
EVALUATING RS-232 COMMUNICATION PACKAGES

Frank da Cruz, Christine Gianone

Columbia University Center for Computing Activities
New York, N.Y. 10027

1December 1987

In most places where there are computers, nobody questions the need for data communication.
The question is more likely to be how best to do it. In theory networks can do the job, typically PC
LANs, perhaps interconnected by gateways to mainframe networks. But this arrangement presumes
that equipment was purchased according to some consistent plan, with networking in mind. In
practice, most organizations have a patchwork history of computer acquisition, resulting in a
hodgepodge of PCs, minis, and mainframes for which compatible networking options are not
available or affordable. Often, the only device these systems share in common is the humble RS-232
asynchronous communication port. Even when comprehensive networking solutions exist, the cost of
attaching hundreds or thousands of PCs, at $500-$1500 per PC, to a Token Ring or Ethernet can be
daunting. And those who want to dial in from home, or dial out to external services, must still be
accommodated.

For these reasons, many organizations choose to connect PCs to their networks through use of
RS-232 communication packages like Crosstalk, Blast, Relay Gold, Smartcomm, VTERM, Kermit,
PC-Talk, ProComm, Red Ryder, HyperACCESS, or ASCII Pro. Hundreds of these products permeate
the marketplace, and, if selected intelligently, they can fill the gaps in an organization’s network
effectively and inexpensively. The cost for PC-resident data communication programs typically
ranges from $20 to $500 per PC, with some exceptions (some are free, others cost more). And that
makes these programs more affordable than most PC network connections.

Evaluating RS-232 communication packages can be a complicated process. The Cost must be
weighed carefully against the needs of your organization. Reviews and surveys of communication
packages appear frequently in the popular computer publications, and they can help. But surveys
consisting mostly of charts in which, say, 100 popular software packages are compared on the basis
of, say, 20 arbitrarily chosen features, are necessarily superficial. And many articles concentrate on
frills and conveniences while giving short shrift to central issues like connection establishment and
maintenance, terminal emulation, and file transfer. In this article we attempt to present the
features of RS-232 communication packages in a way that will help you to assess their relative
importance for yourself or your organization.

1This is the original manuscript of the article that was published in Data Communications Magazine as "Shopping for
Software That Lets PCs Chat With Mainframes", December 1987, pp.155-170.

2

WHAT IS AN RS-232 COMMUNICATION PACKAGE?
RS-232 communication packages are software programs that run on personal computers like the

IBM PC, IBM clone, Apple II, or Macintosh, and communicate asynchronously with remote
computers through RS-232-C serial ports, either directly or through modems. This distinguishes
them from specialized products that emulate synchronous terminals in IBM mainframe, Wang, or
similar environments, for which special adapters (like an Irma board) and connections (like coax) are
required, and which won’t be discussed here.

There are two fundamental aspects to any PC communication package. One is terminal
emulation, which allows you to connect your PC to a mini or mainframe as a terminal in order to
conduct a timesharing session or to access an application on a central, shared system. The other is
data transfer, which lets you exchange information between your PC and a mini or mainframe (or
another PC). For terminal emulation, PC-resident software is the only requirement. For error-free
data transfer, however, a companion program is required on the other computer. The cost for
commercial mini- or mainframe-based communication programs runs much higher than PC versions,
typically ranging from $1000 to $100,000 (again, with exceptions).

USER INTERFACE
The most immediately striking aspect of any program is the "user interface": the prompts,

commands, menus, function keys, etc, with which you make your wishes known to the program, and
the displays with which it makes the results known to you.

There are many styles of user interface: command line, interactive prompt and command, menus
and arrow keys, mice and windows. The fundamental tradeoff is ease of learning versus ease of use.
Ease of learning is important if many people will be using the package infrequently or if there is
rapid personnel turnover, so that relatively little time need be "wasted" in learning and training. A
user interface designed for ease of learning presents you with all the choices in menus. The penalty
is that you are always presented with menus for everything, which slows you down needlessly once
you have become expert. At the other extreme are programs that favor the expert, providing only
terse and cryptic commands, sometimes with no way for a novice to get help at all, short of reading
the manual. A compromise, "menu on demand", lets the expert issue rapid, terse commands, while
still allowing the novice to see a menu at any point by entering a special help key.

There is an oft-neglected aspect of the user interface that falls into the "ease of use" category: can
the package be used by people with disabilities like motor impairment, blindess, or deafness? If you
can depress only a single key at a time, how can you enter complicated Ctrl-Alt-Shift key
combinations? If your PC is connected to an ASCII-oriented speaking device or a Braille terminal,
how can you decipher multicolor animated graphics screens? If you can’t hear, how do you know
when the package is beeping or whistling at you to signal some important event? Often, the fancier
the user interface, the less it lends itself to use by the disabled.

Another item of minor importance, but whose absence can be a nuisance, is the ability to access
system functions without actually leaving the program. If you want to change directories, list files,
display a file, or delete a file, you should not have to exit the communication program, and then
restart it afterwards. This can be time consuming, especially on floppy-disk-based systems, and even
more so when settings -- or the connection itself -- must be reestablished.

Commercial communication packages tend to place great emphasis on the appearance and style of
the user interface, primarily for marketing reasons. But for most people, the user interface should
not be a key factor in evaluating a product. It only lets you specify the real work to be done, and it

3

should take up a relatively small proportion of the total time you spend with the package.
Ultimately, it is much more important to know whether the product can perform the required tasks,
and how well.

CONNECTION ESTABLISHMENT AND MAINTENANCE

Perhaps the most important aspect of any communication package its set of mechanisms for
establishing a connection, matching communication parameters to the communication medium and
the system on the other end, monitoring the connection once established, and breaking the
connection.

