmit. ReTransmit will eventually �re (by fairness),

placing another copy of SenderBit into ReceiverQueue. If this new copy of SenderBit is discarded, Timeout

will be re-enabled and by fairness will re-transmit the message. A repetition of the previous argument shows

that if this message is repeatedly discarded, it will be re-transmitted in�nitely often.

Thus, rule SenderCommunicate is enabled in�nitely often, and by fairness must �re. So, eventually

Bit(ReceiverInMsg) = SenderBit = ReceiverBit , and rule AcceptDatum will accept the datum and ip Re-

ceiverBit , yielding SenderBit = Flip(ReceiverBit) as desired. 2

Theorem 3 In any fair run, for any data sent, a corresponding acknowledgment arrives at the sender.

Proof. The proof is similar to that for Theorem 2, with the focus of attention on ReceiverQueue instead

of SenderQueue. The major di�erence is that the receiver does not re-transmit acknowledgment messages

when signaled by Timeout , as the sender does, but must wait for another message from the sender. A

simple extension of the proof in Theorem 2 shows that the sender will transmit in�nitely many copies of

a given message until an acknowledgment is received, and thus in�nitely many copies of that message will

be received by the receiver, who will thus be enabled to send the corresponding acknowledgment message

in�nitely often. 2

Theorem 4 In any fair run, all data is eventually sent and acknowledged.

Proof. By induction over the number of data sent and acknowledged, represented by SenderNo. If SenderNo

= 0 , Theorem 3 shows that this datum is eventually sent and acknowledged.

Suppose SenderFile(n) has been sent. When an acknowledgment for SenderFile(n) arrives at the sender

(assured by the induction hypothesis), ProcessAck is enabled and (by fairness) will eventually �re, increment-

ing SenderNo and sending a copy of SenderFile(n+1) to the receiver. Theorem 3 shows that this datum will

eventually be accepted and successfully acknowledged as well. 2

3 Symmetric ABP

Our version of the ABP is designed for two agents, each of which is described by a di�erent module. In most

real communication protocols, such as Kermit, the roles of sender and receiver may be interchanged by two

agents during the course of a communication session. (That is, Alice may send a �le to Bob, but Bob may

send a �le to Alice afterwards.)

We present another version of the ABP in which both agents are represented by module templates con-

taining identical transition rules. Our rules for Kermit contain modules which are similar to this symmetric

ABP; we present this version as a transition between the classic ABP presented earlier and the full Kermit

descriptions to come.

3.1 Function Descriptions

As before, we use the universes of messages, queues, data, and integers. We use integers instead of bits

as the second component of each message; we thus de�ne static functions Data: messages ! data, Num:

messages ! integers, and Msg: data � integers ! messages in a similar manner to that shown previously.

The static functions Null , EmptyQueue, Append , Head , and Tail are unchanged.

A universe of ids contains two elements corresponding to the sender and receiver. The static func-

tions Sender: ids and Receiver: ids indicate which agent corresponds to which identi�er; the private static



10 3. SYMMETRIC ABP

functions Me: ids and You: ids identify to each module/agent his or her own identi�er, with the obvious

requirements on their values.

Each module has a private function File: integers ! data, used to store data being sent or received, and

a private function MyNum: integers, used to denote the current location within File. A private function

LastMsg: messages is used to store the last message sent by each agent. A function Timeout: ids ! Bool

holds the timeout signal location for each agent.

Common functions Q: ids ! queues and InMsg: ids ! message represent the two message queues and

incoming message variables, respectively.

It proves convenient for later purposes to separate the input and output activities of each agent; we

thus de�ne a universe tags = fGet, Putg and a private function Mode: tags to distinguish between these

activities.

3.2 Module Speci�cations

The sender and receiver module is given in Fig. 5. The communications modules, shown in Fig. 6, are similar

to those given earlier. The only unfair modules are those produced by the LoseMessage template.

The initial state for the symmetric ABP satis�es the conditions shown in Fig. 7, where Sender.X and

Receiver.X refer to the values of the private function X as seen by the sender and receiver, respectively.

3.3 Correctness

The proof of correctness for the symmetric ABP is similar to that of the non-symmetric ABP presented

earlier. Rather than repeat the proof, we instead explain the similarities between the two protocols. The

reader should be able to reconstruct our proof of correctness without di�culty.

Many expressions have di�erent names in the two protocols; we present a table of equivalent expressions

below. It is easy to verify that each pair of expressions yield elements of the same universe (or are of the

same \type"):

SenderQueue=ReceiverQueue � Q(Sender)=Q(Receiver)

SenderInMsg � InMsg(Sender)

ReceiverInMsg � InMsg(Receiver)

SenderF ile=ReceiverF ile � File

SenderNo=ReceiverNo � MyNum

SenderBit=ReceiverBit � MyNum mod 2

We have replaced SenderBit and ReceiverBit by references to MyNum mod 2 . In the old ABP, SenderBit

is ipped precisely when SenderNo is incremented; thus, if initially we have SenderBit = SenderNo =

0 , SenderBit will always be equal to SenderNo mod 2 . A similar argument holds for ReceiverBit and

ReceiverNo.

LastMsg stores the last message sent by an agent to be used later in re-transmission. LastMsg does not

appear in the old ABP; thus, we must show that whenever the sender of the symmetric ABP sends a copy

of LastMsg , the sender of the old ABP sends an identical message.

For the sender agent, Num(LastMsg) = MyNum mod 2 is an invariant; This is easily proved: MyNum is

incremented precisely when LastMsg is updated, and the updates for LastMsg yield the invariant condition

immediately. Similarly, it can be seen that Data(LastMsg) = File(MyNum) is an invariant for the sender

agent. The sender of the symmetric ABP sends a copy of LastMsg precisely when the sender of the old

ABP sends a copy of Msg(SenderFile(SenderNo),SenderBit); our argument shows that these messages are

identical.

The reader can easily verify that each move of the old ABP is duplicated by one or two moves of the

symmetric ABP. The symmetric ABP di�ers in that the receiver has the capability of re-transmitting when

a timeout occurs (which only the sender does in the old ABP); this di�erence means that the receiver may



3.3 Correctness 11

Module: Sender/Receiver Template

if Mode = Put then

if Me = Sender then

Q(You) :=

Q(You) ++ Msg(File(MyNum+1), (MyNum+1) mod 2)

LastMsg := Msg(File(MyNum+1), (MyNum+1) mod 2)

else

Q(You) := Q(You) ++ Msg(Null, (MyNum mod 2))

LastMsg := Msg(Null, (MyNum mod 2)

endif

MyNum := MyNum + 1, Mode := Get

endif

if Mode = Get then

if De�ned(InMsg(Me))

and Num(InMsg(Me)) = (MyNum mod 2) then

if Me = Receiver then

File(MyNum) := Data(InMsg(Me))

endif

Mode := Put

endif

if (De�ned(InMsg(Me)) and Num(InMsg(Me)) 6=(MyNum mod 2))

or Timeout(Me) then

Q(You) := Q(You) ++ LastMsg endif

Timeout(Me) := false

endif

if De�ned(InMsg(Me)) then Clear(InMsg) endif

endif

Figure 5: Symmetric sender/receiver module.



12 3. SYMMETRIC ABP

Module: Communicate Template

if Unde�ned(InMsg(Me)) and Q(Me) 6=EmptyQueue then

InMsg(Me) := Head(Q(Me)), Q(Me) := Tail(Q(Me))

endif

Module: LoseMessage Template

Q(Me) := Shrink(Q(Me)) endif

Module: Timeout Template

if Unde�ned(InMsg(Me)) and Q(Me) = EmptyQueue

and Unde�ned(InMsg(You)) and Q(You) = EmptyQueue then

Timeout(Me) := true

endif

Figure 6: Symmetric communications modules.

Sender.Me = Sender Receiver.Me = Receiver

Sender.Mode = Put Receiver.Mode = Get

Sender.MyNum = 0 Receiver.MyNum = 0

8x Receiver.File(x) = undef Receiver.LastMsg = Msg(Null,-1)

Q(Sender) = Q(Receiver) = EmptyQueue

InMsg(Sender) = InMsg(Receiver) = undef

Timeout(Sender) = Timeout(Receiver) = false

Figure 7: New initial conditions.



13

re-transmit a lost acknowledgment more often than in the old ABP, but that does no harm to the correctness

of the protocol.

4 Sliding Windows

The sliding window protocol (SWP) is an extension of the ABP. In a communicationsmediumwhere two-way

simultaneous communication is possible, it can be wasteful to have only one datum in transition between

the agents, since the capacity of the underlying network may be grossly underutilized. In such situations,

it is desirable to have a number of distinct data currently in transit between the two agents, providing for

a continual stream of data rather than the sporadic activity characteristic of \stop and wait" protocols like

the ABP.

In the case where the size of the window being used is 1, the behavior of the sliding window protocol

is similar to that of the ABP. Other than the use of unbounded message numbers in the sliding window

protocol, each agent in either protocol makes similar moves.

One should probably not speak of a single SWP; many sliding window algorithms use that window in

di�erent ways. We base our SWP upon one given in [DaC] for Kermit's implementation of sliding windows.

