
About your SINGLE USER LICENSE of TurboCom(TM)

TurboCom is a commercial product developed by John Loram at Bio-Engineering
Research Laboratories, Berkeley, CA.

TurboCom was developed on a speculative basis in response to the perceived need
for improved Asynchronous communications capabilities under Microsoft Windows 3.

The Single User License, printed on the envelope in which TurboCom is packaged,
grants specific rights. Please take a few minutes to read and understand the extend
of these grants. We have tried to make the elements of the Single User License as
unencumbering as possible while protecting the substantial effort that has been
made to provide a useful product.

TurboCom is not a shareware product. Please do not share it with your friends and
associates, even on a trial basis. You may of course test TurboCom on any system
and as many systems as you wish, so long as the Single User License agreement is
not violated.

A reproduction of the TurboCom Single User License is provide at the end of this
document.

TurboCom is available under Single User licenses, Site Licenses, and Licenses for
bundling with other software and hardware products.

Quantity discounts are available for single user and site licenses. For further
information contact John Loram at:

Bio-Engineering Research Laboratories
2831 Seventh St.
Berkeley, California 94710

(415) 540-8080

This document may not, in whole or in part, be copied, photocopied, translated, or
reduced to any electronic medium or machine readable form without prior written
consent from Bio-Engineering Research Laboratories.

Basic Installation
Installing TurboCom is a five step process. It may be accomplished while in DOS or
Windows.

1) Copy the three files named TURBOCOM.DRV, TURBOVCD.386, and
TURBOBUF.386 from the TurboCom distribution disk into the \WINDOWS\SYSTEM
sub-directory. If your system is based on the 80286 processor you need only copy
TURBOCOM.DRV.

2) Copy the file named TURBOCOM.SYS from the TurboCom distribution disk to the
directory in which you keep your DOS .SYS files. On many systems this would be the
root directory of the boot volume (e.g. C:\). TURBOCOM.SYS is not required for
IBM PS/2 Microchannel models 50 and above.

3) Append the contents of TURBOCOM.INI from the TurboCom distribution disk to
your Windows SYSTEM.INI file, which you will find in your main \WINDOWS sub-
directory. Make sure that TURBOCOM.INI is appended to the SYSTEM.INI file, not
to one of the other .INI files located in this sub-directory.

4) Find and modify the following profile strings in your SYSTEM.INI file:

In the [boot] section of SYSTEM.INI:

 change profile string comm.drv=comm.drv to read comm.drv=TurboCom.drv

In the [386enh] section of SYSTEM.INI make two changes (unnecessary for 286
machines):

 change profile string device=*vcd to read device=TurboVcd.386

 change device=*combuff to read device=TurboBuf.386

5) Add the following line to your CONFIG.SYS file:

DEVICE=TURBOCOM.SYS

This line must appear in the CONFIG.SYS file before any line which loads a driver
involving Com ports such as a serial port mouse driver, or a serial port network
driver. It can be safely placed as the first device driver in the CONFIG.SYS file.
TURBOCOM.SYS is not required for IBM PS/2 Microchannel models 50 and above.

Now re-boot DOS and Windows so that the new drivers will be loaded.

How Does TurboCom Work

TurboCom works on three levels to greatly improved Windows and DOS asynchronous
communications performance.

Level 1 Improvements - Comm Port hangups and COM3/4 availability:
TurboCom.sys is a DOS device driver that extends the boot-time system initialization
functions of the ROM BIOS of your ISA based system. Few ISA ROM BIOSes make
provisions to initialize COM3 and COM4 hardware and the associated ROM BIOS data
area where comm port base addresses are stored. No ROM BIOS for ISA based
system properly initialize the 16550 UART. The result of these limitations is that
many systems cold boot with their serial port hardware incompletely initialized, and
warm boot with their UARTs in unpredictable, often inaccessible states. TurboCom.sys
performs proper hardware initialization of 8250, 16450, and 16550 UARTs, and builds
a complete UART data table in the ROM BIOS data area of system RAM. It then
reports the results of its efforts and discoveries and exits without taking up system
RAM.

Level 2 Improvements - Windows Comm Port bugs and 16550 UART support:
TurboCom.drv and TurboVCD.386 comprise the two basic Windows Comm Drivers.
TurboCom.drv is the Windows 3 Comm Driver. It provides the application program
interface (API) for Windows applications which use the serial and parallel ports, and
the interrupt level routines for Real and Standard mode operation.