COMMUNICATION PARAMETER SETTINGS
Any communication program should allow you control over communication parameters like bits

per second, parity, duplex, flow control, and the number of data, start and stop bits per character.
Each of these parameters is important, and the lack of any particular option may prevent you from
communicating satisfactorily with another computer. Before you select a communication package,
you should be sure it supports all the communication parameters and settings required by all the
computers you need to communicate with.

For example, most DEC minis and mainframes employ XON/XOFF full duplex flow control to
prevent data overruns; if your PC communication package does not support XON/XOFF, then data
transferred between it and the DEC system could be lost. IBM mainframe ASCII TTY linemode
connections, on the other hand, are half duplex and exercise a line turnaround handshake discipline:
if you transmit to the IBM mainframe before it has given you permission (by sending a special
"handshake" character, such as Control-Q), it will not accept your data. Certain popular mainframes
and minis, as well as public data networks like Telenet and Tymnet, use even, odd, or mark parity,
and will not recognize your characters unless the right parity is applied. And if your package cannot
distinguish parity bits from data bits, the wrong characters will be displayed on your screen. Table 1
shows typical RS-232 communication parameters for various systems.

__

Computer Front End Duplex Flow Control Parity Terminal
--------------- --------- ------ ------------ ------ --------
Data General MV None Full XON/XOFF None Dasher
DEC PDP-11 None Full XON/XOFF None VT52,VT100
DEC VAX None Full XON/XOFF None VT52,VT100
DECSYSTEM-20 PDP-11 Full XON/XOFF Even VT52,VT100
Honeywell DPS8 DN335 Half XON Handshake None VIP7300,7800
HP-1000 None Full ENQ/ACK None HP262x
HP-3000 None Half XON Handshake None HP262x
IBM 370 Series 3705 TTY Half XON Handshake Mark TTY
IBM 370 Series 7171 P.E. Full XON/XOFF Even Various*
Prime minis None Full XON/XOFF Mark TTY, PS300

P.E. = 3270 Protocol Emulator, TTY = ASCII Linemode Connection.
*Delivered with support for 13 popular terminals, configurable for more.

Table 1: Typical Communication Parameters
__

Some communication packages support only a limited range of transmission speeds. For instance,
they may be designed to work only for dialup connections at speeds up to 1200 or 2400 bits per
second (bps). If you should ever need to connect two computers directly, you should not be artificially
limited to such low speeds. Even if dialups are the only connections you will ever make, you should

4

be aware that new modems are appearing on the market that operate at speeds in excess of 9600 bps
on ordinary voice-grade phone connections. For these reasons, any communication package should
be able to operate at 9600 bps or higher. 9600 bps is the highest speed supported by most minis,
mainframes, and front ends today (some support 19,200 bps). Micros like the IBM PC/AT and the
Macintosh, however, can drive their RS-232 ports to speeds of 38,400 bps or higher, and two such
PCs connected back to back can actually transfer data at these speeds. But the higher the speed, the
more important it is to have an effective flow control mechanism supported by the systems on each
end of the connection.

MODEM CONTROL
Unless your computers are hardwired together with dedicated lines, you probably use

asynchronous dialup modems to establish connections with other systems. Modems communicate
special control information with the PC via RS-232 modem signals like DTR, DSR, and CD (see
Table 2). Most communication packages can control and monitor these signals to detect when the
connection is broken, or to break the connection and hang up the phone. If you use your package
interactively, modem control is largely superfluous because you will notice when the connection is
broken, or you will hang up the phone yourself when you are done with it. For unattended
operation, on the other hand, modem control is important in avoiding the excessive phone bills that
could result when the communication package does not notice that connections break and leaves the
phone off hook all night.

__

FG Frame Ground
TD Transmitted Data, from PC to modem
RD Received Data, from modem to PC
RTS Request To Send, from PC to modem, used with half duplex modems
CTS Clear To Send, from modem to PC, ditto
SG Signal Ground
DSR Data Set Ready, indicates modem is in data transmission mode
CD Carrier Detect, indicates that modem is connected to other modem
DTR Data Terminal Ready, tells modem that PC is ready to communicate
RI Ring Indicator, tells PC that the phone is ringing

Table 2: RS-232-C Asynchronous Modem Signals
__

Modems may be either external or internal. External modems are controlled in a consistent way
according to RS-232-C, and rarely pose a problem to communications software. Although generally
more expensive, external modems are interchangeable between different computers. Internal
modems, on the other hand, are built specifically for certain computers, and sometimes require
special handling by the software. A particular software package will not necessarily operate
correctly with a specific internal modem (check with the software vendor!). And, of course, two
modems that are to communicate must support the same modulation techniques and speeds.

Some packages are designed to be used only with modems, and don’t work properly when two
computers are connected directly by a cable, unless certain modem signals are "faked" by
cross-connections or jumper wires within the cable connectors. Such a fakeout cable is called a "null
modem" or "modem eliminator" (Figure 1), readily available from any computer supply house, and
also available as an adapter that you can connect to your modem cable. But different systems may
require different signals connected in different ways, so be prepared for some experimentation (a
breakout box will help). Your communication software package can relieve you of the tinkering if it
can be configured to ignore modem signals altogether when you connect two computers directly.