4.1 Function Descriptions

We use the Msg , Data, Num, and Null functions de�ned in the symmetric ABP to compose and decompose

messages. We still represent our communication network with queues, using the Append , Head , Tail , and

EmptyQueue functions as de�ned previously. The data storage functions SenderFile and ReceiverFile remain

as in the ABP, as does Timeout .

Each agent uses SenderInMsg and ReceiverInMsg as in the ABP to hold the current message being

processed. Private distinguished elements SenderLo, SenderHi, ReceiverLo, ReceiverHi: integers denote the

boundaries of each agent's current window. Additionally, the sender has a function ReceivedAck: integers!

Bool which notes which messages have been successfully acknowledged. The distinguished element WinSize:

integers denotes the maximumwindow size for both agents.

4.2 Module Speci�cations

We de�ne SenderWindowFull as an abbreviation for SenderHi � SenderLo + 1 = WinSize. Thus, Sender-

WindowFull is true exactly when there are exactly WinSize messages between SenderLo and SenderHi ,

inclusive.

As before, the sender examines each acknowledgment message sent to her by the receiver. If the acknowl-

edgment number is within the current window, the sender marks that message as acknowledged. At any

time, if the sender's window is not full, the sender sends another message to the receiver, increasing the size

of her window accordingly. Also, if the oldest entry in her window has been successfully acknowledged, she

slides up the lower edge of her window, thus decreasing the size of the window.

The receiver's action upon receipt of a message depends upon the message number. If the number is

within his current window, he acknowledges the message and records the data in his data storage area. If

the number follows his current window, the receiver slides his window up until the message falls within his

window.

The sender and receiver modules are given in Fig. 8. The observant reader may note that no rule is given

for the case when the receiver receives a message with a message number preceding the current window; we

will prove that this situation never occurs.

We use the same communications modules (SenderCommunicate, ReceiverCommunicate, SenderLoseMes-

sage, and ReceiverLoseMessage) used in the ABP.

We use the same de�nitions of regular and fair run as in the ABP. The initial state of the SWP satis-

�es the conditions shown in Fig. 9. The only modules which are not positive are SenderLoseMessage and

ReceiverLoseMessage.



14 4. SLIDING WINDOWS

Module: Sender

Rule: SendMessage

if Not(SenderWindowFull) then

ReceiverQueue :=

ReceiverQueue ++ Msg(SenderFile(SenderHi+1),SenderHi+1)

SenderHi := SenderHi+1

elseif Timeout then

ReceiverQueue :=

ReceiverQueue ++ Msg(SenderFile(SenderLo),SenderLo)

Timeout := false

endif

Rule: ProcessAck

if De�ned(SenderInMsg) then

if SenderLo � Num(SenderInMsg) � SenderHi then

ReceivedAck(Num(SenderInMsg)) := true

endif

Clear(SenderInMsg)

endif

Rule: SlideSenderWin

if ReceivedAck(SenderLo) then SenderLo := SenderLo + 1 endif

Module: Receiver

Rule: AcceptMessage

if De�ned(ReceiverInMsg) and

ReceiverLo � Num(ReceiverInMsg) � ReceiverHi then

SenderQueue := SenderQueue ++ Msg(Null,Num(ReceiverInMsg))

ReceiverFile(Num(ReceiverInMsg)) := Data(ReceiverInMsg)

Clear(ReceiverInMsg)

endif

Rule: SlideReceiverWin

if De�ned(ReceiverInMsg) and Num(ReceiverInMsg) > ReceiverHi then

ReceiverHi := Num(ReceiverInMsg)

ReceiverLo := Max(0,Num(ReceiverInMsg)�WinSize+1)

endif

Figure 8: Sliding window sender and receiver modules.



4.3 Proof of Correctness 15

8x � 0 ReceiverFile(x) = undef

8x � 0 ReceivedAck(x) = false

SenderLo = ReceiverLo = 0

SenderHi = ReceiverHi = �1

SenderInMsg = ReceiverInMsg = undef

ReceiverQueue = SenderQueue = EmptyQueue

Figure 9: SWP initial conditions.

4.3 Proof of Correctness

Lemma 8 In any reachable state, for any message � sent by the sender and present within the state,

Num(�) � SenderHi.

Proof. By induction. Initially the sender has sent no messages.

SendMessage is the only rule which may a�ect the invariant. If the sender's window is not full, SenderHi

is incremented (which maintains the invariant for any messages previously sent), and a new message � is

sent with Num(�) = SenderHi . If the sender's window is full, any message � that is sent will have Num(�)

= SenderLo, and SenderWindowFull implies that SenderLo � SenderHi . 2

Lemma 9 In any reachable state, (SenderHi�SenderLo+1 � WinSize) and (ReceiverHi�ReceiverLo+1 �

WinSize). That is, the size of both the sender's and receiver's windows is � WinSize.

Proof. By induction. Initially SenderHi � SenderLo + 1 = 0 , and ReceiverHi � ReceiverLo + 1 = 0 . We

consider all moves that a�ect functions present in the invariant.

SlideSenderWin increments SenderLo, which maintains the invariant.

SendMessage may increment SenderHi if SenderHi � SenderLo + 1 < WinSize; after incrementing

SenderHi , the invariant still holds.

SlideReceiverWin increments ReceiverHi and may also increment ReceiverLo; the rule insures that the

invariant is maintained. 2

Lemma 10 In any reachable state, (0 � x < SenderLo ! ReceivedAck(x)).

Proof. By induction. Initially, SenderLo = 0 . Only SlideSenderWin may change SenderLo; its guard ensures

that the invariant is preserved. 2

Lemma 11 In any reachable state, for any message � which exists in SenderInMsg or SenderQueue, De�ned

(ReceiverFile(Num(�))) is true.

Proof. By induction. Initially, both SenderInMsg and SenderQueue are empty. We consider all moves that

a�ect functions present in the invariant.

AcceptMessage appends a new message to SenderQueue. Its guard shows that when Msg(Null,x) is

appended to SenderQueue, ReceiverFile(x) is being de�ned at the same moment.

ProcessAck, SenderCommunicate, and SenderLoseMessage discard messages from or transfer messages

between SenderQueue and SenderInMsg , which does not a�ect the invariant. 2

Lemma 12 In any reachable state, ReceivedAck(x) ! De�ned(ReceiverFile(x)).

Proof. By induction. Fix an x. Initially, ReceivedAck(x) = false. The only rule which modi�es ReceivedAck

is ProcessAck, which sets ReceivedAck(x) to true if Num(SenderInMsg) = x and x is within the sender's

current window. By Lemma 11, we know that ReceiverFile(x) is de�ned. 2



16 4. SLIDING WINDOWS

Lemma 13 In any reachable state, (ReceiverHi � SenderHi).

Proof. By induction. Initially, ReceiverHi = SenderHi = �1 . We consider all moves that a�ect functions

present in the invariant.

SendMessage increments SenderHi , maintaining the invariant.

SlideReceiverWin updates ReceiverHi to the current value of Num(ReceiverInMsg), which by Lemma 8 is

bounded above by SenderHi , maintaining the invariant. 2

Lemma 14 In any reachable state, (ReceiverLo � SenderLo).

Proof. By induction. The invariant is true initially, since SenderLo = ReceiverLo = 0 . We consider all

moves that a�ect functions present in the invariant.

SlideSenderWin increments SenderLo, maintaining the invariant.

SlideReceiverWin updates ReceiverLo. If ReceiverLo is changed to a non-zero value, the guard for Slid-

eReceiverWin assures us that ReceiverLo = ReceiverHi�WinSize+1 . Lemmas 9 and 13 yield the result.

2

Lemma 15 In any reachable state, (0 � x < ReceiverLo ! De�ned(ReceiverFile(x))).

Proof. Immediate from Lemmas 14, 10, and 12. 2

Lemma 16 In any reachable state, consider the sequence of messages RIM+RQ. For any two messages �

and � in that sequence, if � precedes �, then (Num(�) �Num(�)) is at most WinSize � 1.

Proof. By induction. Initially, no messages exist in RIM+RQ . We consider all moves that a�ect functions

present in the invariant.

SendMessage appends a message � to ReceiverQueue. If Num(�) = SenderHi+1 (before SenderHi is

updated), we know from Lemma 8 that all other messages � in ReceiverInMsg or ReceiverQueue have

Num(�) � SenderHi < Num(�), and the invariant is preserved.

Otherwise, Num(�) = SenderLo. Lemma 8 tells us that that the largest message number present in

ReceiverInMsg or ReceiverQueue is SenderHi ; Lemma 9 shows that SenderHi�SenderLo is at most Win-

Size � 1.

ReceiverCommunicate, ReceiverLoseMessage, and AcceptMessage remove messages from or transfer mes-

sages between ReceiverQueue and ReceiverInMsg , which does not a�ect the invariant. 2

Theorem 5 In any reachable state, for any message � in ReceiverInMsg or ReceiverQueue, Num(�) �

ReceiverLo. That is, the receiver module will never receive a message whose number precedes the current

window.

Proof. By induction. Initially, no messages exist. We consider all moves that a�ect functions present in the

invariant.

SendMessage creates a new message �. SendMessage implies Num(�) � SenderLo; Lemma 14 asserts

that SenderLo � ReceiverLo.

