
SIMIC User’s Guide

D e s i g n Ve r i fi c a t i o n To o l

G e n a s h o r C o r p o r a t i o n
9 Piney Woods Dr ive Bel le Mead, NJ 08502-1109

USA
Tel: (980) 281-0164
Fax: (908) 281-9607

Copyright 1991 Genashor Corp.
All Rights Reserved.

Duplication Prohibited.

No part of this guide may be reproduced in any form or by any means without the written permis-
sion of

Genashor Corp
9 Piney Woods Drive
Belle Mead, NJ 08502

Telephone: (908) 281-0164

For U.S. Government use:
Use, duplication or disclosure of this guide and accompanying software by the Government is sub-
ject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Com-
puter Software clause at DFARS 252.277-7013, and in subparagraphs (a) through (d) of the
Commercial Computer-Restricted Rights clause at FAR 52.227-19, and in similar clauses in the
NASA FAR Supplement, when applicable.

For Non- U.S. Government use:
This Guide and accompanying software are supplied under a license. Use, copying, and/or disclo-
sure of the programs is strictly prohibited unless provided in the license agreement. Unless speci-
fied to the contrary in writing, the programs are licensed for use only on a single CPU.

GENASHOR CORP PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some state do not allow disclaimer of express or implied warranties in certain trans-
actions; therefore, this statement may not apply to you.

Genashor Corp and its licensors retain all ownership rights to the SIMIC computer program and
other computer programs offered by Genashor Corp (hereinafter collectively called “SOFT-
WARE”) and their documentation. The SOFTWARE source code is a confidential trade secret of
Genashor Corp. You may not attempt to decipher or decompile SOFTWARE or develop source
code for SOFTWARE, or knowingly allow others to do so. You may not develop passwords or
codes or otherwise enable SOFTWARE for equipment that is unauthorized for use with SOFT-
WARE. SOFTWARE and its documentation may not be sublicensed and may not be transferred
without the prior written consent of Genashor Corp. Genashor Corp may revise any documentation
of SOFTWARE from time to time without notice.

Only you and your employees and consultants who have agreed to the above may use SOFTWARE
and only on the authorized equipment.

Genashor Corp retains all rights not expressly granted. Nothing in this license constitutes a waiver
of the rights of Genashor Corp under the U.S. copyright laws or any other Federal or State law. This
license will be construed under the laws of New Jersey. If any provision of the License shall be
held by a court of competent jurisdiction to the contrary to law, that provision will be enforced to
the maximum extent permissible and the remaining provisions of this License will remain in full
force and effect.

Revision 1.0 9/2/91 SIMIC User’s Guide 1-1

Table of Contents

Section 1 Fundamentals Of SIMIC Simulation ...1-1

Chapter 1.1 Basic Simulation ...1.1-1

1.1.1 Introduction .. 1.1-1

1.1.2 Entering SIMIC .. 1.1-1
1.1.2.1 Case Sensitivity ... 1.1-1

1.1.3 Entering Run Commands ... 1.1-1
1.1.3.1 Attention Interrupt .. 1.1-2

1.1.4 Leaving SIMIC .. 1.1-2

1.1.5 Parts and Signals .. 1.1-2

1.1.6 Example: The FULL-ADDER Circuit ... 1.1-3
1.1.6.1 Describing the Full-Adder .. 1.1-3
1.1.6.2 SIMIC Simulation of the Full-Adder .. 1.1-4

1.1.7 Run Command Syntax ... 1.1-9

1.1.8 RUN files ... 1.1-12

1.1.9 Using SIMIC in Batch (Background) Mode .. 1.1-13

Chapter 1.2 Creating the Network Description ..1.2-1

1.2.1 Types of Network Description Statements .. 1.2-1

1.2.2 Some Basic SNL Guidelines .. 1.2-2
1.2.2.1 Blank Lines, Line Continuation .. 1.2-2
1.2.2.2 User-defined names .. 1.2-3

1.2.3 Describing Circuit Topology ... 1.2-4
1.2.3.1 !LOGICAL .. 1.2-4
1.2.3.2 Basic Type Block Structure .. 1.2-4
1.2.3.3 Implicit Names And Connections ... 1.2-6
1.2.3.4 Advanced Topic Digression: By-Name Pin Connections 1.2-6
1.2.3.5 SIMIC Primitives .. 1.2-7
1.2.3.6 Example .. 1.2-8
1.2.3.7 Keyword-field Ordering ... 1.2-10
1.2.3.8 Abbreviations .. 1.2-11
1.2.3.9 !FORMAT (!FOR !F) .. 1.2-11
1.2.3.10 Signal Arrays .. 1.2-13

1.2.4 Annotation ... 1.2-15
1.2.4.1 The REMARK (REM, R) keyword .. 1.2-15
1.2.4.2 The COMMENT (COM, C) Keyword ... 1.2-16
1.2.4.3 The $= Comment .. 1.2-16

1-2 SIMIC User’s Guide Revision 1.0 9/2/91

1.2.4.4 The !DOCUMENTATION (!DOC) Directive .. 1.2-17

Section 2 SIMIC Simulation ..2-1

Chapter 2.1 File Naming Conventions ..2.1-1

2.1.1 File Name Format .. 2.1-1

2.1.2 Implicit File Names ... 2.1-2

2.1.3 Explicit File Names ... 2.1-3

2.1.4 Spanning Directories .. 2.1-3

Chapter 2.2 Circuit Compilation ...2.2-1

2.2.1 Introduction .. 2.2-1

2.2.2 Circuit Compilation ... 2.2-2

2.2.3 Retrieving A Previously-Compiled Description .. 2.2-6

2.2.4 Selecting A Timing Table .. 2.2-6

2.2.5 Backannotation .. 2.2-6

Chapter 2.3 Input Stimuli ...2.3-1

2.3.1 Introduction .. 2.3-1

2.3.2 Types Of Input Stimuli .. 2.3-1

2.3.3 Test Numbers ... 2.3-2

2.3.4 Specifying Stimuli As A Two-Step Process .. 2.3-3

2.3.5 Defining Input Stimuli ... 2.3-3

2.3.6 Selecting Stimuli For Simulation ... 2.3-5

2.3.7 DO Loops For Repetitive Sequences ... 2.3-7

2.3.8 Grouping .. 2.3-7

2.3.9 Stimulus Hierarchy .. 2.3-8

2.3.10 Stimulus Drive Strength ... 2.3-9

2.3.11 Stimulus Format ... 2.3-10

Chapter 2.4 Simulation Output ..2.4-1

2.4.1 Overview .. 2.4-1

2.4.2 Organization Of The Output .. 2.4-1

2.4.3 Specifying The File Name For The WRITE Command .. 2.4-2

2.4.4 Specifying What To Output ... 2.4-2

Revision 1.0 9/2/91 SIMIC User’s Guide 1-3

2.4.4.1 Selecting Signals to Output ... 2.4-2
2.4.4.2 Signal Specification Options .. 2.4-4
2.4.4.3 Controlling Column Width ... 2.4-4
2.4.4.4 Suppressing Header Output .. 2.4-5
2.4.4.5 Suppressing Test Number ... 2.4-5

2.4.5 Specifying When to Output ... 2.4-5
2.4.5.1 Requesting Output at Stable Points .. 2.4-5
2.4.5.2 Requesting Time-Periodic Output .. 2.4-6
2.4.5.3 Requesting Output Based On Activity .. 2.4-6
2.4.5.4 Restricting the Output to Specified Tests/Time .. 2.4-7

2.4.6 Controlling Signal Value Representation .. 2.4-7
2.4.6.1 The Output Character Set ... 2.4-7
2.4.6.2 Suppressing Signal Strength in the Output ... 2.4-7
2.4.6.3 Specifying Signal Groups and Output Radix Format 2.4-8
2.4.6.4 Querying For Current Selected Options ... 2.4-9

Chapter 2.5 Simulation Options ..2.5-1

2.5.1 Overview .. 2.5-1

2.5.2 Fault Free Simulation/Fault Simulation ... 2.5-2

2.5.3 Pattern Stimuli/Waveform Stimuli/Timing Generators ... 2.5-2

2.5.4 Near Filter/Near Propagation ... 2.5-2

2.5.5 Spike Filter/Spike Propagation .. 2.5-3

2.5.6 Stable After Decay/Stable Before Decay ... 2.5-3

2.5.7 Dynamic Delays/Static Delays .. 2.5-4

Chapter 2.6 Circuit Troubleshooting ..2.6-1

2.6.1 Introduction .. 2.6-1
2.6.1.1 Debugging Capabilities ... 2.6-1

2.6.2 SIMIC Terminology and Definitions ... 2.6-2
2.6.2.1 Combinational Timing Hazards .. 2.6-2
2.6.2.2 Functional Timing Checks .. 2.6-4
2.6.2.3 Excessive Activity (Oscillation) ... 2.6-5
2.6.2.4 Depths and Strengths .. 2.6-5
2.6.2.5 Interval Representation ... 2.6-6

2.6.3 Interactive Debugging Example .. 2.6-8

2.6.4 Restricting Simulation Options To A Specified Simulation Interval 2.6-16
2.6.4.1 Commands Affected ... 2.6-16
2.6.4.2 Basic Form of PRANGE Keyword ... 2.6-16

2.6.5 Setting Simulation Breakpoints ... 2.6-18
2.6.5.1 Overview ... 2.6-18

1-4 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.5.2 Restricting Break To A Specified Interval ... 2.6-18
2.6.5.3 Directing The Destination Of Break Messages .. 2.6-18
2.6.5.4 Breakpoint At A Specified Signal Transition ... 2.6-19
2.6.5.5 Breakpoint When A Signal State Becomes Unknown (X) 2.6-19
2.6.5.6 Breakpoint When A Signal Goes To Floating Unknown (Z) 2.6-20
2.6.5.7 Breakpoint At Signal Conflict Hazard .. 2.6-20
2.6.5.8 Breakpoint At An Oscillation ... 2.6-20
2.6.5.9 Breakpoint At A Combinational Timing Hazard .. 2.6-20
2.6.5.10 Breakpoint At A Functional Timing Violation ... 2.6-21
2.6.5.11 Breakpoint On Input Change While The Circuit Is Unstable 2.6-21
2.6.5.12 Breakpoint At Specified Intervals ... 2.6-22
2.6.5.13 Breakpoint On Strobe Error .. 2.6-22

2.6.6 Setting Simulation Warnings (Watchpoints) ... 2.6-23
2.6.6.1 Overview ... 2.6-23
2.6.6.2 Suppressing Excessive Messages On A Per-Signal Basis 2.6-23
2.6.6.3 Warning Defaults .. 2.6-24

2.6.7 Tracing Circuit Activity ... 2.6-24
2.6.7.1 Overview ... 2.6-24
2.6.7.2 Restricting Trace To A Specified Interval .. 2.6-24
2.6.7.3 Directing The Destination Of Trace Output ... 2.6-25
2.6.7.4 Specifying Signals To Trace ... 2.6-25
2.6.7.5 Requesting Causality Information .. 2.6-25
2.6.7.6 Using Trace To Locate Critical Paths ... 2.6-26

2.6.8 Probing For Signal State Information .. 2.6-26
2.6.8.1 Overview ... 2.6-26
2.6.8.2 Displaying Topology As Well As Values ... 2.6-27
2.6.8.3 Displaying All Signal States ... 2.6-28
2.6.8.4 Displaying All Signals At A Specified State .. 2.6-28

2.6.9 Forcing Signal States ... 2.6-29
2.6.9.1 Overview ... 2.6-29
2.6.9.2 Specifying Force Values And Tests .. 2.6-29
2.6.9.3 Cancelling Or Freeing Forced Values .. 2.6-30

2.6.10 Querying Delay Values .. 2.6-31

2.6.11 Modifying Delay Values .. 2.6-31
2.6.11.1 Overview ... 2.6-31
2.6.11.2 Loading A Timing Set .. 2.6-31
2.6.11.3 Selecting Drivers For Delay Modification .. 2.6-32
2.6.11.4 Setting Delays To An Absolute Value .. 2.6-32
2.6.11.5 Setting Delays Relative To Their Current Value .. 2.6-32

2.6.12 Querying Decay Values ... 2.6-33

2.6.13 Modifying Decay Values ... 2.6-33
2.6.13.1 Description .. 2.6-33

2.6.14 Querying Signal Loading ... 2.6-33

Revision 1.0 9/2/91 SIMIC User’s Guide 1-5

2.6.15 Enabling And Disabling X-Propagation .. 2.6-34
2.6.15.1 Spike Hazards ... 2.6-34
2.6.15.2 Near Hazards ... 2.6-34
2.6.15.3 Functional Timing Violations ... 2.6-34

2.6.16 Querying Spike Control Parameters .. 2.6-35
2.6.16.1 Description .. 2.6-35

2.6.17 Modifying Spike Control Parameters .. 2.6-35
2.6.17.1 Description .. 2.6-35

2.6.18 Querying Functional Timing Check Settings .. 2.6-36
2.6.18.1 Description .. 2.6-36

2.6.19 Modifying Functional Timing Check Parameters ... 2.6-36
2.6.19.1 Description .. 2.6-36
2.6.19.2 Setting Timing Check Parameters To Absolute Values 2.6-37
2.6.19.3 Setting Timing Check Parameters Relative To Current Values 2.6-37

2.6.20 Replaying Portions of the Simulation .. 2.6-37
2.6.20.1 Description .. 2.6-37
2.6.20.2 Creating The Checkpoint File ... 2.6-38
2.6.20.3 Restoring The Saved State’s Time And Test .. 2.6-39

Chapter 2.7 Circuit Modeling ..2.7-1

2.7.1 Introduction .. 2.7-1

2.7.2 Hierarchical Description .. 2.7-1
2.7.2.1 Instantiating Macros ... 2.7-3
2.7.2.2 Main Type ... 2.7-4
2.7.2.3 Sample Simulation of the Hierarchical Circuit ... 2.7-4

2.7.3 Modeling Delays .. 2.7-7
2.7.3.1 SIMIC Time-Units .. 2.7-7
2.7.3.2 Delay Curves ... 2.7-7
2.7.3.3 Global Delays ... 2.7-9
2.7.3.4 Local Delays ... 2.7-11
2.7.3.5 Specifying Pin Loading .. 2.7-11
2.7.3.6 Resultant Delays ... 2.7-12
2.7.3.7 Delays At Paralleled Elements ... 2.7-13
2.7.3.8 Modifying Delays At Run Time ... 2.7-14

2.7.4 Decays .. 2.7-15
2.7.4.1 Specifying Decays In SNL ... 2.7-15
2.7.4.2 Modifying Decays At Run Time .. 2.7-16

2.7.5 Input High Impedance Default .. 2.7-16

2.7.6 Verifying Timing Tolerances ... 2.7-17
2.7.6.1 Functional Timing Checks .. 2.7-17
2.7.6.2 Controlling Spike Propagation .. 2.7-19

1-6 SIMIC User’s Guide Revision 1.0 9/2/91

2.7.7 Wire-Ties ... 2.7-22
2.7.7.1 Wire-Tie Dominance .. 2.7-22
2.7.7.2 Specifying Drive Strength .. 2.7-23

2.7.8 Hierarchical Precedence of Electrical Attributes ... 2.7-25

2.7.9 Unused Bus and Output Pins ... 2.7-27

2.7.10 Specifying Level of Abstraction .. 2.7-28

2.7.11 Physical Size Metrics ... 2.7-29

Chapter 2.8 Tester Interface ..2.8-1

2.8.1 Introduction .. 2.8-1

2.8.2 Tester Emulation Mode ... 2.8-1
2.8.2.1 Defining Master Test Period ... 2.8-1
2.8.2.2 Defining Drive Values .. 2.8-2
2.8.2.3 Defining Timing Generators ... 2.8-2
2.8.2.4 Assigning Time-Sets to Input and Bidirectional Pads 2.8-7
2.8.2.5 Defining Strobes ... 2.8-8
2.8.2.6 Assigning Strobes to Outputs and Bidirectional Pads 2.8-8

2.8.3 Test Program Output .. 2.8-9
2.8.3.1 Introduction ... 2.8-9
2.8.3.2 Tester Interface File Contents ... 2.8-9

Chapter 2.9 The History Files ..2.9-1

2.9.1 Description ... 2.9-1
2.9.1.1 The General History File .. 2.9-1
2.9.1.2 The Sequential History File .. 2.9-1

2.9.2 Enabling History File Generation .. 2.9-1

2.9.3 Restricting History Output To A Specified Interval .. 2.9-2

2.9.4 Specifying a Dump Interval ... 2.9-2

2.9.5 Specifying the History File Names .. 2.9-2

2.9.6 Name-Based Filtering .. 2.9-3
2.9.6.1 Overview ... 2.9-3
2.9.6.2 Filtering Based On Part Names .. 2.9-3
2.9.6.3 Filtering Based On Signal Names ... 2.9-5

Appendix A SIMIC Built-in Primitives ...A-1

Appendix B SNL Statements and Keywords ..B-1

Appendix C Run Commands and Keywords ..C-1

Section 1 Fundamentals Of SIMIC Simulation

Revision 1.0 9/2/91 SIMIC User’s Guide 1-1

Section 1 Fundamentals Of SIMIC Simulation

SIMIC performs tasks that are specified via a run command language.
These commands can be entered interactively or in batch operation. SIMIC
supports a large repertoire of commands to control simulation options, to
modify the modeled electrical properties of circuit components, and to find
and eliminate problems in the design.

SIMIC allows the designer to model a logic network by using a hierarchical
or “building block” approach having as many levels as desired. Ultimately,
the circuit is resolvable to an interconnection of SIMIC primitive elements,
either built-in or user-defined. This hierarchical approach helps to make cir-
cuit design and debugging a more manageable task by allowing the designer
to verify subcircuits independently.

A SIMIC logic network description requires only two basic statements that
describe the functionality of the network; a type statement and a part state-
ment. The type statement names a logic building block or “macro”, and
declares its pins (inputs, bidirectionals, and outputs). The part statement
details the composition of the macro’s components and interconnections.
Each part statement instantiates (includes a reference to) a type which may
itself be a macro.

Section 1 Fundamentals Of SIMIC Simulation

1-2 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 1.1 Basic Simulation Introduction

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-1

Chapter 1.1 Basic Simulation

1.1.1 Introduction

This chapter introduces SIMIC run commands—instructions that are
entered to control SIMIC’s operation—and describes the basic steps for
simulating a circuit design:

• entering SIMIC

• leaving SIMIC

• general syntax of SIMIC run commands

• the minimum set of commands needed for basic simulation

• using files that contain SIMIC run commands

Subsequent chapters of this Guide will provide greater detail on the uses and
options of these commands. However, the information in this chapter is
applicable to a wide range of standard situations and should provide suffi-
cient SIMIC background to successfully begin using it.

1.1.2 Entering SIMIC

To begin a SIMIC session interactively, simply type the command:

simic

at the system’s prompt.

1.1.2.1 Case Sensitivity

SIMIC is case insensitive by default—it converts all lowercase input to
uppercase. In order to support case sensitive environments, SIMIC can be
instructed to operate in case sensitive mode. This mode is invoked with the
-s option on the command line:

simic -s

When this option is activated, the case of all user-defined names (i.e., signal,
subcircuit, delay, and instance names) will be preserved.

1.1.3 Entering Run Commands

Upon start-up, SIMIC displays a sign-on “banner”, which contains the ver-
sion of SIMIC currently executing. The version number has the format:

<major-release-number>.<minor-release-number>.<update-number>

Chapter 1.1 Basic Simulation Leaving SIMIC

1.1-2 SIMIC User’s Guide Revision 1.0 9/2/91

After the banner, SIMIC will display its own prompt (>>:) requesting com-
mand input:

The SIMIC Logic simulator... Version 1.00.00

Genashor Corp, Copyright 1991

>>:

Each time a command is entered, SIMIC will execute the command and,
after all required operations have been completed, issue another prompt to
indicate that it is ready for the next command.

1.1.3.1 Attention Interrupt

Most run commands specify options for subsequent simulation, and are pro-
cessed virtually instantaneously, compared to human reaction time. Some
operations, such as compilation and/or simulation of large circuits, and gen-
eration of voluminous reports, will require waiting for completion. If it
becomes necessary to prematurely terminate these operations (e.g., a mis-
take has been made, too much output has been requested, unexpected results
are observed early in the simulation, etc.), simply use the system Attention
key (control-C on most systems). SIMIC will stop its current operation, out-
put an ABORT message, and issue its prompt for a new command:

ABORT: User interrupt.

>>:

1.1.4 Leaving SIMIC

Once SIMIC has been invoked, a SIMIC session is ended by typing the
command:

>>: quit

SIMIC will also exit if an “end of file” condition occurs during a read at the
console. For example, the UNIX control-D (^D), and the VMS/MS-DOS
control-Z (^Z) are equivalent to issuing a quit command.

1.1.5 Parts and Signals

For the purposes of SIMIC simulation, a network description consists of
instantiated elements (parts) and nets (signals) that interconnect the pins of
these parts. Functional attributes may be assigned to parts (boolean equa-
tions, input timing checks, etc.), and electrical attributes may be assigned to
signals (rise time, decay, loading, etc.). Throughout this Guide, the terms
“signal”, “node”, and “net” will be used interchangeably, as will “part”,
“component”, and “element”.

Chapter 1.1 Basic Simulation Example: The FULL-ADDER Circuit

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-3

1.1.6 Example: The FULL-ADDER Circuit

The following example introduces basic simulation using the minimum set
of SIMIC run commands. It is suggested that this circuit be referenced while
reading further into Chapter 1.

Figure 1.1-1 Full-Adder Circuit

1.1.6.1 Describing the Full-Adder

This classic arithmetic circuit, shown in Fig. 1.1-1, has three inputs and two
outputs. Inputs a and b are operands, and carry-in implies connection to
the carry-out of a previous stage. The three inputs are all fed to a 3-input
Exclusive-OR gate, named xor, whose output, sum, is a logical-1 when-
ever there are an odd number of logical-1s at its inputs. The three inputs are
also connected in all possible combinations to the inputs of three 2-input
AND gates (and1, and2, and3) such that if two or more inputs are simul-
taneously logical-1, a logical-1 is propagated through the 3-input OR gate
(or1) to output carry-out.

Figure 1.1-2 SNL Description of the Full-Adder Circuit

Figure 1.1-2 illustrates a description of this circuit in SNL, SIMIC’s network
description language. SNL basics are covered in Chapter 1.2; however, a

Carry-out

Sum

Carry-in

B

XOR

AND3

AND2

AND1

OR1

A

c= Demonstration circuit of a Full-Adder

t=full-adder i=a,b,carry-in o=sum,carry-out

 p=xor t=exor i=a,b,carry-in o=sum

p=and1 t=and i=a,carry-in

p=and2 t=and i=b,carry-in

p=and3 t=and i=a,b

p=or1 t=or i=and1,and2,and3 o=carry-out

Chapter 1.1 Basic Simulation Example: The FULL-ADDER Circuit

1.1-4 SIMIC User’s Guide Revision 1.0 9/2/91

brief overview should suffice for a good understanding of the Full-Adder
description. The fundamental concept to grasp is that SNL is a keyword-ori-
ented language; each field of a line must be a keyword-field of the form
keyword=value. Referring to Figure 1.1-2:

1. The first line, beginning with C=, is simply a comment.

2. The second line, beginning with the T= keyword, is a type statement (T
is an abbreviation for TYPE) that assigns the name full-adder to the
circuit, defines its input (I=) pins as a, b, and carry-in, and its out-
put (O=) pins as sum and carry-out.

3. The next five lines instantiate the five gates in the circuit, and specify the
nets connected to their pins. They are called part statements.

For example, the first part statement, line 3, places the 3-input exclu-
sive-or gate generating sum into the circuit. The first keyword-field of
this line (P=xor) assigns the name xor to this part (P is an abbreviation
for PART). The second keyword-field (T=EXOR) declares the gate’s
type as an exclusive-or, which is one of SIMIC’s built-in primitives. The
third keyword-field, (I=a,b,carry-in), specifies the exclusive-or
gate’s three inputs. Finally, the last keyword-field (O=sum) names the
gate’s output signal.

Note that the output signal names of parts and1, and2, and and3 are
unspecified, since there is no O=… keyword-field in their associated part
statements. If this keyword-field is omitted in a part statement instantiat-
ing a single-output component, SIMIC implicitly assigns the output signal
the part’s name. (This reduces the amount of typing required.) Thus, the
names of the signals generated by the three AND gates are defaulted to
and1, and2, and and3.

To further reduce the amount of typing required, SNL supports a shortcut
that eliminates the need to enter keywords (e.g., p=, t=) in most part state-
ments. For example, the first part statement could have been:

This method is described in Chapter 1.2.

1.1.6.2 SIMIC Simulation of the Full-Adder

Figure 1.1-3 illustrates an interactive simulation session for the Full-Adder
circuit. User input is shown bold. Each user input line is terminated with the
appropriate key for the current system (“Enter”, “Return”, etc.).

 xor exor a,b,carry-in sum

Chapter 1.1 Basic Simulation Example: The FULL-ADDER Circuit

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-5

Figure 1.1-3 SIMIC Simulation Session For The Full-Adder

simic

The SIMIC Logic simulator... Version 1.00.00

Genashor Corp, Copyright 1991

>>: define file=fad

>>: get type=full-adder

Main Get Network : FULL-ADDER

GET completed, Circuit totals: Parts = 5; Signals = 10

 Inputs = 3; Busses = 0; Outputs = 2

>>: define padd.3 = 000 001 010 011 100 101 110 111

>>: apply pattern=padd

>>: print list=a,b,carry-in**sum,carry-out

>>: simulate

Remark= Options: (Fault Free simulation)

Remark= Pattern stimuli, Near Filter, Spike Propagation

Remark= Stable Before Decay, Dynamic Delay

C= ABC SC

C= A UA

C= R MR

C= R R

C= Y Y

C= - -

C= I O

C= N U

C= T

 0 T 1: 000 00

 0 T 2: 001 10

 0 T 3: 010 10

 0 T 4: 011 01

 0 T 5: 100 10

 0 T 6: 101 01

 0 T 7: 110 01

 0 T 8: 111 11

>>: quit

Quit Command Issued... Leaving SIMIC

Chapter 1.1 Basic Simulation Example: The FULL-ADDER Circuit

1.1-6 SIMIC User’s Guide Revision 1.0 9/2/91

Each of the commands and the corresponding SIMIC response will be dis-
cussed in detail. To begin the SIMIC interactive session type:

simic

in response to the system prompt. Upon start-up, SIMIC prints a banner con-
taining the version and copyright information. After this banner, SIMIC
issues the interactive prompt (>>:), requesting user input:

The SIMIC Logic Simulator... Version 1.00.00

Genashor Corp, Copyright 1991

>>:

The first command entered at the prompt:

>>: define file=fad

specifies a default name, fad, for all files that SIMIC is requested to read
or write. This default can be overridden for any file by specifying a different
file name in the appropriate run command. If the default file name is not
specified, SIMIC supplies the name, noname, as the default.