5

__

True Null Modem Minimal Null Modem
(8 wires) (4 wires)

FG ----------- FG FG ----------- FG

TD ----\ /---- TD TD ----\ /---- TD
X X

RD ----/ \---- RD RD ----/ \---- RD

RTS ----\ /---- RTS RTS -+ +- RTS
X | |

CTS ----/ \---- CTS CTS -+ +- CTS

DSR -+ +- DSR DSR -+ +- DSR
| | | |

CD -+--\ /--+- CD CD -+ +- CD
X | |

DTR -+--/ \--+- DTR DTR -+ +- DTR
| | | |

RI -+ +- RI RI -+ +- RI

SG ----------- SG SG ----------- SG

Figure 1: Null Modems
__

DIALER CONTROL
Many PCs are connected to the outside world only by telephone. "Smart modems", like those

manufactured by Hayes, are able to dial the phone for you if they receive commands in the right
format from the PC. This means that your communication package must understand the dialing
language of the modem. Although the Hayes "AT" language has become a de-facto standard, not all
autodial modems conform to it (prominent counterexamples include DEC DF-series modems, and
selected models from Racal-Vadic, US Robotics, and Ventel). Be sure your modem’s dialing language
is supported by your communication package.

Dialing software simplifies connection establishment, hiding the details of the dialing language
from you. You tell the program what number to call, and let the software handle the details. Some
packages go a step further and include a phone directory so that you don’t even have to remember
phone numbers, just the names of the places you want to call.

Dialer control and phone directories fall into the frill category for most users. It’s not much more
trouble to type "ATDT7654321" than it is to type "dial fred". For unattended operation, however,
automatic dialing is an essential feature. If a dial command is lacking, then the same function can
be performed by a script, described below.

DEBUGGING COMMUNICATION PARAMETERS
Often, we can only guess what the right combination of speed, stop bits, parity bits, data bits,

duplex, and flow control might be for a particular connection. What if we guess wrong? What tools
does the communication package give us to pin down the offending parameters?

Obviously, if the package lets us set these parameters independently, we can vary them until the
connection works, but the combinations could be endless. Your communication package should

6

include debugging tools to reduce the guesswork, like special display or logging of received
characters, preferably including their 8-bit numeric values. If examination of the log reveals a byte
with a numeric value of 193 (= 11000001 binary) where you would expect an ASCII "A" (= 01000001
binary), then you probably should be looking for 7 data bits with odd or mark parity rather than 8
data bits with no parity.

A good communication package will also include a troubleshooting guide, like the one in Table 3,
in which you can look up symptoms and find the corresponding diagnoses and prescriptions.

__

SYMPTOM POSSIBLE CAUSE CURE

Blank, dark screen. PC turned off. Turn on PC.

Total garbage on screen. Wrong speed. Try another speed.

Spurts of garbage on screen. Noise. Hang up and redial.

Uniform mixture of good and Parity. Select a different
bad characters on screen. parity.

Typed characters appear twice. Duplex. Select full duplex.

Typed characters don’t appear. Duplex. Select half duplex.

Random gaps in screen text. No flow control. Use flow control,
or a slower speed.

Table 3: Sample Entries from a Troubleshooting Guide
__

SAVING COMMUNICATION PARAMETERS
Once you have discovered the proper settings for communicating with a particular machine, you

will want to have some way of saving them. To alleviate the tedium of setting five or ten
communication parameters each time you connect to a given system, the package should allow
settings to be collected together into "configurations" which may be saved under mnemonic names.

Some packages are delivered with a set of configurations for popular dialup services like
Dow-Jones, Compuserve, MCI Mail, The Source, etc. These built-in configurations shield you from
having to know anything about data communication parameters. But when you must establish a
connection to a system the package doesn’t know about -- like from your PC at home to the
mainframe at work -- you should be able to manipulate the communication settings yourself and
save them for future use. Once you’ve determined the appropriate settings for, say, your company’s
DEC VAX, IBM 3090, Harris 800, plus your local Telenet PAD, you only need mention the associated
configuration name to set all the corresponding parameters at once.

SCRIPT LANGUAGE, UNATTENDED OPERATION
Just as a communication package may remember your communication settings or phone numbers

for you, it can also allow repetitive interactive tasks, like login sequences, to be automated by means
of "scripts". Scripts are little "programs" that look for specific outputs from the remote computer and
provide appropriate responses. When the package, or the underlying system, allows a script to be
executed at a predesignated time, then it is possible to carry on a canned dialog with no human
operator present. For instance, you might program your PC to "wake up" at midnight, set the proper

7

communication parameters and dial up your office mini, log in, deposit the day’s transactions, fetch
and print the day’s mail, log out, and hang up. Script languages vary from the primitive and cryptic
to full-blown programming languages complete with variables and conditional branching. Figure 2
shows a simple script for dialing a Hayes modem to establish a connection to a Unix system and then
logging in. It illustrates how a script can be used in place of built-in dialer control.

__

set speed 1200 Bits per second
set parity none Parity
output AT\13 Wake up the modem
input OK Look for its "OK"
output ATD7654321\13 Give modem’s dialing command
input CONNECT Look for desired response
pause 1 Wait a second
output \13 Send a carriage return
input login: Look for login prompt
output chris\13 Send user ID, followed by carriage return
input Password: Look for password prompt
echo Connecting to Unix System...
echo Please type your password:
connect Let the user take over

Figure 2: Script Language Example

__

The "output" commands send the indicated text strings to the Unix system ("\13" is a code for
carriage return), and the "input" commands search the incoming data for the indicated strings. If
any of the input commands fail, the script is automatically terminated. This is an important feature
of a script language. Suppose, for instance, you have a nightly script which sends your day’s work to
a mainframe and then deletes it from the PC’s hard disk. If the data could not be successfully
transmitted, then you certainly don’t want the script to forge ahead stubbornly and destroy all your
work.

Scripts are essential for unattended operation, and they are also useful in setting up procedures
for relatively unskilled operators such as data entry clerks. For the typical interactive user,
however, scripts are a minor convenience rather than a necessity.

TERMINAL EMULATION
The PC has increasingly replaced the terminal in many organizations. In addition to its other

capabilities, a properly programmed PC can also act like ("emulate") a terminal, so that you can use
it to conduct a dialog with a remote computer. Your keystrokes are sent out the communication port,
and characters that arrive at the port are displayed on the screen. On half duplex, local echo
connections, your keystrokes are also displayed on the screen. On full duplex connections, terminal
emulation can be a tricky business because characters may arrive at the port at the same time that
you are typing; communication programs vary in their ability to handle both events at once,
especially at higher speeds.

