
Turbo C Utilities v3.3

For Borland C and C++

Including Database Option

© 1990-1992 Karl Keyte

TCU 3.3 - Reference Manual

Foreword

Further information, support and product registration should be addressed to the address
given below.

Karl Keyte Phone : +(49) 6151 902041
E.S.O.C. Fax : +(49) 6151 904041
Robert-Bosch Straße 5 e-Mail : kkeyte@esoc.bitnet
D-6100 Darmstadt
Germany

Memory models SMALL and LARGE are the only ones supplied as standard with TCU
version 3.3. Other models may be obtained from the author by e-Mail if required.

Compilations with ALL memory models must use the WORD
ALIGN option or else the programs will not work.

If you use this product, please be sure to register by writing to the address given above. A
source license for parts of the TCU system may be purchased in special cases. Information
is available from the address above. Bug-fix patches may be issued from time to time which
may conflict with changes made by users with source licenses. In those cases, a list of
changed modules will be made available and the source supplied to such users. It is the
users responsibility to merge the bug-fix with any local changes made.

Conditions of Use

Registered TCU users may be use the TCU libraries free of charge and applications may
be sold without royalties. Registration is free and may be done by contacting the author by
electronic mail, facsimile or post at the addresses given above. The TCU package must not
be distributed in any form other than the complete archive. Any other use requires the
permission of the author. Registered users will be notified of updates and may obtain the
latest version from either bulletin board archives or by sending a 3½" 1.44MB diskette to the
address given above, complete with an international reply coupon to cover the return
postage.

92.09.01 1

TCU 3.3 - Reference Manual

Disclaimer

No responsibility shall be taken for anything which may result from using the TCU package.
If anything unexpected does result, please contact the author on the above e-Mail address
with full details. A software problem reporting program is supplied for providing the author
with details necessary to solve the problem.

2 92.09.01

TCU 3.3 - Reference Manual

Contents

Introduction . 5
Menus . 5
Prompts and Notices . 5
Forms . 6
Databases . 7

Service Overview . 9
Database Services . 9
Menu Services . 9
Prompt Services . 10
Form Services . 10
Window Services . 11
Miscellaneous Services . 11
Constants . 11

Mouse Support . 12

Services . 13

92.09.01 3

TCU 3.3 - Reference Manual

This page intentionally left blank

4 92.09.01

TCU 3.3 - Reference Manual

Introduction

TCU is a library for Borland C/C++ to provide a number of services relating to menus,
prompt and notice windows, form entry and databases. This document offers a full
description of each of the services, their syntax and operation. The following text describes
each section briefly. It for the user to write full test and application programs to demonstrate
fully the use of each.

Menus

The TCU menu system offers pop-up menus and pulldown menus. Pulldown menus
utilise normal pop-up menus for each of the choices. A pop-up menu is defined with
the ’tcu_define_menu’ service and may be displayed on the screen with
’tcu_display_menu’. A choice from the menu is read with ’tcu_read_menu_selection’.
The menu is removed from the screen with the ’tcu_remove_menu’ service. Each
menu should be declared in the calling program as type TCU_MENU before being
defined.

A pulldown menu is a set of title options, and each option may have an associated
pop-up menu which will be displayed beneath the pulldown option when selected.

Items in pop-up menus may be set as ’unavailable’, making that option non
selectable. This option may be toggled on and off.

Prompts and Notices

A notice is a set of lines of text which is displayed in a notice window. The notice
must be cleared from the screen by the user pressing the RETURN key or the
ESCAPE key. A notice is initiated (though not displayed) with the
’tcu_prepare_notice’ service, and each line of text is added to the notice using
’tcu_notice_text’. When the notice has been fully built it may be displayed with
’tcu_display_notice’. When it is no longer needed it should be cleared with the
’tcu_clear_notice’ service.

A prompt is simply a notice with a single input field. The input field is defined (in
colour and size) with the ’tcu_prompt_input’ service. As soon as a call to
’tcu_prompt_input’ is made, the notice becomes a prompt. This call must be made
prior to the call to ’tcu_display_notice’. A prompt is completed by the user entering
the prompt field and pressing the RETURN key.

92.09.01 5

TCU 3.3 - Reference Manual

Forms

The forms package is a complete form entry system allowing fixed text and variable
input areas to be defined in a form. The attributes of the form are written in a CUF
(’C’ Utilities Form) file and compiled into an object form (CFO - ’C’ Form Object) or
a relocatable object file using the provided Forms Compiler. The compiler checks
the syntax and validity of each of the entries in the form source file, and if no errors
are found the object is generated. This object may then be loaded by an application
using the ’tcu_load_form’ or ’tcu_load_image_form’ service. This former gives the
application the flexibility not to depend on the exact form content which may be
modified without having to recompile or link any code (unless major changes are
made to the form structure).

Full details of the form source syntax are available in the Forms Compiler
documentation.

Each field in a form is addressed by its ’form id’ number, which is not specified in
the form source, but is assigned at run-time. In order to allow applications to refer
to known fields, fields may be given a name which may be used with the
’tcu_get_field_id’ service to obtain the applicable form id.

Fields may be one of 7 types, or 6 basic types:

Numeric 2 types, 1 integer and 1 floating point.
String Character strings
Date Dates in US or European format
Logical True/False, Yes/No, etc.
Choice Enumerated selection types
Button Selection buttons

Fixed text within a form is declared as TEXT rather than FIELD.

Each field or text item may be assigned a colour attribute, defining its foreground
and background colours. The COLOUR and INPUT keywords may be used to
assign default colour attributes for items not having a specific colour attribute; this
is the normal case.

Many operations exist with the services provided to change attributes and behaviour
of the fields. These are described fully in the following text.

Note that in the interest of retaining as much available dynamic memory as possible
for the application, forms should be unloaded after use with the ’tcu_unload_form’
option. If a form is used repeatedly it is probably not worth unloading it until the
program is to terminate.

6 92.09.01

TCU 3.3 - Reference Manual

Databases

The TCU database system is closely integrated with TCU forms. It is meant to allow
forms to be used to specify a record format conveniently and to supplement this by
allowing form records to be stored in a database with keyed access. This offers the
advantage that forms may be designed in the traditional way, displayed and edited
as usual, and saved and recalled by using the TCU database services.

Normally the forms will be displayed, but it is also possible to use the form services
to simply define record structures on which the database services will operate. This
implies that a ’tcu_load_form’ call will be made but no ’tcu_display_form’.

The indexing strategy in TCU uses a fast, cached b-tree+ method to allow rapid
access to records of the database. The database may have up to 16 keys (which
must be named fields of the form), with the first key acting as the primary key.
Searches are performed on the primary key, but the full set of keys is used in
ordering the records in the database. Note that buttons, for obvious reasons, cannot
be used as index keys. Keys may additionally be specified to take ascending or
descending sort order.

The form must always be loaded when performing database functions. The usual
sequence of calls will be:

stat = tcu_load_form (&my_form, "testform");
stat = tcu_db_open (&my_db, &my_form, "testdb", 1);
: : : : :

stat = tcu_db_close (&my_db);
stat = tcu_unload_form (&my_form);

The database system maintains a concept of ’current location’ which defines which
record is currently referenced. For example, calling ’tcu_db_read’ will read the
’current’ record into the form structure (which in turn will be displayed directly if the
form is present on the screen). There are services to move the pointer around the
database and to move to a record under search.

A TCU database file is specified by a filepath without extension. Two files will be
generated when ’tcu_db_create’ is called, one index with the filetype ’.cix’ and one
main database file with the filetype ’.cdb’.

92.09.01 7

TCU 3.3 - Reference Manual

This page intentionally left blank

8 92.09.01

TCU 3.3 - Reference Manual

Service Overview

The following services should provide enough flexibility for you to define and use some nice
little menus, prompts, notices and forms in some of your applications. If you get stuck and
need an example, send me details and I’ll try to help with the problem.

Database Services

tcu_db_at_bof Detects beginning of database file
tcu_db_at_eof Detects end of database file
tcu_db_close Close the database files
tcu_db_create Create a new indexed database
tcu_db_delete Delete the current record
tcu_db_end_form_edit Release form/DB association from handler
tcu_db_find Search for record with matching key
tcu_db_first Move DB pointer to first record
tcu_db_last Move DB pointer to last record
tcu_db_next Move DB pointer to next record
tcu_db_open Open an existing database
tcu_db_previous Move DB pointer to previous record
tcu_db_read Read the current record into form
tcu_db_read_index_field Reads an index of the current record
tcu_db_record_count Computes number of records in the database
tcu_db_remove Remove a database completely from disc
tcu_db_rewrite Rewrite an existing record to the DB
tcu_db_save Flush vital buffers to disc for safety
tcu_db_search Search for record with next highest key
tcu_db_set_search_indices Set the indices used to define duplicates
tcu_db_set_search_mode Change the mode for indexed searches
tcu_db_start_form_edit Associate form with DB in handler
tcu_db_write Write a new record to the database

Menu Services

tcu_change_menu_attribs Changes colour attributes of menu
tcu_change_menu_escapes Change valid menu escape keys
tcu_clear_menu_in_pulldown Remove submenu of pulldown menu
tcu_define_menu Define a menu format
tcu_define_pulldown Define a pulldown menu
tcu_display_pulldown_header Display header line of pulldown
tcu_display_menu Display menu on screen
tcu_escape_fkey Find last used function key number

92.09.01 9

TCU 3.3 - Reference Manual

tcu_new_pulldown_cover Reload screen memory under pulldown
tcu_read_menu_selection Get user’s menu choice
tcu_read_pulldown_selection Get choice from pulldown menus
tcu_remove_menu Remove menu from screen
tcu_remove_pulldown Remove pulldown menu & submenus
tcu_set_menu_help Define help function for pulldown
tcu_set_menu_option Enable or disable menu options
tcu_set_pulldown_help Define help function for pulldown

Prompt Services

tcu_clear_notice Clear a prepared notice
tcu_display_notice Display notice on screen
tcu_get_confirm Get user confirmation/rejection
tcu_notice_text Add line of text to prepared notice
tcu_prepare_notice Initialise notice creation
tcu_prompt_input Enter an input area in a notice