The second command:

>>: get type=full-adder

instructs SIMIC to compile the circuit, full-adder. Since no file was
specified in this command, SIMIC uses the default file name defined in the
previous command, fad, and the default extension for network files, net,
as the name of the file to be read. It then searches this file for a circuit
description named full-adder, reads the description, and compiles it.
SIMIC’s response to this command is:

Main Get Network : FULL-ADDER

GET completed, Circuit totals: Parts=5; Signals=10

 Inputs = 3; Busses = 0; Outputs = 2

This response reiterates the type name specified by the user and, if the com-
pilation was successful, displays the basic circuit statistics. Note that the
number of signals reported is 10, not 8 as might be expected. This is because
SIMIC always includes the global signals corresponding to logical-1 (ONE)
and logical-0 (ZERO). If unsuccessful, SIMIC would have enumerated the
error(s) found during the compilation process, and then reported an unsuc-
cessful get.

Having successfully compiled the full-adder with a get, the next command
describes the stimuli to test the circuit. This is done with another define
command:

>>: define padd.3=000 001 010 011 100 101 110 111

Stimulus definition will be discussed in detail in Chapter 2.3. In this exam-
ple, “simulate-until-stable” patterns are used—one of three stimulus modes
supported by SIMIC. Simply, this means that the circuit must finish
responding to the current stimulus before the next stimulus change is

Step #1:

Specify default file
name.

Step #2:

Specify the circuit
to be simulated.

Step #3a:

Specify the
primary input
stimuli.

Chapter 1.1 Basic Simulation Example: The FULL-ADDER Circuit

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-7

applied. This mode of operation, also called “fundamental mode”, makes
verification of the circuit simpler than for other stimulus modes, where rel-
evant to circuit operation. It also simplifies stimulus specification, since
application times are not required. This run command defines a pattern
sequence, named padd, that can be applied to 3 primary inputs. The pat-
terns consist of a binary sequence from 0 (000) to 7 (111).

SIMIC supports hierarchical pattern definition as well as pattern definition
of subsets of primary signals. Therefore, many different sequences of stim-
uli may be defined, each distiguished by a unique name (e.g., padd). Which
sequence is used for simulation is selected by the following command:

>>: apply pattern=padd

This command takes the previously defined stimuli, padd, and applies them
to the primary input signals in the order of their appearance in the Full-
Adder’s type statement. Thus, in each individual pattern of padd, the first
bit is applied to signal a, the second to b and the third to carry-in.
Although not used here, another keyword of the apply command allows
specification of the correspondence between primary signals and ordering of
values within the selected pattern.

The next run command instructs SIMIC to output specific simulation results
at the terminal:

>>: print list=a,b,carry-in**sum,carry-out

The signals to be printed are a, b, carry-in, sum, and carry-out, in
that order. The asterisk (*) has special meaning in the print command. It is
used to force a blank vertical column in the output. Therefore two blank col-
umns will be placed between the input signals (a, b, and, carry-in) and
the outputs (sum, carry-out). Because no other options were specified,
SIMIC will, by default, output a line every time the circuit enters a stable
state (all internal activity has ceased in response to an input change). Simu-
lation output can also be written to a file with the write command, which
will be described later in Chapter 2.4.

The next command initiates simulation:

>>: simulate

SIMIC will not begin true-value simulation if no simulation output has been
specified (print, write, etc.; this is not true for fault simulation). This saves
the user from the embarrassment of a lengthy simulation without any output
to show for it.

As shown in Figure 1.1-3, the following terminal output occurs as a result
of the above run commands. It consists of (a) an options banner, displaying
the currently selected simulation modes as remarks (Remark=), (b) a signal
header, displaying the selected signals’ names in vertical columns as com-
ments (C=), and (c) the simulation results in a truth table format:

Step #3b:

Apply the primary
input stimuli.

Step #4:

Specify what
should be reported
during simulation.

Step #5:

Initiate simulation.

Chapter 1.1 Basic Simulation Example: The FULL-ADDER Circuit

1.1-8 SIMIC User’s Guide Revision 1.0 9/2/91

Each line of the tabular simulation output contains:

• A number indicating the total simulation time (in time-units) from the
reference time. For this stimulus mode (patterns), the reference time
is the start of each applied pattern. The displayed times are 0 in this
example because delays were not assigned to element outputs;
unspecified delay values default to 0. Thus, this circuit responds
instantaneously to each new input pattern applied.

• The letter T, which serves as a delimiter between the preceding time
field and the test field that follows.

• A number indicating the current test for the output line. In this case,
each new pattern starts a new test.

• A colon (:) which serves as a delimiter between the test field and the
signal values that follow.

• The signal values, which are displayed in the format specified by the
print command.

Once simulation is complete, SIMIC issues another prompt (>>:), request-
ing further instructions. The quit command instructs SIMIC to exit:

>>: quit

Remark= Options: (Fault Free simulation)

Remark= Pattern stimuli, Near Filter, Spike Propagation

Remark= Stable Before Decay, Dynamic Delay

C= ABC SC

C= A UA

C= R MR

C= R R

C= Y Y

C= - -

C= I O

C= N U

C= T

 0 T 1: 000 00

 0 T 2: 001 10

 0 T 3: 010 10

 0 T 4: 011 01

 0 T 5: 100 10

 0 T 6: 101 01

 0 T 7: 110 01

 0 T 8: 111 11

Step #6:

Exit SIMIC.

Chapter 1.1 Basic Simulation Run Command Syntax

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-9

SIMIC responds with a sign-off banner, and displays statistics for the ses-
sion:

Quit Command Issued... Leaving SIMIC

Total SIMIC CPU-time = 0.14 sec. (00:00:00.14)

............... User : 0.12 sec. (00:00:00.12)

............. System : 0.02 sec. (00:00:00.02)

........ Page faults : 0

At this point, the SIMIC session is complete, and control returns to the sys-
tem level.

End of Example

1.1.7 Run Command Syntax

The run command syntax is designed to be flexible, succinct, and easy to
use. This section contains a brief overview of run command basics. Specific
commands are described in detail throughout this Guide.

Run commands generally contain a command verb (or action) followed by
one or more optional keyword-fields. Two commands, simulate and
quit, may be issued without keyword options.The general form is:

<command> <keyword_field> <keyword_field> ...

The command verb and the keyword-fields are separated from each other
(delimited) by whitespace, which for SIMIC is one or more tabs and/or
spaces.

Run command keyword-fields qualify the action of the command verbs. A
run command keyword-field is a SIMIC keyword followed by one or more
characters that specify an option or value. The syntax for the keyword val-
ues depends upon the command.

Keyword-fields can take two generic forms. The first form is:

<keyword>=<value_list>

where <value_list> is a list of specific values that are associated with the
keyword, delimited by whitespace and/or commas. (In some cases, where
noted, other delimiting characters have significance.) For example:

print list=a,b,c

means “print the three signals named a, b, and c”

The second form of keyword-field is:

<keyword>:

When a keyword is followed by a colon, SIMIC will apply a default value
for the keyword. In many situations, the colon may mean “all”. For exam-

SIMIC regards
tabs and space as
whitespace.

Chapter 1.1 Basic Simulation Run Command Syntax

1.1-10 SIMIC User’s Guide Revision 1.0 9/2/91

ple:

print list:

means “print all signals”.

Keyword values are defined by the run command in which they appear.
Unless a keyword’s value is specifically modified, it will retain it’s value
until the end of a SIMIC session (some return to their defaults after a new
circuit description is loaded). To modify a keyword’s value that was
assigned by a previous run command, the command would simply be reis-
sued with the keyword and its new <value_list>.

An action of a specified keyword may be cancelled by using the no prefix,
which has the following form:

no <command> <keyword_field>

The space between the no and <command> is optional. This will cancel or
inhibit the action of the command verb specified by the keyword field. An
example is:

>>: no print list:

This cancels all previous print commands specifying signals to be reported,
thereby disabling this terminal output. The no prefix is invalid for some
commands, such as quit, that have no options to cancel.

1.1.7.1 Sticky Parameters

Most SIMIC run command options are “sticky”. This means that when a run
command is issued, it will remain in effect until it is explicitly removed. As
an example, to print the signals a, b, and c, the following command can be
issued:

>>: print list=a,b,c

To cancel printing of these signals, issue the command:

>>: no print list=a,b,c

Otherwise, subsequent print list= commands will still result in print-
outs of a, b, c, as well as the subsequently specified signals.

Some simulation options are not sticky. They are specifically indicated as
non-sticky within the remaining chapters of this Guide.

1.1.7.2 Spacing and New Lines

Each command verb must begin a new line, optionally preceded by
whitespace only.

The command verb must be separated (delimited) from the first keyword by
whitespace. If the command contains more than one keyword field, the key-
word fields must also be separated by whitespace. Whitespace can be used

Chapter 1.1 Basic Simulation Run Command Syntax

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-11

freely to improve readability. Values and keywords cannot contain
whitespace characters unless enclosed within single or double quotes.

1.1.7.3 Blank Lines, Line Continuation

With one exception, blanks lines may be freely inserted in SIMIC run com-
mands to improve readability. Lines may be of any length, but they are usu-
ally confined to 80 characters to facilitate printing and editing. In order to
enter a run command spanning multiple lines, a dollar sign ($) is placed at
the end of the line to be continued. The $ causes the following line to be
appended, after removing any leading whitespace characters. Thus if delim-
iting whitespace is required, it must be placed before the $ character. If the
$ is followed by an equal sign (=), then the rest of the physical line is treated
as a comment, and thus ignored. If any characters follow the $ without an
intervening =, then an error is reported. For example:

is read by SIMIC as:

The exception noted above is a blank line immediately following a line
being continued. Like any other continuation line, the blank line is appended
to the continued line, thereby terminating it, since the blank line contains no
$ character.

1.1.7.4 Abbreviations

Abbreviations are common and useful when working with SIMIC. Most
command verbs and keywords may be abbreviated to only the first two let-
ters; more can be included. For example, the command verb print is abbre-
viated pr, but may also be entered as pri or prin.

However, there are exceptions to the “two-letter” rule. Three reserved words
may be abbreviated to just one letter. They are: comment (c), zero (z)
and x (x). Other words may require up to five letters in the minimum abbre-
viation to resolve ambiguity.

Throughout this Guide, whenever a new command or keyword is intro-
duced, the minimum abbreviation will be given in parentheses, e.g., print
(pr). In addition, Appendix C contains the abbreviations of all SIMIC com-
mand verbs, keywords, and reserved words.

“Line
Continuation” is
the one case
where a blank line
has relevance to
SIMIC. A blank
line terminates the
continuation.

This is $

a long sen$= This text is a comment

tence$

!

This is a long sentence!

Chapter 1.1 Basic Simulation RUN files

1.1-12 SIMIC User’s Guide Revision 1.0 9/2/91

1.1.8 RUN files

Run commands can be placed in files and SIMIC directed to do (execute)
the commands. These files are called run files, and their default extension,
if the full name is not specified, is run. For example, the commands for the
Full-Adder example could have been placed in a run file called fad. SIMIC
can be directed to read these commands by one of two methods:

1. By an interactive run command within SIMIC, execute file (ex fi):

>>: execute file=fad

SIMIC will then proceed to do the commands in the run file, fad. Note
that the execute command can also be placed into a run file, allowing
“nesting” of command files. Very often it is advantageous to place the
pattern definitions in a separate run file, as these can be very long. This
separation allows faster modification (editing) of the other run files,
since they would now be significantly smaller. If an error occurs in a
command read from a run file, the error message will contain the file’s
name and the line number containing the error.

More than one file may be specified in each execute command. In this
case each file will be executed in the order specified. Executed run files
may themselves contain execute commands, to a nesting depth of 4.

2. As a parameter on the system command line invoking SIMIC:

simic fad

This is equivalent to issuing the above execute command as the first
interactive command to SIMIC.

As in the execute command, more than one file may be specified in
the command line, separated by spaces.

The default
extension for run
files is run.

Run files can be
nested up to four
levels.

Chapter 1.1 Basic Simulation Using SIMIC in Batch (Background) Mode

Revision 1.0 9/2/91 SIMIC User’s Guide 1.1-13

1.1.9 Using SIMIC in Batch (Background) Mode

To use SIMIC in batch mode, create run file(s) that contain all commands
necessary for simulation, and then invoke SIMIC in the usual manner for
creating background jobs. Remember to redirect console output to a file! For
example, under UNIX, the command might be:

simic fad > fad.log &

and under VMS the equivalent command would be:

spawn/notify/out=fad.log simic fad

or

submit dosimic.com

where dosimic.com is a DCL command file containing the line:

simic fad

Under UNIX, SIMIC can also be made to read a run file by redirecting stan-
dard input (e.g., piping, ‘<‘). Make sure this file contains a quit run com-

mand; in background mode, end-of-file may not be properly returned by the
system, and SIMIC can “hang” waiting for input that will never arrive.

Chapter 1.1 Basic Simulation Using SIMIC in Batch (Background) Mode

1.1-14 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 1.2 Creating the Network Description Types of Network Description Statements

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-1

Chapter 1.2 Creating the Network Description

1.2.1 Types of Network Description Statements

Before any SIMIC simulation of a circuit can be performed, a complete
description of the circuit must be provided in a form that SIMIC can read.
This is accomplished by creating a Network Description File using the sys-
tem editor or some automated means. The default extension for Network
Description Files is net. SIMIC’s network description language is called
SNL (SIMIC Network Language). SNL is easy to learn. It allows a circuit
to be described with great flexibility and precision.

There are basically two types of SNL statements:

1. Specification Statements – These are the statements that describe cir-
cuit topology and electrical characteristics, and allow commentary. Each
SNL specification statement is composed of one or more keyword-fields

having the following syntax:

<keyword>=<value_list>

Keyword-fields must be separated (delimited) by whitespace—one or
more tabs and/or spaces. Within a keyword-field, optional whitespace
may be inserted before and/or after the equals sign (=) for readability. If
<value_list> contains more than one item, the items should be separated
by commas (,). In special cases other delimiters, such as semicolons
(;), must be used instead of commas. As with =, optional whitespace
may precede and/or follow these delimiters.

 There are four kinds of specification statements:

• a type statement—declares (1) the beginning of a subcircuit (macro)
definition or (2) a user-defined primitive (contains a type, but no
part keyword)

• a part statement—instantiates a component within a macro (contains
both a part and a type keyword)

• a delay statement—defines delay-vs.-loading characteristics (con-
tains a delay keyword)

• an annotation statement (begins with a REMARK or COMMENT key-
word).

If a Network
Description File’s
name is specified,
but not its exten-
sion, SIMIC
assumes that the
extension is net.

SIMIC defines
whitespace as
“one or more tabs
and/or spaces”.

List items are usu-
ally separated by
commas. Chapter
2 discusses the
use of semicolons.

Chapter 1.2 Creating the Network Description Some Basic SNL Guidelines

1.2-2 SIMIC User’s Guide Revision 1.0 9/2/91

2. Directives – These SNL statements control the SIMIC circuit compiler.
Most directives stand alone on a line, and all must be placed at the begin-
ning of a SNL statement, optionally preceded by whitespace. Directives
that begin with an exclamation mark (!) control the SIMIC parser.
Those that begin with a percent sign (%) control the SIMIC circuit com-
piler.

Every SNL file is assumed to begin with circuit topology information, thus
the !LOGICAL directive is optional, unless topology is preceded by another
section (!BEHAVIORAL, !DELAY, or !DOCUMENTATION).

The rest of this chapter will focus on describing topology in the !LOGICAL
section, and on annotation. Chapter 2.7, which continues the description of
SNL, covers circuit hierarchy and definition of electrical attributes.

1.2.2 Some Basic SNL Guidelines

1.2.2.1 Blank Lines, Line Continuation

With one exception, blanks lines may be freely inserted in SNL text to
improve readability. Lines may be of any length, but they usually contain 80
characters or less to facilitate printing and editing. In order to enter a SNL
statement spanning multiple lines, a dollar sign ($) is placed at the end of the
line to be continued. The $ causes the following line to be appended, after
removing any leading whitespace. Thus, if delimiting whitespace is

Table 1.2-1 SNL Directives

Directive Description

!BEHAVIORAL Declares the start of a section of statements
that define behavioral model interfaces.

!DELAY Declares the start of a section of statements
that define delay-vs.-loading characteristics.

!DOCUMENTATION Begins an annotation section (text ignored by
SIMIC).

!FORMAT Defines the section’s keyword ordering.

!INCLUDE References other files to include during com-
pilation.

!LOGICAL Declares the start of a section of statements
that describe circuit topology.

%DECLARE Describes collections of signals as vectors.

“Line Continua-
tion” is the one
case where a
blank line has rele-
vance to the
SIMIC circuit com-
piler.

Chapter 1.2 Creating the Network Description Some Basic SNL Guidelines

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-3

required, it must appear before the $ character in the line being continued.
If the $ is followed by an =, then the rest of the physical line is treated as a
comment, and thus ignored. If any characters follow the $ without an inter-
vening = then an error is reported. For example:

is read by SIMIC as:

The exception noted above is a blank line immediately following a line
being continued. Like any other continuation line, the blank line is appended
to the continued line, thereby terminating it, since the blank line contains no
$ character.

1.2.2.2 User-defined names

Any names that are created must begin with either an underscore (_), ques-
tion mark (?) or an alphanumeric character (0-9, a-z, A-Z). The remainder
of the name can contain more alphanumeric characters, underscores, and
question marks, as well as hyphens, percent signs, exclamation marks, and
periods. However, if any other characters are to be used, such as a pound
sign (#), or a backslash (\), then the name (or the portion containing the spe-
cial character) must be enclosed in single (apostrophe) or double quotes.

In case-insensitive mode (when SIMIC is not invoked with -s option—see
Entering SIMIC in Chapter 1.1), SIMIC converts all user-defined names to
uppercase unless directed otherwise. Double quotes serve the dual role of
providing this direction; the case of text enclosed within double quotes is
preserved. Below are some examples:

original: read as:
abc ABC

“abc” abc

‘abc’ ABC

ab”c” ABc

‘ab’”c” ABc

“ab’c’” ab’c’

‘ab”c’ AB”C

There are three reserved signal names in SIMIC which have special mean-
ing, and should not be used as the name of any primary or internal signals.

This is $

a long sen$= This text is a comment

tence$

!

This is a long sentence!

In case-insensitive
mode, double-
quoting a name
preserves the
character’s case
(upper or lower).
Otherwise all low-
ercase letters (a-z)
are converted to
upper case.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

1.2-4 SIMIC User’s Guide Revision 1.0 9/2/91

The three names are: ONE, UNUSED and ZERO, corresponding to logical-1,
an unused component pin, and logical-0, respectively. The proper use for
these reserved signal names is illustrated in examples throughout this Guide.

It is important to note that the reserved signal names will match the correct
spelling, even if the cases don’t match. Therefore: “one”, “One”, “ONE”
etc. are all equivalent. Similarly, the names of SIMIC primitives are case
insensitive; for example, “and”, “And”, “AND” etc. are synonymous.

1.2.3 Describing Circuit Topology

1.2.3.1 !LOGICAL

A !LOGICAL directive is implicitly assumed at the beginning of each Net-
work Description File (default file extension net). Therefore, if the NET file
begins with a topological description section, it is not necessary to place the
!LOGICAL directive at the beginning of the file.

The !LOGICAL section describes the circuit structurally, that is, as an inter-
connection of SIMIC primitives (built-in or user-defined) and macros,
which are subcircuits containing primitives and/or other macros.

The circuit is described using a hierarchy of type and part specification
statements. Each !LOGICAL section contains the definition of one or more
types. Each such definition is called a type block.

1.2.3.2 Basic Type Block Structure

A type block is composed of a single type statement followed by one or
more part statements. The one exception to this the BOOLEAN type
block, which has no associated part statements.

A type statement declares the beginning of a macro description, assigns the
macro a name, defines its external pins—inputs, outputs, and busses (bidi-
rectionals), and optionally specifies electrical attributes (e.g., delay, pin
loading). The simplest form of type statement is:

TYPE=<type_name> I=<input_list> $

O=<output_list>

where:

• <type_name> is the user-defined name of the macro being defined.

• <input_list> is the list of user-defined names for input pins, one name
per pin, separated by commas (,).

• <output_list> is the list of user-defined names for output pins, one
name per pin, separated by commas (,).

type statement
description.

This statement
begins the defini-
tion of a subcircuit
(macro).

Chapter 1.2 Creating the Network Description Describing Circuit Topology

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-5

A part statement instantiates (places) a component within the type block.
It assigns an instance name to the component, which must be unique within
this type block. It specifies the type of component being instantiated (e.g.,
AND, NOR, or the type name of a macro defined elsewhere). It also speci-
fies the interconnections with the other parts within the type block, or with
the pins of the type block itself. Finally, it may also describe electrical char-
acteristics of this component, such as output delay, pin loading, etc.

When considering part statements, it is vital to make a clear distinction
between the type being defined (the <type_name> in the type statement)
and the type being instantiated (the value of the TYPE= keyword-field of
the part statement).

The simplest form of the part statement is:
PART=<part_name> TYPE=<referenced_type> $

I=<input_list> O=<output_list>

where:

• <part_name> is the user-defined name of this instance of the
<referenced_type>. This name must be unique within the type block.

• <referenced_type> is the name of the SIMIC primitive (built-in or
user-defined) or macro to be instantiated as this PART. If the circuit
compiler cannot recognize the referenced type as a primitive or as a
macro defined elsewhere, then an error is issued.

• <input_list> is the list of user-defined names for input nets—one
name per net, separated by commas (,).

• <output_list> is the list of user-defined names for output nets,—one
name per net, separated by commas (,).

Each user-defined net name specified in <input_list> or <output_list> is
associated in a one-to-one correspondence with <referenced_type>’s
defined pin order. For example, DL is a built-in SIMIC D-latch primitive. Its
input pins are defined as NR, NS, C, D, in that order (active-low reset, active-
low set, clock, and data, respectively), and its single output pin is defined as
Q (see Appendix A). The part statement:

PART=q TYPE=dl I=reset,set,clock,data O=l_out

instantiates a DL whose part name is q, which must be a unique part name
within the containing type block. The DL’s NR pin is connected to a net
named reset, its NS pin to set, its C pin to clock, and its D pin to data.
Its single output pin, Q, is connected to signal l_out.

part statement
description.

This statement
places a part
within the type
block and con-
nects its pins.

Functionally (or
semantically),
type statements
and part state-
ments have totally
different functions.

Structurally, (or
syntactically), the
main difference
between the two is
that a type state-
ment must contain
a TYPE= keyword-
field, but not a
PART= keyword-
field, while a part
statement must
contain both a
TYPE= keyword-
field and a PART=
keyword-field.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

1.2-6 SIMIC User’s Guide Revision 1.0 9/2/91

1.2.3.3 Implicit Names And Connections

Connectivity between the internal nets and pins of the type being defined
is established by the commonality of their names. In other words, pins
declared in the type statement and nets with the same name are implicitly
connected together within the same type block.

In contrast, no implicit association is made between user-assigned names
and pin names of instantiated types that happen to be identical. Thus, in the
above example, even though the assigned part name, q, is identical to the
DL primitive’s output pin name, no ambiguity is introduced, nor connectiv-
ity implied, by assigning this particular part name.

To reduce the amount of typing required, SIMIC supports an implicit nam-
ing convention for certain output signals. If a part statement instantiates a
type that has only one output, then the O= keyword-field may be omitted.
In this case, the output net will have the same name as its part. For example:

PART=q TYPE=dl I=reset,set,clock,data

is equivalent to:
PART=q TYPE=dl I=reset,set,clock,data O=q

Any input pin of a part may be connected to logical-0 or logical-1 by using
the reserved words ZERO and ONE, respectively. For example:

PART=q TYPE=dl I=reset,one,clock,data

connects the DL’s NS pin to ONE, thereby disabling this input.

1.2.3.4 Advanced Topic Digression: By-Name Pin Connections

An alternative form for specifying a part’s pin connections utilizes connec-
tion by-pin-name (named association) rather than by-order (positional asso-
ciation). This is important for some schematic capture programs that do not
have an ordering attribute for pins. However, the by-order convention is the
more compact form, simplifying manual entry.

The simplest form for the by-pin-name connection syntax is:
<net>(<pin>)

where:

• <net> is the net name to connect to the designated <pin>.

• <pin> is the pin name of the primitive or macro.

For example:
PART=q TYPE=dl $

I=reset(nr),set(ns),clock(c),data(d)

connects the net named reset to the pin nr, set to ns, etc.

A signal is implic-
itly connected to
an identically-
named pin of the
type being
defined.

No associations
are made for iden-
ticaluser-assigned
signal names, part
names, and pin
names of instanti-
ated types.

For a part having
only one output,
the output name
defaults to the
part’s name if the
O= keyword value
is omitted.

This topic is
placed here for
completeness and
is not prerequisite
for future reading.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-7

The full form for by-pin-name connections is:
‘<’<net_list>(<pin_list>)‘>’

where:

• <net_list> is a list of net names separated by commas to connect to
the <pin_list>

• <pin_list> is a list of pin names of the instantiated primitive or macro.

• ‘<’ and ‘>’ are literals, rather that syntactic descriptors, indicating
that left angle bracket and right angle bracket, respectively, must be
placed at these positions.

The enclosing left (<) and right (>) angle brackets are required only if
net_list contains commas; otherwise they are optional. For example, the fol-
lowing part statements are identical to the one in the previous example:

PART=q TYPE=dl $

I=<data,clock(d,c)>,<reset,set(nr,ns)>

PART=q TYPE=dl $

I=<data,reset,set,clock(d,nr,ns,c)>

1.2.3.5 SIMIC Primitives

A primitive is an element that SIMIC can model directly, without requiring
a structural description containing simpler functions. SIMIC supports a
number of built-in primitives that can be used as a basis for describing cir-
cuits:

• simple combinational gates – inverter, and, nand, or, nor, exclusive-or,
exclusive-nor

• combinational functions – and-and-nor, or-or-nand, multiplexer

• latches – nand-latch, nor-latch, D-latch

• edge-triggered flip-flops – D, JK, T

• tristating drivers

• programmable element and memories – PLA, ROM, RAM

• bidirectional and switches – ideal and resistive

• backannotation – wiring capacitance and path-delay.

A full description of each built-in SIMIC primitive can be found in Appen-
dix A of this Guide.

Primitives may also be user-defined. SIMIC supports defining new primi-
tives by Boolean equations in type or part statements.

To use a primitive in a circuit description, enter the primitive’s type name as
the value of the TYPE= keyword-field in the part statement (e.g.

There must not be
a white-space
character before
the left parenthe-
sis in either form.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

1.2-8 SIMIC User’s Guide Revision 1.0 9/2/91

TYPE=and). Built-in primitives that represent simple combinational gate
functions (AND, OR, NAND, NOR, EXOR, EXNOR) may have from 1 to
32767 inputs, which can be specified in any order. However, for primitives
whose inputs (or outputs) have dissimilar functions (such as flip-flops), or
for user-defined primitives, it is very important to specify net names for the
I= keyword in the exact order that SIMIC expects, when using by-order
specification. The expected pin order for each built-in primitive is given in
the associated Type Statement in Appendix A.