It should be stressed that terminal emulation does NOT provide any sort of automatic error
control, any more than a real terminal would. Bare characters are sent back and forth with
absolutely no error recovery mechanism. If a package claims to supply error-checking data transfer,
you should understand that this claim applies to its file transfer functions and not to its terminal
emulator. A noisy telephone line would probably leave garbage on your screen during terminal

8

emulation even though files could be transferred successfully.

In addition to sending and displaying characters, a terminal emulator also attempts to imitate the
repertoire of special effects of some particular real ASCII video display terminal, such as the DEC
VT100 series, the IBM 3101, the Televideo 920, the ADM3A, etc. This means that the program
responds to screen control sequences sent by the host just as the real terminal would. For example,
the ASCII sequence "ESC [5 ; 7 H" sent to a DEC VT100 positions the cursor at row 5, column 7;
"ESC [0 J" clears the screen, and so a PC programmed to emulate a VT100 would understand the
same sequences and perform the same actions. When emulating a terminal, the package should also
provide some mapping between the terminal’s function keys and the PC’s, so that they transmit the
same sequences. If the VT100 PF1 key sends "ESC O P", then the IBM PC’s F1 key might be
programmed to send the same sequence.

Today’s video display terminals possess a formidable array of features for tabbing, highlighting,
partitioning the screen, erasing and inserting text, positioning the cursor, drawing figures, changing
colors, switching character sets, activating printers, etc, all controlled by host-transmitted escape
sequences. A package may emulate such a terminal completely, or it may emulate a "subset" of its
functions. Some terminals have features that cannot be emulated by certain PCs. For example, the
DEC VT100 allows switching between 80- and 132-column modes, but an IBM PC can only display
80 columns. To get 132 columns on a PC, a special board may be needed. Another example is the
VT100’s "smooth scrolling" feature, which allows a file to glide slowly along the screen -- the DEC
Rainbow can do this, while the IBM PC cannot.

Emulation should be complete enough to allow you to access any desired software on the host
which expects to control the appearance of the terminal’s screen; full-screen text editors like EDT on
VAX/VMS or GNU EMACS on a UNIX system are good tests. Another is IBM 3270 protocol
emulation as performed by the IBM 7171 or other protocol converter. If emulation is not complete,
you will see fragmented and jumbled screens, characters or lines overwriting each other, mysterious
gaps and transpositions.

Terminal emulation is a very important function for people who engage in a lot of interactive
dialog with a remote system, especially when screen control is involved. In this case, it is essential
that the communication package be capable of emulating a terminal that the remote system
supports, such as a DEC VT100 or -200 series with a DEC VAX/VMS system, a Data General Dasher
with DG minis, etc. (see Table 1). Terminal emulation is less important for brief or non-interactive
encounters, such as occasional sessions primarily for file transfer.

KEY REDEFINITION AND CHARACTER TRANSLATION
Since your PC keyboard may have a different layout than the emulated terminal, you may want to

"move" the misplaced keys to their familiar locations (no, you can’t use pliers for this). For instance,
the Escape (ESC) key (important to much host-resident software) is notoriously mobile, appearing in
many different locations even on PCs from the same maker (IBM and DEC spring to mind). If you’re
used to finding ESC immediately left of the "1", but your PC has "‘" (accent grave) in that position,
you could redefine "‘" to transmit ESC (and vice versa). Similarly for function keys: the VT100 PF
keys are on the right, whereas the IBM PC’s F keys are on the left; some VT100 users may find it
more convenient to assign the PF keys to the PC’s numeric pad.

A package might also allow you to assign any arbitrary character string to a key, so that you could
transmit commonly typed items like your name or login sequence with a single keystroke. Such
many-to-one assignments are called "keyboard macros", and there are limits to the number of

9

characters which may be represented by a single key.

Key redefinition is important if you switch frequently among terminals and PCs with different
keyboard layouts; it means you don’t have to retrain your fingers each time -- a blessing for touch
typists. It is also helpful when switching the same PC between different hosts. If you are used to
typing the Backspace key to erase a character, but one host uses ASCII Rubout for this function
while another uses Control-H, you can assign the suitable character to the Backspace key.

Like communication settings, key definitions might take you some time and experimentation to
perfect. Once you have configured your keyboard satisfactorily, you should be able to save your
definitions for future use.

CHARACTER SETS
The ability to handle European and non-Roman character sets (keyboard input as well as screen

output) is important for those who deal in languages other than English. It is common practice in
Germany and Scandanavia, for instance, to assign umlaut, slashed, or circled vowels to the ASCII
bracket positions. PCs and host computers must agree upon these conventions in order for
characters to be displayed as intended, rather than in Anglo-American ASCII. Translation of
outbound and arriving characters is therefore an important function of the communication package.
To be totally general, the package should not be restricted to 7-bit ASCII, but should allow for 8-bit
international character sets, in line with ISO Recommendations 2022, 6937, et al.

TEXT SCREEN MEMORY
A special advantage of emulating a terminal on a PC is that the PC may surpass the capabilities

of the terminal. The PC’s memory may be used to hold hundreds of lines that have scrolled off the
top for later recall. Current or previous screens may be dumped to a disk file or printer at the touch
of a button.

Screen print, dump, and rollback fall into the convenience category, and yet once you’ve become
used to them, you wonder how you ever lived (or at least, worked) without them. How many times
has some important message scrolled off your screen before you could read it? How many times have
you typed hundreds of lines of text into a computer that crashes before you could save your work?