SlideReceiverWin increments ReceiverLo. If Num(ReceiverInMsg) = x , SlideReceiverWin sets ReceiverLo

to (x�WinSize+1). Lemma 16 implies that all messages in ReceiverQueue have numbers in the desired

range.

ReceiverCommunicate, ReceiverLoseMessage, and AcceptMessage remove messages from or transfer mes-

sages between ReceiverQueue and ReceiverInMsg , which does not a�ect the invariant. 2

Theorem 6 In any reachable state De�ned(ReceiverFile(x)) ! ReceiverFile(x) = SenderFile(x).

Proof. Fix an x. Initially, ReceiverFile(x) = undef .

Only rule AcceptMessage can change ReceiverFile(x). Rule SendMessage shows that every message from

the sender to the receiver has the formMessage(SenderFile(n),n) for some n; thus, the receiver's assignment

to ReceiverFile must set ReceiverFile(x) to the value of SenderFile(x). 2



17

Theorem 7 In any fair run, any datum is eventually sent, received, and acknowledged.

Proof. The proof generally follows that of Theorems 2 and 3. Lemma 15 and Theorem 6 assure us that once

the receiver's window moves past position x, message x will have been correctly received and stored. The

proof that the receiver's and sender's windows continue to move forward is similar to those shown before.

An important di�erence involves the loss of messages within the current sender's window which are not

at the bottom of the window. Since the sender only re-transmits messages at the bottom of the window, we

must assure ourselves that a lost message which is not at the bottom of the window will eventually be re-

transmitted. But this is easy to show; since the message at the bottom of the window is being re-transmitted,

eventually the message at the bottom of the window will be received by the receiver and its acknowledgment

received by the sender. The sender will then move her window forward, thus moving the lost message one

position closer to the bottom of the window. A short inductive argument shows that eventually this message

will reach the bottom of the window and be successfully transmitted. 2

5 Bounded Sliding Windows

The SWP presented in the previous section uses arbitrary integers as message numbers. In real-world

settings, one cannot use an arbitrarily increasing integer as a unique message identi�er. Thus, most sliding

window protocols (including the one implemented in Kermit) use a �xed set of message numbers, and restrict

the size of the sliding window to one half of the total number of message numbers allowed.

We present modi�ed rules for the SWP which use only �nitely many message numbers and prove that the

behavior of this protocol is identical to that of the one presented previously. Our version has di�erent rules

for the sender and receiver; a symmetric version could be produced (as with the ABP) but is unnecessary

for our purposes, since Kermit's sliding window protocol description is not symmetric.

Remark. The use of �nitely many message numbers, as well as the bounds which we will prove, are well

known (see for example [Wal]). We do not claim that our proof of this bound is unique; rather, we intend

to show that this bound can be easily proven within our framework.

5.1 Function Descriptions

All functions previously de�ned will be used. We will also use the in�x functions �, =, and mod operators,

representing integer multiplication, division, and remainder (or modulus).

Additionally, we de�ne two functions SenderNum, ReceiverNum: messages! integers as follows: Sender-

Num is the largest integer less than or equal to SenderHi and equivalent to Num(�) mod (2�WinSize).

ReceiverNum is the smallest integer greater than or equal to ReceiverLo and equivalent to Num(�) mod

(2�WinSize). We will see that SenderNum and ReceiverNum represent the \true" message number; that is,

the number which was used by the agent who created that message.

5.2 Module Speci�cations

Our communications modules remain unchanged. We need to change the sender and receiver modules to use

message numbers modulo 2�WinSize instead of an unbounded set of numbers. The revised transition rules

are given in Fig. 10, where changes to the previous rules are written in bold.

5.3 Proof of Correctness

Our intention here is to show that SenderNum and ReceiverNum perform the same function that Num did

in the unbounded SWP. Having done this, the proofs presented in the previous section will still be valid for

the bounded SWP. All of our proofs use the unbounded SWP.



18 5. BOUNDED SLIDING WINDOWS

Module: Sender

Rule: SendMessage

if Not(SenderWindowFull) then

ReceiverQueue :=

ReceiverQueue ++ Msg(SenderFile(SenderHi+1),

(SenderHi+1) mod (2�WinSize))

SenderHi := SenderHi+1

elseif Timeout then

ReceiverQueue :=

ReceiverQueue ++ Msg(SenderFile(SenderLo),

SenderLo mod (2�WinSize))

endif

Rule: ProcessAck

if De�ned(SenderInMsg) then

if SenderLo � SenderNum(SenderInMsg) � SenderHi then

ReceivedAck(SenderNum(SenderInMsg)) := true

endif

Clear(SenderInMsg)

endif

Rule: SlideSenderWin

if ReceivedAck(SenderLo) then SenderLo := SenderLo + 1 endif

Module: Receiver

Rule: AcceptMessage

if De�ned(ReceiverInMsg) and

ReceiverLo � ReceiverNum(ReceiverInMsg) � ReceiverHi then

SenderQueue := SenderQueue ++ Msg(Null,Num(ReceiverInMsg))

ReceiverFile(ReceiverNum(ReceiverInMsg)) := Data(ReceiverInMsg)

Clear(ReceiverInMsg)

endif

Rule: SlideReceiverWin

if De�ned(ReceiverInMsg) and

ReceiverNum(ReceiverInMsg) > ReceiverHi then

ReceiverHi := ReceiverNum(ReceiverInMsg)

ReceiverLo := Max(0,ReceiverNum(ReceiverInMsg) � WinSize + 1)

endif

Figure 10: Revised sliding window modules.



5.3 Proof of Correctness 19

Lemma 17 In any reachable state, for any message � which exists in SenderInMsg or SenderQueue, Num(�)

� ReceiverHi.

Proof. By induction. Initially, SenderInMsg and SenderQueue contain no messages. We consider all moves

that a�ect functions present in the invariant.

AcceptMessage appends a new message to SenderQueue; the rule assures that the number of the message

is bounded above by ReceiverHi .

SlideReceiverWin increments ReceiverHi , maintaining the invariant.

ProcessAck, SenderLoseMessage, and SenderCommunicate transfer messages between or remove messages

from SenderInMsg and SenderQueue, which does not a�ect the invariant. 2

Lemma 18 In any reachable state, ReceivedAck(x) ! ReceiverHi � x.

Proof. By induction. Initially, ReceivedAck(x) = false for all x . We consider all moves that a�ect functions

present in the invariant.

ProcessAck sets ReceivedAck(Num(SenderInMsg)) := true. By Lemma 17, we know that Num(Sender-

InMsg) � ReceiverHi , so the invariant is maintained.

SlideReceiverWin increments ReceiverHi , maintaining the invariant. 2

Lemma 19 In any reachable state, SenderLo � ReceiverHi � 1.

Proof. By induction. Initially, SenderLo � ReceiverHi = 0 � (�1) = 1 . We consider all moves that a�ect

functions present in the invariant.

SlideSenderWin increments SenderLo. The rule implies that ReceivedAck(SenderLo) is true; by Lemma

18, we know that SenderLo � ReceiverHi � 0 . Incrementing SenderLo then gives us the desired result.

SlideSenderWin increments ReceiverHi , maintaining the invariant. 2

Lemma 20 In any reachable state, SenderHi � ReceiverLo � 2 � WinSize � 1. That is, there are at most

2 �WinSize messages between the bottom of the receiver's window and the top of the sender's window.

Proof. Immediate from Lemmas 9 and 19. 2

Theorem 8 In any reachable state, for any message �, SenderNum(�) = ReceiverNum(�).

Proof. By the de�nitions of SenderNum and ReceiverNum, we know that SenderNum(�) and Receiver-

Num(�) are congruent modulo 2 �WinSize. The de�nitions also tell us that the following are invariants:

ReceiverLo � ReceiverNum(�) � ReceiverLo + 2 �WinSize � 1;

SenderHi � 2 �WinSize + 1 � SenderNum(�) � SenderHi:

If SenderNum(�) 6= ReceiverNum(�), we must have SenderNum(�) = ReceiverNum(�) + d , where d is

some non-zero multiple of 2�WinSize. If d is positive, we have ReceiverLo � SenderNum + d � SenderHi ,

which implies that SenderHi � ReceiverLo � 2�WinSize, contradicting Lemma 20. If d is negative, a similar

argument also creates a contradiction. 2

Remark. It turns out that 2 �WinSize message numbers are not only su�cient for the sliding window

protocol, but also necessary [Wal]. Suppose that both agents are using only 2�WinSize - 1 message numbers

and consider the following run. The sender sends WinSize messages to the receiver, numbered 0 through

WinSize � 1 . The receiver receives all of the messages and sends acknowledgments numbered 0 through

WinSize � 1 to the sender.

The next message the receiver receives has a message numbered 0 . What should he do with this message?



20 6. ALTERNATING BIT KERMIT: THE SESSION LAYER

� If the sender received all of the receiver's acknowledgments, the sender would have moved her window

forward by WinSize, thus enabling her to send messages numbered WinSize through 2 �WinSize� 1.

In that case, the message numbered 2 �WinSize � 1 would have arrived at the receiver as message 0

(since we are counting modulo 2 �WinSize � 1), and this message should be accepted and stored.

� If the sender didn't receive the receiver's acknowledgment for message 0 , the sender would have re-sent

her message 0 . In that case, this message should be acknowledged, but not stored.