1.2.3.6 Example

Figure 1.2-1 illustrates a 3-stage Johnson Counter, and a SNL description of
this circuit. It contains three (3) rising-edge triggered D flip-flops, an
inverter, and a buffer on the reset line. The part statements within the SNL
description are indented for readability.

Figure 1.2-1 Three Stage Johnson Counter And
An Equivalent SNL Description

In describing the circuit to SIMIC, begin with the type statement, which
declares the start of a macro definition. Again, use theTYPE= keyword-field
to name the type, and the I= and O= keyword-fields to name the inputs and
outputs, respectively.

D
NS

NR

Q D
NS

NR

Q D
NS

NR

Q

BUF

F1 F2 F3

BACK

Reset

One

Clock

Back

Q1

Q2

Q3

TYPE=johnson_counter I=clock,reset O=q1,q2,q3

 PART=buf TYPE=and I=reset O=rbuf

PART=f1 TYPE=dcf I=rbuf,one,clock,back O=q1

PART=f2 TYPE=dcf I=rbuf,one,clock,q1 O=q2

PART=f3 TYPE=dcf I=rbuf,one,clock,q2 O=q3

PART=back TYPE=inv I=q3 O=back

Rbuf

type statement
example.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-9

TYPE=johnson_counter I=clock,reset O=q1,q2,q3

This type statement declares that the current type block, consisting of this
statement and the part statements which follow it, is a description of a
macro called johnson_counter, having five pins—two inputs (clock
and reset) and three outputs (q1, q2, and q3).

A type statement must be followed by one or more part statements (with
the exception of the BOOLEAN type statement), each of which: (a) instan-
tiates a primitive or macro, (b) gives this instance a unique part name, and
(c) specifies the signals connected to its pins. The part statements for the
JOHNSON_COUNTER are:

PART=buf TYPE=and I=reset O=rbuf

PART=f1 TYPE=dcf I=rbuf,one,clock,back O=q1

PART=f2 TYPE=dcf I=rbuf,one,clock,q1 O=q2

PART=f3 TYPE=dcf I=rbuf,one,clock,q2 O=q3

PART=back TYPE=inv I=q3 O=back

johnson_counter has five parts, all of which are built-in primitives.
Examining each of the five part statements:

• The first part statement creates a part called buf, which is an
instance of the AND primitive. Only one input is listed, specifying a
connection to reset. Because reset is one of johnson_-
counter’s external inputs, SIMIC “knows” that the input of buf is
to be connected to the reset input pin of johnson_counter.
Part buf has one output signal named rbuf. Since this is not one of
johnson_counter’s external pins, SIMIC “knows” that rbuf is
an internal node.

• The next three parts (f1, f2, f3) are instances of the DCF built-in
primitive. The DCF is a positive-edge-triggered D flip-flop (see
Appendix A), and its input pins (NR, NS,C, D—in that order) each
have a unique function. Input signal names specified in the I= key-
word-field are associated with the DCF primitive’s input pins in
exactly this order. Thus, the NR (active-low asynchronous reset) pin
of each DCF is connected to rbuf, which is the output of the part
buf, described in the previous paragraph. The NS (active-low asyn-
chronous set) pins are all connected to ONE; therefore, these pins will
be held at a logical-1 throughout the simulation. This effectively dis-
ables the NS port of each DCF. All the C (clock) pins are connected to
clock, one of johnson_counter’s external inputs. Part f1 has
its d (data) input connected to the net named back, while the d inputs
of parts f2 and f3 are q1 and q2, respectively. The outputs of the
three DCFs, q1, q2, and q3, are also connected to the output pins of
johnson_counter.

part statement
example

Chapter 1.2 Creating the Network Description Describing Circuit Topology

1.2-10 SIMIC User’s Guide Revision 1.0 9/2/91

• The last part statement creates an instance of the built-in primitive
INV (an inverter) called back. Its single input is connected to the out-
put of part f3, which, again, is the external output pin, q3, of
johnson_counter. The output of part back, also called back, is
connected to the d input of part f1. Note that, since the part name and
output net name are identical, this O= keyword-field could have been
omitted. Note also that this net (back) was previously referenced in
the part statement for f1.

End of Example

Again, notice that in the Johnson counter example, each element and signal
are given unique names. Each part within a type block has a unique name,
as does each type block pin. Moreover, in a circuit with multiple type
blocks (this Johnson Counter only has one), each type name, specified in a
type statement, must be unique.

SIMIC supports many options for describing the attributes of external pins
and internal nets for any circuit (or subcircuit). A full list of the SNL key-
words that SIMIC will recognize appears in Appendix B. It includes such
attributes as OUTPUT-DRIVE, INPUT-LOAD and a host of other parame-
ters useful in modeling a circuit (also see Chapter 2.7). If unspecified,
SIMIC supplies default values for all electrical attributes.

1.2.3.7 Keyword-field Ordering

One advantage of a keyword-oriented description language is that the order
of the fields within each statement is not important. As an example, the fol-
lowing is a functionally identical restatement of the johnson_counter
type block which illustrates SNL’s flexibility with regard to part statement
and keyword-field ordering.

TYPE=johnson_counter O=q1,q2,q3 I=clock,reset

I=q3 O=back PART=back TYPE=inv

TYPE=and I=reset O=rbuf PART=buf

I=rbuf,one,clock,q1 PART=f2 TYPE=dcf O=q2

I=rbuf,one,clock,q2 TYPE=dcf PART=f2 O=q3

TYPE=dcf I=rbuf,one,clock,back PART=f1 O=q1

 It is suggested, however, that a consistent ordering be used to improve read-
ability.

Cautionary Note:
it is legal to
assign the same
signal name to
the outputs of
different parts—
this causes the
outputs to be
wire-tied.

keyword-field
order flexibility
example.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-11

1.2.3.8 Abbreviations

In order to reduce typing, SIMIC recognizes abbreviations for almost all of
the SNL keywords. Some abbreviations were already used to describe the
johnson_counter. The following is a list of the keywords used in their
full and abbreviated forms:

When a new keyword is introduced in the remainder of this Guide, its valid
abbreviations will be given. A complete list of SNL keywords and their
abbreviations can be found in Appendix B of this Guide.

1.2.3.9 !FORMAT (!FOR !F)

To further reduce the amount of typing required, as well as entry time and
file sizes, SNL provides a method for eliminating even the abbreviated key-
words. The !FORMAT directive specifies the order of keyword-fields in sub-
sequent specification statements. Once this order has been established, only
the values need to be entered rather than the entire keyword-fields.

Figure 1.2-2 below illustrates the SNL description of the johnson_-

counter using the !FORMAT statement to order keyword-fields within
part statements:

!FORMAT P= T= I= O=

T=johnson_counter I=clock,reset o=q1,q2,q3

buf and reset rbuf

f1 dcf rbuf,one,clock,back q1

f2 dcf rbuf,one,clock,q1 q2

f3 dcf rbuf,one,clock,q2 q3

back inv q3

Figure 1.2-2 Johnson Counter Description Using !FORMAT

In this SNL description, the !FORMAT statement declares that the first field
in each subsequent part statement will be the part name (P=), the second
field will be the referenced type (T=), the third will specify the part’s
input(s) (I=), and the fourth field will specify the part’s output(s) (O=).
When, for example, the part statement instantiating the DCF named f1 is
read, the first keyword of the !FORMAT statement, P=, associates with the
first item in the line, f1, to form the complete keyword-field P=f1. Next,
the second format keyword, T=, combines with the line’s second item, DCF.

Full: Abbr.: Notes:

INPUT-PINS IPINS,I Used in type statements
INPUT-NETS INETS,I Used in part statements
OUTPUT-PINS OPINS,O Used in type statements
OUTPUT-NETS ONETS,O Used in part statements
PART P

TYPE T

!FORMAT
 example.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

1.2-12 SIMIC User’s Guide Revision 1.0 9/2/91

Similarly, the third format item, I=, combines with the line’s third item,
which is the list rbuf,one,clock,back, and O= combines with q1.

The following are guidelines for using the !FORMAT directive:

1. A !FORMAT statement may be defined uniquely for the !DELAY and
!LOGICAL sections.

2. A !FORMAT statement remains in effect for a section until the next
!FORMAT statement in that section. This is true even when multiple
Network Description Files are used. !FORMAT statements remain in
effect from file to file.

3. To cancel the !FORMAT statement, issue a !FORMAT statement without
any keywords following it.

4. If a statement does not require a value for one of the keywords specified
in the current !FORMAT statement, enter a hyphen (-) as a “place-
holder” for that keyword’s value to skip by the keyword.

5. If no values are required for keywords at the end of the !FORMAT list,
hyphens are not required, since no keywords are skipped.

6. In contrast, if a statement requires a keyword-field that is not specified
by the current !FORMAT statement, or the keywords need to be specified
in a different order, the entire keyword-field must be typed in. This will
suspend the formatting for the rest of the statement. Therefore, all sub-
sequent keyword-fields must be explicitly entered (of course abbrevia-
tions are acceptable). Clearly, the most efficient way to add a keyword-
field is to append it to the end of the line.

The following example demonstrates the various usages of formatted part
statements. In this example, all the part statements are equivalent:

!format part= type= i= o=

- and a,b part=c

c and a,b

c and i=a,b o=c

part=c type=and i=a,b o=c

The first part statement illustrates guidelines (4) and (6). The hyphen skips
over the !FORMAT statement’s PART= keyword, so its and entry is associ-
ated with the !FORMAT statement’s TYPE= keyword. The entry after the
input signal field, (a,b) would normally associate with the !FORMAT state-
ment’s O= field, but the PART=c entry, containing a keyword, overrides for-
matting.

The second part statement illustrates guideline (5). Here, the O= entry was
omitted (since the output signal’s name will default to the identical part
name), but no placeholder hyphen was necessary because no other fields fol-
low.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-13

The third part statement illustrates guideline (6). Having used a keyword
to specify the inputs (I=A,B), formatting is suspended, and a complete key-
word field (O=c) is required to specify the output signal.

1.2.3.10 Signal Arrays

Signals can be grouped into arrays of up to 2 dimensions. The terms “array”
and “vector” will be used synonymously throughout the remainder of the
Guide.

Arrays are declared with the %DECLARE statement. The scope of a
%DECLARE statement is local to the type in which it is contained. In addi-
tion to explicitly declaring array bounds, this statement also associates a
default radix with each array for subsequent display during simulation. The
format for the %DECLARE statement is:

%DECLARE <format>=<array list>

where <format> is one of the following:

• LEVEL (LEV) -- standard level format.

• OCTAL (OCT) -- octal format.

• HEXADECIMAL (HEX) -- Hexadecimal format.

• INTEGER1 (INT1) -- One’s complement format.

• INTEGER2 (INT) -- Two’s complement format.

• POSINTEGER (POSINT) -- Positive integer format.

and <array list> is a list of arrays (separated by commas), each array in the
format:

<root name>[<range #1>]

for single dimensional arrays, and:
<root name>[<range #2>][<range #1>]

for two-dimensional arrays. Here, <root name> is the user-assigned name
for the array, and <range> specifies the extents for the indicated array
dimension in the format:

<start>:<end>

where <start> and <end> are integers describing the starting and ending
limits of the array.

If declared, an array can be used in the type statement or part statement as
follows:

1. If only the <root name> is entered, then the entire array will be substi-
tuted for <root name>, in the declared order.

2. For any other array selection, all dimension ranges must be specified.

3. If the <start> and <end> values are the same, then the colon (:) and
<end> values may be omitted.

Chapter 1.2 Creating the Network Description Describing Circuit Topology

1.2-14 SIMIC User’s Guide Revision 1.0 9/2/91

4. Only signals may use array notation (i.e not parts or types).

For example, the outputs of the flip flops in the johnson_counter can
be declared as an octal array in the following manner:

!FORMAT P= T= I= O=

T=johnson_counter I=clock,reset o=q

%declare octal=q[1:3]

buf and reset rbuf

f1 dcf rbuf,one,clock,back q[1]

f2 dcf rbuf,one,clock,q[1] q[2]

f3 dcf rbuf,one,clock,q[2] q[3]

back inv q[3]

The %declare statement specifies that q consists of three signals: q[1],
q[2], and q[3], with a default display format of octal. The output in the
type statement is q, which represents all signals of the array in their declared
order. The following is an equivalent type statement:

T=johnson_counter I=clock,reset o=q[1],q[2],q[3]

Each dcf part statement specifies the individual array component that is the
corresponding flip-flop’s output.

For further information on the display radix and its use, see the Section Con-

trolling Signal Value Representation in Chapter 2.4.

Chapter 1.2 Creating the Network Description Annotation

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-15

1.2.4 Annotation

It is highly recommended that comments and documentation be added to the
Network Description (NET) file. This will not only make it easier to keep
track of decisions made in describing a circuit, but it is immeasurably help-
ful to anyone else who may need to understand this file.

SNL provides three ways to annotate a file.

1.2.4.1 The REMARK (REM, R) keyword

REMARK is a SNL keyword that allows a message to be sent to the console
while the circuit is being compiled. The REMARK should be placed within
the type block requiring the annotation (i.e. below the type statement).
Remarks are displayed at the console during circuit compilation. SIMIC
ignores remarks that are not in a !LOGICAL section. Textual case within a
REMARK statement is preserved.

The dollar sign ($) continuation character is not supported for remarks. In
order to continue a remark beyond one line, a REMARK keyword must start
the remark on the following line. The following example illustrates remark
continuation.

TYPE=my8590 I=i1,i2,i3 O=o1,o2

P=p1 T=8590 I=i1,i2,i3 O=o1,o2

REMARK= Caution: the 8590 cell is obsolete,

REMARK= please use the 8690 cell in all

REMARK= new designs.

During circuit compilation, only remarks in type blocks actually used in the
circuit will be displayed, and then only once, no matter how many times the
type is instantiated.

Case is preserved
in a REMARK.

Chapter 1.2 Creating the Network Description Annotation

1.2-16 SIMIC User’s Guide Revision 1.0 9/2/91

1.2.4.2 The COMMENT (COM, C) Keyword

Frequently, brief commentary can be very helpful. If the commentary will
only occupy a few lines, the COMMENT keyword is appropriate. Comments
are ignored by SIMIC.

The dollar sign ($) continuation character is not supported for comments.
All text from the COMMENT= keyword to the end of the physical line is
ignored. The COMMENT keyword-field can appear anywhere in the Network
Description File; either at the end of part, type, or delay statements, or in
lines between these statements.

Unlike remarks, comments are not displayed during circuit compilation.
The following demonstrates the use of comments:

C= **************************************

C= * An Example of some ways to include *

C= * commentary. *

C= **************************************

C= Comments may be put anywhere in a NET file,

C= as long as you remember that ‘$’ is ignored

C= in comments, and that all comments begin

C= with the COMMENT keyword.

!LOGICAL C= The network description section

TYPE=buf I=in O=out C= Another comment!

1.2.4.3 The $= Comment

Since dollar signs ($) are ignored in comments, a special construct is pro-
vided in order to put comments inside continued statements. If an equals
sign (=) is appended to the $ continuation character, then the remainder of
the line will be treated as a comment and the statement will properly con-
tinue on the next physical line. If the = is omitted, then a warning will be
issued if anything but whitespace is found before the physical end of line.
Following is a simple example of continuation comments:

TYPE=johnson_counter $= type block name

I=clock,reset $= Inputs for this type

O=q1,q2,q3 C= Outputs for this type

Note that if the last comment used the $= comment instead of the C= com-
ment, then a blank next line would have been required to properly terminate
the statement.

Chapter 1.2 Creating the Network Description Annotation

Revision 1.0 9/2/91 SIMIC User’s Guide 1.2-17

1.2.4.4 The !DOCUMENTATION (!DOC) Directive

The SNL !DOCUMENTATION directive provides the opportunity to make
extensive comments in the Network Description (NET) file without having
to begin each line with the COMMENT= keyword. SIMIC will ignore every-
thing from the !DOCUMENTATION statement to the next section header
(!LOGICAL, !DELAY, etc.) or the end of the file. For example:

!DOCUMENTATION

Many designers find it a tedious and

distracting task to document their work,

despite the obvious benefits it provides to

themselves and to other designers.

!LOGICAL C= Start of Network Description

!FORMAT P= T= I= O=

T=johnson_counter I=clock,reset O=q1,q2,q3

buf and reset rbuf

f1 dcf rbuf,one,clock,back q1

f2 dcf rbuf,one,clock,q1 q2

f3 dcf rbuf,one,clock,q2 q3

back inv q3

!DOCUMENTATION

SIMIC offers a variety of Annotation and

Documentation options.

Since a directive declaring a new section (!LOGICAL or !DELAY) implic-
itly terminates the !DOCUMENTATION section, the first character in each
line of annotation should never be an exclamation mark.

Chapter 1.2 Creating the Network Description Annotation

1.2-18 SIMIC User’s Guide Revision 1.0 9/2/91

Section 2 SIMIC Simulation

Revision 1.0 9/2/91 SIMIC User’s Guide 2-1

Section 2 SIMIC Simulation

This chapter introduces you to all aspects of SIMIC good-logic (fault-free)
simulation. Each section provides detailed information on a specific topic,
and is as self-contained as possible. Thus, you can read these sections in any
order, since no section is a prerequisite for another. However, the material
in Chapter 1 should be well understood, since the current chapter builds on
this basis.

Section 2 SIMIC Simulation

2-2 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 2.1 File Naming Conventions File Name Format

Revision 1.0 9/2/91 SIMIC User’s Guide 2.1-1

Chapter 2.1 File Naming Conventions

SIMIC reads and creates a variety of textual and binary files. This section
describes SIMIC file naming conventions, and illustrates how to specify
operating system dependent file names to SIMIC.

2.1.1 File Name Format

2.1.1.1 File Names and Extensions

SIMIC maintains a file naming convention that is oriented toward classify-
ing files by project and function. Every file’s name has two components; a
name and an extension.

SIMIC supports an implicit (default) convention that associates the file’s
name with the project (typically, the name of the circuit being simulated)
and its extension with file’s contents.

Alternatively, the user can specify file names explicitly in each SIMIC run
command that reads or writes a file, to assign file names in another manner.
In this case, the format for completely specifying a file’s name to SIMIC is:

<name>.<extension>

where <name> and <extension> follow the rules for valid file names in the
current operating environment.

Most operating systems support the use of dot (.) in file names. For these
systems, SIMIC reads and writes files whose names have the above format,
whether file names are implicitly or explicitly specified. For those environ-
ments that use another format (such as IBM/CMS, which uses a space to
delimit <name> and <extension>), SIMIC still expects the above format to
maintain consistency. Internally, SIMIC automatically converts file names
to the proper system representation.

2.1.1.2 File Names And System Compatibility

SIMIC file name and extension specifications may be constructed from:

a. any sequence of characters beginning with an underscore (_), ques-
tion mark (?) or an alphanumeric character (0-9, a-z, A-Z) and
optionally containing more characters that are alphanumeric charac-
ters, underscores, question marks, hyphens, percent signs, exclama-
tion marks, and periods, or

b any sequence of characters enclosed in single or double quotes.

Chapter 2.1 File Naming Conventions Implicit File Names

2.1-2 SIMIC User’s Guide Revision 1.0 9/2/91

However, the main consideration in selecting file names is compatibility
with the operating system’s file naming conventions; in general, there
should be considerable overlap of valid system file names and valid SIMIC
file names. Some valid system file names, though, may not be compatible
with SIMIC; in order to specify a name that does not conform to the above
rules, the name should be enclosed in either single or double quotes.

When SIMIC is operating in case-insensitive mode, choice of which quotes
to use, or even whether to enclose valid SIMIC names in double quotes,
depends on the operating system. Since some operating systems are case
sensitive, SIMIC uses the following convention when operating in this
mode:

• The case of all text enclosed in double quotes (") is preserved.

• If a name contains no double quotes, it is converted to lowercase.

• If substrings of a name are enclosed in double quotes, and others
aren’t, the substrings outside the quotes are converted to uppercase.

Of course, when SIMIC is operating in case-sensitive mode, (-s command
line option) no case conversion occurs, so user-defined names must be
directly system compatible.

2.1.2 Implicit File Names

If SIMIC needs to open a file whose name is not explicitly specified, it cre-
ates the name from a common user-supplied name and an extension that is
dedicated to the run command being executed. This common name, called
the default file name, is specified with the FILE (FI) keyword option of
the DEFINE (DE) run command:

DEFINE FILE=<name>

Note that no extension is specified here, since this will depend on the run
command.

Every SIMIC run command that reads or writes a file has an associated key-
word for specifying the file’s name (e.g., FILE, LFILE, SFILE). If this
keyword is suffixed with a colon (:), then SIMIC will utilize the file’s
implicit name.

For example, as a result of the following run commands:
DEFINE FILE=proj1

GET LFILE:

WRITE FILE:

the listing file, proj1.lst, will be created by the GET command, and the
simulation output file, proj1.wrt, will be created by the WRITE com-
mand.

Chapter 2.1 File Naming Conventions Explicit File Names

Revision 1.0 9/2/91 SIMIC User’s Guide 2.1-3

The default file name can be changed at any time by entering a newDEFINE

FILE command. For example, if the following run commands are issued
after those shown above:

DEFINE FILE=proj2

WRITE FILE:

WARN FILE:

then subsequent simulation output will go to proj2.wrt, instead of
proj1.wrt, and simulation warning messages will be written to
proj2.wrn.

Note: The default file name itself has a default; if no DEFINE FILE com-
mand has been issued, the default file name is noname.

2.1.3 Explicit File Names

File names are explicitly specified by using the equals (=) form of run com-
mand keyword-fields instead of the colon (:) form. For example,

DEFINE FILE=proj1

WRITE FILE=proj2

WARN FILE:

explicitly specifies the simulation output file to be proj2.wrt, and
implicitly specifies the warning message file to be proj1.wrn.

Note that, in this example, the simulation output file’s default extension,
wrt, was implicitly used even though the file’s name was explicitly speci-
fied. If desired, the file extension can also be specified explicitly. For exam-
ple,

WRITE FILE=proj2.writefile

specifies that the simulation output file is proj2.writefile. Here, the
full file name, <name>.<extension>, has been specified.

2.1.4 Spanning Directories

If it is necessary to read or write files in a different directory, their names
should be enclosed in either single or double quotes (depending on the oper-
ating system—see the Section File Names and System Compatibility

above), since the characters necessary to construct path or directory names
are generally not valid characters for constructing SIMIC file names. File
names containing directory names are system dependent. Examples:

WARN FILE=”/home/projects/proj1.wrn”

WARN FILE=’USER1:[MITCH.PROJECTS]PROJ1.WRN’

Both examples specify a file named proj1.wrn in a subdirectory named

Chapter 2.1 File Naming Conventions Spanning Directories

2.1-4 SIMIC User’s Guide Revision 1.0 9/2/91

projects; the first example would be entered under the UNIX environ-
ment, the second under VMS. Note that the file extension must be specified
in this format.

Chapter 2.2 Circuit Compilation Introduction

Revision 1.0 9/2/91 SIMIC User’s Guide 2.2-1

Chapter 2.2 Circuit Compilation

2.2.1 Introduction

Circuit compilation is the process translating a circuit’s textual SNL
description into a binary representation that SIMIC can use during simula-
tion. In the process, many topological and electrical checks are performed,
and a number of circuit modifications and optimizations are made to
improve simulation throughput and accuracy:

1. Optimization and consolidation:

a. Simple combinational gates and switches that are physically paral-
leled are merged into a single device, and the electrical characteris-
tics are modified accordingly.

b. Bidirectional switches are converted to unidirectional switches,
where appropriate. This can dramatically improve the performance
of switch level networks.

c. Only the TYPEs that are actually used in the design are compiled.
Besides improving compilation performance, this has the added
benefit of reducing the amount of memory required for the final sim-
ulation structures.

2. Delays are computed from delay curves and loading factors. Auxiliary
procedures and/or programs are not required to produce accurate delays.

3. Physical size metrics (number of transistors, total width of cells, and
number of bond pads) are computed and reported. This information can
be useful for size estimates by designers and/or place and route pro-
grams.

4. Many topological checks are performed, a few being:

a. Incorrect number of input, output or bus connections.

b. Switch connection between power rails.

c. Both ports of switches connected to same node.

d. Switch permanently turned off (disabled by control value).

e. Nodes that don’t have a driving element attached.

f. Nodes that don’t have any elements attached.

g. Nodes with only driving elements attached.

h. Wire-tied nodes with non-tristating driving element attached.

Some situations, such as incorrect number of pin connections, are fatal,
and prevent the completion of circuit compilation. Others, such as wire-
tied non-tristating drivers, cause SIMIC to generate warning messages
that may indicate potential problems with the description. These mes-
sages are also helpful for debugging errors in a new cell library.

Chapter 2.2 Circuit Compilation Circuit Compilation

2.2-2 SIMIC User’s Guide Revision 1.0 9/2/91

If any description errors are found during compilation, error messages are
issued that specify the location (line number) and nature of each error. The
compiler aborts when the number of fatal description errors reaches a user-
specifiable limit. This prevents voluminous output in the event of a repeat-
ing problem (such as an incorrect !FORMAT statement).

The result of a successful circuit compilation is that a binary representation
is loaded into memory, ready for simulation. This representation can also be
saved and later retrieved to avoid the need to recompile the same circuit
description in future SIMIC sessions.

Many of the SIMIC commands require that the binary circuit representation
be loaded when they are issued.

The GET run command is used to initiate circuit compilation and/or retrieve
a previously-compiled description.

2.2.2 Circuit Compilation

2.2.2.1 Initiating Circuit Compilation

Compilation is invoked with the TYPE (TY) keyword option of the GET
(GE) run command. If the entire circuit is contained in a single file, and if
the file’s name is the default name (as specified in the DEFINE FILE run
command) and its extension is net, then the basic command:

get type=<main type name>

is sufficient, where <main type name> is the name of the TYPE to be com-
piled. This TYPE is called the main type throughout this Guide.

If, however, the name of the file does not match the default name, or if the
description is contained in more than one file, the FILE (FI) keyword must
be used to direct SIMIC to the correct file(s):

get type=<main type name> file=<list of files>

where <list of files> is a list of all the files that contain the complete descrip-
tion. For example, if the description of the main type, FULL_ADDER, is dis-
tributed in the files FAD and CMOSLIB, (with default extension NET) the
command:

get type=full_adder file=fad,cmoslib

would be used to compile the circuit description. With one exception1, the

1. The exception arises, for example, when two or more macros (structural TYPEs) have been assigned the

same type name. This is an error, since all macro names must be unique. In this case, SIMIC accepts the first

type block that it encounters, as a result of the file list’s ordering, and rejects all other identically-named type

blocks, issuing an error message in the process.

The TYPE key-
word initiates com-
pilation.