Two bugs, one dealing with comm port hangups during high-speed full duplex
operations and another causing IRQ conflicts were corrected. The interrupt level
code was restructured to make it more efficient standard UARTs, and take better
advantage of the high performance hardware features of the 16550 UART.

TurboCom brings new levels of performance to Windows Asynchronous port usage by
providing support for the hardware buffers in the 16550 high performance UART. The
sixteen byte transmit and receive buffers of the 16550 UART make it highly resistant
to the often poor interrupt response time of multi-tasking environments like Windows.
In addition, with the 16550 UART's ability to collect multiple characters before issuing
an interrupt, the receive and transmit interrupt overhead can be reduced by as much
as an order of magnitude.

Level 3 Improvements - DOS Comm support and 16550 access:
TurboBuff.386 provides a RAM based UART buffer for DOS applications running under
enhanced mode Windows. TurboBuf collects characters from the UART into a system
RAM buffer while a DOS application is switched out. When the application is switch in
during its time-slice, TurboBuf provides the collected characters to the DOS
application by simulating the UART, interrupts and all.

Performance Tuning TurboCom for Windows and DOS Applications

TurboCom provides a number of performance modifying parameters which can be
placed in the TurboCom section of the SYSTEM.INI file. Some of them are quite
esoteric and will not need to be change in most systems. Others, will likely be
changed by every user.

First, a little about the purpose and structure of your SYSTEM.INI file.
The SYSTEM.INI file is similar in function to the DOS CONFIG.SYS file; it tells Windows
which Windows device drivers to load, and it allows those device drivers access to
user supplied configuration information.

The SYSTEM.INI file's contents are composed of sections in the format of
[SectionName] (note the square brackets) and profile strings in the format of
Profile=String (note the equal sign).

Profile=Strings are always associated with the specific [SectionName] which proceed
them. Should another [SectionName] inadvertently be placed between a
Profile=String and its associated [SectionName], the association is broken and
strange unpredictable events will almost certainly occur, often at boot time but
sometimes much later.
Make a copy of your SYSTEM.INI file before you change it and keep the copy in a
separated directory.

Identifying the Communications Device
COMxDeviceType=n, default n = 16, legal values = 0, 1, 2, or 16

If your system does not exclusively use 16550 style UARTs, you will want to change
one or more of the COMxDeviceType profile strings to reflect your actual hardware
configuration.

TurboCom does a good job of identifying which kind of communication devices (e.g.,
UARTs) are available in your system. However, should you wish to turn off the use of
the advanced features of whichever device has been detected, you can. TurboCom
will override inappropriate choices and tell you about it. To force device
identification, change the following lines(s) of text in your SYSTEM.INI file, in the
[TurboCom] section.

COMxDeviceType=n

Where x = the Com port number 1, 2, 3 or 4, and n is the identifier for the
communications device:

0 = unknown,
1 = 8250 / 8250-B style UARTs,
2 = 8250A / 16450 style UARTs,
16 = 16550 style UARTsIdentifying the Communications Device (cont.)

For example;

COM1DeviceType=16 tells TurboCom that Com port 1 is a 16550 style UART.

COM3DeviceType=0 tells TurboCom to treat the Com3 device as the simplest of
communication devices, which is currently the same as choice #1, the 8250 / 8250-B.

Setting High Baud Rates for Windows Applications

If you wish to use baud rates above the 19,200 limit imposed by the standard
Windows Comm driver, the COMxBaudX profile string allows you to do so.

COMxBaudX=n, default n = 1, legal values = 1, 2, or 3:

Most commercial Windows applications only provide for baud rate settings of 19,200
baud and below. This is because the standard Windows Comm driver rejects any
attempt to set a higher rate.

Since TurboCom performs well at 57,600 baud in fast machines, you can multiply the
nominal baud rate by a factor of two (2) or three (3) on a per channel basis.

To multiply the baud rate set by your Windows application, change the following
line(s) of text in your SYSTEM.INI file, in the [TurboCom] section.

COMxBaudX=n

Where x = the Com port number 1, 2, 3, or 4, and n = the baud rate multiplier 1, 2,
or 3.

For example;

COM2BaudX=3 will multiply an application set baud rate of 19,200 baud to an actual
57,600 baud for Com2.

COM4BaudX=2 will multiply an application set baud rate of 19,200 baud to an actual
38,400 baud for Com4.

TurboCom will reject attempts to set rates above 19,200 baud on ports that do not
have high performance hardware (e.g., 16550 style UARTs).

The TurboCom API allows a Windows application to directly set baud rates up to
57,600 baud if the appropriate UART is available.