The receiver cannot determine whether this message is an old, re-transmitted message or a new message

which should be stored. Thus, at least 2 �WinSize message numbers are necessary.

6 Alternating Bit Kermit: The Session Layer

We consider Kermit, as speci�ed by [DaC], at three di�erent layers of abstraction: the session, transport, and

datalink layers. The session layer controls sending and receiving �les; the network connection is assumed to

be reliable, delivering messages intact and in the proper order. The task of the transport layer is to provide

a reliable connection even though the actual connection may lose or alter messages during transmission.

The datalink layer controls message representation, transforming abstract messages into strings which can

be sent through typical communication networks.

Kermit also uses a presentation layer, which transforms a �le (seen here as a �nite string of arbitrary

length) into a sequence of shorter strings which are to be sent through the network. These transformations

are fairly mechanical, and we present without comment a couple of static functions which perform this

transformation.

The names given to these layers are similar to those used in the ISO Open Systems Interconnection

Reference Model (or OSI model) [Tan]. However, since Kermit was developed before the OSI model, the

layer names do not always have the same connotations.

From the session layer, Kermit is driven by a �nite state automaton. Two agents generate and accept

strings of the form S(FD

�

Z)

�

B, where each letter represents a di�erent type of message being sent:

� S represents the start of a communications session.

� B represents the end (or break) of a communications session.

� F represents the name of a �le.

� Z represents the end of a �le. (Most likely the Z is due to the widespread use of the control-Z character

as an end-of-�le marker in many operating systems. Alternatively, the last letter of the English alphabet

may be appropriate to signal the last datum of a �le.)

� D represents data.

A few other message types are used: Y indicates a positive acknowledgment (\yes"), N indicates a

negative acknowledgment (\no"), and E indicates the occurrence of an unrecoverable error .

The �nite state automata used by the sender and receiver agents are shown in Fig. 11. The labels on the

transitions should be read in this manner: if an arc from state S to state T is labeled A/B , then in state S ,

if the agent receives a message labeled A, the agent may send a message labeled B and enter state T .

Most of the names of the states used in the automata are used in the original speci�cation [DaC] and

may be read as follows: ssini is the sender's initial state, ss�l is the sender's state for receiving new �les,

ssdat is the sender's state for receiving data, and sseot is the sender's state for ending a transaction. The

states of the receiver's automaton are similar.



6.1 Function Descriptions 21

SRINI SRFIL SRDAT

ERROR

S/Y

F/Y

D/Y

Z/Y

B/Y

E/E

E/E

E/E

DONE

Receiver

SSFIL SSDAT SSEOT

ERROR

()/S Y/F

Y/D

Y/Z Y/B

Y/()
E/E

E/E DONE

SSINI

Sender

Figure 11: Kermit session layer �nite automata.

6.1 Function Descriptions

As with the symmetric ABP, each agent participating in a Kermit �le transfer has both the capability of

sending and receiving. Our descriptions assume that the external world (i.e. the persons using the Kermit

program) determine which agent will act as the sender and which as the receiver for a given transmission

session. We describe a single module which contains the rules for any Kermit agent, as well as additional

modules which describe the communications medium.

6.1.1 Common Functions

The states of the �nite state machines shown above are represented by a universe of modes. A universe

of symbols contains the symbols \S", \F", etc. that are transmitted between agents as described above.

These symbols are used in messages which contain other textual data; this leads us to universes of messages

and strings. We use the universe of integers to count �les. Finally, to distinguish between the sender and

receiver, we use a universe of ids.

Messages are composed of a symbol (the type of the message) and a string (the data content of the

message). We thus use functions Msg: symbols � strings ! messages, Type: messages ! symbols, and

Data: messages ! strings in the usual manner: if Msg(t,d) = m, then Type(m) = t and Data(m) = d . The

function InMsg: ids ! messages indicates the current incoming message for each agent.

The function Concat: strings � strings ! strings is the usual string concatenation, which we denote

with the in�x operator +. The distinguished element �: strings is the empty string.

For historical reasons, the data transmitted by Kermit is usually translated at the presentation layer into

printable ASCII characters before transmission. (This avoids the transmission of non-printable characters

which the communications medium might interpret as commands.) We represent this encoding by a pair

of functions EncodePre�x: strings � strings ! strings and Remainder: strings � strings ! strings. The

input to both of these functions is a pair (source, params), where source is the string to be encoded, and

params is a string containing various encoding parameters, such as the maximum length of any encoding, the

pre�x character to be used for non-printable characters, and so on. EncodePre�x (source, params) returns

the encoding of an initial segment of source; Remainder (source, params) returns the segment of source not

translated by EncodePre�x . A function Decode: strings � strings ! strings decodes any input string, using

a similar string of decoding parameters.

We require that applying Decode to an encoded datum with the same parameter string used in its

encoding should yield the original datum; that is, if Decode (Encode (source, params)) = x , then x +

Remainder (source, params) = source. Further, we require that the length of Remainder(source, params)

should be less than the length of source as long as source 6= �.

6.1.2 Private Functions

Each agent has a private function Mode: modes which indicates the current state of its �nite automata. A

private function Layer: fsession, transportg indicates whether control is currently focused in the session or



22 6. ALTERNATING BIT KERMIT: THE SESSION LAYER

transport layer. Initially, Layer = session for both agents. As in the symmetric ABP, each agent has private

functions Me: ids and You: ids.

The private functions RecvdType: symbols and RecvdData: strings indicate the type and datum of the

last message received from the other agent. The private functions SendType: symbols and SendData: strings

indicate the type and datum of the next message to be sent to the other agent. The private function

TransportCommand: fsend, receiveg indicates the latest command given to the transport layer.

Kermit allows for more than one �le to be sent between the sender and the receiver in a single com-

munications session; thus, we need to store the list of �les being sent and received, as well as the list of

corresponding �le names. We do this with the private functions FileText: integers ! strings and FileName:

integers ! strings, where the integer argument to each function denotes the position within the list of the

appropriate �le and �le name. The private function FileNo: integers indicates which �le is currently being

sent; the private function TextToSend: strings indicates (for the sender) what data in the current �le remains

to be sent.

Finally, each agent has a private functionMyParams: strings which provides local parameters used during

the initialization of the transaction.

6.2 Transition Rules

6.2.1 Sending Rules

The sender agent begins in state ssini by sending an \S" to the receiver, along with her initialization

parameters, and entering state ss�l . The transition rule for this state is shown in Fig. 12. Later we will

present transition rules which perform the actual transmission of data implied by TSEND .

Rule: SSINI

if Layer = session and Mode = ssini then Abbreviation: GOTO(x)

TSEND(\S",MyParams) Clear(RecvdType)

GOTO(ss�l) Mode := x

endif

Abbreviation: TSEND(type,datum)

TransportCommand := send, Layer := transport

SendType := type, SendData := datum

Figure 12: Transition rule for state ssini .

Automata state ssini is the only state in which an agent acts without �rst receiving a message. Fig. 13

presents a transition rule which performs the action of receiving input for all other automata states. As with

TSEND , we will present transition rules which perform this action later.

In automata state ss�l , the sender can either begin transmission of a new �le (if one remains to be

sent) or end the transaction. To begin sending a �le, the sender sends the �le name in an \F" message to

the receiver and moves to state ssdat , initializing the local TextToSend variable with the data contained in

that �le. To end the transaction, the sender sends a \B" message to the receiver. The transition rule for

this automata state is shown in Fig. 14. (Note that here and elsewhere, \ENDIF" abbreviates a series of

\endif"s).

HANDLE-INITS is an abbreviation for a set of transition rules which handles the initialization parameters

sent between agents (which occurs only on the �rst exchange of messages). See 10 for a fuller explanation

of HANDLE-INITS . EINFO is a string containing information needed to encode text properly in order to

be decoded by the receiver.



6.2 Transition Rules 23

Rule: GetInput

if Layer = session and Unde�ned(RecvdType) and Mode 6=ssini then

Layer := transport

TransportCommand := receive

endif

Figure 13: Transition rule for receiving input.

Rule: SSFIL

if Layer = session and Mode = ss�l and De�ned(RecvdType) then

if RecvdType 6=\Y" then ERROR endif

if RecvdType = \Y" then

if FileNo = 0 then HANDLE-INITS endif

if De�ned(FileName(FileNo)) then

TSEND(\F",EncodePre�x(FileName(FileNo),EINFO))

TextToSend := FileText(FileNo), GOTO(ssdat)

else

TSEND(\B",�), GOTO(sseot)

ENDIF

Abbreviation: ERROR

TSEND(\E", \Unexpected Message"), GOTO(error)

Figure 14: Transition rule for state ss�l .



24 6. ALTERNATING BIT KERMIT: THE SESSION LAYER

In automata state ssdat , the sender either sends the next segment of the �le being transmitted, or signals

the end of transmission of this �le. To send a new �le segment, the sender sends the text in a \D" message

to the receiver, and updates the local TextToSend variable accordingly. To end transmission of a �le, the

sender sends a \Z" message to the receiver. The transition rule for this automata state is shown in Fig. 15.