Therefore, the
compilation
options described
below should
either precede, or
be placed in, the
GET command
containing the
TYPE keyword.

Chapter 2.2 Circuit Compilation Circuit Compilation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.2-3

order in which the files are listed is not important; what matters is that the
list is complete.

An alternative method of directing the SIMIC compiler to both files, in the
above example, is to issue the command:

get type=full_adder file=fad

and have the following !INCLUDE statement in file FAD:
!INCLUDE cmoslib

SIMIC supports the ability to simulate multiple circuits within the same ses-
sion. All that is necessary is to issue a GET command when ready to simu-
late the next circuit. Since all previously-issued commands were associated
with the previous circuit, and have no relevance for the next one, SIMIC dis-
cards prior simulation options, and restores its initial defaults, whenever the
GET TYPE command is issued.

If case-sensitivity is required, start the SIMIC session with the “s” switch
before compilation:

simic -s

2.2.2.2 Specifying The Compiler’s Abort Limit

As previously mentioned, the SIMIC circuit compiler will abort the compi-
lation process if the number of fatal errors reaches a predefined limit. This
limit is defaulted to 20, but can be set to any level, or removed entirely. To
set the limit to a new value, use the STOP (STOP) keyword option:

get stop=<n>

where <n> is an integer specifying the new limit. The NO prefix is used to
remove the limit entirely:

no get stop:

Since use of the TYPE keyword initiates compilation, the STOP limit should
be specified either in a separate GET statement prior to the GET command
containing the TYPE, or in the same command:

get stop=15

get type=full-adder

or
get type=full-adder stop=15

The NO form of the command must be issued prior to the GET TYPE com-
mand.

The !include
directive within a
network descrip-
tion file directs
SIMIC to other
files required to
complete the net-
work description.

Since they do not
conflict, compila-
tion options may
be freely mixed
within the same
GET command.

Chapter 2.2 Circuit Compilation Circuit Compilation

2.2-4 SIMIC User’s Guide Revision 1.0 9/2/91

2.2.2.3 Saving The Compiled Description In A File

After compilation, an image of the simulation structures can be saved into a
file for quick retrieval in future simulations. This is beneficial for two rea-
sons:

1. The compiler uses and then frees memory during the compilation pro-
cess. This causes memory fragmentation to occur. If you have limited
real memory for simulation, then avoiding the compilation process will
cause more efficient utilization of memory during simulation.

2. Circuit restoration is significantly faster than circuit compilation.

By default, the compiled circuit description is not saved. The SFILE (SF)
keyword may be used to override this default. The form:

get sfile:

implicitly instructs SIMIC to save the description in a file whose name is the
default file name and whose extension is rnt, the default extension for
compiled network descriptions.

In the second form:
get sfile=<file name>

SIMIC is directed to save the compiler output into the file named
<file name>.

The NO prefix can be used to cancel a previous request to save the compiled
description:

no get sfile:

Since use of the TYPE keyword initiates compilation, SFILE should be
specified either in a separate GET statement prior to the GET command con-
taining the TYPE, or in the same command:

get sfile:

get type=full-adder

or
get type=full-adder sfile:

The NO form of the command must be issued prior to the GET TYPE com-
mand.

2.2.2.4 Obtaining A Readable Description Of The Flattened Circuit

During the compilation process, the circuit description is flattened, that is,
expanded to an interconnection of built-in and user-defined primitives. An
output file, called the listing file, can be optionally generated that contains
a textual representation of the flattened circuit. If not explicitly requested,
this file is not generated.

Chapter 2.2 Circuit Compilation Circuit Compilation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.2-5

The REPORT (REP) keyword option specifies the amount of detail to be
written to the listing file. Valid values for this option are SYMBOLS (S), and
ALL (A). The SYMBOLS value specifies that only the names of the signals
and parts are to be listed, and ALL specifies that in addition to these names,
the topology and electrical attributes are to be listed as well. After a success-
ful GET, the requested information is placed into the listing file specified by
the LFILE (LF) keyword. If this keyword is omitted, or is specified as
LFILE:, the listing file’s default name is defined by the DEFINE FILE
run command, and its default extension is lst. To override the default, the
LFILE keyword should explicitly specify the file’s name. For example:

define file=fad

get report=all

request that the listing file, fad.lst, contain signal name, part name,
topology and electrical attributes, whereas:

define file=fad

get report=symbols lfile=fad1.out

requests that the listing file, fad1.out, contains only signal and part name
information. If the listing file is not desired, after issuing the above com-
mands, the previous requests can be cancelled by either of the following
commands:

no get report:

no get lfile:

Since use of the TYPE keyword initiates compilation, the listing file options
should be specified either in a separate GET statement prior to the GET com-
mand containing the TYPE, or in the same command:

get report=all lfile:

get type=full-adder

or
get type=full-adder report=all lfile:

The NO form of the command must be issued prior to the GET TYPE com-
mand.

Chapter 2.2 Circuit Compilation Retrieving A Previously-Compiled Description

2.2-6 SIMIC User’s Guide Revision 1.0 9/2/91

2.2.3 Retrieving A Previously-Compiled Description

If a circuit description has been previously compiled, and the binary
description was saved using the SFILE option with the GET TYPE com-
mand, then this description can be retrieved with the RFILE (RF) keyword
option:

get rfile:

if the description was saved in a file having the default name and default file
extension rnt, or

get rfile=<file name>

if the file’s name need be explicitly specified.

The TYPE and RFILE keyword options are mutually exclusive and must
not be entered as options in a single GET command. If both options are spec-
ified simultaneously, they are ignored and a warning message is issued.

As with the GET TYPE command, SIMIC discards prior simulation options,
and restores its initial defaults, whenever the GET RFILE command is
issued.

2.2.4 Selecting A Timing Table

Either of three tables (delay sets), corresponding to TYPICAL, MINIMUM,
and MAXIMUM timing values may be specified for delay, loading and tim-
ing-check information. By default, the TYPICAL table is selected for sim-
ulation. To specify a table, use the TIMING (TI) keyword option:

get timing=<table>

where <table> is either TYPICAL, MINUMUM, or MAXIMUM.

The timing option may be used in conjunction with the get type or
get rfile commands or as an independent command.

All timing specified in the network description is saved during circuit com-
pilation, and thus can be selected at any time during a SIMIC session.

2.2.5 Backannotation

In addition to using the backannotation elements (LOAD and DELAY) in the
network description, a separate file containing LOAD elements can be used
to backannotate the circuit with loading. The loading specified by these ele-
ments is added to the loading already present at the specified nodes. The
backannotation file is read with the AFILE (AF) keyword option:

get afile:

Chapter 2.2 Circuit Compilation Backannotation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.2-7

or
get afile=<file list>

The afile option can be used in conjunction with the get type or get
rfile commands, or issued independently. Subsequent get afile com-
mands will restore the loading specified in the network description before
adding the new loading.

The backannotation file has the default extension ann, and consists of
(optional) SNL !FORMAT directives, comments, remarks, and part state-
ments instantiating SIMIC LOAD elements whose OUTPUT-LOADS

(OLOD) keyword-fields specify the incremental net loading. For example,
the following file assigns a load of 10 units to node a and 17 units to node
main.q:

Remark= This adds loading to the signals

Remark= named ‘a’ and ‘main.q’

!format p= t= olod=

a load 10

main.q load 17

Chapter 2.2 Circuit Compilation Backannotation

2.2-8 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 2.3 Input Stimuli Introduction

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-1

Chapter 2.3 Input Stimuli

2.3.1 Introduction

After the main type’s compiled description has been loaded by the GET
command, external stimuli must be defined and applied to its pins in order
to exercise its functionality and verify its design. The stimuli are applied to
the main type’s input (unidirectional) and bus (bidirectional) pins. These
ports are collectively called primary inputs (even though the busses will
sometimes function as outputs, they must still be driven the remainder of the
time from the external world), and the stimuli are called input stimuli.

SIMIC supports three different modes of simulation that are specific to the
circuit’s basic operation and the reasons for performing the simulation. The
simulation mode is determined by the input stimuli:

1. Simulate-till-stable – selected by applying patterns, this enforces Fun-
damental Mode operation.

2. Time-based inputs – selected by applying waveforms, this mode sup-
ports arbitrary primary input timing.

3. Tester emulation – selected by applying timing generators, this mode
supports tester program debugging.

2.3.2 Types Of Input Stimuli

SIMIC supports three different types of input stimuli:

2.3.2.1 Patterns

If applicable, this stimulus mode is extremely helpful in trouble-shooting
designs. For patterns, only the input values are specified, not their times of
application. SIMIC applies each input pattern, simulates the circuit until its
state becomes stable (internal activity ceases, and every element output state
is consistent with its input and internal state), and only then applies the next
input pattern. This mode of operation is also called Fundamental Mode, and
many circuits are designed to operate exactly in this manner.

Patterns are useful for a number of reasons:

1. The circuit is guaranteed not to lose Fundamental Mode operation, since
the effects of a subsequent input pattern cannot interact with events
caused by the current pattern.

Chapter 2.3 Input Stimuli Test Numbers

2.3-2 SIMIC User’s Guide Revision 1.0 9/2/91

2. Simulation time is reset to 0 at the start of each pattern. Coupled with the
option to output simulation results when the circuit state is stable, the
circuit’s response time for each input pattern is visible in the simulation
output.

3. As a debugging aid, SIMIC always saves the state of the network at the
previous stable point. Since a timing hazard must be caused by a single
pattern, the user can interactively “replay” the hazard to obtain insights
on the cause and ultimately the fix of the hazard. This dramatically
reduces circuit debugging time. (Note that this is the only stimulus mode
where the circuit is guaranteed to achieve stability for each input state;
and therefore the only mode where the network state is guaranteed to be
saved prior to any event of interest.)

2.3.2.2 Waveforms

For waveforms, both the input values and their times of application are spec-
ified. Each input state is then applied at its specified time, regardless of the
stability of the circuit.

Waveforms should be used to test circuits whose input arrival times are
unconstrained. These include asynchronous circuits, dynamic logic, fre-
quency-sensitive circuits, retimers (e.g. UARTS), and non-synchronous
pipelined architectures.

2.3.2.3 Timing Generators

Timing generator mode emulates modern automatic test equipment, thus
allowing test programs to be debugged using simulation techniques. In this
mode, stimuli are defined by input drive values, timing generators, and a
master clock period, and outputs are strobed. The period, timing generator
definitions and strobe placements may be dynamically changed during the
simulation (time-set switching). Chapter 2.8 contains a full description of
timing generators.

2.3.3 Test Numbers

In order to maintain a consistent reference, SIMIC assigns a test number to
each distinct input state. The first input state applied is Test 1, the second is
Test 2, and so on. Test numbers are incremented as follows:

1. patterns – whenever a new pattern is applied. Also time is reset to 0

2. waveforms – whenever an input changes state

3. timing generators – whenever a new test period is entered; thus, the test
number is equivalent to the tester period number.

Chapter 2.3 Input Stimuli Specifying Stimuli As A Two-Step Process

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-3

2.3.4 Specifying Stimuli As A Two-Step Process

Input stimuli are specified in a two-step process. In the first step, the pat-
terns, waveforms, or timing generators are specified with the DEFINE run
command. Then these defined sequences are applied to the proper inputs
with the APPLY command.

This two step approach has the following advantages:

1. Stimuli may be defined hierarchically.

2. If the same sequence is to be applied to different inputs, then that
sequence needs to be defined only once.

3. If more than one mode will be used to simulate the circuit, stimulus def-
initions in terms of patterns, waveforms, or timing generators can coex-
ist without conflict, since only one type is applied for actual simulation.

2.3.5 Defining Input Stimuli

Primary input stimuli are defined using the DEFINE (DE) run command.
The syntax is:

define <pw><name>.<width><defaults>= <sequence>

where:

• <pw> is either a P (for patterns) or W (for waveforms),

• <name> is a user-defined name for the input sequence, immediately
following the <pw> designator; combined, the two entries form the
sequence’s complete name,

• <width> is the number of signals for which the input sequence is
defined,

• <defaults> (optional) specifies default attributes of the stimulus
sequence appearing on the right side of the equal sign, and

• <sequence> is the stimulus sequence being defined.

The optional <defaults> on the left side of the equal sign are:
.<duration>.<format>.<strength>

where:

• <duration>, called the default duration, is

for patterns, the number of tests to maintain each input state of
<sequence> before applying the next one. If unspecified, each input
state is maintained for one test (the default duration is 1)

Chapter 2.3 Input Stimuli Defining Input Stimuli

2.3-4 SIMIC User’s Guide Revision 1.0 9/2/91

 for waveforms, the amount of time to maintain each input state of
<sequence> before applying the next one. If unspecified, the default
duration is 0, which means that all stimulus timing must be
described in <sequence>

• <format> is the default format (radix) of <sequence> (BINARY,
OCTAL, HEXADECIMAL, INTEGER). If unspecified, the default is
BINARY, and

• <strength> is the default strength of <sequence> (POWER, DRIV-
ING, RESISTIVE, FLOATING). If unspecified, the default is
DRIVING.

<format> and <strength> specifications may be abbreviated to any valid
prefix, even one character. For example, HEXADECIMAL can be specified
as: H, HE, HEX, HEXA, etc. These options are described in the Stimulus

Drive Strength and Stimulus Format Sections of this Chapter.

Note that a single dot (.) separates each pair of adjacent specifications on the
left side of the equal sign.

For example, the command:
define pall.3 = 000 001 010 011 100 101 110 111

defines a pattern, since the <pw> character is P. The pattern’s name is pall,
and its width specification, 3, is separated from the name by a dot (.). Since
there are no <duration>, <format>, or <strength> specifications following
the width entry, the default duration of each stimulus state is one test, the
radix of <sequence> is BINARY, and the stimuli have DRIVING strength.

The three-input binary sequence to be assigned the name pall (the
<sequence>) is specified to the right of the equal sign. This sequence con-
sists of eight input states. In the first state, all inputs are 0. In the second
state, the first two inputs are 0 and the third input is 1, etc.

As another example, the time-based stimuli shown below:

can be described as:
define wsample.2.100= 00 01 10 11

This statement specifies <pw> as w (a time-based waveform), <name> as
sample (so the waveform’s complete name is wsample), <width> as 2,

100 200 300 400
time-units

Chapter 2.3 Input Stimuli Selecting Stimuli For Simulation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-5

and <duration> as 100. Since format and strength are not specified, the for-
mat is BINARY and the strength for each stimulus is DRIVING.

The names assigned to stimulus sequences must be unique. SIMIC does,
however support stimulus redefinition; if a stimulus definition has the same
name as a previously-read definition, it replaces the original one. The only
restriction is that their <width>s must be identical.

2.3.6 Selecting Stimuli For Simulation

After a stimulus sequence is defined and named by the DEFINE command,
it must be attached to the primary inputs/busses of the circuit. This is done
with the APPLY (AP) PATTERN (PA) run command. The syntax of this
command is:

APPLY PATTERNS=<pwname> LIST=<signals> BEGIN=<n>

where:

• <pwname> is the name assigned to the sequence by a preceding
DEFINE command, beginning with P if the sequence is a pattern or
with W if the sequence is a waveform,

• <signals> is a list of the primary input/ bus pins to apply the stimuli
to, and

• <n> is an offset (skew) from the current time or test for delaying appli-
cation of the stimuli. If unspecified, the offset is 0.

The order of the primary signals in <signals> specifies the correspondence
between bit positions in <pwname> and the signals. The first signal in
<signals> will be associated with the first bit position in <pwname>, and so
on.

For example, using the above definition of pall:
apply patterns=pall list=c,b,a

associates the three-bit pattern named pall with the three primary signals
c, b, and a, in that order. These three signals will therefore execute the fol-
lowing sequence, where the duration of each state is one test:

TEST: 1 2 3 4 5 6 7 8

 c: 0 0 0 0 1 1 1 1

 b: 0 0 1 1 0 0 1 1

 a: 0 1 0 1 0 1 0 1

Similarly, using the above definition of wsample:
apply patterns=wsample list=x,y

Chapter 2.3 Input Stimuli Selecting Stimuli For Simulation

2.3-6 SIMIC User’s Guide Revision 1.0 9/2/91

associates the two-bit waveform named wsample with the two primary
signals x and y, in that order. These two signals will therefore execute the
following sequence, where the duration of each state will be 100 time-units:

TIME: 0 100 200 300

 x: 0 0 1 1

 y: 0 1 0 1

If the stimulus width is equal to the total number of primary inputs and bus-
ses, and the pattern values are ordered as inputs followed by busses, and the
input and bus values are themselves ordered as they appear in the circuit’s
main type statement, then the LIST (LI) keyword-field may be omitted.

For example, if the input keyword-field of the main type’s TYPE statement
is I=X,Y, and there are no primary busses, then the LIST=X,Y keyword-
field in the above APPLY command is optional, since this would be the
default association of primary inputs and stimuli.

Subsequent APPLY commands override previous APPLY commands for
common primary signals. For example, if the command:

apply patterns=pat1 list=a,b,c

is erroneously issued, and the intended pattern for these signals is pat2, the
subsequent command:

apply patterns=pat2 list=a,b,c

overrides the previous error and applies pat2. Primary input grouping need
not be identical in APPLY commands. For example, if pat3 has a width of
1, and if the command:

apply patterns=pat3 list=c

is subsequently issued, then the first two bit positions of pattern pat2 will
be applied to inputs a and b, and pat3 will be applied to input c.

The BEGIN (BE) keyword is optional and is used for the following:

1. In waveforms, BEGIN can skew one waveform with respect with
another. This simplifies testing the circuit’s sensitivity to input skew.

2. The BEGIN option can also be used to apply “patches” (positioned stim-
uli) to the inputs in any mode. The patch is applied at the test (for pat-
terns) or time (for waveforms) specified by the BEGIN keyword-field.

The apply com-
mand’s list key-
word-field is
necessary except
for the special
case of an input
sequence whose
width and ordering
exactly match the
number and order-
ing of primary
inputs of the main
type’s type state-
ment.

Chapter 2.3 Input Stimuli DO Loops For Repetitive Sequences

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-7

2.3.7 DO Loops For Repetitive Sequences

Any repeating sequence (or subsequence) of stimulus states may be speci-
fied as a loop. The form of a loop is:

do <count> (<sequence>)

where:

• <count> is the number of times to repeat the loop, and

• <sequence> is the sequence to be repeated.

Optional whitespace may precede or follow the repetition factor, <count>.

Loops can be nested within loops. There is no practical limit to the level of
nesting.

For example, the command:
define pr.1 = 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1

defines a pattern sequence for one primary signal. Its default duration is one
test. This sequence can also be expressed as:

define pr.1 = do 2 (0 1 0 1 1 1 1 1)

or as:
define pr.1 = do 2 (do 2 (0 1) do 4 (1))

or even as:
define pr.1 = do 2 (do 2 (0 1) do 2(do 2(1)))

2.3.8 Grouping

Stimuli may be defined for subgroups of the primary signals, as desired, to
facilitate stimulus definition. Inputs that would typically be partitioned are
master clear and/or preset, clocks, and synchronous data lines. For each par-
tition there must be an associated APPLY command. For example, consider
the eight pattern sequence, pall, illustrated above:

define pall.3 = 000 001 010 011 100 101 110 111

apply pattern=pall list=c,b,a

Another way to define and apply this sequence is:
define pcb.2.2= 00 01 10 11

define pa.1= do 4 (0 1)

apply pattern=pcb list=c,b

apply pattern=pa list=a

Here, pattern pcb is defined and applied to signals c and b, and pattern pa
is define and applied to signal a. Note that the default duration of pcb is 2,
so this pattern’s sequence is actually:

00 00 01 01 10 10 11 11

The list=c,b,a
option can be
omitted here, if the
main type had only
three inputs,
ordered: c,b,a

Chapter 2.3 Input Stimuli Stimulus Hierarchy

2.3-8 SIMIC User’s Guide Revision 1.0 9/2/91

A third method of defining and applying these patterns is:
define pc.1.4= 0 1

define pb.1.2 = do 2 (0 1)

define pa.1= do 4 (0 1)

apply pattern=pc list=c

apply pattern=pb list=b

apply pattern=pa list=a

Note that patterns pc and pb are equivalent to:
define pcequiv.1 = 0 0 0 0 1 1 1 1

define pbequiv.1 = do 2 (0 0 1 1)

If the applied groups do not all end at the same test, then the last stimulus
value of each group will be maintained until all groups are finished. For
example, suppose that circuit has two inputs, clock and reset, and the
input sequence must:

1. Apply the reset signal, which is active-high.

2. Remove the reset.

3. Clock the device 64 times.

This could be accomplished by:
define preset.1 = 1 0

define pclock.1 = 0 0 do 64 (1 0)

apply pa=preset li=reset

apply pa=pclock li=clock

in which the last 128 patterns of preset are omitted. During simulation,
SIMIC will maintains the last value of preset, 0, while the do loop of
pclock is being expanded.

2.3.9 Stimulus Hierarchy

Stimulus definitions may reference other stimulus definitions as long as the
width of both definitions are the same. This is accomplished by placing the
referenced sequence’s name at the proper location in the sequence being
defined. There is no practical limit on the level of nested stimulus defini-
tions.

For example, the pattern:
define pclock.1 = 0 0 do 64 (1 0)

could also be defined as:
define pfirst2.1.2 = 0

define pcycles.1 = do 64 (1 0)

define pclock.1 = pfirst2 pcycles

Chapter 2.3 Input Stimuli Stimulus Drive Strength

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-9

Here, pattern pclock contains two subsequences, the first being pfirst2
and the second pcycles. During simulation, SIMIC expands pclock
exactly in this order. pfirst2 is expanded first; it consists of a single 0
level whose duration is two tests. After pfirst2 is completed, expansion
of pcycles begins (starting at Test 3).

An alternative hierarchical definition of pclock might be:
define pcycles.1 = 1 0

define pclock.1 = 0 0 do 64 (pcycles)

Sequence entries that directly represent logic levels (e.g., 0, 1) are called
primitive values. Thus, every sequence definition may contain a mixture of
primitive values and hierarchical references. In general, a hierarchical refer-
ence can be placed wherever a primitive value can be placed.

However, there is one significant difference between primitive values and
hierarchical references; the default fields of a DEFINE command
(<duration>, <format>, <strength>) only apply to its primitive values.
Thus, the DEFINE command of last example above could have been:

define pclock.1.2 = 0 do 64 (pcycles)

Here, the default duration of 2 only applies to the primitive value 0. The
default duration of primitive values in PCYCLES is determined by its

DEFINE command.

2.3.10 Stimulus Drive Strength

If a primary input is only connected to inputs of unidirectional elements,
then its drive strength is not very important. The drive strength of an exter-
nal source connected to a primary bus, however, may be crucial for proper
operation. A primary bus can be driven either by an external source or by a
driver inside the circuit being simulated. Sometimes, it may be driven by
both sources simultaneously, whether by design (e.g., a strong reset) or by
error (e.g., a data bus that should have at most one driver at any time).

Thus, it is sometimes necessary to specify the drive strength of primary
stimuli. The Defining Input Stimuli Section of this Chapter introduced the
DEFINE command’s default <strength> option. This option specifies the
drive strength of primitive values in the sequence being defined. One of four
strengths may be specified, corresponding to the supported drive strengths
for gate-level components:

POWER, DRIVING, RESISTIVE, and FLOATING.
Any prefix of these strength designations is a valid specification. If this
option is unspecified, the default drive strength is DRIVING.

The default strength specification does not affect all primitive values. Some
primitive values have an associated strength as well as level, and the asso-

Primitive values
are the symbols
that directly
represent logic
levels.

Default duration,
format, and
strength do not
apply to
hierarchically-
referenced
sequences.

Chapter 2.3 Input Stimuli Stimulus Format

2.3-10 SIMIC User’s Guide Revision 1.0 9/2/91

ciated strength prevails over the default strength specification. For example,
the primitive entry Z (or z) represents “unknown level at floating strength”.
The DEFINE commands:

define wseq_d.1.50 = 0 1 x z

define wseq_r.1.50.r = 0 1 x z

both define a sequence of values consisting of 0 for 50 time-units, 1 for 50
time-units, X (representing “unknown; either 0 or 1”) for 50 time-units, and
Z. Since no default strength is specified for WSEQ_D, its 0, 1, and X values
will be applied at DRIVING strength. Since a default strength of R is spec-
ified for WSEQ_R, its 0, 1, and X values will be applied at RESISTIVE
strength. The last state of both sequences will be the same floating-unknown
value, Z.

In addition to Z, other primitive value symbols represent drive strengths as
well as binary logic levels. These are also the symbols that SIMIC uses to
report signal states. The table below shows these symbols and the combined
level/strength values they represent. Associated mnemonics are in italics:

2.3.11 Stimulus Format

2.3.11.1 Default Format Specification

The Defining Input Stimuli Section of this Chapter introduced the DEFINE
command’s default <format> option. This option specifies the default for-
mat of primitive values in the sequence being defined. One of four formats
may be specified:

BINARY, OCTAL, HEXADECIMAL, INTEGER.
Any prefix of these format designations is a valid specification. If this option
is unspecified, the default format is BINARY.

POWER RESISTIVE FLOATING

Logic-0 G (ground) L (low) D (discharged)

Logic-1 V (vdd) H (high) C (charged)

Unknown S (short) Y Z

Table 2.3-1 Symbols Representing Combined Level/Strength

Chapter 2.3 Input Stimuli Stimulus Format

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-11

2.3.11.2 Format Descriptions

The following summarizes the primitive values representing stimulus levels
for each format. The corresponding drive strength is specified by the default
<strength> option:

BINARY FORMAT

Sequence specification using the BINARY format has been illustrated
throughout this chapter. Each stimulus state, consisting of <width> lev-
els, is represented as <width> binary levels. Logic levels 0 and 1 are rep-
resented by the identical symbols, 0 and 1. (Additionally, as described
in the Stimulus Drive Strength Section of this Chapter, nine symbols are
used to represent combined level/strength states.)

OCTAL FORMAT

Each stimulus state, consisting of <width> levels, is represented as a
right-justified octal number. Levels 000 through 111 are represented by
the corresponding octal symbols 0 through 7.

HEXADECIMAL FORMAT

Each stimulus state, consisting of <width> levels, is represented as a
right-justified hexadecimal number. Levels 0000 through 1111 are rep-
resented by the corresponding hexadecimal symbols 0 through F (or f).

INTEGER FORMAT

Each stimulus state, consisting of <width> levels, is represented as
either a positive or negative integer. The integers represent the binary
number formed when the leftmost level is used as the most significant
bit. Negative integers specify the 2’s complement binary representation.

The only format restricted in size is INTEGER. This format can represent,
at most, 32 signal levels. There are no restrictions for the other formats.

Additionally, some symbols are used for all formats. They specify values for
a group of signals, where the group is:

• a single signal for binary format

• all signals of an octal digit for octal format

• all signals of hexadecimal digit for hexadecimal format

• all <width> signals of the stimulus sequence for integer format.

