
Interchange of Non-English Computer Text

Frank da Cruz

Columbia University, New York
1994

Introduction
Thirty years ago, computers and people communicated using a small repertoire of symbols, digits, and Roman
letters. Often the letters were only in uppercase, and there were no accents.  The language of computing was
exclusively English.  Today, we are poised on the brink of a worldwide computer-based communications
revolution, with a single character set encompassing all the world’s writing systems.

In the intervening decades, we have contrived a vast Babel of mutually incomprehensible character sets,
both proprietary and standard.  The new Universal Character Set, ISO 10646 [19], offers a single common en-
coding for all writing systems.  But radical and massive changes are required in data entry and display
hardware as well as in computer software and data files at all levels from operating system to application, and
could therefore take decades to see widespread use.  In the meantime, how shall we survive our Babel?

The problem is immediately apparent to anyone who tries to transfer non-English textual data between two
different kinds of computers using conventional methods.  ‘‘Pâté’’ on an IBM PC becomes ‘‘PÉtä’’ on the
Macintosh, and a truckload of pocket-bread is delivered instead of goose liver.

This paper presents a simplified and condensed description of the character-set translation method
developed for the Kermit file transfer protocol.  The lessons learned should be useful in any arena where text
must be transmitted meaningfully between unlike computer systems.  Familiarity with the standards process in
general, and the US ASCII [1], ISO 646 [14], and ISO 8859 [18] character set standards is assumed, and with
ISO Standards 2022 [15] and 4873 [17], as well as with proprietary character sets such as IBM PC code pages.

Types of Character Sets
Today’s coded character sets can be classified along several axes: standard versus proprietary, 7-bit versus
8-bit, single-byte versus multibyte, and so on.  This paper treats only the character sets used in application-
independent plain-text files, and not the application-specific text representations used in word processing,
publishing, and similar environments that are concerned with rendering forms such as fonts, style, point size,
ligatures, and so forth, and which sometimes offer character repertoires different from any plain-text character
set.

Standard Character Sets
Let us define a standard character set as one that is registered in the ISO Register of Coded Characters to Be
Used with Escape Sequences [21] under the provisions of ISO Standard 2375 [16]. The Register, which is
maintained by the European Computer Manufacturers Association (ECMA), includes listings of all ISO-regis-
tered character sets and assigns unique registration numbers and designating escape sequences to each one.

Standard character sets are subdivided into two major types: graphic and control.  Thus ASCII, which is
the USA version of ISO 646, and which most people think of as a single character set, is really two sets: the
ISO 646 32-character control set (ISO registration number 001) and a 94-character graphics set (ISO registra-
tion 006).  And, as specified by ISO Standard 4873, the characters Space and Delete are not part of ASCII per
se, but rather separate components that must always be available in the presence of a 94-character graphics set.

Similarly, ISO 8859-1 Latin Alphabet 1, which most of us think of as a coherent 8-bit character set is, in
truth, composed of the ISO 646 control set (registration 001), the ISO 646 USA graphics set (006), the charac-
ters Space and Delete, a second 32-character control set (normally, but not necessarily, ISO 6429 [20],
registration 077), and a 96-character set known as ‘‘The Right-hand Part of Latin Alphabet 1’’ (registration
100). Each of these pieces except Space and Delete has its own unique registration number and designating
escape sequence.  There is no single, unique identifier for the 8-bit Latin-1 character set in its entirety.



2

<--C0--> <---------GL----------><--C1--> <---------GR---------->
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
00 | | SP | | _ | |
01 | | | | |
02 | | | | |
03 | C | ASCII | C | Special |
04 | o | graphics | o | Graphics |
05 | n | | n | |
06 | t | | t | |
07 | r | | r | |
08 | o | | o | |
09 | l | | l | |
10 | s | | s | |
11 | | | | |
12 | | | | |
13 | | | | |
14 | | | | |
15 | | DEL| | , - |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
<--C0--> <---------GL----------><--C1--> <---------GR---------->

Figure 1: Structure of a Standard 8-Bit Single-Byte Character Set

In practice, most standard character sets have the same structure, which is illustrated in Figure 1:

1. The 32-character control set of ISO 646 in columns 0 and 1.  This is called the C0 region.

2. The character Space at position 2/0.

3. A 94-character graphics set in positions 2/1 through 7/14.  This is called the Graphics Left, or GL, region.
For 7-bit character sets, these are the 84 characters of the ISO 646 International Reference Version plus 10
country-specific characters.  For 8-bit sets, these are the 94 graphic characters of US ASCII.

4. The character Delete at position 7/15.

5. For 8-bit sets, a 32-character ‘‘right half’’ control set in columns 8 and 9.  This is the C1 region.

6. For 8-bit sets, a 94- or 96-character ‘‘right half’’ graphics set in columns 10 through 15.  This is the
Graphics Right or GR region.

7. In multibyte graphic sets (not illustrated in the figure), each character is composed of a fixed number of
bytes, generally two, with each byte in the graphic range, i.e. not corresponding to a C0 or C1 control
character, and following either the 94- or 96-character structure.  Thus, single-byte control characters can
be mixed with double-byte graphic characters with no ambiguity.

The rationale for reserving an area for control characters in the right half of an 8-bit set is that communications
devices tend to examine only the low-order 7 bits of a character when deciding whether it is a control or
graphic character.  Placing graphic characters in columns 8 and 9 often triggers unwanted control functions.

During the early decades of computing, when 7-bit communication was the rule, ISO 646 was the
predominant method for representing the special characters of each language, and each European country had
its own version of ISO 646.  But this imposed severe limitations on the user.  For example, ISO 646 makes it
impossible to mix (say) German text and C-language programming syntax in the same file.  The following C
program fragment:

if (~(a[i] | x)) {
printf("Grüße aus Köln\n");

}



3

can not be encoded in either ASCII or in German ISO 646, because neither set has all the required characters.
If German ISO 646 is used, German special characters are substituted for the braces, brackets, and bars:

if (ß(aÄiÜ ö x)) ä
printf("Grüße aus KölnÖn");

ü

whereas if ASCII is chosen, we see the opposite effect:

if (~(a[i] | x)) {
printf("Gr}~e aus K|ln\n");

}

Neither result is satisfactory, and matters only deteriorate when German-language program commentary is to
be added.