Rule: SSDAT

if Layer = session and Mode = ssdat and De�ned(RecvdType) then

if RecvdType 6=\Y" then ERROR endif

if RecvdType = \Y" then

if TextToSend 6=� then

TSEND(\D",EncodePre�x(TextToSend,EINFO))

TextToSend := Remainder(TextToSend,EINFO)

GOTO(ssdat)

else

TSEND(\Z",�), FileNo := FileNo + 1, GOTO(ss�l)

ENDIF

Figure 15: Transition rule for state ssdat .

In automata state sseot , the sender waits for an acknowledgment of its last message to the receiver, which

was a \B" message. Upon receipt, the sender terminates. The transition rule for this state is shown in Fig.

16.

Rule: SSEOT

if Layer = session and Mode = sseot and De�ned(RecvdType) then

if RecvdType = \Y" then GOTO(done) endif

if RecvdType 6=\Y" then ERROR endif

endif

Figure 16: Transition rule for state sseot .

6.2.2 Receiver Rules

The receiver agent starts in a state with Mode = srini , where he waits for the initial \S" message from the

sender. After receipt, the receiver processes the sender's initialization parameters, sends his own parameters

to the sender in an acknowledgment message (\Y "), and moves to state sr�l to prepare to receive �les. The

transition rule for this state is shown in Fig. 17.

In automata state sr�l , the receiver receives either an \F" message or a \B" message from the sender,

indicating whether another �le is about to be sent. The receiver moves to the appropriate state, storing any

�le name sent. The transition rule for this automata state is shown in Fig. 18.

In automata state srdat , the receiver either stores the next �le segment transmitted in a \D" message,

or ends �le reception when a \Z" message is received. The transition rule for this automata state is shown

in Fig. 19.



6.2 Transition Rules 25

Rule: SRINI

if Layer = session and Mode = srini and De�ned(RecvdType) then

if RecvdType 6=\S" then ERROR endif

if RecvdType = \S" then

HANDLE-INITS, TSEND(\Y",MyParams), GOTO(sr�l)

ENDIF

Figure 17: Transition rule for state srini .

Rule: SRFIL

if Layer = session and Mode = sr�l and De�ned(RecvdType) then

if RecvdType 6=\F" and RecvdType 6=\B" then ERROR endif

if RecvdType = \F" then

FileName(FileNo) := Decode(RecvdData,DINFO)

TSEND(\Y",�), GOTO(srdat)

endif

if RecvdType = \B" then

TSEND(\Y",�), GOTO(done)

ENDIF

Figure 18: Transitions rule for state sr�l .

Rule: SRDAT

if Layer = session and Mode = srdat and De�ned(RecvdType) then

if RecvdType 6=\D" and RecvdType 6=\Z" then ERROR endif

if RecvdType = \D" then

FileText(FileNo) :=

FileText(FileNo) + Decode(RecvdData,DINFO)

TSEND(\Y",�), GOTO(srdat)

endif

if RecvdType = \Z" then

FileNo := FileNo + 1, TSEND(\Y",�), GOTO(sr�l)

ENDIF

Figure 19: Transition rule for state srdat .



26 6. ALTERNATING BIT KERMIT: THE SESSION LAYER

6.2.3 Interim Transport Layer Module

In our proofs of correctness, we intend to prove the correctness of each layer separately, assuming the

correctness of any lower layers on which that layer depends. Through this separation of concerns, our proofs

become smaller and more manageable. Consequently, at each layer, we present transition rules which act

as a correct implementation of the succeeding layers. These rules will be replaced with more detailed rules

later.

The session layer of Kermit calls upon the transport layer to perform the actual task of transferring

messages between the two agents. We present a simple module template in Fig. 20 which describes a reliable

communications medium from one agent to the other.

Module: InterimTransport

Rule: TSEND

if Layer = transport and TransportCommand = send then

InMsg(You) := Msg(SendType, SendData)

Clear(SendType), Clear(SendData), Layer := session

endif

Rule: TGET

if Layer = transport and TransportCommand = receive

and De�ned(InMsg(Me)) then

RecvdType := Type(InMsg(Me)), RecvdData := Data(InMsg(Me))

Clear(InMsg(Me)), Layer := session

endif

Figure 20: Interim transport layer rules.

6.2.4 Regular Run

The initial state of our Kermit algebra satis�es the conditions shown in Fig. 21.

S.Mode = ssini R.Mode = srini

S.Layer = session R.Layer = session

S.RecvdType = undef R.RecvdType = undef

S.FileNo = 0 R.FileNo = 0

Figure 21: Initial conditions for Kermit.

6.3 Proof of Correctness

Throughout our proofs, we use S.X and R.X to refer to the private function X of the sender and receiver,

respectively.



6.3 Proof of Correctness 27

Lemma 21 De�ne

R:Next =

8

>

>

<

>

>

:

R:RecvdType if De�ned(RecvdType)

Type(InMsg(Receiver)) if Unde�ned(RecvdType) ^

De�ned(InMsg(Receiver))

S:SendType otherwise

and de�ne S.Next similarly. Then in any reachable global state, the values of S.Mode, S.Next, R.Mode, and

R.Next match one of the lines of the following table:

S.Mode S.Next R.Mode R.Next

(a) ssini undef srini undef

(b) ss�l undef srini \S"

(c) ss�l \Y" sr�l undef

(d) ssdat undef sr�l \F"

(e) ssdat \Y" srdat undef

(f) ssdat undef srdat \D"

(g) ss�l undef srdat \Z"

(h) sseot undef sr�l \B"

(i) sseot \Y" done undef

(j) done undef done undef

Proof. By induction. The initial state satis�es condition (a) of the table.

� GetInput, TSEND, and TGET do not a�ect any condition in the table.

� Rule SSINI transforms condition (a) to (b).

� Rule SRINI transforms condition (b) to (c).

� Rule SSFIL transforms condition (c) to (d) or (h).

� Rule SRFIL transforms condition (d) to (e) and transforms condition (h) to (i).

� Rule SSDAT transforms condition (e) to (f) or (g).

� Rule SRDAT transforms condition (f) to (e) and transforms condition (g) to (c).

� Rule SSEOT transforms condition (i) to (j). 2

Lemma 22 In any reachable state, the ERROR macro is never executed.

Proof. It is observable from the table in Lemma 21 and the transition rules that in any state where

S.RecvdType or R.RecvdType is de�ned, its value will not allow the ERROR macro to be executed. 2

Lemma 23 In any regular run, any message sent by the sender is acknowledged by the receiver.

Proof. By Lemma 21, we know that any message sent by the sender is expected by the receiver; i.e. the

receiver will not execute the ERROR macro, but execute some other transition rules. The message will not

be discarded by the reliable network; thus, the receiver will accept the message. An examination of the

receiver's rules shows that every message which does not generate an error (as these messages will not) is

acknowledged. 2

Lemma 24 In any reachable state, if R.Mode = srdat, then R.FileText(x) = � for every x > R:F ileNo; if

R.Mode 6= srdat, then R.FileText(x) = � for every x � R:F ileNo.



28 6. ALTERNATING BIT KERMIT: THE SESSION LAYER

Proof. By induction. Initially,R.FileText(x) = � for every x � 0. We consider all moves that a�ect functions

present in the invariant.

SRFIL may set R.Mode to srdat , but will leave R.FileNo and R.FileText unchanged; thus, the truth of

the invariant is una�ected.

SRDAT has di�erent e�ects on the functions named in the invariant, depending upon the value of

R.RecvdType. Before SRDAT �res, the invariant asserts that R.FileText(x) = � for all x > R:F ileNo.

If R.RecvdType = \Z", SRDAT updates R.Mode to sr�l and increments R.FileNo; afterwards, we will have

R.FileText(x) = � for all x � R:F ileNo. Otherwise, FileText(FileNo) may be modi�ed, but this does not

a�ect the invariant. 2

Lemma 25 In any reachable state, the following conditions are true:

S:Mode = ssfil ^R:Mode = srdat! S:F ileNo = R:F ileNo+ 1;

:(S:Mode = ssfil ^R:Mode = srdat)! S:F ileNo = R:F ileNo:

Proof. By induction. Initially, S.Mode = ssini , R.Mode = srini , and S.FileNo = R.FileNo = 0 .

From Lemma 21, we see that we may enter a state where S.Mode = ss�l and R.Mode = srdat (condition

(g)) only when S.Mode = ssdat and R.Mode = srdat (condition (e)), by rule SSDAT. By the induction

hypothesis, S.FileNo = R.FileNo before SSDAT �res, and we will have S.FileNo = R.FileNo+1 after SSDAT

�res, since SSDAT increments S.FileNo.

Similarly, we may only leave a state where S.Mode = ss�l and R.Mode = srdat (condition (g)) by rule

SRDAT. SRDAT increments R.FileNo; thus, we will have S.FileNo = R.FileNo as desired after SRDAT �res.

2

Lemma 26 De�ne

code =

8

>

>

<

>

>

:

R:RecvdData if De�ned(R.RecvdData)

Data(InMsg(Receiver)) if Unde�ned(R.RecvdData)

^ De�ned(InMsg(Receiver))

� otherwise

Then in any reachable state, if S.Mode = ssdat, then S.FileText(S.FileNo) = R.FileText(R.FileNo) +

Decode(code,DINFO) + S.TextToSend.