These common symbols are:

• X - specifies that all signals of the group are X (could be either 0 or 1)

Chapter 2.3 Input Stimuli Stimulus Format

2.3-12 SIMIC User’s Guide Revision 1.0 9/2/91

• Z - specifies that the all signals of the group have floating unknown
values (this is the only primitive value that also specifies drive
strength for all formats)

• I - specifies that all signals of the group be generated by inverting (bit-
wise complementation) their previous levels

• N - specifies that all signals of the group be generated by copying their
previous levels.

For example, the following DEFINE commands are equivalent:
define pabc.5 = 00000 11111 01101 zzzzz xxxxx

define pabc.5 = 00000 iiiii innin zzzzz xxxxx

define pabc.5.oct = 00 37 15 zz xx

define pabc.5.oct = 00 i7 15 zz xx

define pabc.5.hex = 00 1f 0d zz xx

define pabc.5.hex = 00 1f id zz xx

define pabc.5.int = 0 31 13 z x

define pabc.5.int = 0 -1 13 z x

define pabc.5.int = 0 i 13 z x

2.3.11.3 Radix Escapes

The radix may be explicitly switched for specific input states of the stimulus
definition. This is done by prefixing each input state with a radix escape
character from the table below:

Each radix escape character only affects a single input state.

Radix escape is useful when signals grouped within a digit must be assigned
incompatible values. For example:

define pbus.4.hex= 0 ^01XX %-1 Z *0Z

defines the following patterns:
0000 01XX 1111 ZZZZ 0ZZZ

Here, the second and fifth input states could not be specified in hexadecimal
format, since X or Z would set all four bits to the respective values.

Escape Selected Radix

^ BINARY

* OCTAL

HEXADECIMAL

% INTEGER

Chapter 2.3 Input Stimuli Stimulus Format

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-13

Changing radix may also facilitate stimulus description. For example, sup-
pose an 8-bit ALU performs arithmetic operations on its data inputs, a and
b, when its 2-bit control input, func, is 0 or 1, and logical operations on the
inputs when FUNC is 2 or 3. Stimulus description would be simplified if the
data inputs were specified as integers for the arithmetic operations and as
hexadecimal (or binary or octal) for the logical operations. For example, the
following commands define a few (non-comprehensive) tests for the ALU:

define pfunc.2.int= 0 1 2 3

define pa.8.int= -2 255 #0f #50

define pb.8.int= 1 255 #f5 #0a

2.3.11.4 Guidelines for Entering Proper Values

The following guidelines should be followed for specifying stimulus values:

1. For binary, octal, and hexadecimal formats:

a. exactly the right number of digits must be used to represent each
stimulus state value

b. spacing between different stimulus state values is optional, but a
space should not appear within (break up) a stimulus state value for
octal and hexadecimal formats

2. For integer formats, whitespace or commas must appear between stim-
ulus state values

3. For all formats, the value specified for each stimulus state must be con-
sistent with the number of primary signals in the sequence

4. Radix escapes must specify a complete stimulus state value (i.e., specify
the values of all primary signals associated with the stimulus).

Simply stated, (1a) specifies that leading zeros of octal and hexadecimal
digits cannot be omitted, and no extra digits can be added to a stimulus state
specification, since the extra digits will be interpreted as belonging to the
next stimulus state. The latter possibility is due to (1b), which states that
stimulus specification for these radices is format-free between state values.

More formally, (1a) requires that each stimulus state specification consist of
exactly

ceiling(<width>/log2(radix))
digits, where the ceiling function is “the smallest integer greater than, or
equal to, its argument”, and radix is 2, 8, or 16 for BINARY, OCTAL, or
HEXADECIMAL formats, respectively. Thus, the correct number of digits
per stimulus state value specification must be

<width>, ceiling(<width>/3), or ceiling(<width>/4),
respectively, for the three formats.

Chapter 2.3 Input Stimuli Stimulus Format

2.3-14 SIMIC User’s Guide Revision 1.0 9/2/91

Guideline (2) is fairly obvious; since integers can contain a varying number
of digits, something has to delimit them.

Guideline (3) states that the stimulus state value cannot exceed
(2<width>-1–1).

For negative integers, this value cannot be less than
 (–2<width>-1).

Any value specified outside these limits is out of range for the given number
of primary signals. If the correct number of digits are used, but the specified
value is out of range, SIMIC discards the extraneous most-significant bits,
issues a warning message, and accepts the truncated value.

Guideline (4) states that, within a single stimulus state, it is an error to define
some primary signals in one radix and the remaining signals in another
radix.

2.3.12 Stimulus Positioning

In addition to the default duration option, <duration>, on the left side of the
DEFINE command, stimulus states may be positioned using two constructs
on the right side (within the sequence being defined). These constructs are
absolute positions and explicit durations. They eliminate the need to
repeat levels that remain constant for long intervals, and allow positioning
at points that are not multiples of the default duration.

To demonstrate the features of positioning the sequence of patterns
described previously, pall, will be used here:

TEST: 1 2 3 4 5 6 7 8

 c: 0 0 0 0 1 1 1 1

 b: 0 0 1 1 0 0 1 1

 a: 0 1 0 1 0 1 0 1

The patterns for a, b, and c be defined separately as:
define pa.1= 0 1 0 1 0 1 0 1

define pb.1= 0 0 1 1 0 0 1 1

define pc.1= 0 0 0 0 1 1 1 1

2.3.12.1 Default Positioning

Briefly reviewing, a default duration, <duration>, can be specified in the
definition of a stimulus sequence. If unspecified, the default duration is
implicitly 1 for patterns and 0 for waveforms. Using a default durations, the
pattern definitions for b and c can be simplified:

define pb.1.2= 0 1 0 1

define pc.1.4= 0 1

Chapter 2.3 Input Stimuli Stimulus Format

Revision 1.0 9/2/91 SIMIC User’s Guide 2.3-15

As can be seen, the default duration simplifies description when a stimulus
sequence contains periodic changes. However, repetitive levels must still be
entered for nonperiodic changes:

define wx.1.10 = 0 1 0 0 1 1 0 0 0 1 1 1 0

2.3.12.2 Absolute Positioning

Absolute positioning places a primitive value, do loop, or hierarchical ref-
erence at an absolute position with respect to the beginning of the sequence.
Absolute positioning is specified as an at-sign (@) followed by a position
value. The immediately following primitive value, do loop, or hierarchical
reference will be placed at the specified position.

Using absolute positioning, the definitions for b and c above might be:
define pb.1= 0 @3 1 @5 0 @7 1

define pc.1= 0 @5 1

This definition of pb places a 0 at Test 1, a 1 at Test 3, a 0 at Test 5, and a 1
at Test 7. Similarly, the definition of pc places a 0 at Test 1 and a 1 at Test 5.

Similarly, the definition of wx using absolute positioning could be:
define wx.1.10 = 0 1 0 @40 1 @60 0 @90 1 @120 0

As mentioned above, absolute positioning is relative to the start of the
sequence. If the sequence is within a local loop, then the most immediate left
parenthesis marks the sequence’s start. For example, in:

define py.1= 0 @5 do 2 (1 @3 0)

the absolute position specification, @3, is with respect to the left parenthe-
sis, not the beginning of the entire sequence (which @5 references). This
definition expands to:

define py.1= 0000 110 110

2.3.12.3 Explicit Duration

Explicit durations specify how long to hold the previous stimulus state, prior
to initiating the next one. The previous state might have resulted from a
primitive value within the current definition or from a hierarchical refer-
ence. Explicit duration is specified as an ampersand (&) followed by the
duration value. The previous stimulus state will be held for the specified
duration.

Again, b and c, could be defined in terms of explicit durations as:
define pb.1= 0 &2 1 &2 0 &2 1

define pc.1= 0 &4 1

Chapter 2.3 Input Stimuli Stimulus Format

2.3-16 SIMIC User’s Guide Revision 1.0 9/2/91

Here, in pb, 0 is placed at Test 1 and held for 2 tests, then 1 is placed and
held for 2 tests, etc. Similarly, the 0 in pc is held for 4 tests until the 1 is
applied at Test 5.

2.3.12.4 Positioning Precedence

The positioning methods described above may be freely mixed. The rule is:
“do whatever is easiest”. If there is a conflict between positioning specifica-
tions, SIMIC resolves them by the following order of precedence (highest
to lowest):

1. Absolute positioning (@ specification).

2. Explicit duration (& specification).

3. Default duration (<duration> specification).

Chapter 2.4 Simulation Output Overview

Revision 1.0 9/2/91 SIMIC User’s Guide 2.4-1

Chapter 2.4 Simulation Output

2.4.1 Overview

SIMIC creates several simulation output files. The textual simulation
reports described here are organized in a tabular format whose content and
form are, to a large extent, user-controllable. The output’s destination can be
the terminal (or log file in batch mode), via the PRINT (PR) run command,
and/or a file, via the WRITE (WR) run command.

Since options common to the two commands are identical, sample usage is
illustrated for only one of the commands, PRINT. Substituting the com-
mand verb “WRITE” invokes the identical option for this command.
Options specific to only one of the commands are explicitly stated.

Even though the PRINT and WRITE options are identical, the two com-
mands are totally independent. The signals reported, the output format, and
the report times are unique to each command; nothing specified for one
applies to the other.

Each section of this chapter describes an individual PRINT or WRITE
option and illustrates its usage. While isolated here for descriptive purposes,
any of these options may be combined in the same command, if desired.

2.4.2 Organization Of The Output

Figure 2.4-1 illustrates a sample file created by the WRITE command. In
general, the output generated by the PRINT or WRITE command contains:

1. A time/date/version stamp – This is only for WRITE output. It consists
of a single line REMARK that contains the time, date and SIMIC version
that created the file.

2. A simulation options header – This consists of a number of REMARK
lines that describe the options selected for simulation.

3. A signal name header – This consists of a number of COMMENT lines
that contain the names of the signals to be reported, as requested by the
user, in vertical columns directly above their respective simulation val-
ues.

4. The simulation output – Contains a record for each time that output
occurs during simulation. Each record contains the current simulation
time and test, separated by a ‘T” and suffixed with a “:”, followed by the
current values of the requested signals.

Chapter 2.4 Simulation Output Specifying The File Name For The WRITE Command

2.4-2 SIMIC User’s Guide Revision 1.0 9/2/91

 Figure 2.4-1 Sample File Created by the WRITE Command

2.4.3 Specifying The File Name For The WRITE Command

By default, the extension of the file created by the WRITE command is wrt,
and its name is the default name specified by the DEFINE FILE command.
The FILE (FI) keyword can be used to explicitly specify this file’s name:

WRITE FILE=<file name>

where <file name> is the name of the file to be written to.

2.4.4 Specifying What To Output

2.4.4.1 Selecting Signals to Output

Signals are selected with the LIST (LI) keyword-field. Two forms of this
keyword are supported.

 The first, more common, form is:
PRINT LIST=<signals and format options>

This form specifies the signals (and formatting options) that should be out-
put. A signal can be specified more than once. For example:

PRINT LIST=a,b,c,a

would output the signals a, b, c, and then a again in the tabular output.

Remark= ‘Write’ Created by SIMIC 1.00.00 on 4/23/91 14:37:53

Remark= Options: (Fault Free simulation)

Remark= Pattern stimuli, Near Filter, Spike Propagation

Remark= Stable Before Decay, Dynamic Delay

C= INNNN

C= N1234

C= I

C= T

 0 T 1: 0ZZZZ

 0 T 2: 11ZZZ

 1 T 2: 11HZH

 2 T 2: 11HHH

 0 T 3: 0CCCC

 5 T 3: 0ZZZZ

 0 T 4: 11ZZZ

Chapter 2.4 Simulation Output Specifying What To Output

Revision 1.0 9/2/91 SIMIC User’s Guide 2.4-3

The options for formatting the table are:

1. Inserting one or more blank vertical columns between signals. This is
accomplished by entering an asterisk (*) for each blank column.

2. Forcing a new row in the table. This is accomplished by entering a
pound sign (#) at the desired point. Note that if more than one # is used
consecutively, then a blank row will be output.

Commas are optional before or after * or #.

For example:
PRINT LIST=u,v,*w**x#y

will cause the simulation output to consist of the value of signal u, followed
by the value of v, followed by a blank column, followed by the value of w,
followed by two blank columns, followed by the value of x. The value of
signal y will be output at the first position of the next line.

Like most other keywords, the LIST keyword is “sticky”; any signal spec-
ified will continue to be reported until explicitly removed. For example, if
the command:

PRINT LIST=a,b,c,a

is followed by:
PRINT LIST=d*e

then, the two commands are equivalent to the single command:
PRINT LIST=a,b,c,a,d*e

Removing signals from the list is accomplished with the no prefix. For
example:

NO PRINT LIST=a,b

causes the first specification of signal a, and signal b, to be removed, and its
cumulative effect would be equivalent the single command:

PRINT LIST=c,a,d*e

The second form of the LIST keyword is:
PRINT LIST:

which specifies that SIMIC should output the values of all signals, each time
output is requested. Since the amount of data could be voluminous, SIMIC
generates a dump format, which reduces the output by:

1. Not printing the names of the signals in the header. Instead, the signals
are arranged alphanumerically, according to their order in the SYMBOL
section of the listing file, which can be created during circuit compila-
tion.

2. Displaying the signals in groups of 5 with an intervening space. This
simplifies coordinating the values with the corresponding signal posi-
tions.

Chapter 2.4 Simulation Output Specifying What To Output

2.4-4 SIMIC User’s Guide Revision 1.0 9/2/91

This form is rarely used, but it can be helpful when tracing an X value to it’s
source.

Using the LIST: form with the no prefix:
NO PRINT LIST:

cancels reporting of all signal values.

2.4.4.2 Signal Specification Options

As described above, the LIST keyword accepts a list of signals. This is also
true for the LIST keyword associated with other commands. Except where
noted in this Guide, the LIST keyword of each command will accept:

1. Signal names

2. Meta-words specifying primary signal values:

a. &INPUTS – specifies “all primary inputs”

b. &OUTPUTS – specifies “all primary inputs”

c. &BUSSES – specifies “all primary busses”

d. &BUSINS – specifies “the stimulus values at all primary busses”
which may differ from the values of &BUSSES (the latter being the
wire-tied result of primary stimulus values and internally-driven val-
ues)

3. Wildcard specification of the form <prefix>(), which represents “all sig-
nal names beginning with <prefix>” (for example, A.B.() specifies
“all signals whose names begin with A.B.”)

4. Factored specification of the form <prefix>(<suffix1>, …, <suffixn>),
which represents the signals
<prefix><suffix1>, …, <prefix><suffixn>

(for example, ab(cd, ef, gh) specifies abcd, abef, and abgh)

5. Vector aliases defined in a DEFINE command (see Specifying Signal

Groups and Output Radix Format in this chapter)

6. Alternative specification of each signal in the form <partname>.<n>,

where <partname> is the instance name of the part generating the sig-
nal, and <n> is the signal’s output number (e.g., if the signal is the fourth
output of this element, then <n> would be 4).

2.4.4.3 Controlling Column Width

SIMIC, by default, assumes an 80 column output device. If the space
required to output the requested signal values (including blank columns)
exceeds this limit, then SIMIC will output the signals in groups of 5 with
one intervening space. If a 132 column output device is available, the col-
umn limit can be changed to 132 with the EXPAND (EX) keyword:

Chapter 2.4 Simulation Output Specifying When to Output

Revision 1.0 9/2/91 SIMIC User’s Guide 2.4-5

PRINT EXPAND:

As described previously, using the pound sign (#) to force multi-line tabular
format is another way to stay within the set column limit. To defeat all col-
umn checking, specify the value INFINITE (I):

PRINT EXPAND=INFINITE

2.4.4.4 Suppressing Header Output

The simulation header, consisting of the simulation options and signal
names, can be suppressed with the HEADER (HE) keyword option. This may
be desirable during an interactive debugging session with short, multiple
runs. It helps reduces the size of the output. The command:

NO PRINT HEADER:

disables the header output, and the command:
PRINT HEADER:

enables it.

2.4.4.5 Suppressing Test Number

When waveform stimuli are used, the test number field of the simulation
output can be suppressed to simplify comparisons with other simulator out-
put. This is done with the TNUM (TN) keyword option:

NO PRINT TNUM:

The test field can be restored with the command:
PRINT TNUM:

If test information is suppressed, each output line will contain the time, fol-
lowed by a colon, followed by the requested signal values.

2.4.5 Specifying When to Output

The keyword options described in this section control when SIMIC should
output simulation values. They are independent of each other; enabling one
option does not disable another. Like many other options, they are “sticky”;
once specified, the options remain in effect until explicitly changed.

2.4.5.1 Requesting Output at Stable Points

The default output operation for SIMIC is to output the requested simulation
values each time the circuit becomes stable. The PSTEP (PS) keyword
option can be used to control frequency of this output, or inhibit it. The fol-
lowing command specifies that output at every <s>-th stable point, where
<s> is an integer:

Chapter 2.4 Simulation Output Specifying When to Output

2.4-6 SIMIC User’s Guide Revision 1.0 9/2/91

PRINT PSTEP=<s>

To turn off all output based on attaining a stable state:
NO PRINT PSTEP:

2.4.5.2 Requesting Time-Periodic Output

Output can be requested at specified time intervals using the TSTEP (TS)
keyword. The command:

PRINT TSTEP=<t>

will cause an output to occur every <t> simulation time-units, where <t> is
an integer.

Once the circuit state has stabilized, output is suspended until the next input
event occurs to eliminate repetitive identical reports. Output suspension can
be disabled by prefixing the time-step specification with a plus (“+”) sign.
For example:

PRINT TSTEP=+100

produces output every 100 time-units, even when the circuit state is stable.

Once enabled, the no prefix can be used to suppress time-periodic output:
NO PRINT TSTEP:

It is also possible to skew (offset) the first TSTEP output. This is done with
the BEGIN (BE) keyword option. This command has the form:

PRINT BEGIN=

where is an integer specifying the time offset to the first output. This
option can useful when emulating a point strobe with waveform or timing
generator stimuli.

To remove the offset, a value of 0 is specified:
PRINT BEGIN=0

2.4.5.3 Requesting Output Based On Activity

One of the most commonly used options is to select signals that trigger sim-
ulation output. The only restriction is that the trigger signals must be among
those chosen for output.

Activity-based output is enabled with the CHANGE (CH) keyword option.
The command:

PRINT CHANGE:

specifies that output should occur whenever any signal on the current output
list changes state. Particular trigger signals can be specified with the com-
mand:

PRINT CHANGE=<signal list>

Chapter 2.4 Simulation Output Controlling Signal Value Representation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.4-7

where <signal list> is a list of the triggering signals. Subsequently, the com-
mand:

NO PRINT CHANGE:

would disable all activity-based output, and
NO PRINT CHANGE=<signal list>

would inhibit the specified signals in <signal list> from functioning as trig-
gers.

2.4.5.4 Restricting the Output to Specified Tests/Time

Output can be restricted to certain tests (for patterns) or time (for wave-
forms) intervals with the PRANGE (PR) keyword option. PRANGE is
described in Restricting Simulation Options to a Specified Simulation Inter-

val in Chapter 2.6.

2.4.6 Controlling Signal Value Representation

2.4.6.1 The Output Character Set

By default SIMIC uses a 15-character representation for the possible com-
binations of levels and strengths. These characters, and their associated sig-
nal states, are shown in the following table:

2.4.6.2 Suppressing Signal Strength in the Output

It is sometimes distracting to see signal values in the simulation output
described with the 15-character representation. The VALUES (VA) keyword
directs SIMIC to represent signal values in a 4-character (0, 1, X, Z) repre-
sentation, ignoring all strength information except for floating-unknown
(Z). The values can be either STRENGTHS (S) or LEVELS (L), correspond-
ing to 15-character or 4-character, respectively. The command:

PRINT VALUES=LEVELS

Strengths Level 0 Level 1 Level X

POWER G V S

DRIVING 0 1 X

RESISTIVE L H Y

FLOATING D C Z

UNKNOWN F T U

Chapter 2.4 Simulation Output Controlling Signal Value Representation

2.4-8 SIMIC User’s Guide Revision 1.0 9/2/91

selects the 4-character representation, while the command:
PRINT VALUES=STRENGTHS

selects the 15-character representation.

2.4.6.3 Specifying Signal Groups and Output Radix Format

In many instances, it is easier to read the output if a display radix other than
binary (LEVEL) is used. If signals are grouped into arrays (vectors) in the
network description, then the vector can be displayed in its declared radix
format (in the SNL %DECLARE statement, see Signal Arrays in Chapter
1.2). This is accomplished by specifying the “root” name (the name without
the dimension specification) at the desired position in the output list. For
example, consider this partial SNL description:

T=alu I=a,b,func O=ovl,out

%DECLARE INT=a[0:7],b[0:7],func[0:1],out[0:7]

<part statements have been removed>

If the inputs and outputs (with intervening blank columns) are to be printed
in their declared integer format, the following command can be used:

PRINT LIST=a*b*func**ovl*out

Sometimes it may be desirable to output a group of signals that are not
declared as a vector, or to change the radix format of a declared vector, or
even to reverse or modify the array order of a declared vector. All of these
functions are handled by defining a vector alias with the DEFINE com-
mand. The format for this command is:

DEFINE V<name>.<format>=<list of signals>

where <name> is a user-supplied alias for the vector, and <format> is one
of the following formats:

• LEVEL -- individual levels for each bit.

• OCTAL -- octal representation.

• HEXADECIMAL -- hexadecimal representation.

• INTEGER1 (INT1) -- One’s complement representation.

• INTEGER2 -- Two’s complement representation.

• POSINTEGER -- Positive integer representation.

Except for the one’s complement specification, which can only be
INTEGER1 or INT1, any valid specification prefix is sufficient.

For example, to display a and b together in HEXADECIMAL format, and
display func as an integer in the reverse array order, the following com-
mands can be used:

DEFINE VAB.HEX=a,b

DEFINE VFUNC.INT=func[1:0]

Chapter 2.4 Simulation Output Controlling Signal Value Representation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.4-9

PRINT LIST=vab*vfunc**a*b*vfunc**ovl*out

When vab and vfunc are displayed in the signal name header, the “v” pre-
fix is replaced with an asterisk (*). This is a reminder that the displayed sig-
nal is not an original signal, but is actually an alias generated at run time.

Once a vector alias is defined, it (like declared arrays) may also be used as
a value for any keyword that processes a list of signals. In this case, the root
name is synonymous with its associated list of signals.

For Octal and Hexadecimal formats, if all signal in the radix group are
tristated (Z), then a Z will be displayed in that group’s position. Otherwise,
if any signal is unknown (X) or tristated (Z), then an X will be displayed in
that groups position. For the integer formats, if all signals in the array are Z,
then a Z is displayed. Otherwise, if any signal is X or Z, then an X is dis-
played.

2.4.6.4 Querying For Current Selected Options

SIMIC can be queried to report which options have been currently selected,
which signals are currently selected for output, and which signals will trig-
ger output when they change value, by issuing the command:

?WRITE

(?WR) for the write options, and:
?PRINT

(?PR) for the print options.

Chapter 2.4 Simulation Output Controlling Signal Value Representation

2.4-10 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 2.5 Simulation Options Overview

Revision 1.0 9/2/91 SIMIC User’s Guide 2.5-1

Chapter 2.5 Simulation Options

2.5.1 Overview

SIMIC is a very comprehensive simulator, with many user-controlled
options. This chapter explains the simulation options summarized in the
options banner, which is generated at the start of PRINT or WRITE output
(see Chapter 2.4). Where necessary, it also indicates the chapters of this
Guide that contain more detailed descriptions of these options.

A typical options banner might appear as follows:

This banner summarizes some of the main options chosen for this simula-
tion. In addition, it is always possible to “query” SIMIC for a more detailed
report of selected global options with the ?DEFINE (?DE) command:

?DEFINE

For example:
>>: ?define

Global Definitions:

 Default File Name = ‘noname’

 Resistive Strength to Depth value = 3

 Oscillation Limit = 10

 Warn Message Limit = 10

 Potential detect drop limit = Infinite

 Pulse window multiplier = 3

 Near window multiplier = 2

 X-address limit = 4

 Dynamic modification of delay = Yes

 Propagate Spikes = Yes

 Stability = After Decays

Remark= Options: (Fault Free Simulation)

Remark= Pattern Stimuli, Near Filter, Spike Propagation

Remark= Stable After Decay, Dynamic Delay

Chapter 2.5 Simulation Options Fault Free Simulation/Fault Simulation

2.5-2 SIMIC User’s Guide Revision 1.0 9/2/91

2.5.2 Fault Free Simulation/Fault Simulation

Fault-free simulation does not mean that the circuit is error-free; it means
that SIMIC is not performing fault simulation. Fault-free simulation, some-
times called “true-value” or “good-logic” simulation, is the simulation
mode for verifying circuit timing and functionality; it is the mode that has
been discussed so far in this Guide. In contrast, fault simulation introduces
logic faults and grades the input stimuli’s ability to detect these faults.
Hence, fault simulation verifies the effectiveness of test stimuli. As long as
the FAULT command options are not activated, simulation will be in fault-
free mode.

2.5.3 Pattern Stimuli/Waveform Stimuli/Timing Generators

This options banner entry reports the applied input stimulus mode, as dis-
cussed in Chapter 2.3. This choice determines the interpretation of the time
and test fields in the simulation output. Again, pattern mode is the most
powerful for circuit analysis and debugging, if applicable. Timing generator
mode, by emulating the tester environment, is the most applicable mode for
defining manufacturing test programs, and debugging tester programs.

2.5.4 Near Filter/Near Propagation

Near hazard analysis tests timing tolerances in the circuit, and attempts to
determine whether minor variation in delays could cause a timing problem.
This is essentially a “what-if” analysis that examines the effects of “close”
transitions at element inputs (the definition of “closeness” is user-controlla-
ble). A description of near hazard analysis can be found in the Subsection
Combinational Timing Hazards in Chapter 2.6. This is a robustness test,
which may find problems that less critical methods of logic simulation miss.
In near propagation mode, an X-pulse will be generated when a near hazard
occurs. In near filter mode, no X-pulse will be generated. Near hazard prop-
agation is controlled by the NEAR (NE) keyword option of the
XPROPAGATE (XP) command. It is enabled with:

XPROPAGATE NEAR:

and disabled with:
NO XPROPAGATE NEAR:

The latter is SIMIC’s default; if near propagation is not requested, SIMIC
operates in near filter mode.

Chapter 2.5 Simulation Options Spike Filter/Spike Propagation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.5-3

2.5.5 Spike Filter/Spike Propagation

A spike hazard occurs when an element output is scheduled to change and,
before that time arrives, another event at the element’s inputs causes the new
output value to differ from the scheduled value. (This situation is also called
a “glitch”.) Since output delay time is primarily associated with a node’s
charging time, and since the occurrence of a spike indicates that the node
had insufficient time to reach the previously-scheduled value, one method
of handling spikes is to ignore the transient and maintain the node at its pre-
vious value. This model, called “inertial filtering”, is utilized by many logic
simulators. Spike filter mode, in effect, is equivalent to inertial filtering.