Form Services

tcu_display_form Display defined form on screen
tcu_edit_form Interactive form edit
tcu_form_record_size Returns the size of a form record
tcu_get_field Obtain field value from form
tcu_get_field_choice_string Return the text of a Choice field
tcu_get_field_id Obtain numeric field ID from name
tcu_get_field_info Obtains field information block
tcu_get_form_info Obtains form information block
tcu_load_form Load form from .CFO form object
tcu_load_image_form Load form from linked-in module
tcu_put_field Put value into form field
tcu_read_formrec Reads a form record from a buffer
tcu_remove_form Remove displayed form from screen
tcu_select_field Selects a field from a form
tcu_set_button_fn Defines a form button field handler
tcu_set_field_attrib Set colour attributes of field
tcu_set_field_mode Set field characteristics
tcu_set_field_verify Define field verification function
tcu_set_form_fnkey_fn Establish fn. key handler for form
tcu_set_form_help Define help function for form
tcu_set_form_mode Set form characteristics
tcu_unload_form Unload form from memory
tcu_write_formrec Writes a form record to a buffer

10 92.09.01

TCU 3.3 - Reference Manual

Window Services

tcu_change_colour Change colours for subsequent I/O
tcu_clear_window Clear window and home cursor
tcu_close_window Remove window from screen
tcu_open_window Display window on screen
tcu_position_cursor Set cursor position in window
tcu_wprintf Formatted window output
tcu_wgets Editable window input

Miscellaneous Services

tcu_colour_attrib Get colour code for b/f colours
tcu_date_old_to_new Converts pre 3.3 date to 3.3 format
tcu_date_string Returns string form of a date type
tcu_date_value Returns date type of string form
tcu_get_user_keypress Returns the last user defined key used
tcu_hash_value Return a hash-code for a string
tcu_restore_environment Restores screen environment
tcu_save_environment Saves screen environment
tcu_set_idle_loop Establishes an idle loop handler
tcu_set_mouse_mode Enables and disables mouse support
tcu_set_user_key_handler Establishes an Escape/Accept key handler
tcu_warnbeep Produce standard TCU warning beep

Constants

_TCU_version Constant defining the version of TCU

92.09.01 11

TCU 3.3 - Reference Manual

Mouse Support

The presence of a mouse driver is detected automatically by TCU and used by default. The
’tcu_set_mouse_mode’ service may be used to enable and disable the mouse. The mouse
may be used for menu option selection and form field selection. The mouse mode may be
interactively toggled on and off by using the ALT-M key.

Left Button Right Button

Pulldown Menu Bar Option Select No Action

Pup-Up Menu Option Select Menu Dismiss

Notices Option Select Clears (dismiss) notice

Form Edit Move to selected field
(If button, select it)

Move to first field

Field Select Select Field Move to first field

Confirmation Box Confirm (POSITIVE) Reject (NEGATIVE)

12 92.09.01

TCU 3.3 - Reference Manual

Services

tcu_change_colour

Function Changes the background and foreground colours for window I/O

Syntax #include <usr\tcu.h>

int tcu_change_colour (TCU_WINDOW *window,
unsigned char attribute)

Remarks ’window’ defines the window to be affected. ’attribute’ is the colour
attribute and may be obtained with the ’colour_attrib’ service.

Return Value Returns TCU_OK on success, TCU_ERROR on error.

92.09.01 13

TCU 3.3 - Reference Manual

tcu_change_menu_attribs

Function Changes a colour attribute of a menu. The menu must be defined but
need not be displayed.

Syntax #include <usr\tcu.h>

int tcu_change_menu_attribs (TCU_MENU *menu,
int item,
unsigned char attribute)

Remarks ’item’ identifies the attribute to change and must be one of the following
defined in ’TCU.H’:

TCU_MENU_TITLE Title of the menu
TCU_MENU_BOX Surrounding box of the menu
TCU_MENU_OPTION Option lines
TCU_MENU_SELECT Currently selected option line
TCU_MENU_UNAVAIL Unavailable option lines

’attribute’ describes the new colour attribute to be used for the selected
item. It may be formed by using the ’menu_attrib’ function.

If the menu is currently displayed, the attribute will take effect on the
screen immediately.

Return Value Returns TCU_OK if the attribute change was successful and
TCU_ERROR if an error was encountered. An error is likely to be due
to a bad item specification or an undefined menu.

14 92.09.01

TCU 3.3 - Reference Manual

tcu_change_menu_escapes

Function Changes the valid escape keys for a menu.

Syntax #include <usr\tcu.h>

int tcu_change_menu_escapes (TCU_MENU *menu,
unsigned char escape_keys)

Remarks The escape keys define which keys are allowed to terminate the
interactive menu selection called with ’tcu_read_menu_selection’.
’escape_keys’ is formed by logically ORing the following:

TCU_ESC_ESC ESC key
TCU_ESC_PGUP PgUp (Page Up) key
TCU_ESC_PGDN PgDn (Page Down) key
TCU_ESC_CLEFT Left arrow key
TCU_ESC_CRIGHT Right arrow key
TCU_ESC_FUNC Function key (F2 - F12) or User Key
TCU_ESC_CNTL_C CNTL/C key (ASCII 3)

The RETURN key is always a valid escape key, selecting the currently
selected menu option.

Note that F1 is reserved for help activation.

The TCU_ESC_FUNC mask allows either function keys or user defined
escape/accept keys to exit the menu select.

Return Value If the escape key change was successful, TCU_OK is returned,
otherwise TCU_ERROR is returned.

92.09.01 15

TCU 3.3 - Reference Manual

tcu_clear_menu_in_pulldown

Function Removes a menu which is displayed under control of a pulldown menu
line.

Syntax #include <usr\tcu.h>

int tcu_clear_menu_in_pulldown (TCU_PULLDOWN *pmenu);

Remarks This service should be used when a pop-up menu displayed under
control of a pulldown menu is to be removed from the screen. Do not
try to call ’tcu_remove_menu’ directly as the pulldown menu will
become inconsistent with what is on the screen.

Return Value TCU_OK if the call was successful, otherwise TCU_ERROR.

16 92.09.01

TCU 3.3 - Reference Manual

tcu_clear_notice

Function Removes a notice/prompt definition from memory.

Syntax #include <usr\tcu.h>

int tcu_clear_notice (TCU_NOTICE *notice)

Remarks The definition of a notice or prompt is removed with the call to
’tcu_clear notice’. An intervening ’tcu_prepare_notice’ call is required
before using ’tcu_display_notice’.

Return Value Returns TCU_OK if the service was executed successfully, otherwise
TCU_ERROR is returned.

92.09.01 17

TCU 3.3 - Reference Manual

tcu_clear_window

Function Clears the window and homes the cursor.

Syntax #include <usr\tcu.h>

int tcu_clear_window (TCU_WINDOW *window)

Remarks The window is cleared with the currently active background colour. The
cursor is relocated to (1,1) relative to the window.

Return Value Returns TCU_OK on success, TCU_ERROR on error.

18 92.09.01

TCU 3.3 - Reference Manual

tcu_close_window

Function Close and remove a window from the screen.

Syntax #include <usr\tcu.h>

int tcu_close_window (TCU_WINDOW *window)

Remarks The window is removed from the screen, the old screen contents
restored and the window memory is released to the system.

Return Value Returns TCU_OK on success, TCU_ERROR on error.

92.09.01 19

TCU 3.3 - Reference Manual

tcu_colour_attrib

Function Forms a colour attribute from the foreground and background colour
attributes.

Syntax #include <usr\tcu.h>

unsigned char tcu_colour_attrib (int foreground,
int background)

Remarks ’tcu_colour_attrib’ may be used to form the colour attribute required by
other menu and notice services. ’background’ and ’foreground’
represent the foreground colour and background colour respectively.
Any colour defined in ’conio.h’ may be used if it is valid with the
hardware being used.

The standard symbol BLINK may be added to the foreground colour to
obtain a blinking foreground.

Return Value Returns a compound colour attribute code.

20 92.09.01

TCU 3.3 - Reference Manual

tcu_date_old_to_new

Function Converts pre-V3.3 style date to V3.3 format

Syntax #include <usr\tcu.h>

unsigned short tcu_date_old_to_new (
unsigned short dt);

Remarks Dates prior to TCU V3.3 were based on day number 1 as 1st January
1900. Version 3.3 bases the dates such that day 1 is 1st January 1970.
This service converts from the old format to the new.

Return Value The value returned is the new format day number.

92.09.01 21

TCU 3.3 - Reference Manual

tcu_date_string

Function Obtains the character string representation of a date value.

Syntax #include <usr\tcu.h>

char *tcu_date_string (unsigned short date,
unsigned char presentation);

Remarks Returns a pointer to a static string buffer of 8 characters which is
overwritten with each call. ’date’ specifies the date value, i.e. val.v_date
of TCU_FIELD_VALUE. ’presentation’ specifies either
TCU_FLD_DAYFIRST or TCU_FLD_MONTHFIRST.

Return Value Returns a pointer to the static date string data.

22 92.09.01

TCU 3.3 - Reference Manual

tcu_date_value

Function Returns a date type of a character date string.

Syntax #include <usr\tcu.h>

unsigned short tcu_date_value (
char *date,
unsigned char presentation);

Remarks Returns the date value of type val.v_date of TCU_FIELD_VALUE for
the specified string ’date’. ’presentation’ specifies either
TCU_FLD_DAYFIRST or TCU_FLD_MONTHFIRST.

Return Value Returns the date type.

92.09.01 23

TCU 3.3 - Reference Manual

tcu_db_at_bof

Function Detects the beginning of a database file

Syntax #include <usr\tcu.h>

int tcu_db_at_bof (TCU_DB *db)

Remarks Detects whether the cursor for the specified database is at the
beginning of the database. The beginning is before the first record so
a call to ’tcu_db_next’ or ’tcu_db_first’ should be made to position the
cursor on the first record.

Return Value Returns 1 if at the beginning of the database, else returns 0.

24 92.09.01

TCU 3.3 - Reference Manual

tcu_db_at_eof

Function Detects the end of a database file

Syntax #include <usr\tcu.h>

int tcu_db_at_eof (TCU_DB *db)

Remarks Detects whether the cursor for the specified database is at the end of
the database. The end is after the last record so a call to ’tcu_db_prev’
or ’tcu_db_last’ should be made to position the cursor on the last
record.

Return Value Returns 1 if at the end of the database, else returns 0.