Proof. By induction. Initially, S.Mode = ssini , making the premise of the invariant false, thus satisfying

the invariant. We consider all moves that a�ect functions present in the invariant.

SSFIL may update S.Mode to ssdat ; if it does, we will have S.TextToSend = S.FileText(S.FileNo) and

code = �. Applying Lemmas 21 and 24 shows that R.FileText(R.FileNo) = �. If �ring SSFIL does not update

S.Mode to ssdat , the invariant is not a�ected.

SSDAT may update S.Mode to ss�l ; in that case, the premise of the invariant becomes false, making the

invariant true. Otherwise, text may be transferred from S.TextToSend into code, which does not a�ect the

invariant.

TGET may move text from InMsg(Receiver) into R.RecvdData, which does not a�ect the invariant (since

both are part of the de�nition of code).

SRDAT may move text from code into R.FileText(R.FileNo), which maintains the truth of the invariant.

Otherwise, R.FileNo may be incremented; but Lemma 21 shows that S.Mode 6= ssdat in this case, violating

our premise. 2

Theorem 9 In any regular run, assuming �nite input both sides will terminate with Mode = done, and for

all x, S.FileText(x) = R.FileText(x) and S.FileName(x) = R.FileName(x).



29

Proof. We consider a regular run from the sender's perspective, since the receiver acknowledges every

message sent by the sender (Lemma 23). By Lemma 22, we know the regular run will never enter an error

state.

The sender starts by sending an \S" and enters mode ss�l , which is also entered any time a �le has been

successfully sent. If there are more �les to send, a new \F" message is sent with the new �le name and

the sender enters mode ssdat . In a moment, we will show that the sender eventually returns to ss�l with

FileNo incremented by one. Thus, if only �nitely many �les have been speci�ed for sending, eventually no

more �les will be available and the sender proceeds to mode sseot where a \B" message is sent. After its

acknowledgment, both sides move to mode done.

It remains to show that from mode ssdat , the sender eventually returns to mode ss�l . In mode ssdat , the

length of TextToSend decreases each time a \D" message is sent, which is eventually acknowledged. Thus,

eventually the entire �le will be sent, FileNo will be incremented, and control will be returned back to ss�l .

How do we know that �le names and texts are transmitted correctly? Lemma 25 shows that S.FileNo

= R.FileNo when �le names and �le texts are transmitted; thus, �le names sent from the sender to the

receiver will be placed in corresponding places in the private function FileName. Lemma 26 shows that

when the sender is about to send the end-of-�le \Z" marker, S.TextToSend = code = �. Thus, S.FileText

and R.FileText will match with respect to the current value of FileNo. 2

7 Alternating Bit Kermit: The Transport Layer

The goal of the transport layer is to transform a possibly unreliable connection into a reliable one. In

Alternating Bit Kermit, the transport layer is a variant on the ABP, described in section 3. This similarity

allows us to rely on the proofs of correctness for the ABP for the correctness of the transport layer.

A couple of new message types are used by the transport layer. Q indicates that a message has been

corrupted (altered) during transmission through the network. T indicates that a timeout signal has occurred

while waiting for a message to arrive.

7.1 New Function Descriptions

7.1.1 Common Functions

Messages will now be composed of three parts: a symbol indicating the type of the message, a string indicating

the data content of the message, and an integer used to maintain proper sequencing of messages. We thus

re-de�ne Msg: symbols � strings � integers ! messages, and de�ne a new function Num: messages !

integers. We will only number messages with the integers f0; : : : ; 63g; consequently, we will use the modulus

function over the integers to compute message numbers.

The communications paths between agents are represented by queues, as in the ABP. Functions Emp-

tyQueue: queues, Append: queues � messages ! queues, Head: queues ! messages, Tail: queues !

queues, and Shrink: queues ! queues perform the usual operations. In addition, the external function

Corrupt: queues ! queues replaces zero or more messages in the input queue with messages of type \Q".

The function Q: ids ! queues represents the queues between the pair of agents. For a given agent,

Q(Me) is the queue of messages to be received by that agent, and Q(You) is the queue of messages sent by

that agent but not yet received by the other agent.

7.1.2 Private Functions

Each agent has a private function SeqNo: integers which holds the message number it expects to receive

in the next message from the other agent. Private functions FetchType: symbols, FetchNo: integers, and

FetchData: strings hold the message symbol, number, and datum from the most recently retrieved message.

The private function Retry: integers indicates the number of times the transport layer has attempted

to send the current message. The private function RetryLimit: integers indicates the maximum number of



30 7. ALTERNATING BIT KERMIT: THE TRANSPORT LAYER

times re-transmission of a particular message should occur. The private function LastMsg: messages holds

a copy of the last message sent to the other agent.

7.2 Transition Rules

We replace the interim module template presented in the last section with the rules presented in this section.

The transport layer module has two transition rules (shown in Fig. 22) which implement the sending

and receiving of messages; they are essentially those of the symmetric ABP. Rule TSEND uses a couple of

abbreviations; these are de�ned in Fig. 23. Finally, we need to de�ne the SEND and GET abbreviations

used throughout these rules; they are shown in Fig. 24.

Rule: TSEND

if Layer = transport and TransportCommand = send then

if Sender = Me then

SEND(SendType, SendData, (SeqNo + 1) mod 64)

else SEND(SendType, SendData, SeqNo)

endif

SeqNo := (SeqNo + 1) mod 64

Clear(SendType), Clear(SendData), Layer := session

endif

Rule: TGET

if Layer = transport and TransportCommand = receive then

if Unde�ned(FetchType) then GET endif

if De�ned(FetchType) then

if (FetchNo = SeqNo) and (FetchType 62 f\N", \Q", \T"g) then

RETURN(FetchType, FetchData)

elseif FetchType = \N" and FetchNo = (SeqNo+1) mod 64 then

RETURN(\Y", FetchData)

else RESEND

ENDIF

Figure 22: Transition rules for transport-level sending and receiving.

The network modules for Kermit, which allow for corruption of messages as well as discarding of messages,

are a simple extension of those for the ABP and are shown in Fig. 25.

7.3 Correctness

The transition rules presented in the last section are functionally equivalent to those of the symmetric ABP.

TSEND corresponds to the transition rules of the symmetric ABP invoked when Mode = Put , and TGET

corresponds to the rules invoked when Mode = Get . The alternation between modes Get and Put which

appears naturally in the symmetric ABP is assured by the session-layer rules, which alternate calls to TSEND

and TGET .

The symmetric ABP used 0 and 1 as message numbers, while Kermit uses the entire set f0; : : : ; 63g. It

can easily be shown, as in the ABP, that only two distinct message numbers exist in the various queues

and message holders in the Kermit protocol at any one moment. Furthermore, these two message numbers

are consecutive mod 64; thus, they can be seen to correspond to the ABP's 0 and 1 bits, where a message



7.3 Correctness 31

Abbreviation: RESEND

if Retry > RetryLimit then

SEND(\E", �), RETURN(\E", �)

elseif LastMsg 6=undef then Q(You) := Q(You) ++ LastMsg

else SEND(\N", �, SeqNo)

endif

Clear(FetchType), Clear(FetchData)

Abbreviation: RETURN (type, datum)

Retry := 0, RecvdType := type, RecvdData := datum

Clear(FetchType), Clear(FetchData), Layer := session

Figure 23: De�nitions for RESEND and RETURN .

Abbreviation: SEND (type, datum, num)

LastMsg := Msg(type, datum, num)

Q(You) := Q(You) ++ Msg(type, datum, num)

Abbreviation: GET

if De�ned(InMsg(Me)) then

FetchType := Type(InMsg(Me)), FetchNo := Num(InMsg(Me))

FetchData := Data(InMsg(Me)), Clear(InMsg(Me))

elseif Timeout(Me) then

FetchType := \T", FetchNo := SeqNo

Timeout(Me) := false

endif

Figure 24: De�nitions for SEND and GET .

Module: Transfer Template

if Unde�ned(InMsg(Me)) and Q(Me) 6=EmptyQueue then

InMsg(Me) := Head(Q(Me)), Q(Me) := Tail(Q(Me))

endif

Module: Shrink Template

Q(Me) := Shrink(Q(Me)) endif

Module: Corrupt Template

Q(Me) := Corrupt(Q(Me)) endif

Figure 25: Network module templates for Kermit.



32 8. ALTERNATING BIT KERMIT: THE DATALINK LAYER

number is mapped to 0 if it is even and 1 if it is odd. Thus, using this larger set of message numbers does

not a�ect the correctness of the protocol.

Kermit also detects that an \N" message numbered x is equivalent to a \Y" message numbered x� 1,

since an \N" message numbered x cannot be sent before a \Y" message numbered x� 1. This feature can

improve e�ciency slightly but has no a�ect on correctness.

Kermit does not re-transmit messages in�nitely often, as our version of the ABP does; otherwise, Kermit

would never terminate if a network failure prohibited all messages from reaching their destinations. Since

such a failure may not be detectable, Kermit \gives up" after a �xed number of re-transmissions without

receiving a response. This number may be changed by the user.

The network modules for Kermit may corrupt messages as well as discarding them; Kermit treats cor-

rupted messages similarly to timeout signals by requesting re-transmission of the last message sent.