However, simulation is only a model of reality, and optimistic results may
be obtained unless the effects of manufacturing tolerances are somehow
incorporated. Spike propagation mode attempts to account for simulation
uncertainties (possible differences between simulated delays and actual
delays) by producing an X-pulse whenever a spike hazard occurs.

Spike propagation can be enabled or disabled globally with the SPIKE (SP)
keyword option of the XPROPAGATE (XP) command. To disable spike
propagation:

NO XPROPAGATE SPIKE:

and to enable it globally:
XPROPAGATE SPIKE:

By default, SIMIC propagates spikes. SIMIC actually allows the triggering
condition and size of the X-pulse to be controlled on a per-node basis (see
Modifying Spike Control Parameters in Chapter 2.6).

2.5.6 Stable After Decay/Stable Before Decay

This options banner entry reports the selected definition of stability. SIMIC
performs certain operations when the simulated circuit’s state becomes sta-
ble—it executes actions for which the PSTEP keyword option is active
(PRINT, WRITE, and BREAK every k-th stable state) and applies the next
input state for pattern mode stimuli.

By definition, the circuit state is stable when internal activity in response to
the current input state has ceased. The question arises whether the long time-
constants of charge decay should be included in this definition. The answer
depends on the application.

Obviously, it would be impossible to simulate dynamic logic with stable-
state patterns if the next pattern is applied only after all charged nodes are
decayed. (However, if waveforms or timing generators are used with
dynamic logic, it may be necessary to know whether a node does decay dur-

Chapter 2.5 Simulation Options Dynamic Delays/Static Delays

2.5-4 SIMIC User’s Guide Revision 1.0 9/2/91

ing the course of simulation.) For dynamic designs, the definition of stability
should not include pending decays.

Conversely, a static design’s lack of dependence on clock rate would not be
fully verified unless all charge is decayed before applying the next pattern.
For static designs, the definition of stability should include pending decays.

Thus, the application determines the definition of stability. The DEFINE
(DE) command’s STABILITY (STAB) keyword option is used for this pur-
pose. To specify the that stability does not include pending decays, use the
command:

DEFINE STABILITY=PREDECAY

To include pending decays in the definition of stability:
DEFINE STABILITY=POSTDECAY

The reserved word PREDECAY and POSTDECAY may be abbreviated to
two letters.

By default, SIMIC includes pending decays in the definition of stability
(POSTDECAY).

2.5.7 Dynamic Delays/Static Delays

Since the SIMIC ideal switch primitives (BTGN and BTGP) are resistance-
less devices, nodes connected through ON ideal switches should behave as
if they were physically connected. Therefore, by default, SIMIC dynami-
cally sums the loading of nodes dynamically interconnected through ON
ideal switches, and then recomputes the corresponding delays for the drivers
of the tied nodes.

 The DEFINE command’s BTGDELAY (BTGD) keyword option controls
dynamic delay computation. The following command disables dynamic
delay modification:

DEFINE BTGDELAY=STATIC

To enable dynamic modification of driver delays:
DEFINE BTGDELAY=DYNAMIC

The reserved word STATIC and DYNAMIC may be abbreviated to one let-
ter.

This option has no effect on simulation if there are no BTGN or BTGP ele-
ments or if the driver delays do not depend on loading.

Chapter 2.6 Circuit Troubleshooting Introduction

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-1

Chapter 2.6 Circuit Troubleshooting

2.6.1 Introduction

SIMIC offers a wide selection of commands to facilitate circuit debugging.
Each command performs a unique function that, when combined with other
SIMIC options, creates a powerful debugging environment that can be cus-
tomized to the problem at hand.

2.6.1.1 Debugging Capabilities

1. Detect specified conditions. This feature allows detection of a variety of
events, such as signal change, presence of hazard conditions, reaching a
specified test, and other situations. Upon the occurrence of the user-
specified conditions, SIMIC can be instructed to issue a warning (using
the WARN command), and/or stop simulation (using the BREAK com-
mand).

2. Interrogate the state of the network. This feature allows values (with the
LOOK command) or parameters, such as delay (with the ? command), to
be requested for any signal, and forward (LOOK OUTPUT) or backward
(LOOK INPUT) traversal through the circuit’s topology.

3. Trace signal activity. Using the TRACE command, activity at selected
signals can be monitored. Causality information (why a signal changed)
can be requested (with the TRACE EXPAND command).

4. Enable/Disable hazard and/or timing checks on a per node basis.

5. Modify simulation parameters at run-time. This includes changing
delay, decay, and node states (using the CLAMP and/or SET commands).

6. Simulate fragment. After a problem is localized, SIMIC allows restric-
tion of actions to a small portion of the total simulation (with the
PRANGE option) to prevent voluminous extraneous information. SIMIC
also supports repetitive resimulation from a saved stable-state
(RESTORE TNUM command), providing immediate feedback on mod-
ifications.

Chapter 2.6 Circuit Troubleshooting SIMIC Terminology and Definitions

2.6-2 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.2 SIMIC Terminology and Definitions

2.6.2.1 Combinational Timing Hazards

SIMIC performs several unique checks for timing hazards within the circuit.
This section introduces the SIMIC terminology for these checks and
describes their associated timing.

Figure 2.6-1 illustrates the supported combinational hazard checks for a
two-input AND gate. In Figure 2.6-1(a), the output is a pulse, that is, a
sequence of transitions starting from a known value (0 or 1), changing to the
complementary value (or X), and then returning to the original value. If the
pulse’s width is comparable to the propagation delay of the gate during sim-
ulation, it may be narrower, or even nonexistent, in the physical circuit due
to wiring delays, processing variations, and other factors. Narrow pulses are
generally unplanned; if present, they could cause problems and therefore
should be reported. By default, a pulse hazard is defined as a pulse that is
no wider than three times the average propagation delay of the gate. This
default can be changed to a different multiple, <k> (an integer), of the gate’s
average propagation delay with the DEFINE (DE) command’s PULSE (PU)
keyword option:

DEFINE PULSE=<k>

Figure 2.6-1(b) illustrates the situation where the input transitions are so
close that the gate output cannot fully respond to the first input event before
the second event occurs (a “pulse that never happened”). This is a called a
spike hazard. Spike hazards at a memory elements can be specifically ref-
erenced with the MEMSPIKE keyword. SIMIC automatically counts the
number of unreported spike conditions, and outputs this count at the end of
each simulation run. By default, SIMIC generates an X-pulse at the node
where the spike originates; this is called spike propagation. Alternatively,
it can also be instructed to filter spike transients. Two spike propagation
attributes within a SNL cell definition, FILTER and LIBERAL, regulate the
degree of X-pulse pessimism on a per-node basis. These attributes are
described in the Subsection Controlling Spike Propagation in Chapter 2.7.
They can be modified interactively with the SIMICXPROPAGATE run com-
mand.

In Figure 2.6-1(c), the input transitions are in opposite order. Simulation
results are “clean”; no activity is ever scheduled for the output. Yet, if these
transitions are close, their arrival times may reverse order in the real circuit
due to differences in arrival times, path delays, etc., from simulated values.
Thus, events could also differ from simulated events. This is called a near
hazard. SIMIC can be instructed to monitor near hazards and perform a
“what if” analysis of input event ordering for combinational primitives
whose inputs change within a predefined window. By default, this window
is twice the average propagation delay of the gate.The window multiple,

Chapter 2.6 Circuit Troubleshooting SIMIC Terminology and Definitions

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-3

Figure 2.6-1 Combinational Timing Hazards

W
Tr Tf

Tr, Tf
T = (Tr + Tf) / 2

C
A
B

A

B

C

(a) Pulse Hazard (0 ≤ W ≤ kT) where k = 3 (by default)

A

B

C

D

(b) Spike Hazard (0 < D < Tr) or (0 < D < Tf)

A

B

C

D

(c) Near Hazard (0 ≤ D ≤ kT) where k = 2 (by default)

Chapter 2.6 Circuit Troubleshooting SIMIC Terminology and Definitions

2.6-4 SIMIC User’s Guide Revision 1.0 9/2/91

<k> can be changed to a different value with the DEFINE command’s
NEAR (NE) keyword option:

DEFINE NEAR=<k>

SIMIC can optionally propagate an X-pulse upon detecting this hazard (see
Enabling And Disabling Spike Propagation in this chapter).

2.6.2.2 Functional Timing Checks

Timing checks are supported for the DNL and DPL (DL) latch and the
DNCF, DPCF (DCF), JKNCF (JKCF), JKPCF, TNCF (TCF), and TPCF
edge-triggered flip-flops. These checks can be specified within a TIMING-
CHECKS block in any PART statement instantiating these built-in primi-
tives.

In the following description, the active clock edge is the clock transition that
causes the latch or flip-flop output to change state. This edge is the rising
clock transition for the DPL (DL), DPCF (DCF), JKPCF, and TPCF primi-
tives, and the falling clock transition for the DNL, DNCF, JKNCF (JKCF),
and TNCF (TCF) primitives.

The supported timing checks are:

1. SETUP – this check specifies the minimum duration that an input must
be stable prior to an active clock edge:

• DNL, DPL, DNCF, DPCF – setup from D (SETUP.D)

• JKNCF, JKPCF – setup from J (SETUP.J) and setup from K
(SETUP.K)

• Additionally, all eight primitives support setup from reset
(SETUP.NR), and setup from set (SETUP.NS). These setup times
represent the minimum duration that the reset (set) must be inactive to
reliably set (reset) the memory element via clock.

2. HOLD – this check specifies the minimum duration that an input must be
stable after an active clock edge:

• DNL, DPL, DNCF, DPCF – hold to D (HOLD.D)

• JKNCF, JKPCF – hold to J (HOLD.J) and hold to K (HOLD.K)

• Additionally, all eight primitives support hold to reset (HOLD.NR),
and hold to set (HOLD.NS)

3. PULSE-WIDTHS – this check specifies the minimum width of a pulse
on the set, reset, or clock lines. All eight primitives support: pulse-width
reset (PW.NR), pulse-width set (PW.NS), and high and low pulse-width
clock (PW.C.H and PW.C.L respectively).

The setup and hold checks for the asynchronous, active-low, set and reset
inputs of all eight primitives are associated with the time duration between

Chapter 2.6 Circuit Troubleshooting SIMIC Terminology and Definitions

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-5

the rising (trailing) edge of pulses on these inputs and the active clock edge.

Referencing a timing check by itself, without a qualifying pin name or clock
level—SETUP, HOLD, PW—specifies all checks of that type. For example,
in a TIMING-CHECKS block for a JKCF instance, SETUP specifies all
setup checks; SETUP.D, SETUP.J, SETUP.K., SETUP.NR, and
SETUP.NS.

2.6.2.3 Excessive Activity (Oscillation)

Oscillation is defined as excessive activity at a signal in response to a single
change of primary input state. In order to determine excessive activity,
SIMIC counts the state changes at each signal. When a primary input
changes (or a new period starts for timing generators), all counts are reset.
By default, oscillation is defined to be 10 transitions at a signal within a sin-
gle test.

When activity at any signal reaches the defined oscillation limit, SIMIC sets
the signal’s value to X (unknown). The signal is freed to assume a known
value when the next primary input change occurs.

This limit can be redefined globally with the DEFINE command’s
OSCILLATION (OS) keyword option:

DEFINE OSCILLATION=<count>

where <count> is a number between 2 and 255. To disable oscillation detec-
tion, any prefix of the word INFINITE can be used instead of <count>.
This option should be exercised with extreme caution, since, if an oscillation
does occur, the simulation run will never complete.

2.6.2.4 Depths and Strengths

SIMIC supports a range of 32,767 gradations of “resistance”, called depths,
for switch-level components. Depths are assigned to these components with
the SERIES-DEPTH (SDEPTH) SNL keyword. Smaller values of depth
(“resistance”) correspond to greater drive capability.

Since gate-level components can interconnect with switch-level compo-
nents, it is necessary to establish a correspondence between switch-level
depths and gate-level drive strengths. Depths are mapped to strengths as fol-
lows:

Chapter 2.6 Circuit Troubleshooting SIMIC Terminology and Definitions

2.6-6 SIMIC User’s Guide Revision 1.0 9/2/91

When SIMIC needs to map a strength to a depth value, Resistive strength is
mapped to a depth of 3, by default. The default value can be changed with
the DEFINE command’s RDEPTHS (RD)keyword option:

DEFINE RDEPTH=<n>

where <n> is a value between 3 and 32766.

2.6.2.5 Interval Representation

In order to perform switch-level simulation accurately, SIMIC internally
maintains an interval representation for switch-level signal values. The
interval contains information on the range of possible values at each signal.

Each interval is represented by a two-tuple of integers whose absolute val-
ues range from 1 to 32,767. The integers contain combined depth and level
information. If both integers are positive, the level is logical-1. If both inte-
gers are negative, the level is a logical-0. Otherwise, the level is an X. The
absolute magnitudes of the integers represent depths—the lower the value,
the stronger the drive.

Some examples of intervals:

• 2/2 - this represents a driving 1.

• -3/-3 - this represents a resistive 0.

• 2/-2 - this represents a driving X.

• 2/20 - this represents a logical-1, whose strength is somewhere
between 2 and 20.

• -2/-20 - this represents a logical-0, whose strength is somewhere
between 2 and 20.

• 32767/-32767 - this represents a tristate (Z) condition.

An interval of 2/20, for example, can arise when a node is driven to logical-
1 through a depth of 20, and may also be driven to logical-1 through a depth
of 2. One situation that can generate this interval is illustrated in Figure
2.6.2.

Depth
Magnitude

Strength

1 Power

2 Driving

3-32,766 Resistive

32,767 Floating

Chapter 2.6 Circuit Troubleshooting SIMIC Terminology and Definitions

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-7

Figure 2.6-2 Sample Situation Generating 2/20 Interval

For intervals with unequal components (e.g., 2/20, representing a range of
possible depths), SIMIC uses the following simulation output characters:

• F - for logical-0.

• T - for logical-1.

• U - for X (unknown).

ONE (depth=1)

2/20

sdepth
=1

sdepth
=19

X0

drives logical-1

@ depth 20

may drive logical-1

@ depth 2

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

2.6-8 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.3 Interactive Debugging Example

The Divide-by-7 counter shown in Figure 2.6-3 has a potential timing haz-
ard that only becomes apparent when spikes are allowed to propagate. This
indicates a timing problem that may manifest itself in non-functioning
devices, or in reduced yields. This example demonstrates the necessity of a
robust spike propagation algorithm. In addition, it demonstrates some of
SIMIC’s interactive debugging capabilities, and provides a brief description
of these capabilities. The remainder of this chapter contains detailed
descriptions of these debugging features, and others.

Figure 2.6-3 Divide-by-7 Counter

In this circuit, three negative edge T flip-flops (built-in primitive TCF, see
Appendix A) are initially reset to a count of 000 (q4,q2,q1). When the
counter reaches state 110 on the sixth negative-going clock edge, signal
set goes low, forcing a counter state of 111, which makes signal set go
high again. The next CLOCK pulse causes the counter state to return to 000.
(Note: the OCHANGE, or OUTPUT-CHANGE SNL keyword assigns identi-
cal rise and fall delays to an output; thus, signal nreset has a delay of 1,
signal q1 has a delay of 2, etc. See Local Delays in Chapter 2.7)

NS

NR

Q

C

NR

Q

C

NR

Q

C

Delay=2 Delay=2 Delay=2

Delay=1

Delay=1

Q4Q2Q1

Clock

Reset

Nq1

Set

Nreset

C= SNL Description of divide by 7 circuit

!f p= t= i= o= ochange=

type=divide_by_7 i=reset,clock o=q1,q2,q4

 nreset inv reset - 1

 q1 tcf nreset,set,clock q1 2

 q2 tcf nreset,one,q1 q2 2

 q4 tcf nreset,one,q2 q4 2

 nq1 inv q1 - 1

 set nand nq1,q2,q4 - 1

NS NS

ONE

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-9

Figure 2.6-4 Divide-by-7 Counter — Run 1

>>: define file=div

>>: get type=divide_by_7

Main Get Network : DIVIDE_BY_7

GET completed, Circuit totals: Parts = 6; Signals = 10

 Inputs = 2; Busses = 0; Outputs = 3

>>: define pr.1 = 1 0

>>: define pc.1 = 0 0 do 8 (1 0)

>>: apply patterns=pc list=clock

>>: apply patterns=pr list=reset

>>: print li=reset*clock**q1,q2,q4*set

>>: no xpropagate spike:

>>: simulate

Remark= Options: (Fault Free Simulation)

Remark= Pattern Stimuli, Near Filter, Spike Filter

Remark= Stable After Decay, Dynamic Delay

C= R C QQQ S

C= E L 124 E

C= S O T

C= E C

C= T K

 7 T 1: 1 0 000 1

 1 T 2: 0 0 000 1

 2 T 3: 0 1 000 1

 4 T 4: 0 0 100 1

 2 T 5: 0 1 100 1

 6 T 6: 0 0 010 1

 2 T 7: 0 1 010 1

 4 T 8: 0 0 110 1

 2 T 9: 0 1 110 1

 6 T 10: 0 0 001 1

 2 T 11: 0 1 001 1

 4 T 12: 0 0 101 1

 2 T 13: 0 1 101 1

 9 T 14: 0 0 111 1

 2 T 15: 0 1 111 1

 6 T 16: 0 0 000 1

 2 T 17: 0 1 000 1

 4 T 18: 0 0 100 1

2 Spike messages suppressed.

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

2.6-10 SIMIC User’s Guide Revision 1.0 9/2/91

By default, SIMIC propagates an X-pulse whenever a spike hazard occurs.
To demonstrate the importance of X-pulse propagation, the first simulation
of the Divide-by-7 circuit is performed without it. This is accomplished by
issuing the NO XPROPAGATE SPIKE: run command (spike filter mode).

This simulation, called Run 1, is shown in Figure 2.6-4. Based on these
results, which would be obtained from simulators that do not support spike
propagation, the counter appears to behave as predicted, and therefore the
design might be assumed to be correct and problem-free.

Although spike propagation was inhibited, SIMIC still issued a warning that
two unreported spikes occurred during simulation. In general, SIMIC will
count the number of unreported spikes that occur during simulation (even if
spike warning messages have been suppressed or have not been requested)
and will report this number at the end of each simulation run.

Because of the post-simulation warning that unreported spikes occurred, the
simulation is repeated, this time allowing spikes to propagate. This is
accomplished simply by eliminating the NO XPROPAGATE SPIKE: com-
mand, since spike propagation is SIMIC’s default.

This simulation session, called Run 2, is shown in Figure 2.6-5. As a result
of spike propagation, q1, q2, and q4 went unknown (X) at test 16. This is
an indication that the spikes do indeed introduce a critical timing problem.

Having determined that a problem exists, the next step is to perform inter-
active debugging to determine its cause. The simulation will be run again,
and a breakpoint will be set to “freeze” the simulation when a spike occurs.
This is accomplished with the

BREAK SPIKE: MEMSPIKE:

run command. SIMIC can distinguish spikes in memory elements
(MEMSPIKE) from other spikes (SPIKE). The SPIKE: option in the
BREAK command requests a break from simulation if any spike (including
spikes in memory elements) is occurs. Although this would have been suf-
ficient for this example, the MEMSPIKE: option is used to request a break
if a spike occurs in a flip-flop primitive (a subset of the SPIKE: option). As
a result, a spike at a memory element will be reported as a MEMSPIKE,
rather than as a SPIKE.

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-11

Figure 2.6-5 Divide-by-7 Counter — Run 2

>>: define file=div

>>: get type=divide_by_7

Main Get Network : DIVIDE_BY_7

GET completed, Circuit totals: Parts = 6; Signals = 10

 Inputs = 2; Busses = 0; Outputs = 3

>>: define pr.1 = 1 0

>>: define pc.1 = 0 0 do 8 (1 0)

>>: apply patterns=pc list=clock

>>: apply patterns=pr list=reset

>>: print li=reset*clock**q1,q2,q4*set

>>: simulate

Remark= Options: (Fault Free Simulation)

Remark= Pattern Stimuli, Near Filter, Spike Propagation

Remark= Stable After Decay, Dynamic Delay

C= R C QQQ S

C= E L 124 E

C= S O T

C= E C

C= T K

 7 T 1: 1 0 000 1

 1 T 2: 0 0 000 1

 2 T 3: 0 1 000 1

 4 T 4: 0 0 100 1

 2 T 5: 0 1 100 1

 6 T 6: 0 0 010 1

 2 T 7: 0 1 010 1

 4 T 8: 0 0 110 1

 2 T 9: 0 1 110 1

 6 T 10: 0 0 001 1

 2 T 11: 0 1 001 1

 4 T 12: 0 0 101 1

 2 T 13: 0 1 101 1

 9 T 14: 0 0 111 1

 2 T 15: 0 1 111 1

 10 T 16: 0 0 XXX X

 0 T 17: 0 1 XXX X

 0 T 18: 0 0 XXX X

2 Spike messages suppressed.

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

2.6-12 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.6-6 illustrates the results of this simulation, called Run 3. SIMIC
stops the simulation at test 16, issues two MEMSPIKE BREAK messages,
and reports that spikes originate at both the master, q1.1, and slave, q1, of
flip-flop q1.

At this point, the simulation is frozen at time 5 of test 16, and SIMIC has
issued its prompt requesting a command. In order to obtain more informa-
tion about the cause of the spike, the circuit’s response to test 16 will be res-
imulated.This time, however, all activity will be traced to determine the
sequence of events that lead to the spike. As before, SIMIC will break from
simulation when the spike occurs, since the BREAK command is still active
(the BREAK can only be removed with a NO BREAK command).

The command:
restore tnum=*

rolls time back to the beginning of the current test (the last stable state), so
when the SIMULATE command is issued, test 16 will be resimulated.

The command:
trace list: expand:

causes the activity at every signal to be traced. Additionally, use of the
EXPAND option causes the trace output to be augmented with causality
information.

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-13

Figure 2.6-6 Divide-by-7 Counter — Run 3

>>: define file=div

>>: get type=divide_by_7

Main Get Network : DIVIDE_BY_7

GET completed, Circuit totals: Parts = 6; Signals = 10

 Inputs = 2; Busses = 0; Outputs = 3

>>: define pr.1 = 1 0

>>: define pc.1 = 0 0 do 8 (1 0)

>>: apply patterns=pc list=clock

>>: apply patterns=pr list=reset

>>: print li=reset*clock**q1,q2,q4*set

>>: break spike: memspike:

>>: simulate

Remark= Options: (Fault Free Simulation)

Remark= Pattern Stimuli, Near Filter, Spike Propagation

Remark= Stable After Decay, Dynamic Delay

C= R C QQQ S

C= E L 124 E

C= S O T

C= E C

C= T K

 7 T 1: 1 0 000 1

 1 T 2: 0 0 000 1

 2 T 3: 0 1 000 1

 4 T 4: 0 0 100 1

 2 T 5: 0 1 100 1

 6 T 6: 0 0 010 1

 2 T 7: 0 1 010 1

 4 T 8: 0 0 110 1

 2 T 9: 0 1 110 1

 6 T 10: 0 0 001 1

 2 T 11: 0 1 001 1

 4 T 12: 0 0 101 1

 2 T 13: 0 1 101 1

 9 T 14: 0 0 111 1

 2 T 15: 0 1 111 1

 5 B 16> MEMSPIKE(0->1->0) Q1.1

 5 B 16> MEMSPIKE(0->1->0) Q1

>>:

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

2.6-14 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.6-7 Divide-by-7 Counter — Run 3 (continued)

>>: restore tnum=*

>>: trace list: expand:

>>: simulate

Remark= Options: (Fault Free Simulation)

Remark= Pattern Stimuli, Near Filter, Spike Propagation

Remark= Stable After Decay, Dynamic Delay

C= R C QQQ S

C= E L 124 E

C= S O T

C= E C

C= T K

 0 E 16> TRACE(1->0) CLOCK

 2 E 16> TRACE(1->0) Q1

 C > (1->0) CLOCK

 3 E 16> TRACE(0->1) NQ1

 C > (1->0) Q1

 4 E 16> TRACE(1->0) Q2

 C > (1->0) Q1

 4 E 16> TRACE(1->0) SET beginning of pulse at SET

 C > (0->1) NQ1 causality

 C > (1->0) Q2 causality

 5 E 16> TRACE(0->1) SET end of pulse at SET

 C > (1->0) Q2 causality

 5 B 16> MEMSPIKE(0->1->0) Q1.1

 5 B 16> MEMSPIKE(0->1->0) Q1

 5 E 16> TRACE(0->X) Q1.1

 C > (0->1) SET

 5 E 16> TRACE(0->X) Q1

 C > (0->1) SET

>>:

The results of resimulating test 16 with activity trace are shown in Figure
2.6-7. (Note that this is still the same session, Run 3.) SIMIC breaks from
simulation at time 5 of test 16, as before. Even a cursory examination of the
TRACE output indicates that a unit-width pulse occurs on signal set; it exe-
cutes a 1→0 transition at time 4 and a 0→1 transition at time 5. This pulse
is not wide enough to actually set flip-flop q1, whose rise delay is 2 time-
units.

 Causality information, in turn, indicates that the pulse (which shouldn’t
exist at all) is due to a race condition between nq1 and q2. Therefore, it

Chapter 2.6 Circuit Troubleshooting Interactive Debugging Example

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-15

should be possible to eliminate the spike by increasing the delay of nq1 to
make its 0→1 transition occur after the transition at q2. The required delay
modification would be from its current value of 1 to any value greater than
2 (say, 3).

At any point when the circuit is in a “frozen” state (simulation is stopped by
a break), commands can be entered to modify parameters and/or signal val-
ues as well as to request information about the circuit’s state, topology and
electrical characteristics.

Figure 2.6-8 shows the simulation results when this fix is made interactively.
As before, the command:

restore tnum=*

rolls time back to the beginning of the current test, so when the SIMULATE
command is issued, test 16 will be resimulated. The propagation delay of
NQ1 is modified with the command:

set change=3 list=nq1

The activity trace, no longer necessary, is removed with the command:
no trace list:

Resimulation shows that, indeed, no spike occurs with this modification:

Figure 2.6-8 Divide-by-7 Counter — Run 3 (continued)

At this point, it is suggested that the simulation be repeated for the full stim-
ulus sequence, to make sure that no new problems have been introduced at
other points in the test sequence.

>>: restore tnum=*

>>: set change=3 list=nq1

>>: notrace list:

>>: simulate

Remark= Options: (Fault Free Simulation)

Remark= Pattern Stimuli, Near Filter, Spike Propagation

Remark= Stable After Decay, Dynamic Delay

C= R C QQQ S

C= E L 124 E

C= S O T

C= E C

C= T K

 6 T 16: 0 0 000 1

 2 T 17: 0 1 000 1

 5 T 18: 0 0 100 1

>>:

Chapter 2.6 Circuit Troubleshooting Restricting Simulation Options To A Specified Simulation

2.6-16 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.4 Restricting Simulation Options To A Specified Simulation Interval

2.6.4.1 Commands Affected

SIMIC has a general mechanism to restrict many of its options to a given
test range (for patterns) or time interval (for waveforms). This is done with
the PRANGE (PR) keyword option in the individual commands. The com-
mands that can utilize this option are:

• BREAK

• HISTORY

• PRINT

• SAVE

• SIMULATE

• TRACE

• WARN

• WRITE

PRANGE specifications for these commands are independent; restricting the
active interval of one command does not affect the active interval of the
other commands.