To alleviate these problems, many sites are switching to the ISO 8859 Latin alphabets.  However, the ISO
646 versions are still widely used, especially in electronic mail, a predominantly 7-bit medium.

Proprietary Character Sets
Most computers use either US ASCII [1] or IBM EBCDIC [13] as their basic character set.  But to support
entry, display, printing, and processing of textual data in languages other than English, computer manufac-
turers soon recognized the need to extend these basic sets to allow representation of the accented Roman
letters, non-Roman letters, ideograms, and other symbols used by the world’s writing systems.

Some manufacturers provide ISO 646 national versions, but users suffer with their limitations.  Besides the
sacrifice of characters needed for programming, ISO 646 does not allow mixture of text in different languages,
such as Italian, French, and Norwegian, in the same file.  So manufacturers such as Digital and IBM began to
devise 8-bit international character sets for the European languages, as well as other sets for languages using
other writing systems.  Most of these 8-bit sets are capable of representing text in several languages, allowing a
single product to serve, and work compatibly, over a broader market, for example all of Western Europe.

Prominent among the proprietary sets are IBM’s PC code pages [13]. They resemble an ISO Latin Al-
phabet by having ASCII in the left half, but depart from from the standard structure by using all of columns 8
through 15, including the C1 area, for graphic characters.  Thus IBM PC code pages have (at least) 32 more
graphic characters than a standard 8-bit character set.  Major manufacturers including Apple and NeXT follow
the IBM design, but with different character repertoires and encoding.  Others, notably Digital, Hewlett Pack-
ard, and Data General, observe the standard structure, usually with different repertoires and encoding.

To add to the confusion, we also have IBM’s many EBCDIC-based code pages, whose structure does not
follow any national or international standard, as well as variations on IBM-like mainframes manufactured in
Eastern Europe and the Far East, plus unknown numbers of proprietary sets from other manufacturers.

The Current Situation
Today we are confronted with hundreds of different coded character sets, both standard and proprietary.  These
sets differ in important ways:

• Size: The total code space, 7-bit or 8-bit, single byte or multibyte.

• Structure: Standard or nonstandard allocation of control and graphics areas.

• Repertoire: The particular selection of characters.

• Encoding: The particular code values assigned to each character.

Every application-independent plain-text file is encoded in a particular character set.  It is generally not pos-
sible to mix character sets within a plain-text file.  Furthermore, a text file generally does not contain any in-
dication of its character set.  Neither, in general, does the host operating system identify a file’s character set,
nor indeed, provide any mechanism to do so.



4

Within most applications and computing environments, a certain character set is simply assumed. When a
workstation supports multiple character sets, or when data must be communicated between unlike computers,
there is no automatic mechanism for software applications to identify a file’s character set, and hence no way
to automatically display its characters correctly, nor to announce the character set to another computer or ap-
plication during data transfer.

This problem has grown over the past decade as computers have become increasingly interconnected, and
so are used increasingly for communication of text: news, conferencing, file transfer and sharing, and
electronic mail. Not only are text character sets likely to be incompatible, but there are no universally accepted
methods for translation.

Character Set Translation
Characters, such as the letter A, are represented in the computer, and in telecommunications, by numeric
codes. Different computers use different codes for the same character.  For example, the letter A is code 65 in
ASCII, code 193 in EBCDIC, and code 9025 in JIS X 0208.

The most commonly used translation function is a simple array-indexing operation. Suppose we are trans-
lating from character set A to character set B, and each set has 256 characters, and the characters in each set are
represented by 8-bit code values in the range 0..255. The translation is accomplished by a linear array of 256
8-bit elements called a translation table.  The table element at position i contains the translation from the
character in set A whose code is i to the corresponding character in set B, namely its code in set B. For ex-
ample, the 65th element of an ASCII-to-EBCDIC translation table would be the number 193.

During the translation process, a particular input character, c_in, in set A is translated to the output charac-
ter, c_out, in set B by an array indexing operation as in this example, written in the C programming language:

unsigned char a_to_b[256] = { ... };  /* Translation table */
unsigned char c_in, c_out; /* Input and output characters */

c_out = a_to_b[c_in]; /* Translation function */

where the c_in variable is used as a subscript to the a_to_b array, and the notation { ... } stands for the in-
itialization of the translation table.  In practice, the braces contain the quantities forming the table, in the ap-
propriate order.

In constructing a translation function between any pair of character sets, there are three important and often
conflicting goals:

1. Invertibility (I): After translating text from A to B, and then back to A, is the result identical to the original?

2. Readability (R): After translating text from A to B, is the result readable?

3. Consistency (C): Are translations from A to B by different applications the same?

In attempting to achieve these goals, we must look at the size, structure, and repertoire of the two character
sets. In many cases, the R-versus-I decision is forced upon us, but in others a choice is possible.  For example,
consider translating between two character sets of the same size: Latin-1 and Latin/Cyrillic.  An invertible
translation is possible that will not be readable, and a readable translation is possible that is not invertible.  In
cases like this, the best course is to let the user set the translation goal.

Invertibility
Invertibility is important in cases where the exact contents of the file is important, or when the goal of data
transfer is not necessarily final usage.  Suppose, for example, you compose a C-language program (in ASCII)
on your PC, transfer it to an IBM mainframe (where it is converted to EBCDIC), work on it some more, and
then transfer it back to your PC.  If the character-set translation from the PC to the mainframe and back is not
invertible, you will likely not be able to compile the program again on your PC without syntax errors.

An invertible translation from character set A to character set B is possible only if A is smaller than or the
same size as B. Similarly, an invertible translation from character set B to character set A is possible only if B
is smaller than or the same size as A. So it follows that invertibility can be achieved in both directions only if
the two character sets are the same size.  The following discussion applies only to bidirectional invertibility.



5

The intersection of the two character sets A and B, written A ∩ B, is the set of characters, c, that both sets
have in common, that is, all the characters are members of ( ∈ ) both A and B:

A ∩ B = { c : c ∈ A, c ∈ B }

The characters in A that are not in B can be written as:

A \ B = { c : c ∈ A, c ∉ B }

and the characters in B that are not in A are:

B \ A = { c : c ∈ B, c ∉ A }

To make an invertible translation table, the characters of A ∩ B are paired together: the letter ‘‘E’’ in one
set to ‘‘E’’ in the other, ‘‘È’’ in one set to ‘‘È’’ in the other, and so on.  The characters in A \ B are paired 1-to-1
with the characters in B \ A according to some criterion: readability, consistency, whimsy, or caprice.  The ex-
act method for pairing the leftovers is problematic, and frequently a particular pair makes no sense at all, for
example ‘‘L-with-stroke’’ with ‘‘Vulgar fraction 3/4’’.