Thus, the transport layer of Alternating Bit Kermit is correct if and only if the ABP is correct. Imme-

diately we have the following theorem:

Theorem 10 Any message sent by the transport layer of one agent, if it is not lost or corrupted more than

RetryLimit times, eventually is received by the transport layer of the other agent.

In addition, if all rules involving RetryLimit were to be removed from our description of Kermit, it can

be proved that the only regular Kermit runs which do not terminate are \unfair" runs; that is, runs in which

the modules which discard or corrupt messages interfere do not allow the other network modules to transmit

messages.

8 Alternating Bit Kermit: The Datalink Layer

The datalink layer of Kermit translates the abstract domain of \messages" into strings which may be trans-

mitted across the network. The string corresponding to a Kermit message is the concatenation of the

following:

� A �xed number of padding characters, needed by some implementations to allow an agent to detect

the beginning of a message. The number of padding characters, as well as the characters themselves,

are determined during the initial negotiations.

� A special \mark" character, denoting the true start of the message.

� The length of the \true" message (consisting of the length, message number, message type, and datum),

encoded as a single printable character.

� The message number, encoded as a single printable character.

� The message type symbol.

� The datum being sent.

� A checksum computed on the whole string produced so far, excluding the padding and mark characters,

encoded as a few printable characters (dependent on the checksum algorithm selected during the initial

negotiations).

� A special end-of-line character.

Thus, all that is required to modify for the datalink layer of Kermit is to provide more speci�c de�nitions

for the Msg , Type, Data, and Num functions speci�ed earlier. We show their de�nitions in Fig. 26, where +

denotes string concatenation and the behavior of previously unspeci�ed functions should be clear from the

above descriptions.



8.1 Correctness 33

Msg(type, data, num) = Pad(PadChar,PadLen) + Mark + BODY

+ ToChar(ChkSum(BODY)) + Eol

(where BODY = ToChar(Length(data)+3) + ToChar(num)

+ type + data)

Type(msg) =

if Chksum(Substr(DATA,2,LEN)) 6=UnChar(Substr(DATA,LEN+2,1))

then \Q" else Substr(DATA,4,1)

Data(msg) = Substr(DATA,5,LEN-3)

Num(msg) = UnChar(Substr(DATA,3,1))

(where DATA = FindStr(msg, Mark)

and LEN = UnChar(Substr(DATA,2,1)))

Figure 26: De�nitions of datalink functions.

We also modify the Corrupt function (which corrupts messages in transit) to modify messages in such a

manner that the alteration is detectable by the Chksum function as de�ned here. Certainly a message could

be altered and still pass this type of test; however, there is no way in general to be certain that a given

message has been unaltered by transmission through an unreliable medium. Many checksum functions have

been developed which can detect most types of errors common in network transmissions; [DaC] speci�es

three di�erent checksum functions which may be used in Kermit.

8.1 Correctness

Since the only changes we have made in the datalink layer are to the functions Msg , Type, Data, and Msg ,

the correctness of the datalink layer is directly related to the relationships between these functions:

Theorem 11 For any symbol t, datum d, and message number n, Type (Msg (t,d,n)) = t, Data(Msg(t,d,n))

= d, and Num(Msg(T,d,n)) = n.

Proof. Immediate from the de�nitions given above. 2

9 Sliding Windows Kermit

Since the basic Kermit protocol was standardized, a number of optional extensions to Kermit have been

developed. A Kermit agent can be instructed to act as a �le server, both sending and receiving �les from

the other agent at her request. A protocol extension is de�ned for encoding 8-bit data for transmission over

7-bit networks. Most of these extensions can be modeled easily using evolving algebras, but do not provide

much of a challenge. We describe here an optional extension of greater interest: the use of a sliding window

protocol.

If both sides agree to the use of sliding windows, each agent may use Kermit's version of the sliding

window protocol while �le data is being transmitted in states ssdat and srdat . The standard ABP is used in

all other states. The speci�cation given in [DaC] is a combination of the session and transport layers, with

the sliding window protocol used in place of the ABP. Consequently, we present transition rules for Kermit's

use of sliding windows which are a combination of the session and transport layer rules.



34 9. SLIDING WINDOWS KERMIT

9.1 New Functions

The sender agent has a private function WinMsg: integers ! messages which is used to store messages that

have been sent; the receiver agent has a corresponding function WinData: integers ! data used to store

data that has been received. Both agents have a private function WinAck: integers ! Bool which indicates

which messages have been acknowledged.

Both agents have private functions WinLo, WinHi: integers which indicate the current window bound-

aries. A global static function WinMax: integers indicates the largest window size permitted; as shown in

section 5, at least 2�WinMax distinct messages are needed to use a window of size WinMax. Consequently,

we assume that all our arithmetic with respect to message numbers is done modulo 2 �WinMax.

A function Windows: Bool indicates whether or not the sliding windows protocol is to be used during

data transmission. Its value is determined during the initial protocol negotiations.

9.2 Transition Rules

Rule GetInput, presented in Fig. 13, attempts to get a new input message whenever there is no message

available (except in the initial state of the sender, since the sender must send the �rst message). In Sliding

Windows Kermit, we only wish to obtain messages at speci�c moments; in particular, we need to disable this

automatic retrieval of messages when our sliding window is in operation. Thus, we need to disable GetInput

for certain values of Mode. The modi�ed transition rule is shown in Fig. 27. Further, we add the Boolean

condition (Windows = false) to the outermost guard of rules SSDAT and SRDAT presented in section 6.2.

Rule: GetInput

if Layer = session and Unde�ned(RecvdType) and (Mode 6=ssini or

(Windows = true and Mode 62 fssdat, ssdatrotate, srdat,

srdatnak, srdatrotateg)) then

Layer := transport, TransportCommand := receive

endif

Figure 27: Modi�ed transition rule for receiving input.

Once the sender arrives in state ssdat during a sliding window �le transfer, she repeatedly sends messages

until an acknowledgment arrives, the window of unacknowledged messages �lls, or the entire �le has been

sent. The transition rule for sending messages in state ssdat is shown in Fig. 28, and corresponds to rule

SendMessage of the SWP shown in Fig. 8.

If acknowledgments within the sender's window are waiting to be processed, the appropriate window slots

are marked as acknowledged and control passes to ssdatrotate, which rotates the window forward as far as

possible. Otherwise, a retry mechanism is used to re-transmit certain messages a limited number of times.

The transition rule for processing acknowledgments in state ssdat is shown in Fig. 29, and corresponds to

rule ProcessAck of the SWP shown in Fig. 8.

The rules for ssdatrotate slide the sender's window forward as far as possible. Additionally, if all ac-

knowledgments have been received for a particular �le, we send the end-of-�le Z indicator and resume

normal Kermit operations. The transition rule for ssdatrotate is shown in Fig. 30, and corresponds to rule

SlideSenderWin of the SWP shown in Fig. 8.

In state srdat , the receiver using sliding windows processes data (D) messages within the current window

by storing the received data and sending an acknowledgment message. When the end-of-�le Z message

arrives, the receiver clears his window of all data which has been received but not yet shifted out of the

window. Finally, if a timeout or corrupted message arrives, a negative acknowledgment (NAK) message is



9.2 Transition Rules 35

Rule: SSDAT:Windows:1

if Mode = ssdat and Windows = true and Unde�ned(FetchType) then

if SeqNo � WinLo + 1 � WinMax and TextToSend 6=� then

WinMsg(SeqNo) :=

Msg(\D", EncodePre�x(TextToSend,EINFO), SeqNo)

SEND(\D", EncodePre�x(TextToSend, EINFO), SeqNo)

TextToSend := Remainder(TextToSend, EINFO)

SeqNo := SeqNo + 1

else GET

ENDIF

Figure 28: Transition rule for sending data using sliding windows.

Rule: SSDAT:Windows:2

if Mode = ssdat and Windows and De�ned(FetchType) then

if WinLo � FetchNo � SeqNo then

if FetchType = \Y" then

WinAck(FetchNo) := true, Retry(FetchNo) := 0

Clear(FetchType)

if FetchNo = WinLo then Mode := ssdatrotate endif

endif

if FetchType = \N" then RETRY(FetchNo) endif

if FetchType = \T" then RETRY(WinLo) endif

if FetchType 62 f\Y", \N", \T", \Q"g then ERROR endif

endif

endif

Abbreviation: RETRY(num)

if Retry(num) > RetryLimit then ERROR

else

Q(You) := Q(You) ++ WinMsg(num)

Retry(num) := Retry(num) + 1, Clear(FetchType)

endif

Figure 29: Transition rule for receiving acknowledgments using sliding windows.



36 9. SLIDING WINDOWS KERMIT

Rule: SSDATROTATE

if Mode = ssdatrotate then

if WinAck(WinLo) = true then

WinAck(WinLo) := false, WinLo := WinLo + 1

elseif WinLo = SeqNo and TextToSend = � then

TSEND(\Z",�), GOTO(ss�l)

else GOTO(ssdat)

endif

endif

Figure 30: Transition rule for state ssdatrotate.

generated for the oldest message in the current window not yet received. The transition rule for state srdat

is given in Fig. 31; it corresponds to rule AcceptMessage of the SWP shown in Fig. 8.