92.09.01 25

TCU 3.3 - Reference Manual

tcu_db_close

Function Closes an open TCU database.

Syntax #include <usr\tcu.h>

int tcu_db_close (TCU_DB *db)

Remarks The database file and its associated index are closed.

Return Value TCU_OK if successful, TCU_ERROR is an error is encountered.

26 92.09.01

TCU 3.3 - Reference Manual

tcu_db_create

Function Creates a new TCU database or overwrites an existing one.

Syntax #include <usr\tcu.h>

int tcu_db_create (TCU_DB *db,
TCU_FORM *form,
char *dbname,
int duplicates,
char *idx_name_1,
[char *idx_name_2,]
[...,]
NULL)

Remarks This service creates the index file and main database file associated
with the specified ’form’. The user declared ’db’ structure is initialised.
The database name, ’dbname’ is used to create the index (filetype .cix)
and the database (.cdb). ’duplicates’ is used to specify how duplicates
should be handled when adding records to the database. If it is zero,
any number of duplicate records are permitted. If greater than zero it
defines the number of indices considered in identifying a duplicate. I.e.
if ’duplicates’ is 2, no record with the first two keys the same as any
existing record may be added to the database.

One or more form field names must be specified as key fields
terminated with NULL. The specified names must match the names
given in the form definition file. The first key is the prime key which is
used for search operations. Records are sorted in the database
according to all indices specified. Up to 16 indices may be specified
in the call. The default index order is for ascending keys. If an index
should be ordered as a descending key, the ’^’ character should be
added to the form field name as a suffix. For example, if the prime key
is to be a date field defined in the form file as ’ORD_DATE’ and it is to
be keyed as a descending key, it should be specified as "ORD_DATE^"
in the call to ’tcu_db_create’.

Following the creation of the database, it remains open until a call to
’tcu_db_close’ is made.

Return Value TCU_OK indicates successful creation. TCU_ERROR indicates an
error condition. The most likely error cases are:

o Form specified is not open (loaded);
o One or more of the specified indices has a name which

is either invalid or not part of the form;

92.09.01 27

TCU 3.3 - Reference Manual

o Too few (<1) or too many (>16) indices specified;
o The total key size exceeds the maximum key size;
o Filing error, write-protect, disc full, etc.

28 92.09.01

TCU 3.3 - Reference Manual

tcu_db_delete

Function Deletes the current record from the database.

Syntax #include <usr\tcu.h>

int tcu_db_delete (TCU_DB *db)

Remarks Removes the current record from ’db’. If no current record is defined
service will fail.

After deletion, the current record pointer will point to the record after
that which was deleted. If the deleted record was at the end of the
database, the current record pointer becomes undefined.

Return Value TCU_OK if successful deletion, TCU_ERROR if an error occurred, most
likely from an attempt to make a deletion when the current record
pointer was undefined.

92.09.01 29

TCU 3.3 - Reference Manual

tcu_db_end_form_edit

Function Disassociate a form edit from a database form

Syntax #include <usr\tcu.h>

void tcu_db_end_form_edit (TCU_DB *db)

Remarks This service removes the association between database services and
the temporary form currently under edit. The principle is described
more fully for the tcu_db_start_form_edit service.

Return Value None

30 92.09.01

TCU 3.3 - Reference Manual

tcu_db_find

Function Locates a record with matching primary key in the database.

Syntax #include <usr\tcu.h>

int tcu_db_find (TCU_DB *db,
TCU_FIELD_VALUE *val)

Remarks val must be preloaded with the correct type for the primary key of db.
If val is specified as NULL a search key will be build from the current
form state. The service finds the first record with a matching primary
key. For string field searches, the default is for a search ignoring
trailing spaces, but case significant. These defaults may be overridden
with the tcu_db_set_search_mode service.

Return Value TCU_OK if a match was found, else TCU_ERROR and the current
record pointer remains unchanged.

92.09.01 31

TCU 3.3 - Reference Manual

tcu_db_first

Function Moves record pointer to the first record in the database.

Syntax #include <usr\tcu.h>

int tcu_db_first (TCU_DB *db)

Remarks Moves the current record pointer to the first record in db. If no records
exist, the service will fail.

Return Value TCU_OK if successful, TCU_ERROR if no records in the database.

32 92.09.01

TCU 3.3 - Reference Manual

tcu_db_last

Function Moves record pointer to the last record in the database.

Syntax #include <usr\tcu.h>

int tcu_db_last (TCU_DB *db)

Remarks Moves the current record pointer to the last record in ’db’. If no records
exist, the service will fail.

Return Value TCU_OK if successful, TCU_ERROR if no records in the database.

92.09.01 33

TCU 3.3 - Reference Manual

tcu_db_next

Function Moves record pointer to the next record in the database.

Syntax #include <usr\tcu.h>

int tcu_db_next (TCU_DB *db)

Remarks Moves the current record pointer to the next record in ’db’. If the pointer
was already at the end of the database, it becomes undefined with this
call and the call fails.

Return Value TCU_OK if successful, TCU_ERROR if no records or already at end of
database.

34 92.09.01

TCU 3.3 - Reference Manual

tcu_db_open

Function Opens an existing TCU database.

Syntax #include <usr\tcu.h>

int tcu_db_open (TCU_DB *db,
TCU_FORM *form,
char *dbname,
int duplicates)

Remarks Opens ’dbname’ using ’form’. The specified ’form’ must be the same
as the form used at creation time. The form need not be identical, but
must possess the same fields with the same types and lengths as
when the database was created. The form must already be open. The
user defined structure ’db’ is loaded with the initial database data which
is required for subsequent calls to database services.

’duplicates’ is used to specify how duplicates should be handled when
adding records to the database. If it is zero, any number of duplicate
records are permitted. If greater than zero it defines the number of
indices considered in identifying a duplicate. I.e. if ’duplicates’ is 2, no
record with the first two keys the same as any existing record may be
added to the database.

Return Value TCU_OK if the open was successful, else TCU_ERROR. Most likely
failure cases are:

o Form specified is not open (loaded);
o One or more of the indices in the database is not part of

the form;
o The total key size exceeds the maximum key size or the

total form record size is different to that when the
database was created;

o The database and/or index header is invalid;
o Filing error, write-protect, disc full, etc.

92.09.01 35

TCU 3.3 - Reference Manual

tcu_db_previous

Function Moves record pointer to the previous record in the database.

Syntax #include <usr\tcu.h>

int tcu_db_previous (TCU_DB *db)

Remarks Moves the current record pointer to the previous record in ’db’. If the
pointer was already at the start of the database, it becomes undefined
with this call and the call fails.

Return Value TCU_OK if successful, TCU_ERROR if no records or already at start
of database.

36 92.09.01

TCU 3.3 - Reference Manual

tcu_db_read

Function Reads the current database record into the form.

Syntax #include <usr\tcu.h>

int tcu_db_read (TCU_DB *db)

Remarks Loads the current record into the form structure which was specified at
creation or open time. Fields are validated in the usual way according
to form range specifications and/or user defined verification functions.

If the form is currently displayed, it will be updated with the new fields
immediately with this call.

Return Value TCU_OK if the read was successful, TCU_ERROR if the current record
pointer is undefined.

92.09.01 37

TCU 3.3 - Reference Manual

tcu_db_read_index_field

Function Reads an index field of the current record.

Syntax #include <usr\tcu.h>

int tcu_db_read_index_field (TCU_DB *db,
int index_id,
TCU_FIELD_VALUE *val)

Remarks This service loads the ’val’ structure with the value of the specified
index field of database ’db’. ’index_id’ specifies which index field is to
be obtained. 1 represents the first and primary index, 2 the next, etc.

If the current record pointer is undefined the service will fail.

Return Value TCU_OK if the field was successfully read else TCU_ERROR if the
current record pointer is undefined.

38 92.09.01

TCU 3.3 - Reference Manual

tcu_db_record_count

Function Obtains the number of records in the database

Syntax #include <usr\tcu.h>

long tcu_db_record_count (TCU_DB *db)

Remarks The database must be open in order for this service to work.

Return Value Returns the current number of records in the database.

92.09.01 39

TCU 3.3 - Reference Manual

tcu_db_remove

Function Erases a database from disc.

Syntax #include <usr\tcu.h>

int tcu_db_remove (char *dbname)

Remarks The database should be closed. This service physically removes the
database and its associated index from disc.

Return Value TCU_OK if successful, TCU_ERROR if an error occurred.

40 92.09.01

TCU 3.3 - Reference Manual

tcu_db_rewrite

Function Writes an existing form record to the database.

Syntax #include <usr\tcu.h>

int tcu_db_rewrite (TCU_DB *db)

Remarks This service writes the contents of the form to the database. The key
fields in the form should constitute a record which already exists in the
database. The current field pointer is adjusted to point at the newly
added record.

’tcu_db_rewrite’ is normally used for performing in-place updates of
records.

Return Value TCU_OK if the write was successful, TCU_ERROR if an error occurred
or if a record with similar key does not exist in the database.

92.09.01 41

TCU 3.3 - Reference Manual

tcu_db_save

Function Flushes critical database buffers to disc.

Syntax #include <usr\tcu.h>

int tcu_db_save (TCU_DB *db)

Remarks This service is used for force all control data for an open database to
be written to disc. It does not change the current record pointer, nor
does it close the database. The call should be made when a failure or
program crash could cost database integrity. E.g. a call could be made
to ’tcu_db_save’ before performing any service which could allow DOS
to abort the program through its critical error handler.

The service is an alternative to closing and reopening the database,
and has the advantage that it maintains the current record pointer.

Return Value TCU_OK if the flush was successful, else TCU_ERROR.

42 92.09.01

TCU 3.3 - Reference Manual

tcu_db_search

Function Locates a record with equal or higher primary key.

Syntax #include <usr\tcu.h>

int tcu_db_search (TCU_DB *db,
TCU_FIELD_VALUE *val)

Remarks The search function attempts to locate a record with an equal or higher
primary key. It is convenient when only the first part of the key is
known. If the call is successful, the current record pointer will point to
the record found. If val is specified as NULL a search key will be build
from the current form state. If specified it should have the same type
as the prime key on which the search will be based.

Return Value TCU_OK if a record is located else TCU_ERROR with no change in the
current record pointer.