GRAPHICS
If your PC has a color monitor, your communication program should be able to set the fore- and

background text screen colors. A well-chosen color scheme can reduce "operator fatigue" or,
conversely, can jolt you awake during the less exciting hours of your day.

In order to access graphics-oriented applications on your mainframe or mini such as SAS Graph,
SPSS Graphics, Plot 10, TELL-A-GRAF, or various CAD packages (not to mention certain dialup
shopping services), the communication package must emulate a graphics terminal or standard
known to the application, such as Tektronix 4010, 4014 or other model, DEC ReGIS, HPGL, GKS,
GDDM, NAPLPS, etc. Graphics terminal emulation is only found in a few communication packages,
usually as an extra-cost item, and for certain PCs (like IBM) a special monitor and graphics board
are also required.

In recent years, graphics tend to be done directly on the PC by such packages as Lotus, Macpaint,
etc. It is normally not possible to connect one PC to another in order to access the remote PC’s

10

graphics applications, though certain highly specialized packages do allow this. You cannot expect
to run Crosstalk from PC A to PC B, and expect Lotus on PC B to put a color pie chart on PC A’s
screen. More commonly, the graphics package exists on both PCs and their data files are moved
from one computer to another using a file transfer protocol built into the communication package.

FILE TRANSFER
"...transfers your data over phone lines at the speed of light!" was a claim that once appeared in

an advertisement for a communication package. While it’s true that electricity travels through wires
at near light speed, it is not (yet) true that one electron is equivalent to one bit of data. In fact, at
the most common speed used for dialup data communication, 1200 bits per second, a single bit is
pretty big -- about 150 miles long! A character (generally represented in transmission by 10 bits) is
1500 miles long; two characters, like "OK", would span the American continent.

Spurious advertising claims notwithstanding, transmission speed is a technological issue, but data
transfer is a software issue: How to make effective use of the transmission medium? How to smooth
over the differences between computers?

There are also several specific areas to watch out for. Can binary files be transferred? Can text
file formats be converted to useful form between unlike systems? Can a group of files be sent in a
single operation? Can filename collisions be avoided? Can a file transfer be cleanly interrupted?

ASCII VS ERROR-CHECKED PROTOCOLS
Communication packages offer two basic types of data transfer: "raw" and error-checked. The

most common "raw" method is usually billed as "ASCII protocol". This means that the data is sent
as-is, as ASCII characters, from one computer’s communication port to the other. The advantage is
simplicity. No special software need be resident on the remote computer, beyond its text editor, or a
"type" or "copy" command. The disadvantages, however, explain why error-checked protocols have
evolved, and are worth noting. The data sent using the ASCII protocol will be corrupted if there is
noise on the communication line. Data will be lost if the receiving computer can’t keep up with the
sender. Binary (non-textual) files generally cannot be transferred this way since many computers
will ignore the "parity bit", or act upon control characters rather than accept them as data:
Control-C, Control-S, and Control-Z are frequent culprits. And finally, this method works for only
one file at a time.

A refinement of ASCII protocol incorporates XON/XOFF or some other flow control method, to
reduce the chances of data loss. In this case, both computers must support the same flow control
method, but corruption of the data (including the flow control signals themselves) remains a
problem, as does file delimitation and the restriction on binary files.

If you want reliable, correct, and complete transmission of files between computers, then you can’t
trust the job to ASCII or XON/XOFF "protocol". You’ll need a communications package that includes
a true error-correcting file transfer protocol. Error-checked data transfer requires cooperating
programs on each end of the connection to exchange messages, called packets, according to agreed
upon formats and rules, similar to how we behave on the telephone: I dial, your phone rings, you
pick up and say hello, I identify myself, we take turns talking and if I didn’t understand what you
said then I ask you to repeat (and vice versa), then we say goodbye, and then we hang up. And (an
important point) we conduct the conversation in the same language. A file transfer protocol operates
similarly: the two processes "connect" with each other, identify the files that are being transferred,
request retransmission of lost or damaged packets, identify the end of the file, and then disengage

11

from each other.

By the way, the fact that many newer modems provide error correction does not eliminate the
need for file transfer software. An error-free data stream from modem to modem does not guarantee
correct data from computer to computer. Issues of end-to-end flow control and error correction, file
delimitation, and format conversion must still be addressed within the computers themselves.

XMODEM AND KERMIT
Two well known error-checking file transfer protocols are Xmodem and Kermit. Many commercial

packages include one or both of these protocols (sometimes alongside their own private, proprietary
protocols), but there are also hundreds of public domain or freely sharable Kermit or Xmodem
programs. In fact, the major advantage of Xmodem and Kermit is that they are ubiquitous. The
protocol specifications are open and public, and large bodies of Kermit and Xmodem software are
available. The cost to a large organization for these programs is minimal, compared with the
per-CPU licensing fees required for commercial packages. Furthermore, chances are greater that a
Kermit or Xmodem program will exist for any given computer.

In the case of Kermit programs, source code is included, which encourages their adaptation to a
wide range of systems. Non-commercial Kermits can be had for more than 250 different machines
and operating systems, ranging in size from the smallest micro to the largest supercomputer, and
Kermit is included (at no extra charge) in about 100 different commercial software packages. And,
according to recent announcements from Telebit and AST, Kermit protocol is even beginning to find
its way into silicon. Xmodem is also available for a wide variety of computers, but it was designed
primarily for micro-to-micro links. It is most widely known by its commercial implementations, as a
fixture in programs like Crosstalk.

Kermit, Xmodem, and other error-checking protocols are not equivalent. Kermit won’t talk to
Xmodem, and vice-versa. Each must be evaluated according to several criteria: Is there a version of
the protocol available for all the systems that must communicate? Can the protocol accommodate all
the communications parameters required for the systems, and for the communication medium? Is
the performance acceptable? Is the software affordable?