Any 1-to-1 pairing will give an invertible translation, but to achieve the most useful translation it is neces-
sary to examine all the character sets involved.  To illustrate, Latin Alphabet 1 lacks the OE digraph character
but this character is found in the Digital Multinational character set, the Apple Quickdraw set, the Hewlett
Packard Roman8 set, the Data General International set, and the NeXT character set, but at different code
points in each.  Ideally, the translations for each of these character sets would map OE digraph into the same
Latin-1 code point, so that text translated from (say) NeXT to Latin-1 and thence to Data General would keep
its OE intact.  But this would require an unprecedented degree of cooperation among competing manufac-
turers.

The construction of invertible translations between private and standard character sets is beyond the scope
of the national and international standards organizations, nor should these translations be made arbitrarily by
programmers. Translation tables (or algorithms) are most appropriately furnished by the creators or owners of
each private character set.  This lends the appropriate ‘‘official’’ air and allows all software developers to use
the same translations, thus promoting interoperability of diverse applications.  In 1990, IBM became one of the
few computer manufacturers to take this step when it published invertible tables between ISO 8859-1 and its
code pages 500 and 850 in its Character Data Representation Architecture Registry [13].

Other translations, however, are lacking from IBM, for example between its Cyrillic code pages and the
ISO Latin/Cyrillic alphabet; similarly for Hebrew, Arabic, Greek, and so on.  Official invertible translations of
any kind seem to be entirely lacking from most other computer and software makers.

A Simple Rule
In the absence of an official translation, a simple procedure can be used to produce consistent invertible
translations across all applications.  Let us assume that P is a private nonstandard character set, and that S is a
standard character set, and that P and S are the same size, n. Follow these steps to construct the translation
table from P to S as an array, p_to_s, of n elements:

1. The characters that are common to P and S, P ∩ S, are mapped together.  For each such character in P,
whose code value is i, p_to_s[i] takes the corresponding character’s code value from S.

2. The members of A \ B and B \ A are paired with each other in code order.

This procedure guarantees that p_to_s has exactly n unique elements.
Step (1) is not always easy. All too frequently, private character sets are documented only by tables show-

ing the graphic characters, often unclearly (as when working from a fax of third-generation photocopy), with
no names or other identifiers assigned to the characters. Even when the material is legible and names are as-
signed, conventions for graphic representation differ, and so do the names.  Thus, some knowledge of lan-
guages, writing systems, world and corporate cultures, history, and politics is helpful.

Let’s say that character set P consists of four characters, the letters A, B, C, and D, whose code values are
0, 1, 2, and 3, respectively.  And set S consists of the letters B, X, A, and Y, also with code values 0, 1, 2, and



6

3, in that order. The letters A and B are common to both sets.  A is represented by code 0 in P and by code 2
in S, so:

p_to_s[0] = 2

Similarly for the letter B:

p_to_s[1] = 0

Positions 2 and 3 of our translation array remain empty, so we assign them in code order:

p_to_s[2] = 1
p_to_s[3] = 3

and the translation from P to S is complete.  Each element of the p_to_s array has a unique value.
To create the reverse translation table from S to P, s_to_p, we could repeat the process in the reverse direc-

tion, or, equivalently (and more safely), simply turn the p_to_s table ‘‘inside out’’ by sorting it according to its
values. Here is a C language program fragment that does the job:

for (i = 0; i < n; i++)
s_to_p[p_to_s[i]] = i;

This leaves us with the two translation tables:

Index p_to_s s_to_p
0 2 1
1 0 2
2 1 0
3 3 3

Naturally, such an arbitrary method will please few (hence the foregoing plea for more-sensible official in-
vertible translations); in this case C becomes X and vice versa.  But vice-versa is exactly what is needed for in-
vertibility and consistency.  Those characters the two sets have in common are translated readably, and the rest
are translated according to the Simple Rule for consistent invertibility.

In a more useful application of the Simple Rule, let us construct an invertible mapping between two
real-life, 8-bit, single-byte character sets, Data General International (DGI) [7] and ISO 8859-1 [18], between
which there is no official invertible mapping.  We begin by finding all the characters from DGI that are also in
Latin-1 (80 of them) and make the appropriate mappings.  We are left with two lists of sixteen unmatched
characters. Applying the Simple Rule, the lists are sorted in code order and placed side-by-side to obtain the
following correspondence:

160 Undefined 160 No-break space
175 Double dagger 166 Broken bar
179 Trade mark uncircled 173 Soft hyphen
180 Florin sign 175 Macron
183 Less-than-or-equal sign 184 Cedilla
184 Greater-than-or-equal sign 185 Superscript one
186 Grave accent 188 Vulgar fraction one quarter
191 Up arrow 190 Vulgar fraction three quarters
215 Capital OE digraph 208 Capital Icelandic letter Eth
220 Undefined 215 Multiplication sign
221 Uppercase letter Y with diaeresis 221 Capital letter Y with acute accent
222 Undefined 222 Capital Icelandic letter Thorn
223 Undefined 240 Small Icelandic letter eth
247 Small oe digraph 247 Division sign
254 Undefined 253 Small letter y with acute accent
255 Fill character light 254 Small Icelandic letter thorn

So if P is DGI and S is Latin-1, then p_to_s[160] = 160, p_to_s[175] = 166, ..., p_to_s[255] = 254, and the
P to S mapping is complete.  The s_to_p array is obtained by exchanging the index and value of each p_to_s
element, as in the program fragment given above.



7

Readability
Bidirectional invertibility cannot be achieved when the character sets are different sizes, nor can invertibility
be achieved from a larger set to a smaller set. In such cases, readability becomes the only sensible translation
goal. Even in cases where invertibility is possible, readability might be preferred for a particular data transfer.