92.09.01 43

TCU 3.3 - Reference Manual

tcu_db_set_search_indices

Function Defines number of indices (keys) used in identifying duplicates

Syntax #include <usr\tcu.h>

void tcu_db_set_search_indices (TCU_DB *db,
int num_keys)

Remarks This service dynamically changes the number of keys which will be
used when searching the index for records with tcu_db_find and
tcu_db_search. ’num_keys’ specifies the number of keys to use and
should be between 1 and the actual number of keys in an index of the
database ’db’.

Return Value TCU_OK if the search index key count was changed successfully, else
TCU_ERROR.

44 92.09.01

TCU 3.3 - Reference Manual

tcu_db_set_search_mode

Function Changes search mode for string keys.

Syntax #include <usr\tcu.h>

int tcu_db_set_search_mode (TCU_DB *db,
int mode)

Remarks The usual search mode for strings is to ignore trailing spaces but to be
case sensitive. These defaults may be changed by specifying ’mode’
for the database. ’mode’ should be one of the following:

TCU_DB_TRIM_SPACES Ignore trailing spaces
TCU_DB_NO_TRIM_SPACES Treat all spaces as significant
TCU_DB_IGNORE_CASE Ignore case
TCU_DB_NO_IGNORE_CASE Treat case as significant

Return Value TCU_OK if the mode was successfully changed else TCU_ERROR.

92.09.01 45

TCU 3.3 - Reference Manual

tcu_db_start_form_edit

Function Associate database form with editable form for handler functions

Syntax #include <usr\tcu.h>

void tcu_db_start_form_edit (TCU_DB *db)

Remarks When a form is being edited under control of tcu_edit_form, a
temporary form is created to allow the edit to be rejected if the user
decides so to do. Callback handler functions associated with the form
are called using this temporary form so that they see the values which
currently apply. If a form which relates to a database is being edited
this call should precede the call to tcu_edit_form in order to allow
database functions to use the form values currently being edited. After
edit, the edit association should be removed with a call to the
tcu_db_end_form_edit service.

Return Value None

46 92.09.01

TCU 3.3 - Reference Manual

tcu_db_write

Function Writes a form record to the database.

Syntax #include <usr\tcu.h>

int tcu_db_write (TCU_DB *db)

Remarks The form record is written to the database indexed on the fields
specified at database creation time. The current record pointer is
moved to the newly written record. If the record is a duplicate and the
database was created or opened with no duplicates allowed then the
call will fail.

Return Value TCU_OK if the record was successfully written. TCU_ERROR if an
error occurred or a duplicate record clash was detected.

92.09.01 47

TCU 3.3 - Reference Manual

tcu_define_menu

Function Establish a definition for a menu, comprising characteristics and
content.

Syntax #include <usr\tcu.h>

int tcu_define_menu (TCU_MENU *menu,
char *title,
unsigned char title_attrib,
unsigned char box_attrib,
unsigned char option_attrib,
unsigned char select_attrib,
unsigned char unavail_attrib,
unsigned char escape_keys,
unsigned char box_type,
char *options[],
unsigned char hot_key_attrib)

Remarks Uses the user declared element ’menu’ to build a menu prototype for
subsequent menu functions. ’menu’ is the address of a MENU type.
It is initialised with the call to define_menu and used in subsequent
menu functions. ’title’ is an optional title for the menu which, if present,
will be displayed in the menu header line. ’title_attrib’ defines the
colour attributes of the title of the menu. ’box_attrib’ defines the
attributes of the menu border. ’option_attrib’ defines the attributes of
the choices of the menu. ’select_attrib’ defines the attributes of the
currently selected menu option. ’unavail_attrib’ defines the attributes
of menu options currently unavailable. ’escape_keys’ defines the set
of keys permitted to exit from the menu select. ’box_type’ defines the
type of the surrounding menu box.

The attributes may be formed by using the function ’menu_attrib’ which
builds the attribute byte. The two parameters are foreground colour
and background colour, and the return value is of type attribute, i.e.
unsigned char.

’escape_keys’ is formed by logically ORing the following, depending on
which should be permitted to exit the menu choice. The RETURN key
is always valid for actively selecting the current choice.

TCU_ESC_ESC ESCAPE key
TCU_ESC_PGUP Page Up key
TCU_ESC_PGDN Page Down key
TCU_ESC_CLEFT Left arrow key

48 92.09.01

TCU 3.3 - Reference Manual

tcu_define_menu (continued...)

TCU_ESC_CRIGHT Right arrow key
TCU_ESC_FUNC An unshifted function key F2 - F12
TCU_ESC_CNTL_C The CNTL/C key (ASCII 3)

Note that F1 is reserved for help activation.

’box_type’ defines whether the box is singly or doubly lined and is one
of the following:

TCU_BOX_SINGLE Single line surround
TCU_BOX_DOUBLE Double line surround
TCU_BOX_BLANK Surrounded by blank spaces

’options’ is a pointer to an array of the character strings defining the
menu choices. If ’hot_key_attrib’ is non-zero it should be a valid colour
attribute used to display the hot key character of a menu selection.
When hot keys are used, the FIRST character of each of the menu
option strings should be used to identify the character occurring in the
rest of the option string which is to be used as the hot key. E.g., the
string "PDisPlay Customer" would use ’P’ as the hot-key. Note that only
the first character matching the hot-key may be used. If ’hot_key_attrib’
is zero, no hot-keys will be used at all.

Return Value define_menu returns TCU_OK if the call was successful or
TCU_ERROR if an error was detected in the processing.

92.09.01 49

TCU 3.3 - Reference Manual

tcu_define_pulldown

Function Defines a pulldown menu ready for display and activation.

Syntax #include <usr\tcu.h>

int tcu_define_pulldown (TCU_PULLDOWN *pmenu,
unsigned char line_colour,
unsigned char option_colour,
unsigned char select_colour,
char *titles[],
unsigned char hot_key_attrib,
TCU_MENU *menus[]);

Remarks Defines a pulldown menu. ’pmenu’ specifies the menu to be defined,
and should be declared by the caller. ’line_colour’, ’option_colour’ and
’select_colour’ specify the colours of the pulldown header line, the title
texts and the currently selected title respectively. The function
’tcu_colour_attrib’ may be used to obtain the compound colour codes
for these colours.

’titles’ is an array of strings which contain the titles used in the header
line. This list must be terminated with a NULL pointer. If ’hot_key_attrib’
is non-zero it should be a valid colour attribute used to display the hot
key character of a pulldown menu selection. When hot keys are used,
the FIRST character of each of the title strings should be used to
identify the character occurring in the rest of the title string which is to
be used as the hot key. E.g., the string "fConfiguration Menu" would
use ’f’ as the hot-key and will highlight that character with the specified
attributes in the title when not selected. Note that only the first
character matching the hot-key may be used. If ’hot_key_attrib’ is zero,
no hot-keys will be used at all.

’menus’ is a pointer to an array of menus. These menus are normal
menus defined with ’tcu_define_menu’, and may also be used outside
the control of the pulldown menu. Note that if a pulldown menu title is
to have no associated menu, the pointer in that position should contain
NULL.

Return Value Returns TCU_OK if the definition was successful, otherwise returns
TCU_ERROR.

50 92.09.01

TCU 3.3 - Reference Manual

tcu_display_form

Function Displays a loaded form on the screen.

Syntax #include <usr\tcu.h>

int tcu_display_form (TCU_FORM *form,
int x_pos,
int y_pos)

Remarks The form to be displayed must have been loaded with a call to
’tcu_load_form’. ’form’ specifies the address of a form object. ’x_pos’
and ’y_pos’ specify the top-left corner of the form. It is the callers
responsibility to ensure that the form to be displayed has room on the
screen for the specified position.

Return Value Returns TCU_OK is successful, otherwise TCU_ERROR.

92.09.01 51

TCU 3.3 - Reference Manual

tcu_display_menu

Function Uses a predefined menu to display the menu on the screen ready for
interactive selection.

Syntax #include <usr\tcu.h>

int tcu_display_menu (TCU_MENU *menu,
int x_pos,
int y_pos)

Remarks Displays a menu on the screen. No waiting for user input is performed;
the menu is displayed and control returns to the caller.

’menu’ is the address of a MENU type initialised with the
’tcu_define_menu’ service. ’x_pos’ and ’y_pos’ define the screen
position of the top-left corner of the menu. Note that the top-left corner
of the screen is (1, 1).

Return Value The service returns TCU_OK if the menu was successfully displayed
and TCU_ERROR if an error condition was encountered.

52 92.09.01

TCU 3.3 - Reference Manual

tcu_display_notice

Function Displays a notice or prompt on the screen.

Syntax #include <usr\tcu.h>

int tcu_display_notice (TCU_NOTICE *notice,
int x_pos,
int y_pos)

Remarks The notice/prompt is displayed with the top-left corner at the position
specified by ’x_pos’ and ’y_pos’. If the notice includes a prompt field,
it may be interactively edited after this call. The completion of a prompt
input completes this service and removes the prompt from the screen
(though does not remove its definition from memory until a call to the
’tcu_clear_notice’ service. If the notice contains no prompt input the
user must press to RETURN key, the ESC key or a mouse button to
complete the call.

Note that with prompts, if the input field returns with a length of -1, the
user cancelled the input with the ESC key. Since the length is a
character type the caller must be sure that the test against -1 is
performed as a ’signed char’ test, either by using default signed
characters, casting or testing against the value 0xFF rather than -1.

Return Value TCU_OK if successful, else TCU_ERROR.

92.09.01 53

TCU 3.3 - Reference Manual

tcu_display_pulldown_header

Function Displays the header line of a pulldown menu without waiting for a
selection.

Syntax #include <usr\tcu.h>

int tcu_display_pulldown_header (
TCU_PULLDOWN *pulldown)

Remarks The header line for the pulldown menu ’pulldown’ is displayed. The
pulldown menu must already have been defined. The function is exactly
as ’tcu_read_pulldown_selection’ without the actual selection of an
item.

Return Value Returns TCU_OK if successful, else TCU_ERROR.

54 92.09.01

TCU 3.3 - Reference Manual

tcu_edit_form

Function Interactively edit a loaded and displayed form.