Xmodem is more properly called the Christensen protocol after its designer, Ward Christensen,
who originally intended it only for communication between CP/M micros. Ward put his original 1977
MODEM program into the public domain, and it was modified by others over the years, and some
protocol features were added, resulting in protocol variants with names like MODEM2, MODEM7,
XMODEM, YMODEM, ZMODEM, etc.

The Kermit file transfer protocol was originally developed in 1981 at the Columbia University
Center for Computing Activities for CP/M, MS-DOS, the DECSYSTEM-20, and IBM mainframes
with VM/CMS; that is, for use in the micro-to-mainframe environment. It was shared freely with
other institutions, with sources and documentation included. Everyone was, and is, permitted and
encouraged to copy and share, to make improvements, and to contribute new versions.

Kermit and Xmodem both transfer files between computers in blocks of data, or packets. Both
protocols require a program running on each computer to compose, send, read, decipher, and act
upon the packets. Each packet is error-checked through the use of calculated checksums, and
retransmission is requested when packets have incorrect checksums. Deadlocks are broken by
timeouts and retransmission. Missing or duplicate packets are caught using packet sequence
numbers. Both protocols are half-duplex stop-and-wait: the next packet is not sent until the current
packet is acknowledged. Kermit and Xmodem packets are illustrated in Figure 3.

12

__

Xmodem:
+-------+-------+-------+------------------+-------+
| SOH | BLOCK |-BLOCK | DATA (128 bytes) | CHECK |
+-------+-------+-------+------------------+-------+

All fields are 8-bit binary:

SOH is ASCII Control-A (SOH, Start of Header).
BLOCK is the 8-bit binary "block" (packet) number, 1-127 (recycles).
-BLOCK is 255 minus the block number (1’s complement of block number).
DATA is exactly 128 bytes of unencoded 8-bit data (a CP/M disk block).
CHECK is an 8-bit binary checksum.

Kermit:
+-------+-------+-------+-------+----------+-------+
| START | LEN | SEQ | TYPE | DATA.... | CHECK | <cr>
+-------+-------+-------+-------+----------+-------+

Each Kermit packet field except DATA is a single character. Each field
except START is composed only of printable ASCII characters. The packet is
normally terminated by a carriage return.

START is usually Control-A (SOH), but can be redefined.
LEN is the packet length, 0-94, encoded as a printable ASCII character.
SEQ is the packet sequence number, 0-63 (recycles), printable.
TYPE is the packet type, S F D Z B Y N, etc.
DATA is a file name, file data, etc, depending on TYPE, printable ASCII.
CHECK is an 8-bit checksum, folded into 6 bits as a printable character.

Figure 3: Xmodem and Kermit Packets

__

The differences between Xmodem and Kermit are worth noting. First, Xmodem uses 8-bit binary
bytes in its packet fields, and therefore requires an 8-bit transparent communication link. It cannot
function, even for text files, when parity is in use. Similarly, when any device in the communication
path is sensitive to control characters such as Control-Z or Control-S (which occur in the Xmodem
packet control fields), Xmodem packets are subject to interference. For this reason, Xmodem cannot
operate in conjunction with XON/XOFF or other in-band flow control. Kermit, on the other hand,
encodes its packets as lines of text, and therefore does not have these restrictions.

Second, Xmodem packets are sent only in one direction. The responses are bare unchecked control
characters such as Control-F for acknowledgement, Control-U for negative acknowledgement, or
Control-X for cancel. Corruption of Xmodem responses into other valid responses is possible, and
can cause a file transfer to terminate prematurely. Kermit uses fully error-checked packets in both
directions, and is therefore more robust in the face of transmission errors.

Third, Xmodem uses fixed-length packets. There is no length field. If a file’s length is not an
exact multiple of 128 bytes, then extra bytes will be transmitted. Furthermore, if a computer,
multiplexer, or other device cannot handle bursts of 132 characters, Xmodem packets will not get
through. Kermit packets include a length field. Packets can be adjusted to accommodate small
buffers, and a short packet can be sent at the end, so there is no confusion about the exact end of file.

Fourth, Xmodem includes no mechanism for transmitting the file’s name, and therefore has no
way of sending multiple files in a single session. Kermit does this routinely.

13

Fifth, Xmodem makes no distinction between text and binary files. But since the conventions for
representing text files on different systems can vary, the results of an Xmodem text-file transfer
between unlike systems can be surprising. Kermit specifies a common intermediate representation
for text files during transmission, so that incoming text files can always be stored in a useful form.
However, this places the burden on the user to select text or binary transfer mode.

Finally, both the Xmodem and Kermit protocols have seen a number of extensions over the years.
Xmodem has no formal or consistent way to negotiate the presence or absence of given features,
whereas feature negotiation is built into the basic Kermit protocol. A pair of variant Xmodem
programs will not necessarily be able to communicate, whereas any pair of Kermit programs will
automatically fall back to the greatest common set of options. Xmodem and Kermit protocol
extensions include:

• Multiple files. MODEM7 and YMODEM can transfer multiple files in a single batch,
Xmodem can’t. Multiple file transmission is built into the basic Kermit protocol.

• The ability to pass 8-bit data through a 7-bit channel. Xmodem can’t. Kermit supplies
this as a negotiated feature (commonly available).

• Alternate checksums. Xmodem-CRC uses a 16-bit cyclic redundancy check for greater
reliability, and tries to adapt itself to 8-bit-checksum-only Xmodem programs automati-
cally. Kermit supplies an optional 12-bit checksum, and a 16-bit CRC, negotiated with
automatic fallback to the single character checksum.

• File transfer interruption. Both Xmodem and Kermit allow file transfer to be
interrupted cleanly. Kermit also includes the ability to cancel the current file in a group
and proceed to the next one.