When translating from a larger set, A, to a smaller one, B, several different characters in A can be mapped
to a single character in B. For example, the following Latin-1 characters:

à á â ã ä å æ

might all be mapped to the letter ‘‘a’’ when translating to ASCII.  In the resulting ASCII file, we can’t tell
where a particular ‘‘a’’ came from, so we can’t reconstruct the original Latin-1 text when translating in the
reverse direction.  But the ASCII file is more intelligible than if we had used some other mapping, such as
simply stripping off the high-order bit.  Translation by removing diacritics is useful with Roman-based lan-
guages, such as French; ‘‘pâté’’ becomes ‘‘pate’’ rather than (say) ‘‘pbti’’. Or German: ‘‘Grüße aus Köln’’ be-
comes ‘‘Gruse aus Koln’’ instead of ‘‘Gr|_e aus Kvln’’.

In German, the words ‘‘Gruse’’ and ‘‘Grüße’’ have entirely different meanings (we don’t want to say
‘‘soot’’ when we mean ‘‘greetings’’). We can do better.  European languages like German, Swedish, Nor-
wegian, Danish, Icelandic, and Dutch have rules for converting accented or other special characters into un-
adorned ABC’s.  For example, any German vowel with an umlaut (diaeresis) can be written without the umlaut
and followed by the letter ‘‘e’’. These rules are specific to each language.  So while we can write the German
word ‘‘Köln’’ as ‘‘Koeln’’, we cannot write the English word ‘‘coöperation’’ as ‘‘cooepoeration’’.

Such language rules can not be applied blindly in reverse.  For example, if ‘‘oe’’ were translated back to
‘‘ö’’, then ‘‘Kommandoebene’’ would become ‘‘Kommandöbene’’ (not a German word), and
AUTOEXEC.BAT would become AUTÖXEC.BAT (a PC file that you don’t want to rename!).

Construction of a readable translation between two entirely different alphabets, such as Cyrillic and
Roman, is called transliteration.  The specific transliteration rules must take into account not only the alphabets
themselves, but also what languages they represent.  For example, the surname of a former leader of the former
USSR, Kru7ev, is transliterated into Roman letters as ‘‘Khrushchev’’ in English, but into ‘‘Khruschtschew’’ in
German.

Newspapers and magazines, libraries, immigrant bureaus, and other organizations have their own standard
procedures for transliterating ‘‘foreign’’ writing systems.  Not just in ‘‘ASCII-speaking’’ lands, but every-
where: Russian names are written in Arabic newspapers, Hebrew names in Greek journals, English names on
Chinese passports, Korean publications in Vietnamese library catalogs.  But these standards are not widely
known. When a standard can be found, use it.  If not, look harder.

Character-Set Translation in the Kermit File Transfer Protocol
The Kermit File Transfer Protocol was developed at Columbia University to allow the transfer of both text and
binary files among all types of personal computers, minicomputers, and mainframes, in both the 7-bit and 8-bit
communication environments.  Kermit is a layered, point-to-point, transport-independent, error-correcting
packet protocol described in detail elsewhere [5].

Transfer of text files between unlike computers requires conversion of both record format and character set
at the presentation layer.  For example, a document composed under the UNIX operating system using the AS-
CII character set with lines separated by imbedded Linefeed characters, upon transfer to an IBM mainframe, is
converted to EBCDIC encoding and a mainframe-specific variable- or fixed-length record format.  Kermit ac-
complishes this conversion with another Simple Rule: during file transfer, the character set used for text files is
ASCII, and the record format is stream, with records (lines) delimited by Carriage Return and Linefeed.

Thus, it is the responsibility of each Kermit program to convert between the text character sets and record
formats of its own computer and the standard Kermit format.  This means that no Kermit program needs to
know the specific codes and formats of any kind of computer except its own, and it forms the basis of Kermit’s
strategy for converting between different character sets. This idea is known as a ‘‘common intermediate
representation,’’ and it lies at the heart of any presentation-layer protocol [26].



8

By the mid 1980s, Kermit had become a de facto standard for file transfer.  Kermit software programs had
been written for almost every kind of computer in existence.  But the Kermit protocol lacked a formal and con-
sistent means for exchanging text that contained non-Roman or accented Roman characters.  Files could be
transferred, but the results would be gibberish unless the receiving computer supported the same character set
as the sender.

At first, this problem was remedied by pre- or postprocessing.  But this approach places an unreasonable
burden on the user.  Not only must extra steps be taken, but a suitable translation utility must be found for
every pair of character sets.  More subtly, translation utilities (for example, between an IBM code page and a
Macintosh character set) are constructed in an ad-hoc manner, with no guarantee of consistency from one
utility to another.

The problem is compounded by the rapid proliferation of proprietary, national, and international standard
character sets.  By the late 1980s, there were many encodings for each major writing system, a problem
pointed out by attendees at international conference sessions on Kermit in Europe and Japan [10]. A consistent
approach to character-set translation had become an urgent matter.

Basic Design Principles
How can we enable meaningful exchange of text between any two computers?  The obvious approach is to
require each data-transfer application to understand every character set in existence.  This works adequately
when the number of sets is small and stable, but quickly becomes unwieldy and unmanageable as the number
increases. If the number of character sets is n, the number of translations is:

n !n = = n × (n −1) (1)( )2 2! × (n−2) !

If we have two character sets, A and B, we need two translations, one from A to B and one from B to A. If we
have three sets—A, B, and C—we need 3 ×2 = 6 translations: AB, BA, AC, CA, BC, and CB. And so on.

Now consider that in 1990, IBM alone listed 276 different coded character-set identifiers in its
registry [13]. If we wanted translations between every pair of IBM character sets, there would be 75,900 of
them! Add in all the other sets from all the other companies to appreciate the magnitude of the problem.

By using a standard intermediate representation for each type of character set (Roman, Cyrillic, Hebrew,
Japanese, etc), we eliminate the need for any particular computer to know about the character sets used by any
other kind of computer.  Kermit’s common intermediate character set, previously always ASCII, is now al-
lowed to be any of a small number of character sets.  The set used during a particular file transfer is called the
transfer character set (TCS).

The character set of the file that is being sent or received is called the file character set (FCS).  The sender
translates from its local codes (the FCS) to the standard ones (the TCS), and the receiver translates from TCS
codes to its own FCS, as shown in Figure 2.

For a particular file and transfer character set combination, a Kermit program has one translation function
for sending files and another for receiving them.  Theoretically, all combinations of file and transfer character
set are allowed.  Thus the number of translation functions, f, is given by:

f = tcs × fcs × 2 (2)

That is, one function in each direction, for each combination of TCS and FCS.  While this number is sig-
nificantly lower than the number of pairs of all character sets (Equation 1), we still want to reduce it to con-
serve computer memory and cut down on user confusion.