Setting the Receiver FIFO Interrupt Trigger Level for Windows and DOS
Applications

Note: This is really high tech stuff, and is here mostly for the un-reconstructed hacker.
Unless you really enjoy tinkering, there is probably no reason to change the Receive
FIFO Interrupt Trigger Level.

COMxRcvTrigLvl=n, default n = 8, legal values 1, 4, 8, or 14

The 16550 UART has two 16 byte fifos (First In First Out buffers). One is for incoming
(received) characters, and the other for outgoing (Transmitted) characters. These
two fifos are the 16550's distinguishing features, and are key to the performance
enhancements that TurboCom provides.

Associated with the Receive Fifo, is the Receive Fifo Interrupt Trigger Level. This
programmable value determines to what level the receive fifo must be filled by
incoming data, before the UART will issue a service requesting Data Available
interrupt. You may set this variable to one of its four legal values 1, 4, 8, or 14. If
your Windows applications lose incoming characters when your system is very active,
you might try reducing this variable from the default of 8 to 4 or even 1.

If you are serious about dinking with this variable you should probably become
thoroughly familiar with the technical issues concerning the 16550 UART (get a data
sheet) and the interrupt response time of you system.

To set this variable, change the following line(s) of text in your SYSTEM.INI file in the
[TurboCom] section.

COMxRcvTrigLvl=n

Where x= the Com port number 1, 2, 3, or 4, and n= the trigger level 1, 4, 8, or 14

For example;

COM3RcvTrigLvl=14 means that the UART will not issue a Data Available interrupt
until it has collect 14 bytes of data. It can receive 2 more bytes before it absolutely
must be serviced, or a data overrun will occur.

If you're wondering what happens if just 13 characters come in, the answer is that
the UART has a timer. That timer will cause an interrupt if data sits in the UART for
four character times without another character being received or the fifo being
serviced.

Setting the Transmit Fifo Filling Level for Windows and DOS applications

Note: This is another item for the hacker. Unless you really enjoy tinkering, there is
probably no reason to change the Transmit Fifo Filling Level.

COMxTxDepth=n, Default n = 8, legal values 1, 2, 3......, 16

Each time the Transmit Fifo becomes empty, the UART issues a service requesting
Transmit Fifo Empty interrupt. While an empty Transmit Fifo could be filled with as
many as 16 characters, there may be times when this is not desirable. Certain flow
control issues might make it desirable to stop transmitting characters before the 16
byte fifo is empty, and there is no mechanism in the 16550 UART to accomplish this.
The only option is not to fill the Transmit Fifo so full.

To set the number of characters placed in the Transmit Fifo on each Transmit Fifo
Empty interrupt, place the following line(s) of text in your SYSTEM.INI file, in the
[TurboCom] section.

COMxTxDepth=n

Where x = the Com port number 1,2,3 or 4, and n = the fill level 1,2,3....., 16

For example:

COM3TxDepth=12 means that each time the Com3 Transmit Fifo Empty interrupt is
serviced, the Transmit Fifo will be filled with 12 characters from the Transmit Queue, if
that many are available.

Setting the COMM Buffer Size for DOS Applications

If your DOS applications running under enhanced mode Windows are experiencing
character overruns (lost received characters) this section is for you.

COMxBuffer=n, Default n = 128, legal values 0, 1, 2......, 10000

In traditional (UNIX, VMS, etc.) multi-tasking environments, interrupt level services
are provided by the operating system. All applications are required to use these
services to access the hardware. Enhanced mode Windows is unique in that each
Virtual Machine (VM) provides its own hardware drivers. The Serial Port Drivers,
(Comm Drivers) for the Windows VM (Comm.drv, or TurboCom.drv in our case) are
provided with the Windows package. The Serial Port Drivers for DOS applications
running under Windows are provided either by DOS or by the DOS application itself.
The question then arises, what shall we do with a character received by a UART which
is "owned" by a VM (DOS application) that has been switched out. TurboBuf provides
an answer, by providing a buffer in system RAM for each comm port. TurboBuf
collects characters from the UARTs, places them in buffers, and then when the VM
(DOS application) which owns a comm port is active, TurboBuf delivers the characters
by simulating the UART, interrupts and all. In this way even 16550 unaware DOS
applications benefit from its high performance features.

To set the number of bytes buffered for DOS applications, place the following line(s)
of text in your SYSTEM.INI file, in the [TurboCom] section.