Syntax #include <usr\tcu.h>

int tcu_edit_form (TCU_FORM *form,
int start_field_id,
int *keypress)

Remarks The form may be interactively edited using the form and field attributes
and characteristics that exist at the time of the call. ’form’ specifies the
address of a form object. The start field-ID may be specified with
’start_field_id’. If set to 1, the first valid field will be used. ’keypress’
specifies the address of an integer which will indicate the key used to
escape from the form input. ’keypress’ will be one of the following
symbols:

TCU_FLD_ESCESC ESCAPE key used to quit
TCU_FLD_ESCCNTL CNTL/C key used to abort
TCU_FLD_FNKEYESC ESCAPE requested from function key

handler
TCU_FLD_BUTTONESC ESCAPE requested from button

handler
TCU_FLD_ESCPGUP PgUp key
TCU_FLD_ESCPGDN PgDn key
TCU_FLD_FNKEYSAVE PgUp requested from function key

handler
TCU_FLD_BUTTONSAVE PgUp requested from button handler

The first four codes reflect that the form was exited abnormally and the
field values remain as they were before the edit. The latter four are
normal returns, and the form will have been updated to reflect the edits
made. If the form has been set to ’no escape keys’ mode with
’tcu_set_form_mode’ and the TCU_FORM_NOESCS parameter, only
the button and function keys returns will be returned as the keyboard
escape keys are blocked at a lower level.

NOTE: Editing keys in a form are as follows:

-> Move right one character
<- Move left one character
Up Arrow Move to previous field
Down Arrow Move to next field

92.09.01 55

TCU 3.3 - Reference Manual

tcu_edit_form (continued...)

Home Move to first character in field
End Move to last character in field
CNTL PgUp Move to first field in form
CNTL PgDn Move to last field in form
F1 Help
CNTL Home Restore contents of field as when entered
CNTL End Clear field
INSERT Toggle insert mode
BACKSPACE Delete character to the left of the cursor
Del Delete character under the cursor
ESC Escape (cancel) form edit
CNTL/C Escape (abort) form edit
PgUp Accept form edit
PgDn Accept form edit

Return Value TCU_OK if the edit was successful, otherwise TCU_ERROR.

56 92.09.01

TCU 3.3 - Reference Manual

tcu_escape_fkey

Function Returns the last function key number used to escape a menu.

Syntax #include <usr\tcu.h>

int tcu_escape_fkey (void)

Remarks If the function key escape mode is enabled, i.e., the option
TCU_MENU_FUNC is set in the escape keys of the menu, and the
menu was terminated with a FN key (’tcu_read_menu_selection’
returned -TCU_ESC_FUNC), ’tcu_escape_fkey’ will return the function
key used to leave the menu.

Return Value Returns 0 if no function key has been used, otherwise the number of
the function key, 1 = F2, 2 = F2, etc. 12 is the last function key used.
Keys F11 and F12 on may only be used on machines with BIOS
support for extended keyboards. Note that the F1 key is reserved for
activation of a user defined help function.

92.09.01 57

TCU 3.3 - Reference Manual

tcu_form_record_size

Function Obtains the size in bytes of a complete form record.

Syntax #include <usr\tcu.h>

int tcu_form_record_size (TCU_FORM *form)

Remarks This service is used to obtain the size of a buffer required to hold the
fields of a complete form. It is normally used in conjunction with the
’tcu_read_formrec’ service and the ’tcu_write_formrec’ service.

Return Value Returns the size in bytes of a complete form record or -1 if an error
was encountered.

58 92.09.01

TCU 3.3 - Reference Manual

tcu_get_confirm

Function Queries the user for confirmation or rejection

Syntax #include <usr\tcu.h>

int tcu_get_confirm (int x,
int y,
unsigned char box_attrib,
unsigned char text_attrib,
char *text,
...)

Remarks Queries the user for confirmation of the ’text’ which is displayed in a
box with colour attributes ’box_attrib’ at position (x,y). The text is
displayed with attributes ’text_attrib’. The user may enter ’y’, ’Y’, ’n’, ’N’
or a mouse button (left = confirm, right = reject) to confirm or reject.

If the confirmation box would lie outside the screen area, the
confirmation text is changed automatically to the string "Confirm (Y,N)?"
and placed in the upper-left corner of the screen.

Return Value Returns 0 for rejection or 1 for confirmation.

92.09.01 59

TCU 3.3 - Reference Manual

tcu_get_field

Function Obtains a value for a form field.

Syntax #include <usr\tcu.h>

int tcu_get_field (TCU_FORM *form,
int field,
TCU_FIELD_VALUE *val)

Remarks ’form’ specifies the form object. ’field’ is the field ID of the field of which
the value is to be obtained. ’val’ is the address of a
TCU_FIELD_VALUE type object. The field value is a structure which
must be addressed according to the type of the field (which should be
known by the caller). The fields of the structure are:

v_int 32-bit signed integer for integers
v_float 64-bit floating value for real types
v_string Pointer to the string value
v_date 16-bit integer coded date
v_logical 8-bit data, 0 = FALSE, 1 = TRUE
v_choice.sel 16-bit integer enumerated pointer

String values are copied into the user’s calling address. This means
that ’v_string’ should be set to point at the address where the string is
to be received. Failing to do this will use a default pointer and will
probably end in tears!

Choice types are addressed using the sub-element ’v_choice.sel’ which
is an index into the list of choices. I.e. 1 represents the first selection,
2 the second, etc. ’v_choice.max’ contains the maximum valid index for
the choice selection, though this must not be modified by the
application.

Return Value TCU_OK if the field was returned successfully, else TCU_ERROR.

60 92.09.01

TCU 3.3 - Reference Manual

tcu_get_field_choice_string

Function Obtains the text string associated with a field of ’Choice’ type.

Syntax #include <usr\tcu.h>

int tcu_get_field_choice_string (TCU_FORM *form,
int field,
char *string);

Remarks ’form’ specifies the form where field ’field’ resides. The field must be of
type ’Choice’ or the call will fail. The string associated with the current
selection will be placed at the address specified as ’string’.

Return Value Returns TCU_OK if the call was successful, else TCU_ERROR.

92.09.01 61

TCU 3.3 - Reference Manual

tcu_get_field_id

Function Obtains the field ID for a named field.

Syntax #include <usr\tcu.h>

int tcu_get_field_id (TCU_FORM *form,
char *field_name,
int *field_id)

Remarks Fields in forms may optionally be named. This allows the caller to use
meaningful names for fields rather than have to know the logical field
ID. ’form’ identifies the form object, ’field_name’ points to the name of
the field for which the ID is required. Case is NOT significant. ’field_id’
points to the integer into which the ID will be written. This may then be
used for subsequent field related operations. If ’field_id’ is NULL, it is
not used.

Return Value Returns the ID of the field if present, else 0 if either an error occurred
or the field was not found.

62 92.09.01

TCU 3.3 - Reference Manual

tcu_get_field_info

Function Fills a structure with information about the specified field

Syntax #include <usr\tcu.h>

int tcu_get_field_info (TCU_FORM *form,
int field_id,
TCU_FIELD_INFO *info);

Remarks The function fills the user-declared structure ’info’ with information
about field ’field_id’ in form ’form’. The structure has the following fields:

typedef struct {

char name[9]; /* Field name */

unsigned char type, /* Type of field */

size, /* Width of field on screen */

decimal, /* Decimal places if numeric */

present, /* Presentation form of data */

xpos, /* Window x-coordinate */

ypos, /* Window y-coordinate */

usemin, /* 1 if minimum range active */

usemax, /* 1 if maximum range active */

useval, /* 1 if initial value used */

usetmp; /* 1 if string template used */

union {

struct {

long min, /* Minimum value */

max; /* Maximum value */

} i;

struct {

double min, /* Minimum value */

max; /* Maximum value */

} f;

struct {

unsigned short min, /* Minimum value */

max; /* Maximum value */

} d;

} range;

unsigned char colour; /* Colour attributes */

struct {

unsigned int ronly : 1, /* Read only flag */

noecho : 1, /* No-echo input flag */

fixtext : 1, /* Fixed text field flag */

param : 1, /* Non-editable variable field */

confirm : 1; /* ENTER confirmation flag */

} attr;

TCU_FIELD_VALUE val; /* Value of field */

} TCU_FIELD_INFO;

92.09.01 63

TCU 3.3 - Reference Manual

The fields in this structure represent the current state of the form field.
Use this service to obtain information about a field rather than trying to
access the field directly through the form structure.

Return Value Returns TCU_OK if the field information was obtained without error,
else returns TCU_ERROR.

64 92.09.01

TCU 3.3 - Reference Manual

tcu_get_form_info

Function Fills a structure with information about the specified form

Syntax #include <usr\tcu.h>

int tcu_get_form_info (TCU_FORM *form,
TCU_FORM_INFO *info);

Remarks The function fills the user-declared structure ’info’ with information
about form ’form’. The structure has the following fields:

typedef struct {

unsigned int num_fields; /* Number of fields */

char * title; /* Title string of form */

unsigned char text_colour, /* Colour attribute */

field_colour, /* Input field colour default */

title_colour, /* Title string colour */

edit_colour, /* Colour of field under edit */

xpos, /* x-coordinate on screen */

ypos, /* y-coordinate on screen */

height, /* Height of form */

width, /* Width of form */

box_type, /* Form surround type */

mode, /* Flags if used or displayed */

verify_fn, /* 1 if verify function active */

help_fn, /* 1 if help function active */

fn_key_fn, /* 1 if fn. key handler active */

button_fn; /* 1 if button select handler */

struct {

unsigned int ronly : 1, /* Form is read only */

no_esc : 1; /* Escape keys disabled */

} attr;

} TCU_FORM_INFO;

The fields in this structure represent the current state of the form. Use
this service to obtain information about the form rather than trying to
access the information directly through the form structure.

Return Value Returns TCU_OK if no error was encountered, else FORK_ERROR.

92.09.01 65

TCU 3.3 - Reference Manual

tcu_get_user_keypress

Function Returns the last used user defined key

Syntax #include <usr\tcu.h>

unsigned short tcu_get_user_keypress (void)

Remarks The function is used with the user key handler (set with the
’tcu_set_user_key_handler’ service) to return the actual scancode of
the last user defined key used. A user defined key is one which is
processed with a user key handler and not ignored, i.e. the handler
does not return 0.

Return Value User key scancode or 0 if no user key has been used.