The Transfer Character Set
Generally, we want to support all the file character sets used on a particular computer, so the way to keep the
total number of translation functions small is to minimize the number of transfer character sets that can handle
the given selection of file character sets.  This is done, in part, by restricting the set of possible transfer
character sets to a small number according to the following rules:



9

COMPUTER A COMPUTER B
+------------------+ +------------------+
| +-------------+  | | +-------------+ |
| | Translation |  | Transfer | | Translation | |
| | Function: |--------------------------->| Function: | |
| | FCS to TCS  |  | Character Set | | TCS to FCS  | |
| +-------------+  | | +-------------+ |
| ^ | | | |
| | | | v |
| Kermit Program  | | Kermit Program  |
| SEND | | RECEIVE |
+------------------+ +------------------+

^ |
| v

+------------------+ +------------------+
| Local File | | Local File |
| Character Set A | | Character Set B |
+------------------+ +------------------+

Figure 2: File Transfer Character-Set Translation

1. The transfer character set must be a national or international standard character set registered with the ISO,
or a combination of such sets.  This means that its structure is consistent with other standard character sets
and that it has a unique identifier.  Furthermore, it means that the character set is well known, its specifica-
tion is readily available, and the characters have names.

2. US ASCII [1] is included for compatibility with the original Kermit protocol and with unextended Kermit
programs.

3. The ISO 8859 Latin Alphabets [18] are included.

4. The ISO-registered Chinese [4], Japanese [22, 23, 24], and Korean [25] sets are included.  These are
usually used in conjunction with one or more single-byte sets that provide control characters and
single-width ASCII or ISO 646 graphics.

5. Additional sets, such as (for example) Vietnamese VSCII [8, 28], can be included if they are registered
with the ISO, as long as they are not proper subsets of any of those already included.

6. All else being equal, a simple and compact representation is preferred.

The national versions of ISO 646 [14] (other than US ASCII) are not included because of Rule 5; these sets
are covered adequately by the ISO Latin alphabets.  CCITT (ITU-T) T.61 [2], which represents accented
characters exclusively by composition, is not included for reasons 1, 5, and 6.

Table 1 lists the transfer character sets presently allowed by the Kermit protocol.  The Kermit Name allows
uniform reference to these sets by Kermit software users. The requirement for ISO registration provides for
unique and incontestible identifiers for Kermit’s transfer character sets.  The Kermit Designator is the means
by which the sending Kermit program informs the receiver of the transfer character set, a key part of the
presentation protocol.  As noted earlier, however, ISO standards do not provide a single designator for a com-
plete character set, but rather separate designators for its pieces.  Thus Latin-1 is designated as ‘‘I6/100’’,
meaning that the left half (G0) is ASCII and the right half (G1) is ‘‘the Right-hand Part of Latin Alphabet 1.’’
The C0 and C1 control regions are not explicitly designated.  The C0 region is assumed to be the normal AS-
CII and ISO 646 control set, with format effectors used to delimit records and so on.  The C1 set is assumed to
be ISO 6429 to allow the use of character-set shifting functions such as SS2 and SS3 [15], for example in
Japanese EUC.

In the Kermit Designator, the initial letter ‘‘I’’ indicates ISO registration numbers for character sets, leav-
ing open the possibility for other registration authorities.  Japanese EUC (Extended UNIX Code) is a special
case, having three parts, chosen in preference to JIS X 0208 alone to allow the commonly used mixture of



10

Table 1: Kermit Transfer Character Sets

ISO
Kermit Registration Kermit
Name Standard Number Designator Languages

ASCII ANSI X3.4 6 (none) English, Latin

LATIN1 ISO 8859-1 100 I6/100 Danish, Dutch, English, Faeroese, Finnish,
French, German, Icelandic, Irish, Italian, Nor-
wegian, Portuguese, Spanish, and Swedish.

LATIN2 ISO 8859-2 101 I6/101 Albanian, Czech, English, German, Hungarian,
Polish, Romanian, Croatian, Slovak, and
Slovene.

LATIN3 ISO 8859-3 109 I6/109 Afrikaans, Catalan, Dutch, English, Esperanto,
French, Galician, German, Italian, Maltese,
Spanish, and Turkish.

LATIN4 ISO 8859-4 110 I6/110 Danish, English, Estonian, Finnish, German,
Greenlandic, Lappish (Sami), Latvian, Lith-
uanian, Norwegian, and Swedish.

LATIN5 ISO 8859-9 148 I6/148 Danish, Dutch, English, Faeroese, Finnish,
French, German, Irish, Italian, Norwegian, Por-
tuguese, Spanish, Swedish, and Turkish.

CYRILLIC ISO 8859-5 144 I6/144 Bulgarian, Byelorussian, English, Macedonian,
Russian, Serbocroatian (Serbian), and Ukrainian

ARABIC ISO 8859-6 127 I6/127 Arabic

GREEK ISO 8859-7 126 I6/126 Greek

HEBREW ISO 8859-8 138 I6/138 Hebrew

KATAKANA JIS X 0201 14, 13 I14/13 Japanese (Roman and Katakana)

JAPANESE-EUC JIS X 0201, 14, 13 I14/87/13 Japanese (Roman, Katakana, Hiragana, and
JIS X 0208 87 Kanji), English, Greek, Russian

CHINESE CS GB 2312-80 58 I55/58 Chinese (Roman, Phonetic, and Hanzi),
Japanese (Roman, Katakana, Hiragana),
English, Greek, Russian

KOREAN KS C 5601 149 I6/149 Korean (Hangul, Hanja), Japanese (Roman,
Katakana, Hiragana), Greek, Russian, English,
and others

VIETNAMESE TCVN 5712 180 I6/180 Vietnamese

single-width and double-width characters.  The registration numbers are listed in G0/G1/G2 order, so SS2 is
required to shift between Kanji (ISO 87) and Katakana (ISO 13) in accordance with ISO 2022.

This notation is used in preference to, say, the name of the standard itself (for example ‘‘ISO8859-1’’) be-
cause the same character set can be defined by more than one standard (for example, Latin-1 and ECMA 94),
and one standard can specify more than one character set (e.g. ISO 646).