2.6.4.2 Basic Form of PRANGE Keyword

The PRANGE keyword option accepts either integers or intervals of integers.
These numbers represent test numbers for pattern stimuli and simulation
times for waveform stimuli.

A PRANGE interval is specified as:
<starting point>-<ending point>

For example, to restrict output to the write file from test (time) 100 to test
(time) 200 only:

WRITE PRANGE=100-200

If the option is to be restricted to one test (time) then just the <starting

point> need be entered. For example:
WRITE PRANGE=1000

is equivalent to:
WRITE PRANGE=1000-1000

and would only enable write output at test (time) 1000. Multiple intervals
can be specified:

WRITE PRANGE=10-20,200-220,300-310,500

Chapter 2.6 Circuit Troubleshooting Restricting Simulation Options To A Specified Simulation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-17

PRANGE options are “sticky”, meaning a previously specified interval must
be explicitly “undone” with the NO prefix, and PRANGE specifications are
cumulative. In the above example, the command could be broken into an
equivalent four command sequence:

WRITE PRANGE=10-20

WRITE PRANGE=200-220

WRITE PRANGE=300-310

WRITE PRANGE=500

When a NO prefix is used with a command, it excludes the PRANGE interval.
For instance, the command:

WRITE PRANGE=1000-2000

would enable write output from test (time) 1000 to test (time) 2000. Subse-
quently, the command:

NO WRITE PRANGE=1101-1199

would disable the write output from test (time) 1101 to test (time) 1199. The
two commands are equivalent to the single command:

WRITE PRANGE=1000-1100,1200-2000

The colon form of the PRANGE keyword:
PRANGE:

specifies all tests (time).

If no PRANGE option is specified for a command, then SIMIC defaults to
“enabled for the entire simulation range” (equivalent to PRANGE:).When
the PRANGE option is used the first time for a given command, and the NO
command prefix is not specified, then the command’s active range will be
the specified PRANGE interval. From then on, PRANGE options for that
command will be cumulative (merged with the previous specifications).

If <starting point> is omitted, 0 is assumed. SIMIC interprets a 0 entry to
mean “at the pre-simulation point”, even for patterns. If <ending point> is
omitted, then the interval is open-ended (until the last input stimulus state
has been propagated). However, either <starting point> or <ending point>

must be specified. Open-ended and 0-starting intervals are specified with a
hyphen (-). For example:

NO WRITE PRANGE=1000-

specifies that the write output will be suppressed from test (time) 1000 until
the end of simulation and

SIM PRANGE=-20000

specifies that SIMIC should stop applying new input states after test (time)
20,000. Note: after the last stimulus in this range has been applied, simula-
tion will still continue until all internal circuit activity ceases.

Chapter 2.6 Circuit Troubleshooting Setting Simulation Breakpoints

2.6-18 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.5 Setting Simulation Breakpoints

2.6.5.1 Overview

One of the most basic debugging facilities in SIMIC is the ability to “freeze”
the simulation at a specified point for interrogation. When any of the speci-
fied conditions for “freezing” simulation have been met, SIMIC issues a
break message in the following form:

<time> B <test> > <description>

where <test> is the test and <time> is the time when the condition occurred.
The B delimiter specifies that this is a BREAK message. The ‘>’ delimits the
<time> and <description> fields, where <description> contains
the condition that caused the break (SPIKE, CONFLICT, RISE, etc.) and
the part or signal that generated the condition. For example, the BREAK
message in the above divide-by-7 simulation:

 5 B 16> MEMSPIKE(0->1->0) Q1.1

indicates a MEMSPIKE condition (spike hazard at a memory element) on
signal Q1.1 at time 5 of test 16, and the polarity of the spike (0→1→0).

2.6.5.2 Restricting Break To A Specified Interval

BREAK operation can be restricted to a specified test (patterns) or time
(waveforms) with the PRANGE option of the BREAK command. See the
Section Restricting Simulation Options To A Specified Simulation Interval

covering PRANGE specifications earlier in this chapter.

2.6.5.3 Directing The Destination Of Break Messages

By default, BREAK messages are displayed at the terminal. In addition,
these messages may be sent to a file whose default extension is brk. This is
accomplished with the FILE (FI) keyword option of the BREAK (BR) com-
mand. The file’s name can be obtained from the default file name with:

BREAK FILE:

or can be explicitly specified with:
BREAK FILE=<name of file>

where <name of file> is the file’s explicit name.

Output to the file can be disabled with the command:
NO BREAK FILE:

The FILE option does not affect messages directed to the terminal. Termi-
nal output is controlled with the TERM (TE) keyword option. This output
can be disabled with the command:

NO BREAK TERM:

The following command restores terminal output:

Chapter 2.6 Circuit Troubleshooting Setting Simulation Breakpoints

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-19

BREAK TERM:

2.6.5.4 Breakpoint At A Specified Signal Transition

A breakpoint can be set when a signal executes a rise (0→1, X→1, or 0→X)
transition with the RISE (RI) keyword option or a fall (1→0, X→0, or
1→X) transition with the FALL (FA) keyword option. Additionally, any
change in value can be trapped with the CHANGE (CH) keyword. The format
is:

BREAK <keyword>=<list of signals>

where <keyword> is either RISE, FALL, or CHANGE, and <list of signals>

is a list of signals for which the option is applied (or removed with the NO
prefix to the BREAK command). Using:

<keyword>:

adds (removes) the specified option for all signals.

To disable a breakpoint on any of these transitions, use the NO prefix to the
BREAK command and the appropriate keyword and values.

2.6.5.5 Breakpoint When A Signal State Becomes Unknown (X)

A breakpoint can be set when specified signals go to X. This is accom-
plished with the X keyword, using the same format as the above keywords:

BREAK X=<list of signals> or BREAK X:
In addition to the normal breakpoint information, causality information will
be included in the message.

The MEMLATCH (MEML) keyword can be used to set breakpoints when
known-to-unknown state transitions occur at SIMIC latch and flip-flop
primitives as a result of sensitized unknown inputs (e.g., X at the clock or
asynchronous set/reset inputs). Other keywords can be used to set break-
points when the transition to an unknown state is due to timing problems at
the memory element’s inputs (see Breakpoint At A Combinational Timing

Hazard and Breakpoint At A Functional Timing Violation below). The for-
mat is:

BREAK MEMLATCH=<list of signals>

where <list of signals> is a list of SIMIC latch and flip-flop outputs. To set
a breakpoint when the state of any memory element becomes unknown due
to a sensitized unknown input, use the command:

BREAK MEMLATCH:

To disable a breakpoint on any of these transitions, use the NO prefix to the
BREAK command and the appropriate keyword and values.

Chapter 2.6 Circuit Troubleshooting Setting Simulation Breakpoints

2.6-20 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.5.6 Breakpoint When A Signal Goes To Floating Unknown (Z)

Sometimes it is helpful to monitor nodes that should never decay to a Z
value (e.g., signals that drive unidirectional combinational gates). SIMIC
can trap for this condition with the DECAY (DE) keyword option for the
BREAK run command. The format is:

BREAK DECAY=<list of signals>

where <list of signals> specifies the signals to monitor, or
BREAK DECAY:

to monitor all signals. Subsequently, a monitor may be removed by prefixing
the BREAK DECAY run command with the NO prefix, and the appropriate
keyword value (either colon (:), or equals sign (=) followed by <list of sig-

nals>).

2.6.5.7 Breakpoint At Signal Conflict Hazard

A conflict hazard occurs when two or more of the current highest strength
drivers of a wire-tie are at complementary (or possibly complementary) val-
ues. To set a breakpoint for this situation, use the CONFLICT (CON) key-
word option of the BREAK command. Individual signals may be selected for
triggering a break with the

BREAK CONFLICT=<list of signals>

option, and all signals can be selected with the
BREAK CONFLICT:

option. Prefixing the BREAK command with a NO prefix will cause de-selec-
tion, rather than selection.

2.6.5.8 Breakpoint At An Oscillation

To enable a breakpoint when any signal oscillates (exhibits excessive
behavior), use the OSCILLATION (OS) keyword option of the BREAK

command:
BREAK OSCILLATION:

To disable this break:
NO BREAK OSCILLATION:

2.6.5.9 Breakpoint At A Combinational Timing Hazard

A breakpoint can be set for the timing hazards PULSE (PU), SPIKE (SP),
and NEAR (NE), (described in the Subsection Combinational Timing Haz-

ards in this chapter) by the run command:
BREAK <keyword>= <list of signals>

where <keyword> is either PULSE, SPIKE, or NEAR respectively, and <list

of signals> are the signals for which a breakpoint is set. The format:
BREAK <keyword>:

Chapter 2.6 Circuit Troubleshooting Setting Simulation Breakpoints

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-21

specifies that the <keyword> hazard breakpoint is to be applied to all sig-
nals.

In addition, SIMIC provides two special keywords HAZARD (HA) and
MEMSPIKE (MEMS). The HAZARD keyword is effectively equivalent to
issuing the SPIKE, PULSE and NEAR keywords concurrently, with the
same values. Thus:

BREAK HAZARD:

is equivalent to:
BREAK SPIKE: PULSE: NEAR:

The MEMSPIKE keyword is effectively equivalent to the SPIKE keyword
but applies only to flip-flops. In addition, if this keyword is used, the speci-
fied flip-flops will generate a MEMSPIKE message rather than a SPIKE

message.

To disable a breakpoint on any of these hazards, use the NO prefix to the
BREAK command and the appropriate keyword and values.

2.6.5.10 Breakpoint At A Functional Timing Violation

Breakpoints can be set for setup, hold and pulse-width timing check viola-
tions with the PART (PA) keyword option and the appropriate timing check
name. The run command:

BREAK PART: <timing-check>:

sets breakpoints for the specified <timing-check> violation for all parts,
while

BREAK PART=<list of parts> <timing-check>:

sets breakpoints for the specified <timing-check> violation for the desig-
nated <list of parts>.

<timing-check> is a supported timing check (setup, hold or pulse-width),
either qualified or unqualified. The complete timing check name must be
used. For example, to set breakpoints for violations of the D-setup-time
check and all pulse-width checks for the DCF instance named f1, use the
command:

BREAK PART=f1 SETUP.D: PW:

To disable a previously-enabled breakpoint on any timing violation, use the
NO prefix to the BREAK command and the appropriate keyword and values.

 See Appendix A for information on the functional timing checks supported
for each primitive.

2.6.5.11 Breakpoint On Input Change While The Circuit Is Unstable

The UNSTABLE (UN) keyword option may be used to set a breakpoint when

Chapter 2.6 Circuit Troubleshooting Setting Simulation Breakpoints

2.6-22 SIMIC User’s Guide Revision 1.0 9/2/91

a primary input changes while the circuit is still unstable:
BREAK UNSTABLE:

To disable this breakpoint:
NO BREAK UNSTABLE:

2.6.5.12 Breakpoint At Specified Intervals

SIMIC always notes the event that the circuit state has become stable.
SIMIC can be directed to break periodically at any of these stable points by
using the PSTEP (PS) keyword option of the BREAK command. The form
is:

BREAK PSTEP=<n>

where <n> is the number of stable points between each breakpoint.

When using waveforms, the circuit might not reach stability at the point of
interest. In this case, combining the PSTEP and the PRANGE options could
be useful. For example, if detailed analysis is required around time 1,000,
the command:

BREAK PSTEP=1 PRANGE=900-

will stop the simulation the first time the circuit becomes stable after time
899.

To disable a PSTEP break use the command:
NO BREAK PSTEP:

Periodic breakpoints can also be set at a specified time interval with the
TSTEP (TS) keyword option of the BREAK command. The form for this
command is:

BREAK TSTEP=<n>

where <n> is the interval between breaks. For example, to stop the simula-
tion every 10 time-units, use the command:

BREAK TSTEP=10

To disable an active TSTEP breakpoint, use the command:
NO BREAK TSTEP:

2.6.5.13 Breakpoint On Strobe Error

In Timing generator mode, SIMIC emulates the tester environment, includ-
ing edge strobes (strobe point) and window strobes (strobe window). The
strobed value is expected to remain constant (stable) during the entire active
strobe interval. If a strobed signal does change value within this interval,
then SIMIC can trap this event as a strobe error.

The STROBE (STRO) keyword option of the BREAK command may be used
to set a breakpoint when a strobe error occurs:

Chapter 2.6 Circuit Troubleshooting Setting Simulation Warnings (Watchpoints)

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-23

BREAK STROBE:

To remove the breakpoint, use:
NO BREAK STROBE:

A full discussion of strobes, along with other topics related to test equipment
interface, can be found in Chapter 2.8 of this Guide.

2.6.6 Setting Simulation Warnings (Watchpoints)

2.6.6.1 Overview

For many situations, it is sufficient to receive warning message and continue
simulation, rather than to break from simulation. The SIMIC WARN (WA)
command provides the ability to monitor user-specified simulation condi-
tions and issue warnings if and when these conditions occur. Syntactically,
the WARN command is similar to the BREAK command. Even the format of
the warning messages:

<time> W <test> > <description>

is identical, with the exception that W is used instead of B as the delimiter
between <time> and <test>.

The default extension for the WARN file is wrn.

The majority of the options supported for the BREAK command are also
supported for the WARN command. The options that are not supported are:

1. Warnings at a specified signal transition (RISE, FALL, CHANGE, X).

2. Warning at specified intervals (PSTEP, TSTEP).

2.6.6.2 Suppressing Excessive Messages On A Per-Signal Basis

SIMIC maintains a counter for most warnings on a per-signal basis. Once
the number of warning messages for a specified condition have reached a
limit (default 10) for a signal, SIMIC suppresses further messages of that
type. For example, SIMIC will only display 10 SPIKE (spike hazard) mes-
sages, 10 PULSE (pulse hazard) messages, etc., for each signal. A new glo-
bal limit for per-signal messages can be set with the WARN command’s
STOP (STOP) keyword option:

WARN STOP=<n>

where <n> is the new limit, ranging from 1 to 511. To prevent any messages
from being suppressed, use the command:

NO WARN STOP:

For the special case of SPIKEs, the number of warning messages suppressed
because a per-signal limit has been reached, or because spike warnings were

Chapter 2.6 Circuit Troubleshooting Tracing Circuit Activity

2.6-24 SIMIC User’s Guide Revision 1.0 9/2/91

not requested for a signal, is displayed at the end of each simulation run.

2.6.6.3 Warning Defaults

Warning messages for oscillations (OSCILLATION), wire-tie conflicts
(CONFLICT), strobe errors (STROBE), primary input changes while the cir-
cuit is unstable (UNSTABLE), and all part timing checks (SETUP, HOLD,
PW) are enabled by default. All other warnings are initially disabled.

2.6.7 Tracing Circuit Activity

2.6.7.1 Overview

Once the test has been found in which an incorrect or unexpected event
occurs, the ability to follow the circuit’s activity all the way to the original
cause, with the TRACE (TR) command, is extremely useful. Each line of
TRACE output contains the time, the test, and a description of the event at a
traced signal. If requested, the cause (or probable causes) of the event can
also be reported. The format of the TRACE output is:

<time> E <test> > TRACE (<transition>) <signal>

where <test> is the current test, <time> is the current time, <transition>

contains the previous and new values describing the event, and <signal> is
the traced signal’s name.

If causality information is also requested (with the TRACE EXPAND: com-
mand), additional trace output will have the form:

C > (<transition>) <signal>

For example, in the Divide-by-7 debugging session illustrated earlier in this
chapter, the TRACE output:

 2 E 16> TRACE(1->0) Q1

 C > (1->0) CLOCK

indicates: at time 2 in test 16, Q1 executed a 1→0 transition, caused by
CLOCK executing a 1→0 transition.

2.6.7.2 Restricting Trace To A Specified Interval

TRACE operation can be restricted to a specified test (patterns) or time
(waveforms) interval with the PRANGE option of the TRACE command. See
the Section Restricting Simulation Options To A Specified Simulation Inter-

val covering PRANGE specifications earlier in this chapter.

Chapter 2.6 Circuit Troubleshooting Tracing Circuit Activity

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-25

2.6.7.3 Directing The Destination Of Trace Output

By default, TRACE messages are displayed at the terminal. In addition, this
output may be sent to a file whose default extension is trc. This is accom-
plished with the FILE (FI) keyword option of the TRACE command. The
file’s name can be obtained from the default file name with:

TRACE FILE:

or can be explicitly specified with:
TRACE FILE=<name of file>

where <name of file> is the file’s name.

The FILE option does not affect messages directed to the terminal.

TRACE output to the file can be stopped with the command:
NO TRACE FILE:

TRACE output to the terminal is controlled with the TERM (TE) keyword
option. This output can be stopped with the command:

NO TRACE TERM:

and resumed with the command:
TRACE TERM:

2.6.7.4 Specifying Signals To Trace

The LIST (LI) keyword option selects the signals to be traced. To specify
that all signals should be traced, simply issue the command:

TRACE LIST:

To select individual signals for tracing, use the command:
TRACE LIST=<list of signals>

where <list of signals> is the list of the signals to trace.

Similarly, to selectively stop signals from being traced, use the command:
NO TRACE LIST=<list of signals>

To stop tracing on all signals, use the command:
NO TRACE LIST:

2.6.7.5 Requesting Causality Information

Causality information is a useful backtracing facility, allowing traversal of
the trace forwards and backwards. The EXPAND (EX) keyword option con-
trols reporting of causality. To include causality information in the trace out-
put, use the command:

TRACE EXPAND:

To remove causality information from the trace output, use the command:
NO TRACE EXPAND:

Chapter 2.6 Circuit Troubleshooting Probing For Signal State Information

2.6-26 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.7.6 Using Trace To Locate Critical Paths

This feature is only applicable to the simulate-till-stable (patterns) simula-
tion mode. If, in a given test, the circuit is expected to reach a stable state
within some time limit, but its response time is found to exceed this limit,
the critical path can be isolated by enabling activity trace only after the
expected response time.

For example, if the circuit was expected to take 1000 time-unit to stabilize,
but SIMIC simulation reveals that the circuit requires 1090 time-units to sta-
bilize, then all activity after time 1000 can be traced (and all activity prior
to this time not traced) by using the BEGIN (BE) keyword option of the
TRACE command. In this case the command would be:

TRACE LIST: BEGIN=1001

Thus any signal that changed after time 1000 would generate a trace output,
indicating the slowest paths in the circuit.

To disable the BEGIN option, issue the command:
NO TRACE BEGIN:

2.6.8 Probing For Signal State Information

2.6.8.1 Overview

The value of any signal in the circuit may be interrogated with the LOOK
(LO) run command at any breakpoint in the simulation. The LIST (LI) key-
word option is used to specify the signals. The format of this command is:

LOOK LIST=<list of signals>

where <list of signals> is a list of signals whose values are requested. For
example:

>>: look list=a,sum

At Time= 23, Test=101:

a= '0' [Primary Input]

sum= '1' [EXOR]

Note that SIMIC generates a time/test stamp, and for each requested signal,
outputs:

• The signal’s name.

• The signal’s value in SIMIC character format. If the driving device
requires depths (switches, tristating elements, wire-ties, etc.), then the
value’s interval representation will also be displayed (in parenthesis).
For example:
>>: look list=out

Chapter 2.6 Circuit Troubleshooting Probing For Signal State Information

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-27

At time=48, Test=9:

out= 'Z' (32767/-32767) [TPADN]

• The signal’s driver. This can be either a built-in or user-defined prim-
itive, a primary input (or bus), or a global constant (logical-0, logical-
1, Tristate (Z)).

The LOOK command’s LIST keyword option is not sticky; SIMIC only
reports the values of signals currently specified with the LIST keyword.

2.6.8.2 Displaying Topology As Well As Values

Very often, it is useful to be able to trace the source of an incorrect signal
value. This process can be simplified by including some topological infor-
mation in the LOOK output. The INPUTS (IN) keyword option controls
reporting of element input values. To add fanin (element input value) infor-
mation to the LOOK output, issue the command:

LOOK INPUTS:

To remove fanin information from the LOOK output:
NO LOOK INPUTS:

Once enabled, each subsequent LOOK LIST command will then contain
information about the fanin values. For each input of the element generating
the traced signal, this information consists of (1) the name of the signal con-
nected to the input and (2) the input signal’s value.

For example:
>>: look inputs:

>>: look list=carry-out

At Time= 0, Test= 1:

carry-out= ‘1’ [OR]

I:= and1= ‘0’ [AND]

I:= and2= ‘1’ [AND]

I:= and3= ‘0’ [AND]

In this example, the carry-out signal is a logical-1, and it is generated
by an OR gate. This gate has three inputs, and1, and2, and3, each the out-
put of an AND gate. The second input, and2, is causing the logical-1 at
carry-out.

Note: if the signal being probed with the LOOK command is a wire-tie, then
the state of each of the signal’s drivers is always reported in fanin format,
with each driver state reported as an “input” to the resultant wire-tie value:

>>: look list=sig_5

At Time= 42, Test= 9:

sig_5= ‘H’ (4/4) [WIRETIE]

I:= p1.1= ‘H’ (4/4) [UTGRP]

Chapter 2.6 Circuit Troubleshooting Probing For Signal State Information

2.6-28 SIMIC User’s Guide Revision 1.0 9/2/91

I:= p2.1= ‘H’ (6/6) [UTGRP]

I:= p3.1= ‘Z’ (32767/-32767) [UTGRN]

This LOOK output states that signal sig_5 is a wire-tie of three drivers.
Two of the drivers, the outputs of UTGRPs (unidirectional p-transistors, see
Appendix A) with instance names p1 and p2 are driving logical-1 (at
depths 4 and 6, respectively), while the third driver, the output of a UTGRN
(unidirectional n-transistor, see Appendix A) with instance name p3, is
tristating.

Fanout information can also be included in the LOOK LIST output with the
OUTPUTS (OU) keyword option:

LOOK OUTPUTS:

Once enabled, each subsequent LOOK LIST command will then contain
the instance names of all parts driven by the traced signal.

For example:
>>: look outputs: list=and2

At Time= 0, Test= 1:

and2= ‘1’ [AND]

O:= or1 [OR]

which specifies that and2 fans out to the OR gate named or1.

Fanout information can be subsequently removed from LOOK output with
the command:

NO LOOK OUTPUTS:

2.6.8.3 Displaying All Signal States

The command:
LOOK LIST:

causes SIMIC to generate a table of all signals states (in alphanumeric
sequence). The format of this table is equivalent to the PRINT (or WRITE)
dump format, discussed in the Subsection Selecting Signals to Output in
Chapter 2.4.

2.6.8.4 Displaying All Signals At A Specified State

Many times it is useful to see if there are any signals at an ‘X’ or ‘Z’ state.
To display all signals at an ‘X’ state, use the command:

LOOK X:

Similarly, to display all signals at a ‘Z’ (tristate) value, use the HIZ (HI)
keyword option:

LOOK HIZ:

The format of both reports is identical to the LOOK LIST= command’s

Chapter 2.6 Circuit Troubleshooting Forcing Signal States

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-29

report format. These two commands do not honor the INPUTS: or
OUTPUTS: keyword options, if in effect.

2.6.9 Forcing Signal States

2.6.9.1 Overview

SIMIC allows interactive modification of any signal’s state by one of two
methods, SET (SE) and CLAMP (CL). They differ only in the length of time
that a signal value is forced. The SET value is maintained for a single test,
after which the SET signal is freed to assume a consistent value (if the signal
is an element output, its state must be consistent with the element’s input
state). A CLAMPed value, however, will remain at the forced value from the
specified test onwards, until explicitly freed with the NO CLAMP command.

2.6.9.2 Specifying Force Values And Tests

The value to force is selected by the keyword options: ONE (ON), ZERO
(ZE), X, and HIZ (HI), for Logical-1, Logical-0, Unknown, and Tristate,
respectively. The format is:

SET <value-option>=<list of signals>

or
CLAMP <value-option>=<list of signals>

where <value-option> is the appropriate keyword option, as described
above.

For example:
SET ONE=a,carry-out

CLAMP ZERO=xyz

sets signals a and carry-out to logical-1, and clamps signal xyz to log-
ical-0. These values will be applied at the start of the next test, after resump-
tion of simulation. Signals a and carry-out will only remain forced for
that test, but signal xyz will remain forced at logical-0 until explicitly
released with the NO CLAMP command, or CLAMPed to another value.

If values must be forced farther in the future than the next test, the TNUM
(TN) keyword option of the SET or CLAMP run command can be used to
specify the appropriate test. If the TNUM keyword is not specified, then the
SET or CLAMP will be applied at the start of the next test. The form of the
TNUM keyword option is:

SET TNUM=<n>

or
CLAMP TNUM=<n>

where <n> is the test number in which a value is to be SET or CLAMPed.

Chapter 2.6 Circuit Troubleshooting Forcing Signal States

2.6-30 SIMIC User’s Guide Revision 1.0 9/2/91

The TNUM keyword option is not sticky, and if specified, must be included
within the same command as the value assignments. For example, the
sequence of commands:

CLAMP TNUM=100 ONE=abc,def

CLAMP ZERO=xyz

cause signals abc and def to be clamped to logical-1 at test 100, and signal
xyz to be clamped to logical-0 at the next test.

If conflicting values are simultaneously specified for the same signal in SET
and CLAMP commands, then the CLAMP command overrides the SET.

If a built-in flip-flop primitive’s output is SET or CLAMPED, the master rank
is also assigned the SET or CLAMPED value.

2.6.9.3 Cancelling Or Freeing Forced Values

The NO command prefix can be used to remove SET (or CLAMPed) specifi-
cations at a particular value. Use the format:

NO SET <value-option>=<list of signals>

or
NO CLAMP <value-option>=<list of signals>

to selectively cancel previous SET or CLAMP specifications, or free previ-
ously CLAMPed signals. Use the form:

NO SET <value-option>:

or
NO CLAMP <value-option>:

to cancel or free all forcing of signals to the specified value, <value-option>,
which is one of the four options: ONE, ZERO, X, or HIZ.

The LIST keyword may also be used in the NO SET or NO CLAMP com-
mand, to remove the SET or CLAMP, regardless of the injected value.

As with forcing signals, the operation of freeing signals is test-specific; a
SET or CLAMP command, once issued, can only be explicitly removed from
the test it is applied to. The TNUM keyword option can be used with the NO
prefix to specify test number.

SIMIC queues user commands to force and free signal values This means
that replaying the simulation will also replay the SET or CLAMP commands
issued previously for this session.

Examples:

The command:
NO CLAMP LIST:

will remove all CLAMPs, either to ONE, ZERO, X or HIZ, assigned for the
next test.