COMxBuffer=n

Where x = the Com port number 1,2,3, or 4, and n = the size of the buffer in bytes, 0,
1, 2..... 10000

For example:

COM2Buffer=512 means that TurboBuf will provide a 512 byte buffer for the COM2
serial port. This buffer would be large enough to hold about one half second's worth
of characters at 9600 baud. If you assume that there are three VMs active, Windows
and two DOS applications, and that the minimum time slice is set to the default value
of 20 milliseconds, then 512 bytes would be more than sufficient.

Setting the COMM Boost Time for Windows and DOS applications

If your Windows or DOS applications are experiencing sluggish comm performance,
character overruns (lost received characters), or loss of keyboard characters under
enhanced mode Windows, this section is for you.

COMBoostTime=n, Default n = 2, legal value 0, 1, 2......, ?

This setting gives a VM addition time each time it receives an interrupt from an
comm port. Since TurboCom and a 16550 UART result in substantial reductions in
interrupt overhead it may not be necessary to ever increase this value. If you give a
VM too much additional time using this method, it can quickly hog the whole system.
There is only one COMBoostTime profile string for all comm ports.

To set the number of milliseconds additional time upon each owned comm interrupt,
place the following line of text in your SYSTEM.INI file, in the [TurboCom] section.

COMBoostTime=n

Where n equals the number of additional milliseconds operating time granted to a VM
upon receipt of each comm interrupt.

For example:

COMBoostTime=5 will give the VM an additional 5 milliseconds of operating time
each time it receives an interrupt from a comm port which it owns.

Hardware: I/O Addresses, port availability, Interrupts, and Com Port
Lockups

If you have experienced difficulties with Windows' Message Boxes that proclaim "The
COMx port is currently assigned to a DOS application. Do you want to reassign the
port to Windows?", and then when you answer in the affirmative nothing happens.
Or, Com ports that work one minute but not the next, this section is for you. It will
give you some understanding of the roots of your travail, and an explanation of how
TurboCom will help.

I/O addresses and Port Availability:

A Windows Comm driver looks in a dedicated area of RAM to find the addresses of
your system's (up to) four Com ports. This RAM area is initialized by the system ROM
BIOS at boot time. Only a few very recent ROM BIOSes are fully aware of Com3 and
Com4 and correctly initialize this data area. If the data area is not properly
initialized, and the address the Windows Comm driver finds is ZERO, Windows will
make assumptions that depend:

upon whether Windows is operating in Real/Standard vs. Enhanced mode,
upon whether it is looking for COM1/COM2 or COM3/COM4,
upon whether the bus structure is the ISA vs. EISA/MCA,
upon the Model and Submodel data in the ROM BIOS
and finally, upon quantity and the base addresses of the Com ports in you

system.

The permutations and combinations have created a great deal of misunderstanding
and confusion.

All of this is made more complex by a Com port addressing inconsistency between
the Windows Comm driver COMM.DRV and the enhanced mode Virtual Machine
Comm driver *VCD.

However, all the addressing and availability problems are resolved if the dedicated
area of RAM has the correct information about Com port addresses, and the
addressing inconsistency between the Windows Comm driver and the Virtual Machine
Comm driver is corrected.

TURBOCOM.SYS is provided to properly initialize the data area and TURBOVCD.386
corrects the addressing inconsistency. TURBOCOM.SYS is not required for IBM PS/2
Microchannel models 50 and above.

TURBOCOM.SYS, in part, acts as an extension of the ROM BIOS. When loaded by the
CONFIG.SYS file at DOS boot time, TURBOCOM.SYS searches for four Com ports,
places their addresses in the dedicated RAM area, and reports its findings.

TURBOCOM.SYS also permits the user to optionally enter load line arguments
(switches) which extend the search for Com ports to non-standard I/O addresses, and
force a specific physical-to-logical mapping of Com ports that are found. Up to four
switches may be entered, one for each logical Com port. For example, if your ISA
system has four Com ports at the quasi-standard addresses of 3f8h, 2f8h, 3e8h, and
2e8h, the TURBOCOM.SYS load line in your CONFIG.SYS file might be:

DEVICE=TURBOCOM.SYS /3f8 /2f8 /3e8 /2e8

This would make the following assignments:
Logical port Physical port
Com1: = 3f8h
Com2: = 2f8h
Com3: = 3e8h
Com4: = 2e8h

You could reverse the Logical to Physical connection with the following load line:

DEVICE=TURBOCOM.SYS /2e8 /3e8 /2f8 /3f8

Which would make the following assignments:
Logical port Physical port
Com1: = 2e8h
Com2: = 3e8h
Com3: = 2f8h
Com4: = 3f8h

If you choose to use a non-standard arrangement of Com port addresses, be aware
that many DOS based communications programs make their own Logical to Physical
associations, and pay no attentions to those provided by the ROM BIOS. Conflicts of
Com port associations between Windows and DOS based applications lead to great
confusion and grief!