Using a standard international character set as the TCS, it is possible to transfer text written in a language
other than English between unlike computers, and it is usually also possible to transfer text containing a mix-
ture of languages.  For example, text in Latin Alphabet 1 might contain a mixture of Italian, Norwegian,
French, German, English, and Icelandic.

A particular Kermit program need not incorporate all the defined transfer character sets.  In many cases, a
single 8-bit set will suffice, such as LATIN1 for Western Europe, LATIN2 for Eastern European languages
with Roman-based writing systems, CYRILLIC for Russia, and so on.  Thus Equation 2 generally results in a
comfortably small number. For example, an IBM PC that supports five Roman-alphabet code pages for Wes-
tern European languages plus a Cyrillic code page can be used with two transfer character sets, LATIN1 and
CYRILLIC for a total of 24 translation functions.



11

When a language is representable in more than one set from Table 1, as are English, German, Finnish,
Turkish, Greek, Russian, etc., the character set highest on the list that adequately represents the language
should be used. For example, ASCII should be used for English.  Within the ISO 8859 family,
lower-numbered sets that contain all the characters of interest are preferred to higher-numbered sets containing
the same characters.

This guideline maximizes the chance that any two particular Kermit programs will interoperate.  For ex-
ample, LATIN1 would be chosen for French, German, Italian, Spanish, Danish, Dutch, Swedish, etc; LATIN3
for Turkish; JAPANESE-EUC for Japanese text that includes Kanji characters, KATAKANA for Japanese text
that includes only Roman and Katakana characters, and so on.

If a file containing a mixture of languages, say English, Finnish, and Latvian, must be transferred, the user
must find a transfer character set that can adequately represent all three languages, in this case Latin Alphabet
4. For a mixture of Norwegian and Turkish, Latin-5 must be used, and so on.

The user can employ this flexibility to achieve useful effects.  For example, since there is no requirement
that a Cyrillic file be transferred using a Cyrillic transfer character set, the user can transliterate between Cyril-
lic and Roman characters as part of the file transfer process.

The Translation Function
A typical Kermit program contains an m ×n ×2 matrix of translation functions, where m is the number of
supported file character sets, n is the number of supported transfer character sets (including the transparent set,
which indicates that no translation is to be done), and there are two tables for each combination, one for
sending and one for receiving.  The translation function is selected when the user identifies the file and transfer
character sets and then sends or receives a file.

The normal behavior of a particular function can be altered in several ways.  The user can override its
default translation goal, and when the goal is readability (as it must be when translating from a larger to a
smaller set), language-specific rules can be invoked.

The function itself can work by any combination of algorithm, translation table, exception list, and shame-
less tricks.  For example, an invertible translation between IBM Code Page 437 and Latin Alphabet 1 would be
a simple indexing operation into a table, but a translation from Japanese EUC to the PC ‘‘Shift JIS’’ code is
normally accomplished by a tableless algorithm. Translation from Latin-1 to ASCII with German language
rules could be done with a combination of table accesses and exception lists.  To accomplish the desired trans-
lation, each Kermit program needs to know:

• The local file character set.

• The transfer character set to be used.

• The translation goal, invertibility or readability.

• For readable translations, optionally, the language and a corresponding set of language-specific rules.

In most situations, some or all of these are implicit, and no particular efforts are required.  To illustrate, sup-
pose that you have an IBM PC on your desk, and the PC is connected to a Hewlett Packard (HP) timesharing
computer. The PC uses IBM code page 850 and the timesharing computer uses the HP Roman8 Set. In that
case, your PC’s file character set is always CP850, the timesharing computer’s file character set is always HP
Roman8, and the transfer character set is always Latin-1.  These items can be set in your Kermit profiles, and
the appropriate translations will always occur automatically.

On the other hand, suppose you must occasionally write some text in German and send it from your PC to
another computer that supports only ASCII.  In this case you would override your Kermit profiles by specify-
ing a transfer character set of ASCII, which automatically activates the readability goal, and you might also
choose to elect language-specific rules for German.



12

Examples
Let’s look at a few of many possible translation scenarios.  Each one presents its own set of problems requiring
decisions by the creator of the translation function, or by the user.

1. From a 7-bit set to a different 7-bit set, e.g. from the Spanish version of ISO 646 to ASCII (or vice versa).
The two sets do not contain the same characters.  Here we must choose between readability (R) and inver-
tibility (I).  To achieve readability in the Spanish-to-ASCII direction, we strip diacritical marks (n-tilde be-
comes simply n, and so on).  To achieve invertibility, we make no translation at all.

2. From a 7-bit set to an 8-bit set.  The 7-bit sets are usually ASCII or an ISO 646 national version.  Often, all
the characters from the 7-bit set are also present in the 8-bit set, and there is no R-versus-I conflict.  For ex-
ample: ASCII (and most ISO 646 national variants) to Latin-1—here we satisfy both R and I. In other
cases we must choose between R and I. For example: the ISO 646 Italian national variant to ISO Latin /
Arabic: here we either remove the accents for readability, or map the accented characters into right-half
characters for invertibility.

3. From an 8-bit set to another 8-bit set.  A common case is converting between one of the corporate
‘‘extended ASCII’’ sets (Digital, IBM, HP, Apple, NeXT, Data General) and ISO Latin-1.  The two sets
share a large percentage of common characters.  How do we handle the characters that differ?  Again, we
must choose between R and I. To complicate matters, the IBM, Apple, and NeXT sets use the forbidden
C1 control-character area for graphic characters.  To create an invertible translation in the absence of an of-
ficial corporate standard, we use the Simple Rule.

4. From an 8-bit set to a 7-bit set.  For example, from Latin-1 to ASCII or to an ISO 646 national set.  Here
we are forced to accept a large amount of information loss.  We cannot possibly achieve invertibility, so
we aim for maximum readability, for example by removing diacritics or invoking language-specific rules.

5. From a single-byte character set to a multibyte character set.  Most multibyte character sets include ASCII
and sometimes several other alphabets (such as Greek and Cyrillic).  Here we translate each character into
its equivalent, if it has one.  When it doesn’t, we must choose between R and I. For example, ‘‘Ö’’ is not
found in JIS X 0208 so it can be mapped to ‘‘O’’ for readability, or some unique value (preferably one un-
assigned in JIS X 0208) for invertibility.