66 92.09.01

TCU 3.3 - Reference Manual

tcu_hash_value

Function Returns a hash value associated with a string

Syntax #include <usr\tcu.h>

unsigned long tcu_hash_value (char *string,
unsigned long range)

Remarks This function calculates and returns a hash value for a given string
between 0 and range-1. The hash value may be used to index a table
for data retrieval purposes.

Return Value Returns the hash value.

92.09.01 67

TCU 3.3 - Reference Manual

tcu_load_form

Function Loads a form from the .CFO form object file into a form object.

Syntax #include <usr\tcu.h>

int tcu_load_form (TCU_FORM *form,
char *filename)

Remarks This function operates on form object files which are produced from the
.CUF source files by the forms compiler. Form objects normally have
the type .CFO. ’form’ identifies the form object into which the form is
to be loaded. ’filename’ specifies the name of the object file. See the
forms compiler documentation for further details and a description of
the source file format.

Return Value Returns TCU_OK if the form was loaded successfully, else
TCU_ERROR. TCU_ERROR will normally indicate an internal error
such as memory allocation problems, though it is possible that a range
error in date fields was invalidated. For example, if a field was specified
in the .CUF source file as:

FIELD = @10,10; Date(MonthFirst); Range(Today, 12/31/90)

then an error will occur trying to load this on or after the date 12/31/90
as the range is invalidated.

68 92.09.01

TCU 3.3 - Reference Manual

tcu_load_image_form

Function Loads a form from a form image linked with the application.

Syntax #include <usr\tcu.h>

extern TCU_FORM FORM_IMAGE;
int tcu_load_image_form (TCU_FORM *form,

TCU_FORM *FORM_IMAGE)

Remarks This function is directly equivalent to ’tcu_load_form’, only it loads forms
internally from object modules linked in with the application. ’form’
specifies the form object with which the form will later be addressed.
’FORM_IMAGE’ specifies the external form image data which should
be declared elsewhere as a type of ’extern TCU_FORM
FORM_IMAGE’. This service offers the advantage over the
’tcu_load_form’ service that an application may be completely
self-contained with no external form files to supply. A disadvantage is
that the application must be relinked if the form definition changes. Use
the /OBJECT or /LOADNAME options of the forms compiler to generate
linkable object modules instead of the normal object files.
’FORM_IMAGE’ is the loadname of the object module which defaults
to the file name part of the original .CUF form definition file, but may be
specified using the /LOADNAME option of the forms compiler.

Return Value See ’tcu_load_form’

92.09.01 69

TCU 3.3 - Reference Manual

tcu_new_pulldown_cover

Function Reloads the saved screen cover under pulldown menus.

Syntax #include <usr\tcu.h>

int tcu_new_pulldown_cover (TCU_PULLDOWN *pmenu);

Remarks This service should be used when the screen is changed outside the
control of a pulldown menu but while the menu is displayed. This
ensures that the further manipulation of the screen by the pulldown
menu services will result in a consistent display. ’pmenu’ specifies the
pulldown menu object.

Return Value TCU_OK is successful, else TCU_ERROR.

70 92.09.01

TCU 3.3 - Reference Manual

tcu_notice_text

Function Formats a string for inclusion in the body of a notice or prompt.

Syntax #include <usr\tcu.h>

int tcu_notice_text (TCU_NOTICE *notice,
char *fmt, ...)

Remarks The parameter list is identical to that of the ’printf’ function, and any
valid ’printf’ format control facilities may be used with the exception of
control codes such as ’\n’ and ’\b’. Blank lines are obtained by using an
empty string, as in

status = notice_text (&my_notice, "");

Each call to ’tcu_notice_text’ represents a line in the notice or prompt.
The size of the notice is automatically computed to allow the longest
line registered with ’tcu_notice_text’.

Return Value TCU_OK if the call was successful, else TCU_ERROR.

92.09.01 71

TCU 3.3 - Reference Manual

tcu_open_window

Function Opens a window and displays it on the screen.

Syntax #include <usr\tcu.h>

int tcu_open_window (TCU_WINDOW *window,
int xpos, int ypos,
int xsize, int ysize,
char *title,
unsigned char box_attrib,
unsigned char window_attrib,
unsigned char title_attrib,
unsigned char box_type);

Remarks Opens a window of outside size ’xsize’ x ’ysize’ characters at location
(xpos,ypos). ’title’ defines a textual title to appear in the header line of
the window, or may be omitted by either specifying NULL or a zero
length string. ’box_attrib’, ’window_attrib’ and ’title_attrib’ define the
colour attributes of the surrounding box, the window body and the title
text respectively. ’box_type’ is one of:

TCU_BOX_SINGLE Single line surround
TCU_BOX_DOUBLE Double line surround
TCU_BOX_BLANK Surrounded by blank spaces

The user declared entity ’window’ is filled with the initialised window
data and passed to subsequent windowing services.

Note that the window ALWAYS has a one character border, and the
size is including this border. A window of size 40 x 10 will have a
usable size 38 x 8, and this will be the maximum cursor address. (1,1)
always represents the top-left corner of USABLE window space.

Return Value Returns TCU_OK on success, TCU_ERROR on error. An error will
normally be the result of specifying bad parameters or a memory
overflow. Bad parameters will often be caused by specifying part of the
window to be out of range of the screen.

72 92.09.01

TCU 3.3 - Reference Manual

tcu_position_cursor

Function Moves a window cursor to a specified point in the window.

Syntax #include <usr\tcu.h>

int tcu_position_cursor (TCU_WINDOW *window,
int x, int y)

Remarks Moves the cursor to the specified location in the window.

Return Value Returns TCU_OK on success, TCU_ERROR on error. An error will
normally be attributable to an attempt to move the cursor outside the
window area.

92.09.01 73

TCU 3.3 - Reference Manual

tcu_prepare_notice

Function Initialises a notice/prompt.

Syntax #include <usr\tcu.h>

int tcu_prepare_notice (TCU_NOTICE *notice,
char *title,
unsigned char title_colour,
unsigned char box_colour,
unsigned char notice_colour,
unsigned char box_type)

Remarks A notice or prompt is initialised with this service. The parameters
’box_colour’, ’notice_colour’ and ’title_colour’ specify the colours of the
surrounding box, the main notice panel and the title string respectively.
’box_type’ is one of the following and defines the form of the perimeter
box:

TCU_BOX_SINGLE Single lined box
TCU_BOX_DOUBLE Double lined box
TCU_BOX_BLANK Surrounded by blank spaces

Text may be added to the notice with the ’tcu_notice_text’ service and
the notice become complete at the call to ’tcu_display_notice’. When
the notice has been removed by the user, it remains defined until a
’tcu_clear_notice’ call is made. This allows a notice to be used more
than once without redefinition.

If no title is to be used, it should be specified as "", i.e. an empty string.
In this case the ’title_colour’ parameter is ignored.

Return Value Returns TCU_OK if successful, else TCU_ERROR.

74 92.09.01

TCU 3.3 - Reference Manual

tcu_prompt_input

Function Adds an input field area to a notice.

Syntax #include <usr\tcu.h>

int tcu_prompt_input (TCU_NOTICE *notice,
int xpos,
int ypos,
char *buffer,
unsigned char prompt_colour)

Remarks Only one input field may be present in a notice. If an input field is
specified, the notice becomes a ’prompt’. ’xpos’ and ’ypos’ specify the
start position of the input area in the notice panel. ’buffer’ is a pointer
to a user area where the input is to be put. ’buffer’ has the same form
as the buffer used in the library function ’cgets’, i.e. buffer[0] must
specify the maximum length of the input field, and the actual data is
returned from buffer[2]. buffer[1] contains the number of characters in
the input field. This means ’buffer’ must be large enough to hold the
maximum input string + 3 (to include buffer[0], buffer[1] and the
terminating ’\0’. When the call is made, the default string displayed will
the contents of the buffer at locations buffer[2] onwards. buffer[2] must
be set to ’\0’ if this feature is not required.

’prompt_colour’ defined the colours to use for the prompt area.

When a notice has been converted to a prompt, the call to
’tcu_display_notice’ will allow the user to enter the input string. The
notice disappears when the input is complete, whereas a notice with no
prompt area disappears when the user presses the RETURN key or
the ESCAPE key.

Return Value TCU_OK if the call was successful, TCU_ERROR if an error occurred.

92.09.01 75

TCU 3.3 - Reference Manual

tcu_restore_environment

Function Restores the screen environment

Syntax #include <usr\tcu.h>

void tcu_restore_environment (void)

Remarks This call should be made after the ’tcu_save_environment’ call in an
idle loop interrupt handler which changes the screen in some fashion.
The calls which may alter the screen should be between
’tcu_save_environment’ and ’tcu_restore_environment’.

Return Value None.

76 92.09.01

TCU 3.3 - Reference Manual

tcu_put_field

Function Loads a value into a field of a form.

Syntax #include <usr\tcu.h>

int tcu_put_field (TCU_FORM *form,
int field,
TCU_FIELD_VALUE *val)

Remarks ’form’ identifies the form into which the value is to be loaded. ’field’ is
the field ID of the field, which may be obtained by ’tcu_get_field_id’ if
the field is named in the CUF file. ’val’ is a pointer to a user declared
TCU_FIELD_VALUE type which contains the value to be loaded.

The value must comply with the type of the field and any range
declaration which has been made in the CUF file. String lengths are
checked, but compliance with string templates are not.

See ’tcu_get_field’ for details on how the field values in a form are
addressed.

If the form is currently displayed, the field is updated immediately.

Return Value Returns TCU_OK if the call was successful, else TCU_ERROR.

92.09.01 77

TCU 3.3 - Reference Manual

tcu_read_formrec

Function Reads a complete form from a buffer.

Syntax #include <usr\tcu.h>

int tcu_read_formrec (TCU_FORM *form,
char *buffer)

Remarks ’form’ identifies the form into which the ’buffer’ is to be read. An implicit
call to ’tcu_put_field’ is made for each field to ensure integrity.

Return Value Returns TCU_OK if the call was successful, else TCU_ERROR. An
error condition is likely to indicate that one of the fields in the buffer is
invalid for the form by being of an invalid type or out of the range
specified in the form definition.

78 92.09.01

TCU 3.3 - Reference Manual

tcu_read_menu_selection

Function Returns the user selection from a defined and displayed menu.