TURBOCOM.SYS is 16550 UART aware, and will properly initialize these high
performance devices.

Interrupt sharing and Com Port Lockups:
While simultaneous hardware interrupt sharing is not possible in the ISA bus
environment without special serial port hardware, it should be possible to share
hardware interrupts on a sequential basis. However, because of a conceptual error in
the Windows Enhanced mode Virtual Comm driver, interrupt sharing of any kind with
Windows in an ISA bus environment will lead to Com port lockup. Once a Com port
has been acquired by a process (i.e., a Windows or DOS application) the hardware
interrupt associated with that Com port will become permanently unavailable to the
other serial port sharing the interrupt. If the other serial port, which shares the
interrupt, is subsequently activated it will also claim the hardware interrupt. At this
point neither port will operate, yet neither port will completely relinquish the
interrupt. The only solution is a power off re-boot of your system. Even a warm boot
is not enough because of limitations in most ROM BIOS.

TURBOVCD.386 corrects this problem and allows serial ports to be passed about with
abandon, provide the one-at-a-time on an IRQ restriction is observed.

The follow reproduction of the Single User License AGREEMENT print on the sealed
disk package in which TurboCom is shipped, is provide here for your convenience.
Should there be any difference between this reproduction and the original on the
sealed disk package, the original shall prevail.

TURBOCOM LICENSE AGREEMENT

BY OPENING THIS SEALED DISK PACKAGE, YOU AGREE TO THE TERMS OF THIS
AGREEMENT WITH BIO-ENGINEERING RESEARCH LABORATORIES. IF YOU DO NOT
AGREE TO THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN THE UNOPENED
DISK PACKAGE AND THE ACCOMPANYING MATERIALS TO THE PLACE YOU OBTAINED
THEM FOR A REAL REFUND. This agreement supersedes all prior agreements and
understandings between you and Bio-Engineering Research Laboratories regarding
the TurboCom driver.

SOFTWARE LICENSE

1. The enclosed software is protected by both United States copyright law and
international treaty provisions. Therefore, you must treat this software like a book,
with the following single exception. You are authorized to make archival copies of the
software for purposes of backup to protect your investment from loss. 2. By saying
"like
a book" we mean, for example, that this software may be used by any number of
people and may be freely moved from one computer location to another so long as
there is no possibility of it being used at one location while it is being used at
another. Just like a book that cannot be read by two different people in two different
places at the same time, the software may not be used by two different people in two
different places at the same time. 3. The software is licensed to you and title to the
software is retained by Bio-Engineering Research Laboratories. You may not rent or
lease the software but you may
transfer the software and accompanying written materials on a permanent basis
provided you retain no copies and the recipient agrees to the terms of this
agreement. If the software is an update, any transfer must include the update and all
prior versions. 4. You agree that you will not reverse, engineer, decompile or
disassemble the software.

LIMITED WARRANTY

5. Bio-Engineering Research Laboratories warrants the physical disk and the
accompanying physical documentation to be free of defects for a period of thirty days
from the date of purchase. In the event of notification within the warranty period of
defects, Bio-Engineering Research Laboratories will replace the defective disk or
documentation. The remedy for breach of this warranty is limited to replacement
and shall not encompass any other damages, including but not limited to loss of
profit, and special, incidental, consequential or other similar claims. 6. Bio-
Engineering Research Laboratories specifically disclaims all other warranties,
expressed or implied, including but not limited to implied warranties of
merchantability and fitness for a particular
purpose, with respect to the disk, accompanying documentation, and the program
license granted herein. In no event shall Bio-Engineering Research Laboratories be
liable for any loss of profit or other commercial damage, including but not limited to
special, incidental, consequential or other damages.

GENERAL

7. For purposes of licensing to any agency of the United States government, the
software and documentation are provided with RESTRICTED RIGHTS. 8. This
agreement is governed by the laws of the State of California and is enforceable by
Bio-Engineering Research Laboratories and/or its resellers and distributors. The
prevailing party in any action brought in connection with an alleged infringement of
proprietary rights in the enclosed software will be entitled to recover its costs and
expenses, including attorneys fees.

Bio-Engineering Research Laboratories - 2831 Seventh St., Berkeley, Califorina - (415)
540-8080