6. From a multibyte set to a single-byte set, for example Japanese JIS X 0208 into Latin-1 (or Latin/Cyrillic,
Latin/Greek, or even ASCII).  An invertible translation is clearly impossible.  A readable translation would
require rendering Kanji ideograms phonetically or translating them into an entirely different language,
clearly beyond the scope of a character-set conversion scheme.

7. From one national multibyte set to another.  These sets are for Chinese, Japanese, and Korean, and have a
very large number of characters—ideograms, ASCII graphics, Greek, and Cyrillic characters—in common.
They also have large blocks of unassigned character positions, so the characters they do not share in com-
mon (such as the Chinese phonetic symbols that are absent from the standard Japanese set) can be assigned
to these areas to preserve invertibility.

No two programmers are likely make the same decisions and this will lead to inconsistent translations (unless
the Simple Rule is followed).  This emphasizes the need for officially published translations between the
private and standard sets.  And as this list suggests, we also need translations between some of the standard
sets themselves, for example Chinese and Korean.  This need is addressed to some extent by the Unicode
books [27], which include the mappings from various character sets to the Unicode set.



13

Performance
Character-set translation in itself does not affect the performance of the Kermit file transfer protocol to any
significant degree.  The introduction of per-character translation introduces an extra table access or function
call but the extra work is usually minimal.  In general, the bottlenecks are elsewhere.

One of the strong points of the Kermit protocol is its ability to transfer 8-bit data in the 7-bit communica-
tion environment.  This is done using a single shift, or prefixing, technique in which each 8-bit character is
stripped of its 8th bit and then prefixed by a special shift-indicating character. This results in negligible over-
head for English and Western European text (such as French, German, Italian).

But for text in ‘‘right-handed’’ languages like Russian, Greek, Hebrew, and Arabic, where text characters
come predominantly from the right half of the character set, single shifts can result in up to 80% overhead.
The situation is even worse for Japanese EUC, in which all Kanji bytes have their 8th bits set to 1, resulting in
transmission overhead of 100% for pure Kanji text on a 7-bit connection.

Because 7-bit communication is still prevalent, Kermit’s support for Greek, Cyrillic, Hebrew, Arabic, and
Japanese text file transfer calls for a more efficient technique.  This was accomplished by adding a locking
shift mechanism to the Kermit protocol, allowing sequences of 8-bit characters to be transmitted in 7-bit form
with shifting overhead applying to entire 8-bit sequences, rather than to each 8-bit character.  Isolated 8-bit
characters can still be transmitted using single shifts.  These methods are very similar to those of ISO 2022, but
without the risk of ‘‘loss-of-state’’ due to corruption or loss of the shift characters, and with the addition of the
‘‘single-shift-1’’ mechanism lacking from ISO 2022. A combination of single and locking shifts can achieve
maximum efficiency by using a lookahead technique.  A detailed specification is given elsewhere [12].

The addition of locking shifts to the Kermit protocol increases the transfer efficiency on 7-bit connections
for typical Cyrillic text by about 50% and for typical Kanji text by more than 90%, bringing these transfers to
within the efficiency range of normal 7-bit ASCII transfers on the same connections.

Conclusions and Recommendations
File transfer character-set translation is an optional feature for Kermit programs, and is designed to inter-
operate (with, of course, no claim to correct translation) with Kermit programs that do not support it.  As of
this writing, translation of (at least) Roman, Cyrillic, Hebrew, and Japanese text is supported by MS-DOS
Kermit for the IBM PC [9], IBM mainframe Kermit for VM, MVS, and CICS [3], and C-Kermit for UNIX,
VMS, OS/2, and other operating systems [6]. Three basic commands were added to these programs to select
the file and transfer character sets and any desired language-specific translation rules.  Locking shifts are used
automatically in the 7-bit communication environment to prevent Kermit from discriminating against ‘‘right-
handed’’ character sets. Kermit programs equipped with the new translation features have become popular in
Europe, Latin America, the former Soviet Union, and Japan.  Work is in progress to add further translation
capabilities for other parts of the world.

Space has not permitted discussion of the details of the Kermit protocol, the forms of the commands, trans-
lation negotiation and refusal mechanisms, unilateral and local translation features, automatic matching of file
and transfer character sets, character sets in terminal emulation, and numerous other issues.  These will be
covered in a future edition of reference [5].

In the discussions that resulted in the character-set translation extension to Kermit, the most fundamental
lesson we have learned is that if existing standards can solve a particular problem, they should be used instead
of inventing new techniques to solve the same problem.  Applying this lesson to Kermit file transfer results in
the following conclusions:

1. Only ISO-registered standard character sets should be used for interchange.  This eliminates the need for
any computer to support any character sets except its own and the corresponding well-known standards.

2. The sender should identify the transfer character set to the receiver using a standard notation such as its
ISO registration number.  This eliminates the need for setting up separate and redundant registration au-
thoritities for character-set identifiers.



14

3. Translations should be invertible, readable, and consistent.  When all three of these goals cannot be ach-
ieved by a single translation, the user should be able to choose the translation goal.

These principles can be applied to any form of textual data interchange, including electronic mail, network file
systems, terminal emulation, virtual terminal service, distributed databases, remote procedure calls, cutting and
pasting among object-oriented applications, and so on.

The translation process itself, however, remains ill-defined. It is hoped that the industry and the standards
organizations will take the following steps:

1. Standard character sets should be used in preference to private character sets.

2. Owners of private character sets should publish official invertible translations to ISO-registered standard
sets. In the absence of official translations, a simple procedure such as the one presented in this paper
should be used to achieve consistent invertible translations across all applications.

3. Standards organizations are encouraged to consider publishing translations between different standard
character sets, such as the Japanese, Chinese, and Korean sets, as well as readable transliterations among
different alphabetic writing systems, such as Roman, Greek, Hebrew, Arabic, and Cyrillic.

4. Operating system designers should consider tagging plain-text files with character-set identifiers, like the
Kermit tags listed in Table 1, to allow applications software to determine a file’s character set automati-
cally. When standard character sets are used, their tags should be consistent across different operating sys-
tems.

Ten or twenty years from now, perhaps all the computers, as well as all the display, entry, printing, and tel-
communication devices of the world will use one universal character set, and the issues discussed in this paper
will be irrelevant. On the other hand, perhaps the accumulated and ever-growing installed base of existing
hardware, software, and electronic information will prove too massive for conversion and the universal charac-
ter set will be just one more character set on the list.