In state srdatnak , the receiver generates a NAK message for the unacknowledged message within his

window with the lowest message number. If there are no such messages, the receiver generates a NAK

message for the �rst message outside of the window (i.e. the next message expected by the receiver) only if

this NAK was generated by a timeout condition. The transition rule for state srdatnak is given in Fig. 32;

it has no corresponding rule in the SWP.

Messages arriving outside of the current window require that the receiver's window be shifted forward;

control passes to state srdatrotate to accomplish this. State srdatrotate rotates the receiver's window forward

until the just-received datum can be placed into the message. At the same time, all the data which is shifted

out of the window is stored in the output �le. The transition rule is shown in Fig. 33; it corresponds to rule

SlideReceiverWin of the SWP shown in Fig. 8.

9.3 Correctness

The proof of correctness for this extension to Kermit is similar to that for the bounded SWP presented in

section 5. We point out here the main similarities and di�erences between the protocols.

The principal di�erence between the two protocols is that Kermit runs for a �nite amount of time. The

Kermit sender must wait to send the Z message until every message containing data from the current �le

has been successfully acknowledged. In addition, the Kermit receiver must rotate all messages in the current

window out of the window (and into the output �le) once the end-of-�le (Z) message has been received.

Agents may re-transmit lost messages more often in the Kermit protocol than in the SWP, since the

receiver can generate NAKs for missing messages at certain times. This does not a�ect the correctness of the

protocol; it may, however, improve performance as the server may not wait as long in order to re-transmit

a lost or garbled message.

The way in which the agents slide their windows is di�erent in the two protocols. In the SWP, the sender

may slide her window in parallel with the sending of new messages; in Kermit, the sender must slide her

window separately from sending new messages. In the SWP, the receiver may slide his window by large

amounts; in Kermit, the receiver slides his window only by single messages. The net result is the same in

each case.

The size of the agents' windows is determined during the initial protocol negotiation, but is at most 32

(since Kermit uses only 64 message numbers).

Immediately we have the following theorem:

Theorem 12 Every message sent by Sliding Windows Kermit is eventually received and successfully ac-

knowledged.



9.3 Correctness 37

Rule: SRDAT:Windows

if Mode = srdat and Windows and De�ned(FetchType) then

if FetchType = \D" then

DSEND(\Y", �, FetchNo)

if WinLo � FetchNo � WinHi then

WinData(FetchNo) := FetchData, WinAck(FetchNo) := true

GOTO(srdat)

else GOTO(srdatrotate)

endif

endif

if FetchType = \Z" then

if WinLo � WinHi then

FileText(FileNo) := FileText(FileNo) +

Decode(WinData(WinLo),DINFO)

WinLo := WinLo + 1, WinAck(WinLo) := false

else

SeqNo := FetchNo+1, FileNo := FileNo + 1

DSEND(\Y", �, FetchNo), GOTO(sr�l)

endif

endif

if FetchType = \Q" or FetchType = \T" then

Mode := srdatnak, Counter := WinLo

endif

if FetchType 62 f\D", \Z", \Q", \T"g then ERROR endif

endif

Figure 31: Transition rule for state srdat using sliding windows.

Rule: SRDATNAK

if Mode = srdatnak then

if Counter � WinHi then

if WinAck(Counter) = false then

DSEND(\N",�, Counter), GOTO(srdat)

else Counter := Counter + 1

endif

else

if FetchType = \T" then DSEND(\N",�, WinHi+1) endif

GOTO(srdat)

endif

endif

Figure 32: Transition rule for state srdatnak .



38 11. PARTIALLY ORDERED RUNS OF KERMIT

Rule: SRDATROTATE

if Mode = srdatrotate then

if WinHi+1 � FetchNo then

DSEND(\N",�, WinHi)

if WinHi � WinLo + 1 = WinMax then

FileText(FileNo) := FileText(FileNo) +

Decode(WinData(WinLo),DINFO)

WinLo := WinLo + 1, WinAck(WinLo) := false

endif

WinHi := WinHi + 1

else

WinData(FetchNo) := FetchData, WinAck(FetchNo) := true

GOTO(srdat)

ENDIF

Figure 33: Transition rule for state srdatrotate.

10 Kermit Initialization

The �rst messages sent by each agent in a Kermit �le transfer (that is, the sender's \S" message and the

receiver's �rst \Y" message) contain initialization parameters. The combination of these two sets of param-

eters uniquely determine information of importance to the protocol (for example, the maximum message

length to be used).

The HANDLE-INITS transition rules handle the setting of these parameters. We present some of these

rules in Fig. 34, leaving the reader to deduce the behavior of previously unspeci�ed functions. Rules for

handling other parameter initializations are similar.

11 Partially Ordered Runs of Kermit

In all our protocol proofs presented above, we used sequential runs. In distributed computations such as

those of Kermit, sequential runs are too restructive; e.g. moves of the sender and receiver may certainly

overlap in time. Fortunately, our theorems survive when we consider partial runs (de�ned in [Gur]).

Our safety properties are of the form \Every state reachable in a regular run satis�es property �" and

are proved by induction over regular sequential runs. Recall that a sequential run is regular if it satis�es a

speci�ed set of initial conditions. Call a partial run regular if its initial state satis�es the same set of initial

conditions. It is shown in [Gur] that a property � holds in every reachable state of a partially ordered run

� if it holds in every reachable state of every linearization of �; each of these linearizations is a sequential

run of the program in question. Thus, every safety result for regular sequential runs gives the same result

for regular partial runs.

Our liveness properties have the form \Every fair run satis�es such and such property." Our de�nition of

sequential fair runs relies implicitly on the total ordering of steps in a run; consequently, we need a di�erent

de�nition of fairness for partially ordered runs. Recall that a sequential run is fair if for every positive agent

X and every tail �

0

of �, if X is enabled in�nitely often in �

0

, then X must make a move in �

0

. We call a

partially ordered run � fair if some linearization of � is fair.

With this new de�nition, it can be seen that any of our fairness properties of sequential runs can be

proved over partially ordered runs as well. As an example, consider Theorem 2, which asserts that in any

sequential fair run of the ABP, any datum sent is eventually received.



39

if Length(RecvdData) � 1 then

if MAXL � 10 then MaxMsgLen := MAXL

else MaxMsgLen := 80 endif

endif

if Length(RecvdData) � 2 then

if TIME > 0 then TimeoutLen := TIME

else TimeoutLen := 5 endif

endif

if Length(RecvdData) � 3 then

if NPAD > 0 then PadLen := NPAD else PadLen := 0 endif

endif

if Length(RecvdData) � 4 then PadChar := PADC endif

if Length(RecvdData) � 5 then

if 2 � EOL � 31 then Eol := EOL

else Eol := CarriageReturn endif

endif

if Length(RecvdData) � 6 then

if 32 � QCTL � 63 or 95 � QCTL � 127 then CtlPre�x := QCTL

else CtlPre�x := \#" endif

endif

where MAXL = UnChar(Substr(RecvdData,1,1))

TIME = UnChar(Substr(RecvdData,2,1))

NPAD = UnChar(Substr(RecvdData,3,1))

PADC = Ctl(Substr(RecvdData,4,1))

EOL = Unchar(Substr(RecvdData,5,1))

QCTL = Substr(RecvdData,6,1)

Figure 34: Some transition rules of the HANDLE-INITS abbreviation.



40 REFERENCES

Theorem 13 In every fair run �, every datum sent is eventually received. That is, if the sender sends

a datum d during a move �, there exists a move � during which the receiver accepts d and where � > �.

Moreover, there is a constant N such that every initial segment of � containing more than N moves contains

�.

Proof. We show �rst that � contains a move � of the receiver accepting d, where � < �. Since � is fair, let

�

0

be a linearization of � which is fair. Theorem 2 shows that �

0

must contain the desired �.

Let I = f�

0

: �

0

6> �g. Since � is a partial run, I is �nite. Let N = kIk. By the de�nition of I, if an

initial segment � of � contains more than N moves, � either contains � or a move �

0

such that � < �

0

. But

since � is downward closed, � must contain � as well. 2

All other proofs of fairness can be applied to partially ordered runs in a similar manner.

References

[BSW] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, \A note on reliable full-duplex transmission

over half-duplex links", Communications of the ACM, volume 12 (1969), no. 5, pp. 260{261, 265.

[DaC] F. DaCruz, Kermit: A File Transfer Protocol , Digital Press, 1987.

[Gur] Y. Gurevich, \Evolving Algebras 1993: Lipari Guide", in Speci�cation and Validation Methods, ed.

E. B�orger, Oxford University Press, 1995.

[Kr] F. Kr�oger, Temporal Logic of Programs, Springer-Verlag, 1987.

[LM] K. G. Larsen and R. Milner, \A Compositional Protocol Veri�cation Using Relativized Bisimula-

tion," Information and Computation, volume 99 (1992), no. 1, pp. 80{108.

[SL] A. U. Shankar and S. S. Lam, \A Stepwise Re�nement Heuristic for Protocol Construction," ACM

Transactions on Programming Languages and Systems, volume 14 (1992), no. 3, pp. 417{461.

[Tan] A. S. Tanenbaum, Computer Networks, Prentice-Hall, 1981.

[Wal] J. Walrand, Communication Networks: A First Course, Aksen Associates, 1991.