Syntax #include <usr\tcu.h>

int tcu_read_menu_selection (TCU_MENU *menu)

Remarks ’tcu_read_menu_selection’ is an interactive function to obtain a user
selection from a displayed menu. Only valid escape keys may be used
to leave the interactive selection procedure.

Return Value If a valid menu option is selected, it is returned as a positive integer; 1
represents the first choice, 2 the second, etc. If an option is unavailable
for selection, it will simply not be returned under any circumstances.
The numbering of the options is sequential, including unavailable
options; i.e. If the menu has three possible options, the second of
which is unavailable, the third has the logical sequence number ’3’
even though it is the second valid selection.

If the return is 0, an error was encountered. This will most likely be due
to either the menu not having been defined, or not yet displayed.

If the return is negative, it represents the negative value of the escape
key used to leave the selection. E.g. to determine if the ESC key was
used to leave the menu, the following code extract could be used:

selection = tcu_read_menu_selection (&mymenu);
if (!selection)

ERROR_CONDITION;
else if (selection > 0)

NORMAL_SELECTION_MADE;
else if (selection == -TCU_ESC_ESC)

ESCAPE_KEY_USED;
else

...SOME_OTHER_ESCAPE_KEY_USED;

Note that for function keys and user defined escape keys the two
services ’tcu_escape_fkey’ and ’tcu_get_user_keypress’ may be used
to determine the exact keypress used. In these cases, the return code
from ’tcu_read_menu_selection’ would be either -TCU_ESC_FUNC (for
function keys) or -TCU_ESC_USERKEY (for user defined escape
keys).

92.09.01 79

TCU 3.3 - Reference Manual

tcu_read_pulldown_selection

Function Returns a menu option selected under control of a pulldown menu.

Syntax #include <usr\tcu.h>

int tcu_read_pulldown_selection (TCU_PULLDOWN *pmenu,
int *menu,
int *option);

Remarks ’pmenu’ specifies the pulldown menu which is to be activated and from
which an option is to be read. The menu must have been already
defined with ’tcu_define_pulldown’. ’menu’ returns the menu from the
pulldown header from which the selection was made (in the range
1..No_of_menus) and ’option’ returns the actual option within the menu
(in the range 1..No_of_options_in_menu).

If ’option’ is zero and ’menu’ is non-zero, the pulldown menu option
selected did not have an associated menu. If ’menu’ is zero the
pulldown menu selection was aborted with the ESC key and no
selection was made.

Note that ’tcu_read_pulldown_selection’ does not clear the menu(s)
from the screen on completion of the call (to allow a sequence of user
defined events to take place on selection of an option), and may be
called in sequence with intervening actions. Do NOT attempt to perform
operations using menus within the pulldown system BETWEEN calls to
the ’tcu_read_pulldown_selection’ other than the provided
’tcu_clear_menu_in_pulldown’ and ’tcu_new_pulldown_cover’ services.
Use ’tcu_remove_pulldown’ to clear the pulldown from the screen.

Return Value Returns TCU_OK if the call was successful, else TCU_ERROR.

80 92.09.01

TCU 3.3 - Reference Manual

tcu_remove_form

Function Removes a form from the screen.

Syntax #include <usr\tcu.h>

int tcu_remove_form (TCU_FORM *form)

Remarks ’form’ specifies the form which is to be removed. The definition is not
removed; a ’tcu_display_form’ is all that is required to redisplay the
form.

Return Value Returns TCU_OK if successful, TCU_ERROR if an error occurred.

92.09.01 81

TCU 3.3 - Reference Manual

tcu_remove_menu

Function Removes a displayed menu from the screen, restoring the original
screen contents.

Syntax #include <usr\tcu.h>

int tcu_remove_menu (TCU_MENU *menu)

Remarks If the menu to be removed is overlaid with another menu, the
restoration of the screen will be incorrect. The user should ensure that
se lec t ions f rom over la id menus are sat isfied by
’tcu_read_menu_selection’ and ’remove_menu’ in the reverse order to
that in which they were displayed with ’tcu_display_menu’.

Return Value Returns TCU_OK if successful, or TCU_ERROR is unsuccessful. If
unsuccessful the menu is logically flagged as removed, thus only
leaving the screen incomplete.

82 92.09.01

TCU 3.3 - Reference Manual

tcu_remove_pulldown

Function Removes a pulldown menu from the screen, restoring the old screen
contents.

Syntax #include <usr\tcu.h>

int tcu_remove_pulldown (TCU_PULLDOWN *pmenu);

Remarks ’pmenu’ specifies the pulldown to be removed. Note that the pulldown
remains defined and may be activated again with the
’tcu_read_pulldown_selection’ service.

Return Value TCU_OK if successful, or TCU_ERROR if an error occurred.

92.09.01 83

TCU 3.3 - Reference Manual

tcu_save_environment

Function Saves the screen environment.

Syntax #include <usr\tcu.h>

void tcu_save_environment (void)

Remarks This service saves the screen environment for use inside idle loop
handler functions which change the screen in some fashion. The calls
which may alter the screen should be between ’tcu_save_environment’
and ’tcu_restore_environment’.

Return Value None.

84 92.09.01

TCU 3.3 - Reference Manual

tcu_select_field

Function Selects a single field from a form returning the field ID.

Syntax #include <usr\tcu.h>

int tcu_select_field (TCU_FORM *form,
int start_field_id,
int *exitkey);

Remarks The service behaves exactly as ’tcu_edit_form’, though disallowing any
editing of fields and terminating at the first field select with the
RETURN key. The form ’form’ must be displayed. A start field
’start_field_id’ determines which field will be the first one in which the
cursor appears. If set to 1, the first valid field will be used. ’exitkey’ will
return with the field-ID of the field selected, or if negative will be one of
the escape codes listed for ’tcu_edit_form’

Return Value Returns with TCU_OK if no error, else TCU_ERROR.

92.09.01 85

TCU 3.3 - Reference Manual

tcu_set_button_fn

Function Establishes a button handler for a form.

Syntax #include <usr\tcu.h>

int tcu_set_button_fn (TCU_FORM *form,
int far (*handler) (TCU_FORM *, int));

Remarks ’form’ specifies the form for which the handler is to be activated.
’handler’ is the handler to which control is passed when any button field
on the form is selected. The two parameters passed by the system to
the handler specify the form and the current button field ID.

The handler must return one of three possible values according to the
desired action:

0 Continue as if no key had been pressed, i.e. no actions
subsequent to the handler will be made as a result of the
selection.

1 Treat the keypress as a PgUp, i.e. save the results of the
f o r m a n d e x i t . T h e e x i t c o d e i s
TCU_FLD_BUTTONSAVE.

2 Treat the keypress as an ESC, i.e. abort the form entry
and exit. The exit code is TCU_FLD_BUTTONESC.

To remove an existing handler, set the function to NULL.

If the handler code is to operate on objects outside the form in which
the button exists (e.g. creates a new menu), the calls to services acting
on the objects should be surrounded by calls to ’tcu_save_environment’
and ’tcu_restore_environment’.

Return Value Returns TCU_OK if the handler was successfully installed, or
TCU_ERROR if an error was encountered.

86 92.09.01

TCU 3.3 - Reference Manual

tcu_set_field_attrib

Function Sets the foreground and background colours of a field in a form.

Syntax #include <usr\tcu.h>

int tcu_set_field_attrib (TCU_FORM *form,
int field,
unsigned char new_colour)

Remarks ’form’ identifies the form. ’field’ is the field ID of the field to be changed.
This may be returned by ’tcu_get_field_id’ if the field is a named field.
’new_colour’ specifies the new colours of the field, which may be
obtained with the ’tcu_colour_attrib’ function.

If the form is displayed, the colours are updated immediately.

Return Value Returns TCU_OK if successful, TCU_ERROR if an error occurred.

92.09.01 87

TCU 3.3 - Reference Manual

tcu_set_field_mode

Function Sets a field attribute for a field in a form.

Syntax #include <usr\tcu.h>

int tcu_set_field_mode (TCU_FORM *form,
int field,
int mode)

Remarks ’form’ specifies the form. ’field’ is the field ID of the field. ’mode’ is one
of the following:

TCU_FORM_EDIT (def) : Allow the field to be changed
TCU_FORM_NOEDIT : Do not allow the field to be

edited
TCU_FORM_ECHO (def) : Show field in form
TCU_FORM_NOECHO : Do not display contents of field
TCU_FORM_ENTER (def) : Cursor may enter field during

edit
TCU_FORM_NOENTER : Cursor passes field by during

edit
TCU_FORM_CONFIRM : Needs ENTER to confirm field

entry
TCU_FORM_NOCONFIFM (dflt) : Prev. & next field confirm entry

If the field is set NOEDIT, attempting to change the value of the field
results in a tone.

Return Value Returns TCU_OK if the mode was successfully set, else returns
TCU_ERROR.

88 92.09.01

TCU 3.3 - Reference Manual

tcu_set_field_verify

Function Sets a verification function for a field.

Syntax #include <usr\tcu.h>

int tcu_set_field_verify (TCU_FORM *form,
int far (*verify_fn)(TCU_FORM *,

int, TCU_FIELD_VALUE *))

Remarks ’form’ specifies the form. ’verify_fn’ is the address of an integer function
to perform the field verification. The function is passed the form
address, an integer value which is the field ID and a pointer to the
TCU_FIELD_VALUE structure of the field. The value must not be
changed in the handler routine, other that by using ’tcu_put_field’ with
the passed ’form’ parameter.

The function should return 0 if the field failed verification and 1 if it
verified successfully. If no field verification is specified, the range
constraints on the field (if any) are the only checks made when the field
is completed.

Field verification is checked when an attempt to change the value of a
field is made. This includes interactive form editing and changes with
’tcu_put_field’.

Return Value Returns TCU_OK if verification was established successfully or
TCU_ERROR if an error occurred.

92.09.01 89

TCU 3.3 - Reference Manual

tcu_set_form_fnkey_fn

Function Establishes a function key handler function for form entry.

Syntax #include <usr\tcu.h>

int tcu_set_form_fnkey_fn (TCU_FORM *form,
int far (*handler)
(TCU_FORM *, int, int));

Remarks ’form’ specifies the form for which the handler is to be activated.
’handler’ is the handler to which control is passed for all function keys.
F1 is excluded as this is used exclusively for help invocation. The
parameters passed by the system to the handler specify the form, the
current field of the form and the actual function key (2-12) in that order.