Acknowledgements
My deepest thanks to Christine M. Gianone of Columbia University for inspiring the work and ideas described
in this paper, and for her key contributions thereto.  Special thanks also to the others who played prominent
roles in the design and development of Kermit’s character-set translation capabilities: Joe R. Doupnik of Utah
State University, John Chandler of the Harvard/Smithsonian Center for Astrophysics, Hirofumi Fujii of the
Japan National Laboratory of High Energy Physics in Tokyo, John Klensin of the United Nations University,
André Pirard of the University of Liège in Belgium, Johan van Wingen of the Netherlands and numerous ISO
committees, Gisbert W. Selke of the Wissenschaftliches Institut der Ortskrankenkassen in Bonn, Germany, and
Konstantin Vinogradov of the International Centre for Scientific and Technical Information (ICSTI) in Mos-
cow. Grateful acknowledgements also to Juri Gornostaev and A. Butrimenko of ICSTI for hosting the First
International Kermit Conference in Moscow [11] in Spring 1989, where the ideas in this paper received their
first public hearing.  Thanks also to the many participants in the ISO8859, UNICODE, and ISO10646 network
discussion groups for valuable information and insights.

About the Author
FRANK DA CRUZ is Manager of Communication Software Development at Columbia University, author of
the book Kermit, A File Transfer Protocol, co-author (with Christine M. Gianone) of the book Using
C-Kermit, leader of the team that developed the Kermit protocol, and principal author of several Kermit
software programs including C-Kermit for UNIX, VMS, and OS/2.  Present address: Columbia University, 612
West 115th Street, New York, NY 10025, USA; Email: fdc@columbia.edu.



15

References
1. ANSI X3.4-1986, Code for Information Interchange. American National Standards Institute, 1986.  The
ASCII specification; the US version of ISO 646.

2. CCITT Recommendation T.61, Character Repertoire and Coded Character Sets for the International
Teletex Service. CCITT, Geneva, 1980 (amended 1984).

3. Chandler, John. IBM System/370 Kermit User’s Guide. Columbia University Academic Information Sys-
tems, 1993.  Available in separate versions for VM/CMS, MVS/TSO, and CICS.

4. Chinese Standard GB 2312-80, Coded Chinese Graphic Character Set for Information Interchange. China
Association for Standardization, Beijing, 1980.

5. da Cruz, Frank. Kermit, A File Transfer Protocol. Digital Press, Bedford, MA, 1987.

6. da Cruz, Frank and Christine Gianone. Using C-Kermit. Digital Press, Burlington, MA, 1993.
EY-J896E-DP, German edition available Fall 1993.

7. Data General. Programming the Display Terminal: Models D217, D413, and D463. Data General,
Westboro, MA, 1991.  014-002111-00.

8. Do, James, Ngô Thanh Nhàn, Hoàng Nguyên. "A proposal for Vietnamese character encoding standards in
a unified text processing framework". Computer Standards & Interfaces 14 (1992).

9. Gianone, Christine M. Using MS-DOS Kermit. Digital Press, Burlington, MA, 1992.  EY-H893E-DP, Also
available in French and German editions.

10. Gianone, Christine M.  "Have Kermit, Will Travel". Kermit News 3, 1 (June 1988).

11. Gianone, Christine M.  "Mission to Moscow". Kermit News , 4 (June 1990).

12. Gianone, Christine M. and Frank da Cruz.  A Locking Shift Mechanism for the Kermit File Transfer
Protocol. Columbia University, 1991.

13. IBM Character Data Representation Architecture, Level 1 Registry. IBM Canada Ltd., National Lan-
guage Technical Centre, Ontario, 1990.  SC09-1391-00.

14. ISO Standard 646, 7-Bit Coded Character Set for Information Processing Interchange. Second edition,
International Organization for Standardization, 1983.  Also available as ECMA-6, and similar to CCITT T.50.

15. ISO International Standard 2022, Information processing — ISO 7-bit and 8-bit coded character sets —
Code extension techniques. Third edition, International Organization for Standardization, 1986.  Also avail-
able as ECMA-35.

16. ISO International Standard ISO 2375, Information processing — Procedure for Registration of Escape
Sequences. International Organization for Standardization, 1985.

17. ISO International Standard 4873, Information processing — ISO 8-bit code for information interchange
— Structure and rules for implementation. Second edition, International Organization for Standardization,
1986. Also available as ECMA-43.

18. ISO International Standard 8859 Parts 1 through 9, Information Processing—8-Bit Single-Byte Coded
Graphic Character Sets. International Organization for Standardization, 1987–.  ISO 8859-1 through -4 are
the Latin Alphabets 1 through 4, also available as ECMA-94.  ISO 8859-5 is the Latin/Cyrillic Alphabet
(ECMA 113).

19. ISO/IEC 10646-1, International Standard 10646, Information Technology—Univesral Multiple-Octet
Coded Character Set (UCS). ISO/IEC JTC1, 1993.

20. ISO International Standard 6429, Information processing — C1 Control Character Set of ISO 6429.
International Organization for Standardization, 1983.



16

21. ISO International Register of Coded Characters to Be Used with Escape Sequences. European Computer
Manufacturers Association (ECMA), 1990, updated periodically.

22. JIS X 0201, The Japanese Katakana and Roman Set of Characters. Japan Industrial Standards Com-
mittee, 1969.

23. JIS X 0208, The Japanese Graphic Character Set for Information Interchange. Japan Industrial Stan-
dards Committee, 1983.

24. JIS X 0212, Supplementary Japanese Graphic Character Set for Information Interchange. Japan National
Committee on ISO/IEC JTC1/SC2, 1991.

25. Korean Standard KS C 5601-1987, Korean Graphic Character Set for Information Interchange. Korea
Bureau of Standards, 1987.

26. Padlipsky, M. A. The Elements of Networking Style. Prentice Hall, 1985.

27. The Unicode Consortium. The Unicode Standard, Worldwide Character Encoding, Version 1.0.
Addison-Wesley Publishing Company, Volume 1, 1991; Volume 2, 1992.

28. Viet Nam General Department for Standardization. Vietnamese National Standard TCVN 5712, 8-bit
Vietnamese Standard Code for Information Interchange (VSCII). Viet Nam State Committee for Sciences,
1993.