• Compression. Kermit programs may negotiate compression of repeated bytes. Xmodem
lacks a compression option.

• Long packets. YMODEM allows 1K-byte fixed-length packets for greater efficiency.
Kermit extensions permit variable-length packets up to about 9K, negotiated with
automatic fallback to regular-length packets.

• Sliding windows. Kermit programs may negotiate simultaneous and continuous
transmission of packets and their acknowledgments on full-duplex links, with a window
of up to 31 unacknowledged packets, and selective retransmission of lost or damaged
packets. (This option is not yet widespread among Kermit implementations). Sliding
windows are not possible in Xmodem because its responses carry no sequence number
(an Xmodem variant called WMODEM simulates sliding windows, but only works if
there are no errors).

• File attributes. YMODEM transmits a file’s name, size, and creation date. Xmodem
does not. Kermit always transmits the name, and the ability to communicate a wide
range of other file attributes may be negotiated (but, like sliding windows, this is not yet
a widely implemented Kermit feature).

• Checkpoint/restart. ZMODEM includes the ability to restart a file transfer after the
connection was broken. Neither Xmodem nor Kermit have this ability.

Kermit also differs from Xmodem by including a "file server" mode of operation, in which the
remote Kermit program receives all its instructions from the PC Kermit in packet form. This
simplifies operation considerably. Kermit servers can transfer files, as well as perform a variety of
file management functions -- deletion, directory listing, changing directories, etc.

Implementations of Kermit can be had for most PCs, minis and mainframes. Xmodem
implementations are found mostly on PCs, rarely on minis and mainframes. Basic Xmodem is
somewhat more efficient than basic Kermit, because the packets are slightly longer and there is less
encoding overhead. The situation is reversed when Kermit can do compression, long packets, or

14

sliding windows.

Most commercial RS-232 communication packages claim to include Xmodem, Kermit, or both. In
general, the commercial Xmodem implementations include none of the MODEM7, YMODEM, or
ZMODEM options, but often do include support for CRCs. Thus, they can transfer only a single file
at a time, and only through transparent 8-bit communication channels. The commercial Kermit
implementations vary from the bare-bones to the very advanced, but all can transfer text files
through 7-bit links, and can handle multiple files in a single operation. It is not always apparent
from vendor literature exactly which options are supported, so if any of these issues are important to
you, you should call the vendor and ask about them. After all, one of the advantages of commercial
offerings over public domain software is telephone support.

OTHER ASYNCHRONOUS PROTOCOLS
Xmodem and Kermit are not the only two asynchronous communication protocols in the

marketplace. Others include UUCP, Blast, MNP, X.PC, Poly-Xfr, DX, Compuserve, FAST, and
DART. Most of these protocols are proprietary, which means that the protocol specification itself is
secret, or licensed, and they are found primarily in commercial packages. They often include
advanced capabilities like checkpoint/restart, bidirectional file transfer, and sliding windows.

But all proprietary protocols have the same drawbacks: you must buy commercial packages in
order to use them, and if there is not a package available for a certain computer that you need it for,
you’re out of luck. Of the commercial packages, Blast probably comes closest to Kermit in covering a
wide variety of systems, and exceeds Kermit in many design and performance areas. The drawback
is the cost: $250 for the PC version, $450 for a PDP-11 version, and more for larger minis or
mainframes. And since the Blast protocol is inherently full duplex, a special "Blast box" front end
must be purchased for half duplex systems. Kermit, on the other hand, may be used with either full
or half duplex systems, and the cost is minimal.

SUMMARY
Here is a checkoff list that you can use to evaluate and compare communication packages. Before

purchase, you should decide which features are important to you, and then determine which
packages have these features. Check the vendor literature, or call the vendor directly.

15

__

CONFIGURATION

Make and model of your computer:__

Operating system and version:___

Memory:___________(K) Floppy drives:_________ Hard Disk Capacity: _______(M)

Communications interfaces:__

Modem make and model:____________________________ [] Internal [] External

Name of communications package:___

Communications package vendor:_________________________ Phone:________________

Package memory size:___________(K) Package disk occupancy:________________(K)

Before proceeding, be sure that the communication package is compatible with
your computer’s configuration!
__

COST

(a) What is the unit cost of the package? $_____________

(b) Is source code included, so that you can make changes
and fix bugs? Is there is an additional charge for
source code? Cost of source code, if you want it: $_____________

(c) Is copying allowed? If so, go directly to (f).

(d) How many PCs will you need it for? _____________
Is there a volume discount? If so, enter discounted cost: $_____________

(e) If a site license is available, what does it cost? $_____________

(f) Enter best total price for PC versions $_____________

(g) Do you also need minicomputer or mainframe versions?
If so, enter total cost for mini or mainframe versions . . $_____________
(Figured as above)

(h) Total cost to your organization $_____________

16

__

DOCUMENTATION, TRAINING, AND SUPPORT

Is the manual...
[] thick and unmanagable?
[] thin and cryptic?
[] just right?

How important is the manual?
[] Must be consulted frequently
[] Occasional lookups required

[] Does the manual have a good index and table of contents?

[] Is training available?

[] Is training necessary?

[] Is telephone support available and included in the package price?

__

WHAT IS YOUR PRIMARY USE FOR THE PACKAGE?

[] Long interactive remote sessions. Communication parameter settings,
terminal emulation, and key definition are the most important features.

[] Infrequent remote sessions mainly for the purpose of data transfer.
Concentrate on the user interface, script language, and file transfer
protocol.

__

COMMUNICATIONS PACKAGE FEATURES

Each of the features listed below should be evaluated according to your needs.
The lack of a certain feature is not critical if you know you will never need
that feature. Items may be rated as follows:

X - I don’t care about this feature.
Y - I need this feature, and the package has it.
N - I need this feature, but the package doesn’t have it.