The handler must return one of four possible values according to the
desired action:

0 Continue as if no key had been pressed, i.e. no actions
subsequent to the function key handler will be made as
a result of the keypress.

1 Treat the keypress as a PgUp, i.e. save the results of the
form and exit. The exit code is TCU_FLD_FNKEYSAVE.

2 Treat the keypress as an ESC, i.e. abort the form entry
and exit. The exit code is TCU_FLD_FNKEYESC.

3 Same as 0, but update the field being edited with the
value set with a ’tcu_put_field’. This is used when a
’tcu_put_field’ is called from within a function key handler
and the form is currently under edit.

To remove an existing handler, set the function to NULL.

Return Value Returns TCU_OK if the handler was successfully installed, or
TCU_ERROR if an error was encountered.

90 92.09.01

TCU 3.3 - Reference Manual

tcu_set_form_help

Function Associates a help function with a form.

Syntax #include <usr\tcu.h>

int tcu_set_form_help (TCU_FORM *form,
void far (*help_fn)(TCU_FORM *, int))

Remarks ’form’ specifies the form, ’help_fn’ is the address of a void function
which will be called when the F1 key is pressed when the user is
editing the form. The function is passed a single integer value which is
the field ID. This allows the function to determine which field was
selected when the help key was pressed.

If no help function is defined for a field, the F1 key will generate a
warning beep.

Return Value Returns TCU_OK if the function was registered correctly, else
TCU_ERROR.

92.09.01 91

TCU 3.3 - Reference Manual

tcu_set_form_mode

Function Sets the form edit mode for a complete form.

Syntax #include <usr\tcu.h>

int tcu_set_form_mode (TCU_FORM *form,
int mode)

Remarks ’form’ specifies the form. ’mode’ is one of the following:

TCU_FORM_EDIT (default) Form fields may be edited
TCU_FORM_NOEDIT Form fields may not be edited
TCU_FORM_ESCS (default) Allow standard escape keys
TCU_FORM_NOESCS Disable all direct escape keys

If the form mode is set to EDIT, the field modes may still prevent
editing of individual fields.

The escape keys include ESC, CNTL/C, PgUp and PgDn. Disabling
these keys allows the form to be controlled from handler functions
returning appropriate continuation or escape codes.

Return Value Returns TCU_OK if the mode was successfully set, else returns
TCU_ERROR.

92 92.09.01

TCU 3.3 - Reference Manual

tcu_set_idle_loop

Function Establishes an idle processing handler

Syntax #include <usr\tcu.h>

int tcu_set_idle_loop
(int far (*handler)(unsigned long))

Remarks ’handler’ specifies the idle loop handler function to be installed. If a
handler is present, it is called by TCU services every 10ms while
waiting for a keypress or mouse click. It is passes a single unsigned
long integer parameter which is the time in 10ms units that the system
has been idle. If the handler wishes to emulate a keypress, it should
return the scan-code of the key. If it returns zero, processing will
continue.

If the handler wishes to perform some activity which will change the
contents of the screen, it should first save the screen environment with
the ’tcu_save_environment’ service. On completion of the screen
updates, the ’tcu_restore_environment’ call must be made. The idle
processing function must be careful not to perform functions which alter
parts of the screen being affected by currently executing foreground
activities. Furthermore, should the idle handler need to operate on a
form which is being edited when the handler is entered, it must use the
special symbol ’_TCU_UPDATE_form’ as the FORM * type parameter
to any form functions.

To remove an existing idle handler, set the function to NULL with
another call to ’tcu_set_idle_loop’.

Return Value Returns TCU_OK if the handler was successfully installed, else returns
TCU_ERROR.

92.09.01 93

TCU 3.3 - Reference Manual

tcu_set_menu_help

Function Associates a help function with a menu.

Syntax #include <usr\tcu.h>

int tcu_set_menu_help (TCU_MENU *menu,
void far (*handler)(int));

Remarks ’menu’ specifies the menu to which the user defined help function,
’handler’, is to refer. Pressing the F1 function key while in the specified
menu will activate this function, passing the currently selected menu
option as a single integer parameter to the help function to allow an
option specific action to be taken.

Use NULL as a ’handler’ value to remove the help function. If F1 is
pressed when no help function is available, a single tone will be
sounded.

Return Value TCU_OK if the help function was successfully installed, else
TCU_ERROR.

94 92.09.01

TCU 3.3 - Reference Manual

tcu_set_menu_option

Function Enables or disables an option within a menu.

Syntax #include <usr\tcu.h>

int tcu_set_menu_option (TCU_MENU *menu,
int choice,
int mode)

Remarks ’choice’ identifies the menu choice to be changed. ’mode’ is 0 to make
a choice unavailable and 1 to enable a choice option.

Return Value Returns TCU_OK if the call was successful, TCU_ERROR if an error
was encountered.

92.09.01 95

TCU 3.3 - Reference Manual

tcu_set_mouse_mode

Function Enables or disables mouse support for menus and forms.

Syntax #include <usr\tcu.h>

int tcu_set_mouse_mode (unsigned char mode)

Remarks The presence of a mouse is automatically detected and overrides any
selection made with this service. By default mouse support if switched
ON. If mode is 0, mouse support will be disabled. If 1, it will be
re-enabled. Note that the mouse mode may be toggled interactively by
using the ALT-M key.

Return Value TCU_OK if the service request was successful. TCU_ERROR means
that no mouse was detected, though does not constitute a real error.

96 92.09.01

TCU 3.3 - Reference Manual

tcu_set_pulldown_help

Function Associates a help function with a pulldown menu.

Syntax #include <usr\tcu.h>

int tcu_set_pulldown_help (TCU_PULLDOWN *pmenu,
void far (*handler)(int));

Remarks ’menu’ specifies the pulldown menu to which the user defined help
function, ’handler’, is to refer. Pressing the F1 function key while on any
pulldown title will activate this function, passing the currently selected
menu option as a single integer parameter to the help function to allow
an option specific action to be taken.

Use NULL as a ’handler’ value to remove the help function. If F1 is
pressed when no help function is available, a single tone will be
sounded.

Return Value TCU_OK if the help function was successfully installed, else
TCU_ERROR.

92.09.01 97

TCU 3.3 - Reference Manual

tcu_set_user_key_handler

Function Establishes a handler function to implement user defined keys

Syntax #include <usr\tcu.h>

int tcu_set_user_key_handler (
int far (*handler)(unsigned short *));

Remarks Establishes ’handler’ as a function which will be invoked each time a
key is pressed. The function is passed a pointer to the key scancode,
the dereferenced value of which may be altered if required, to allow it
to decide how to process the keypress. The function will normally not
alter the scancode. The function should return 0 if no further action is
required on behalf of the user defined keypress, 1 if the key is to be
treated as an accept key (TCU_FLD_USERSAVE) and 2 if it is to be
an escape key (TCU_FLD_USERESC). The actual meaning of the
returned value is dependent on the context. E.g.
TCU_FLD_USERSAVE during form entry will be treated exactly as
TCU_FLD_ESCPGUP or TCU_FLD_ESCPGDN whi ls t
TCU_FLD_USERESC is treated as TCU_FLD_ESCCNTLC. This
allows the user to implement individual key codes. The actual key
used by the user may be obtained with the ’tcu_get_user_keypress’
service which returns the scancode.

Note that the scancodes are standard, i.e. ALT-F1 is 104 (dec).

Use NULL as the value of the function to be set to clear the present
handler.

Return Value TCU_OK if the help function was successfully installed, else
TCU_ERROR.

98 92.09.01

TCU 3.3 - Reference Manual

_TCU_version

Function Constant defining the version number of TCU

Syntax #include <usr\tcu.h>

extern unsigned char _TCU_version;

Remarks The high-order nibble defines the major version number and the
low-order nibble the minor version number.

printf ("This is TCU v%d.%d\n",
_TCU_version >> 4, _TCU_version & 0x0F);

Return Value N/A

92.09.01 99

TCU 3.3 - Reference Manual

tcu_warnbeep

Function Produce TCU standard warning beep sound

Syntax #include <usr\tcu.h>

void tcu_warnbeep (void)

Remarks Sounds the warning beep used by TCU internals for such things as an
attempt to type into read-only form field, etc.

Return Value None

100 92.09.01

TCU 3.3 - Reference Manual

tcu_wgets

Function Receives user input from a window area.

Syntax #include <usr\tcu.h>

int tcu_wgets (TCU_WINDOW *window,
int maxlength,
char *buffer,
int *actuallength)

Remarks Provides an editable input inside a window area. The input field must
be on one line and may not extend beyond the window boundary.
’maxlength’ specifies the maximum number of characters to input.
’buffer’ is the address of a buffer to receive the input and should be at
least maxlength+1 characters in length to include the null terminator.
’actuallength’ is returned to indicate how many characters were present
in the input field.

The input buffer may be pre-loadad to give an initial input string. If the
field should be empty, ’buffer’ should be a zero length string.

If the length is returned as -1, the user cancelled the input operation
with ESC and the input string will be an empty string.

Return Value TCU_OK on success, TCU_ERROR on error. Errors are likely to be the
result of specifying an input area outside the boundary of the window.

92.09.01 101

TCU 3.3 - Reference Manual

tcu_write_formrec

Function Writes a complete form to a buffer.

Syntax #include <usr\tcu.h>

int tcu_write_formrec (TCU_FORM *form,
char *buffer)

Remarks ’form’ identifies the form which will be written to the ’buffer’. It is the
caller’s responsibility to ensure that the buffer points to sufficient free
space to hold the form fields. The size may be obtained with the
’tcu_form_record_size’ service.

Return Value Returns TCU_OK if the call was successful, else TCU_ERROR.

102 92.09.01

TCU 3.3 - Reference Manual

tcu_wprintf

Function Formatted output to a window.

Syntax #include <usr\tcu.h>

int tcu_wprintf (TCU_WINDOW *window,
char *format,
arg1, arg2, arg3, ...)

Remarks As the C run-time library ’printf’ function but to a window. Long lines will
wrap around.

Return Value TCU_OK on success, TCU_ERROR on error.

92.09.01 103