A single "N" may be sufficient to disqualify the package, depending on how
important the feature is to you. If you don’t know whether the package
provides a feature you need, call the vendor and ask.

17

__

USER INTERFACE

[] Is help available at all times?

[] Does the user interface favor the novice user? (Menus at all times)

[] Does it favor the expert user? (No menus)

[] Is the package equally convenient for both novice and expert? (Menu on
demand)

[] Can canned procedures be set up for unskilled users? (Scripts, command
files)

[] Can local operating system functions be accessed without leaving the
package?

[] Can the package be used by the disabled?

18

__

COMMUNICATION PARAMETER SETTINGS (always important)

Bits/Second: 0,110,300,1200,2400,4800,9600,19200,etc. Maximum:__________

Duplex
[] Full (e.g. for DEC minis)
[] Half (e.g. for IBM mainframes)

Echo
[] Remote (e.g. for DEC minis)
[] Local (e.g. for IBM mainframe linemode connections)

Data Bits
[] 5 (Baudot)
[] 7 (ASCII)
[] 8 (national characters)

Stop Bits
[] 1 (for most connections)
[] 1.5 (rarely used)
[] 2 (used only for 110 bits per second or less)

Parity Selection
[] None (all bits used for data)
[] Even (required by some mainframes, front ends, public networks, etc)
[] Odd (ditto)
[] Mark (ditto)
[] Space (rarely used, but sometimes handy)

Character Set Selection
[] 5-bit Baudot (used in Telecommunication Devices for the Deaf)
[] 7-bit US ASCII (most common in English-speaking countries)
[] 7-bit "national ASCII" (Norwegian, German, etc)
[] 8-bit "extended ASCII" (e.g. use of IBM PC 8-bit character set)
[] Support for international standard non-Roman character sets
[] User-definable or downloadable character sets

Flow Control Selection
[] X-on/X-off (e.g. with DEC computers)
[] ENQ/ACK (e.g. with Hewlett-Packard computers)
[] RTS/CTS (for half duplex modems)
[] Half duplex line turnaround handshake (e.g. with IBM mainframes)
[] Other:________________________________
[] None (can flow control be turned off?)

Debugging
[] Special display of all received and transmitted characters
[] Logging of all received and transmitted characters

[] Can you collect communication settings into recallable configurations?

19

__

CONNECTION ESTABLISHMENT

Support for RS-232-C asynchronous modem signals (RTS, CTS, DSR, CD, DTR, RI):

[] Does the package monitor Carrier Detect (CD) and Data Set Ready (DSR)
from the modem?

[] Does the package assert Data Terminal Ready (DTR)?
[] Can the package drop DTR to hang up the phone?
[] Does the package respond to Ring Indicator (RI) so that it can be called

from outside?
[] If you have a half duplex modem, does the package support RTS/CTS?

[] Does your PC have an internal modem?
[] Does the package support this internal modem?

Dialer Control:
[] Does your modem provide automatic dialing?
[] What dialing language is used by your modem? ________________________
[] Does the package support automatic dialing?
[] Does the package support your modem’s dialing language?
[] Does the package provide a phone directory?

[] Can the package operate over direct connections, without modems? That
is, can it be told to ignore CD and DSR? (If not, you will need the
"fakeout" (minimal) null-modem cable from Figure 1).

Script language for automatic login, unattended operation:
[] Access to all necessary package commands from script language.
[] Conditional execution/termination of script commands.
[] Fancy script programming features (variables, labels, goto’s, etc.)
[] Unattended operation (e.g. late at night, when phone rates are low).

[] Can the program be suspended and resumed without dropping the connection?

20

__

TERMINAL EMULATION:

What terminal(s) does the package emulate? ___________________________________

[] Is the maximum speed for full duplex terminal emulation sufficient for
your needs?

[] Does the package emulate a terminal that is supported by the computers
you wish to communicate with?

[] Is the terminal emulated fully enough for use with all desired software
applications on these computers?

[] Is any special hardware (like a 132-column board) required in the PC?

[] Does the package support fore- and background colors?
(Do you need them?)

[] If a graphics terminal is emulated, does your application support it?

[] Screen rollback (view screens that have scrolled away)

[] Screen dump (save current or previous screens in PC files)

[] Printer control (copy displayed characters to printer;print whole screen)

[] Print or save text screens in alternate character sets

[] Print or save graphics screens

[] Function keys

[] Key redefinition

[] Keystroke macros

[] Translation of displayed characters, alternate character sets

__

FILE TRANSFER PROTOCOLS

[] ASCII (this is not an error-correcting protocol)

[] XON/XOFF (this is not an error-correcting protocol)

[] Xmodem

[] Kermit

[] Proprietary (Blast, MNP, etc):____________________________________

[] Other: ___

[] Do the systems you’re communicating with support the same protocol(s)?

[] Does the package transfer both text and binary files?

[] Do text files arrive on the target computer in useful form?

21

XMODEM OPTIONAL FEATURES

[] Modem7-style transfer of multiple files

[] Xmodem-CRC for more reliable error checking

[] Ymodem 1K packets for increased efficiency (half duplex)

[] Ymodem filename transmission

[] Checkpoint/restart (Zmodem)

[] Wmodem continous transmission (full duplex)

[] Do the computers you wish to communicate with support the same
Xmodem options?

KERMIT OPTIONAL FEATURES

[] 8-bit data through 7-bit links (e.g. links with parity)

[] Repeated character compression for improved efficiency

[] 12-bit checksum, 16-bit CRC, for more reliable error checking

[] File transfer interruption

[] Long packets (up to 9K) for improved efficiency (half duplex)

[] Sliding windows for improved efficiency (full duplex)

[] Transmission of file attributes

[] Server operation

[] Remote host commands and file management

__