Chapter 2.6 Circuit Troubleshooting Querying Delay Values

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-31

The sequence of commands:
SET ZERO=abc,def

SET TNUM=50 ZERO=abc

NO SET ZERO=abc

causes signal def to be set to logical-0 at the next test, and signal abc to
be set to logical-0 at test 50. (The NO SET command cancels the request to
set signal abc to logical-0 at the next test.)

The sequence of commands:
CLAMP TNUM=100 ONE=abc

NO CLAMP TNUM=120 ONE=abc

causes signal abc to be clamped to logical-1 at test 100 and subsequently
released at test 120. The LIST keyword could also have been used in the NO
CLAMP command.

2.6.10 Querying Delay Values

The current rise and fall delays of any signal in the circuit can be “queried”.
This is accomplished with the ?DELAY (?DEL) LIST (LI) command:

?DELAY LIST=<list of signals>

to “query” the delays of selected signals (in <list of signals>), or
?DELAY LIST:

to “query” the delays for all signals.

2.6.11 Modifying Delay Values

2.6.11.1 Overview

In addition to supporting interactive selection of the timing set to be used for
simulation, SIMIC also allows run-time modification of individual delays,
either to an absolute value (e.g. 123) or a relative value (e.g +10%, -50%),
by using the FALL, RISE or CHANGE keyword options of the SET LIST
command. The FALL keyword modifies the FALL delays, the RISE key-
word modifies the RISE delays, and the CHANGE keyword modifies both
the RISE and FALL delays, of the signals specified by the LIST keyword.

2.6.11.2 Loading A Timing Set

SNL supports specification of three sets of driver delays, timing-check lim-
its, and loading, corresponding to TYPICAL (T), MINUMUM (MI), and
MAXIMUM (MA) values. The default set loaded by the GET (GE) command
is TYPICAL values.

As described in Chapter 2.2, the timing set to be used for simulation can be

Chapter 2.6 Circuit Troubleshooting Modifying Delay Values

2.6-32 SIMIC User’s Guide Revision 1.0 9/2/91

selected with the TIMING (TI) keyword option of the GET run command.
This option can actually be specified at any point in the simulation session.
For example, to load the MINIMUM timing set, use the command:

GET TIMING=MINIMUM

2.6.11.3 Selecting Drivers For Delay Modification

The LIST (LI) keyword option for the SET (SE) command selects the driv-
ers to be modified. The format is:

SET LIST=<list of signals>

to select the signals to be modified, <list of signals> is the list of signals, or
SET LIST:

to modify all signals.

If a signal has been specified that has multiple drivers (wire-tie), then all
drivers will be modified accordingly.

2.6.11.4 Setting Delays To An Absolute Value

This feature was used in the Divide-by-7 example at the beginning of this
chapter. It allows a driver’s delay to be changed to a specified value (e.g. 3).
The format is:

SET <delay>=<number>

where <delay> is either the CHANGE (CH), RISE (RI), or FALL (FA) key-
word, and <number> is the new delay value. The RISE and FALL options
may be specified in the same SET command, when they apply to the same
signals.

For example:
SET CHANGE=1 LIST:

sets all rise and fall delays to unity.

As another example, the command:
SET FALL=25 LIST=abc

sets the fall delay of signal abc to 25 time-units, but does not modify its rise
delay.

2.6.11.5 Setting Delays Relative To Their Current Value

This feature allows modification of delays by a percentage. The format is:
SET <delay>=+<percentage>

or
SET <delay>=<percentage>

to increase the specified driver’s delays by a percentage, or
SET <delay>=-<percentage>

to decrease the specified driver’s delays by a percentage, where <delay> is

Chapter 2.6 Circuit Troubleshooting Querying Decay Values

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-33

the appropriate CHANGE, RISE, or FALL keyword, and <percentage> is an
integer, optionally followed by a percent sign (e.g., 50 or 50%), indicating
the percentage change.

For example, to increase all rise delays by 30% and decrease all fall delays
by 20%, issue the following command:

SET LIST: RISE=+30% FALL=-20%

If a negative percentage of -100% or less is specified, the designated delays
are set to 0.

2.6.12 Querying Decay Values

SIMIC can be requested to report the current decay time of any signal in the
circuit with the ?DECAY (?DEC) LIST (LI) run command:

?DECAY LIST=<list of signals>

to “query” the decay value of selected signals (in <list of signals>), or
?DECAY LIST:

to “query” the decay value for all signals.

2.6.13 Modifying Decay Values

2.6.13.1 Description

Decays are modified in the same manner as delays, described above, except
the DECAY (DE) keyword is used instead of the CHANGE, RISE, and FALL
keywords. In addition to absolute and relative modification, selected signals
may be made to hold charge indefinitely when they tristate by specifying the
value INFINITE (I) for the DECAY keyword. For example, to set all
decays to infinite, use the command:

SET LIST: DECAY=INFINITE

2.6.14 Querying Signal Loading

SIMIC can be requested to report the current loading at any signal in the cir-
cuit with the ?LOADING (?LO) LIST (LI) run command:

?LOADING LIST=<list of signals>

to “query” the loading at selected signals (in <list of signals>), or
?LOADING LIST:

to “query” the loading at all signals.

Chapter 2.6 Circuit Troubleshooting Enabling And Disabling X-Propagation

2.6-34 SIMIC User’s Guide Revision 1.0 9/2/91

2.6.15 Enabling And Disabling X-Propagation

SIMIC, by default, propagates an X whenever a spike, or part timing viola-
tion (setup, hold, or pulse-width) occurs. X-propagation is controlled by the
XPROPAGATE (XP) command.

2.6.15.1 Spike Hazards

The SPIKE (SP) keyword option of the XPROPAGATE command controls
X-propagation for spike hazards. To disable X-propagation whenever a
spike occurs, issue the command:

NO XPROPAGATE SPIKE:

and to enable it:
XPROPAGATE SPIKE:

If spike propagation is disabled, then the tester interface file (with default
file extension tgn) will not be generated. This is to insure that the design has
been successfully run with spike propagation before committing the design
to fabrication.

The criteria for generating an X-pulse and the size of the generated X-pulse
can both be controlled on a per-signal basis. Run commands to modify X-
pulse generation parameters are described below.

2.6.15.2 Near Hazards

The NEAR (NE) keyword option of the XPROPAGATE command controls
X-propagation for near hazards. To enable X-propagation when a near haz-
ard has been found, issue the command:

XPROPAGATE NEAR:

To disable X-propagation for near hazards:
NO XPROPAGATE NEAR:

By default, X-propagation is disabled for near hazards.

2.6.15.3 Functional Timing Violations

By default, X-propagation for timing check violations is enabled. That is,
when a timing check violation occurs, the affected element signals are
immediately set to X, and the X value is propagated to all element loads.

X-propagation for timing check violations can be controlled by specifying
the PART (PA) keyword option and the appropriate timing check name(s) in
the XPROPAGATE command. To disable X-propagation, issue the com-
mand:

NO XPROPAGATE PART=<part list> <timing-check>:

Chapter 2.6 Circuit Troubleshooting Querying Spike Control Parameters

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-35

for specific parts, or:
NO XPROPAGATE PART: <timing-check>:

for all parts, where <part list> is a list of the parts to be affected, and
<timing-check> is the timing check that should no longer cause X-propaga-
tion when a violation is detected. Different timing checks may be specified
in the same command.

 For example, assuming part f1 is a DCF primitive, the command:
NO XPROPAGATE PART=f1 HOLD: SETUP.NR:

would disable X-propagation for all hold-time violations and for setup-time
violations between the NR and CLK pins at this flip-flop. For information on
the functional timing checks supported by each primitive, see Appendix A.

Subsequently, X-propagation can be re-enabled with the same commands,
except the NO prefix would be omitted.

2.6.16 Querying Spike Control Parameters

2.6.16.1 Description

The current values of the spike generation parameters (FILTER and LIB-
ERAL attributes) can be obtained for any signal in the circuit. This is done
with the ?SPIKE (?SP) LIST (LI) run command:

?SPIKE LIST=<list of signals>

to “query” the spike control parameter values of selected signals (in
<list of signals>), or

?SPIKE LIST:

to “query” the spike control parameter values for all signals.

2.6.17 Modifying Spike Control Parameters

2.6.17.1 Description

The LIBERAL (LIB) and FILTER (FILT) spike control parameters can be
modified independently with the XPROPAGATE (XP) run command. The
command:

XPROPAGATE <keyword>=<value> LIST=<list of signals>

changes the parameter <keyword> (LIBERAL or FILTER) to <value> for
the selected signals in <list of signals>, or

XPROPAGATE <keyword>=<value> LIST:

changes the parameter for all signals.

The <value> is a percentage from 0 to 100, and is specified as an integer,
optionally followed by a percentage sign (e.g. 50 or 50%).

Chapter 2.6 Circuit Troubleshooting Querying Functional Timing Check Settings

2.6-36 SIMIC User’s Guide Revision 1.0 9/2/91

For example,
XPROPAGATE FILTER=20% LIST=abc,def

sets the filter spike control parameter of signals abc and def to 20%. See
the Subsection Controlling Spike Propagation in Chapter 2.7 for descrip-
tions of the filter and liberal spike control parameters.

To restore the spike control parameters to their original values (in the SNL
description), use an asterisk (*) for the filter or liberal option. For example:

XPROPAGATE LIBERAL=* FILTER=* LIST:

would reset all FILTER and LIBERAL parameters to their original values.

2.6.18 Querying Functional Timing Check Settings

2.6.18.1 Description

SIMIC can be requested to report the current values of timing check param-
eters, and whether a WARN, BREAK, or XPROPAGATE command option is
currently active for any primitive that supports these checks. The ?CHECK
(?CH) PART (PA) command:

?CHECK PART:

requests this information for all parts supporting timing checks, while the
command:

?CHECK PART=<list of parts>

requests this information for the parts specified in <list of parts>.

2.6.19 Modifying Functional Timing Check Parameters

2.6.19.1 Description

The SET (SE) command can be used to modify timing-check parameter val-
ues. The run command form:

SET PART: <timing-check>=<value>

modifies the specified timing check parameter values in all parts, and
SET PART=<list of parts> <timing-check>=<value>

does so for the parts selected in <list of parts>.

The keyword, <timing-check>, is the designated timing-check name (e.g.,
SETUP, HOLD, etc.), and <value> is the specified value, either absolute or
relative, as described below.

For information on the timing-checks supported by SIMIC primitives, see
Appendix A.

Chapter 2.6 Circuit Troubleshooting Replaying Portions of the Simulation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-37

2.6.19.2 Setting Timing Check Parameters To Absolute Values

This feature allows a timing check parameter to be changed to a specified
value (e.g. 3). In this case <value> is a positive integer. For example:

SET PART=F1 PW.C.L=10

assigns the value 10 time-units to the pulsewidth check parameter for low
clock at the memory element named F1.

2.6.19.3 Setting Timing Check Parameters Relative To Current Values

This feature allows modification of timing check parameters by a percent-
age. The format for value is:

+<percentage>

or
<percentage>

to increase the specified timing check parameter by a percentage, or
-<percentage>

to decrease the specified timing check by a percentage.

The <percentage> specification is an integer, optionally followed by a per-
cent sign (e.g. 50 or 50%), indicating the percentage change.

For example, to increase all setup timing checks by 30% and decrease all
hold timing checks by 20%, issue the following command:

SET PART: SETUP=+30% HOLD=-20%

2.6.20 Replaying Portions of the Simulation

2.6.20.1 Description

The RESTORE (RE) command loads an initial circuit state for subsequent
simulation. The loaded state is specified by the RESTORE command’s
TNUM (TN) keyword option. SIMIC allows the simulation state to be
restored to:

1. The uninitialized state at the start of simulation. This is accomplished
with the command:

RESTORE TNUM=0

2. A state previously saved in a checkpoint file. This is accomplished with
the command:

RESTORE TNUM=<n>

where <n> is a test that has been checkpointed (circuit state was saved).
The checkpoint file can be explicitly specified with the FILE (FI) key-
word:

RESTORE FILE=<filename>

Chapter 2.6 Circuit Troubleshooting Replaying Portions of the Simulation

2.6-38 SIMIC User’s Guide Revision 1.0 9/2/91

If unspecified, the checkpoint file is assumed to have the default file
name and the default extension sav.

3. The last stable state. This is accomplished with the command:

RESTORE TNUM=*

This option allows a condition to be replayed as many times as neces-
sary to determine why the condition occurs. This feature was used in the
Divide-by-7 debugging example at the beginning of this chapter.

2.6.20.2 Creating The Checkpoint File

The SAVE (SA) command directs SIMIC to save checkpoint states to a
saved-state file. If unspecified, this file has the default file name and the
default extension sav. The saved-state file can be explicitly specified with
the FILE (FI) keyword:

SAVE FILE=<filename>

Only completely stable (no pending decays or other circuit activity) points
may be saved into this file. Once saved, this state can be retrieved, and sim-
ulation can be continued from this point. The PSTEP (PS) keyword option
of the SAVE command initiates saving checkpoints and controls the save
interval. The command form is:

SAVE PSTEP=<n>

where <n> is the number of stable points between saves. To disable check-
pointing, use the command:

NO SAVE PSTEP:

SAVE operations can be restricted to a specified test (patterns) or time
(waveforms) interval with the PRANGE option of the SAVE command. See
the Section Restricting Simulation Options To A Specified Simulation Inter-

val covering PRANGE specifications earlier in this chapter.

A special option of the SAVE PSTEP command is useful for interactive
debugging:

SAVE PSTEP=0

This will save the current state into the checkpoint file, but will not modify
the checkpointing interval (<n> above) if previously specified. To insure
that the circuit is stable, issue the command:

RESTORE TNUM=*

prior to SAVE command.

To display which states have been saved in a file, use the command:
RESTORE TNUM=?

and optionally the FILE keyword option (to specify the file name) if the file
does not have the default file name.

Chapter 2.6 Circuit Troubleshooting Replaying Portions of the Simulation

Revision 1.0 9/2/91 SIMIC User’s Guide 2.6-39

2.6.20.3 Restoring The Saved State’s Time And Test

There are two uses for the checkpoint file:

1. Incremental simulation.

Here, a circuit state is restored and a new stimulus sequence is to be
applied. In this case, the state of the network should be restored, but not
the time and test at which the save occurred. This is useful when exper-
iments are being conducted with different stimulus sequences that
require the restored state as their initial state.

To restore the state, but not the time and test, use the command
sequence:

NO RESTORE PRANGE:

RESTORE TNUM=<n>

2. Resimulation.

Here, a circuit state is to be restored and the same stimulus sequence is
to be applied. In this case, the state of the network, the time, and the test
at which the save occurred must all be restored. This is the default oper-
ation in SIMIC. If you have disabled this mode with the:

NO RESTORE PRANGE:

command, you can re-enable it with the:

RESTORE PRANGE:

command. Then, issue the command:

RESTORE TNUM=<n>

Chapter 2.6 Circuit Troubleshooting Replaying Portions of the Simulation

2.6-40 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 2.7 Circuit Modeling Introduction

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-1

Chapter 2.7 Circuit Modeling

2.7.1 Introduction

SIMIC supports many features that facilitate circuit description, allow accu-
rate delay modeling and rapid detection of timing problems. This chapter
describes how to represent circuits hierarchically, describe delay and load-
ing characteristics, and create cell libraries. It also describes how SIMIC
handles special circuit configurations, such as wire-ties and paralleled ele-
ments.

Design verification is often performed as a two-step process. The first step
is to verify functionality, that is, making sure that the logical design is cor-
rect and complete. Addressing timing problems at this point would unnec-
essarily complicate the task. With this goal successfully accomplished, the
second step is to detect and correct timing problems. Following this meth-
odology requires that the user be able to control the degree of timing checks
and pessimism introduced during simulation. This chapter describes how to
accomplish this control from the SNL circuit description. Much of this con-
trol is also available with SIMIC run commands issued during simulation
(see Chapter 2.6).

Whenever a new SNL keyword is introduced in this chapter, its valid abbre-
viations (if any) are also given in parentheses.

2.7.2 Hierarchical Description

SNL supports hierarchy in a regular manner. As described in Chapter 1.2,
each PART statement instantiates a component and connects it to other com-
ponents in a type block. The components can be built-in primitives, user-
defined primitives, or macros (structural descriptions of subcircuits contain-
ing primitives and/or other macros; the lowest level macros contain only
primitives). The type of component is specified by the PART statement’s
TYPE keyword field.

In general, a SNL description contains one or more type blocks, each defin-
ing a macro or BOOLEAN subcircuit. All type blocks begin with a TYPE
statement that defines the subcircuit’s pins and their electrical characteris-
tics. In a macro, PART statements follow the TYPE statement to describe its
internal structure. An entire circuit description can span multiple files.

A macro’s depth, or level of nesting, is unrestricted.

Chapter 2.7 Circuit Modeling Hierarchical Description

2.7-2 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.7-1(a) Full-Adder Circuit

Figure 2.7-1(b) Four-Bit Adder

XOR

AND3

AND2

AND1

OR1

IA

IB

C-IN

SUM

C-OUT

A[0]

B[0]

S[0]

C[0]

FULL-
ADDER

A[1]

B[1]

S[1]

C[1]

A[2]

B[2]

S[2]

C[2]

A[3]

B[3]

S[3]

S[4]

CARRY-IN

CARRY-OUT

A0

FULL-
ADDER

A1

FULL-
ADDER

A2

FULL-
ADDER

A3

Chapter 2.7 Circuit Modeling Hierarchical Description

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-3

2.7.2.1 Instantiating Macros

A four-bit ripple-carry adder will be used as an example to illustrate hierar-
chical SNL descriptions. Figure 2.7-1(a) illustrates the one-bit full-adder
circuit of Chapter 1.1, which is used here as the basic adder cell, and Figure
2.7.1(b) illustrates the four-bit adder’s block diagram. (The exclusive-or
gate and its output signal, s[4], are not really part of the four-bit adder
structure; this element performs sign extension of the four-bit inputs to pro-
duce the proper sign bit of a five-bit sum.)

The SNL descriptions of both the full-adder and the four-bit adder are
shown in Figure 2.7-2.

Figure 2.7-2 SNL Description of Four-Bit Adder

The first point to note is that the PART statements instantiating the full-
adders are structurally no different from the PART statements that instanti-
ate primitives. The second point is that the number of inputs and outputs of
each instantiated full-adder agrees with the number of inputs and outputs of
the full-adder macro, since there is a one-to-one correspondence. For
example, part a1 in the four-bit macro has three inputs,
a[1],b[1],c[0] that are connected to pins a,b,carry-in, respectively,
of the instantiated full-adder macro, and two outputs, s[1],c[1],
that are connected to the macro’s output pins, sum,carry-out.

Instances of internal macro parts and signals must be distinguished from the
corresponding parts and signals of other instances of the same macro. In

!format p= t= i= o=

type=full-adder i=ia,ib,c-in o=sum,c-out

 xor exor ia,ib,c-in sum

 and1 and ia,c-in and1

 and2 and ib,c-in and2

 and3 and ia,ib and3

 or1 or and1,and2,and3 c-out

type=four-bit i=a[3:0],b[3:0],carry-in $

 o=s[4:0],carry-out

%declare integer2 = a[3:0],b[3:0],s[4:0]

 a0 full-adder a[0],b[0],carry-in s[0],c[0]

 a1 full-adder a[1],b[1],c[0] s[1],c[1]

 a2 full-adder a[2],b[2],c[1] s[2],c[2]

 a3 full-adder a[3],b[3],c[2] s[3],carry-out

 s4 exor a[3],b[3],carry-out s[4]

Chapter 2.7 Circuit Modeling Hierarchical Description

2.7-4 SIMIC User’s Guide Revision 1.0 9/2/91

SIMIC, they are distinguished by prefixing each internal part’s and signal’s
name with the pathname of the instantiating PART statement. The path-
name is constructed by concatenating all part names in the order encoun-
tered from the highest level to the current part, delimiting adjacent names
with dots (.). For example, the full-adder instance named a1 has five inter-
nal parts named a1.xor, a1.and1, a1.and2, a1.and3, and a1.or1.
Similarly, its three internal signals are named a1.and1, a1.and2, and
a1.and3. The remaining signals of the full-adder are connected to
the macro’s pins, and serve as “parameters” or “dummy variables”; their
names are replaced by the names of the signals connected to the correspond-
ing macro instance pins. In summary, the macro instance:

a1 full-adder a[1],b[1],c[0] s[1],c[1]

is expanded (flattened) into
 a1.xor exor a[1],b[1],c[0] s[1]

 a1.and1 and a[1],c[0] a1.and1

 a1.and2 and b[1],c[0] a1.and2

 a1.and3 and a[1],b[1] a1.and3

 a1.or1 or a1.and1,a1.and2,a1.and3 c[1]

All types in the expanded macro are primitives. If, however, the part named
a1.and2 was a macro instead of an AND gate, all its internal part and sig-
nal names would be prefixed with the pathname a1.and2.

2.7.2.2 Main Type

Referring to Figure 2.7-2, there is no structural difference between the
full-adder and the four-bit type blocks—each consists of a type
statement followed by part statements. Either type block can be simulated
directly (of course, compatible stimuli would have to be defined for the
macro selected for simulation). The type specified in the GET TYPE com-
mand is the circuit that is actually loaded and compiled. This type is called
the main type. Thus, the command:

get type=full-adder

would cause the full-adder to be simulated, while the command
get type=four-bit

would cause the four-bit adder to be simulated.

2.7.2.3 Sample Simulation of the Hierarchical Circuit

Except for the fact that some part and signal names are hierarchical, simu-
lation of a hierarchically-described circuit is exactly the same as that for a
flat description.

Figure 2.7-3 illustrates a run file for the four-bit adder. After compiling this
macro with the GET TYPE command, pattern stimuli are defined for its
inputs. a, b, and carry-in. The patterns for the four-bit arrays a and b

Hierarchical
names of
internal macro
parts and
signals are
formed by
prefixing their
original names
with the
instantiating
PART
statement’s
pathname.

Chapter 2.7 Circuit Modeling Hierarchical Description

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-5

Figure 2.7-3(a) adder.run File For the Four-Bit Adder

define file=adder

get type=four-bit

define pa.4.int = 7 7 7 7 -7 -7 -7 -7

define pb.4.int = 5 5 -5 -5 5 5 -5 -5

define pc.1 = 0 1 0 1 0 1 0 1

apply patterns=pa list=a

apply patterns=pb list=b

apply patterns=pc list=carry-in

print list=a*b*carry-in**carry-out*s***$

 a[3],a[2],a[1],a[0]*b[3],b[2],b[1],b[0]$

 *s[4]s[3],s[2],s[1],s[0]

simulate

look list=a1.and2

quit

are defined in INT (integer) format, since the circuit performs an arithmetic
function. This is the also reason that the circuit’s inputs, a and b, and its out-
put, s, were defined as arrays in the SNL description (Figure 2.7-2), rather
than as individual signals. This, combined with the %DECLARE statement
in the four-bit macro (which specifies that a, b, and s be treated as 2’s com-
plement numbers in any PRINT or WRITE command), means that the
PRINT statement of Figure 2.7-3 will cause a, b, and s to be printed out as
2’s complement numbers. This PRINT statement also specifies that the indi-
vidual components of a, b, and s be printed, as binary signals, for compar-
ison with the integer values.

The patterns in this example are simple; all possible combinations of oper-
and signs and carry-in values when the absolute magnitudes of a and b are
7 and 5, respectively. After simulation, the LOOK command is used to exam-
ine an arbitrarily-picked hierarchically-named signal, a1.and2, to show
they are referenced in the same manner as non-hierarchical signals.

Figure 2.7-3(b) shows the corresponding simulation session. SIMIC was
directed to the above run file with the EXECUTE command. Note that the
arithmetic values reported for s are correct for the given values of a, b, and
carry-in. Also note that these numbers are the correct interpretation of
2’s complement representation for the four-bit arrays a and b, and the five-
bit array s.

Chapter 2.7 Circuit Modeling Hierarchical Description

2.7-6 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.7-3(b) SIMIC Simulation of the Four-Bit Adder Using
An EXECUTED Run File

The SIMIC Logic simulator... Version 1.00.00

Genashor Corp, Copyright 1991

Main Get Network : FOUR-BIT

GET completed, Circuit totals: Parts = 21; Signals = 32

 Inputs = 9; Busses = 0; Outputs = 6

>>: execute file=adder

Remark= Options: (Fault Free simulation)

Remark= Pattern stimuli, Near Filter, Spike Filter

Remark= Stable Before Decay, Dynamic Delay

C= A B C C S AAAA BBBB SSSSS

C= A A [[[[[[[[[[[[[

C= R R 3210 3210 43210

C= R R]]]]]]]]]]]]]

C= Y Y

C= - -

C= I O

C= N U

C= T

 0 T 1: 7 5 0 0 12 0111 0101 01100

 0 T 2: 7 5 1 0 13 0111 0101 01101

 0 T 3: 7 -5 0 1 2 0111 1011 00010

 0 T 4: 7 -5 1 1 3 0111 1011 00011

 0 T 5: -7 5 0 0 -2 1001 0101 11110

 0 T 6: -7 5 1 0 -1 1001 0101 11111

 0 T 7: -7 -5 0 1 -12 1001 1011 10100

 0 T 8: -7 -5 1 1 -11 1001 1011 10101

At Time= 0, Test= 8:

A1.AND2= ‘1’ [AND]

Quit Command Issued... Leaving SIMIC

Total SIMIC CPU-time = 0.46 sec. (00:00:00.46)

............... User : 0.19 sec. (00:00:00.19)

............. System : 0.27 sec. (00:00:00.27)

........ Page faults : 56

Chapter 2.7 Circuit Modeling Modeling Delays

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-7

2.7.3 Modeling Delays

In SNL, delays may be specified either locally, in the PART or TYPE state-
ment, or globally, in a delay table. Delays may depend on signal loading.
Delay tables are specified in the !DELAY section of the SNL description,
while pin and net loading are specified in PART and TYPE statements of the
!LOGICAL section. This section describes these SNL constructs.

The SIMIC compiler adds all pin loading on each net (i.e., the loading at
each element pin connected to the net) to the net’s contribution (wiring
capacitance) to obtain the total net loading. It then references the driver
delay characteristics to compute the rise and fall delays of the net’s driver(s).

Delays can also be changed at run time using the SET command.

2.7.3.1 SIMIC Time-Units

In SIMIC, a time-unit is the smallest quantum of time that can be processed.
All SIMIC delays are expressed in time-units. Time-units are normalized
time measurements; they can represent any real-time value (e.g., picosec-
onds, nanoseconds), depending on the selected scale factor used to define
delays. Care must be taken in this selection; if a technology has gate delays
in the nanosecond range, and delays have been scaled so that 1 time-unit
represents 1 picosecond, then each signal delay will be thousands of time-
units. During simulation, cumulative time will increase rapidly. Since
SIMIC maintains elapsed simulated time internally as a 32 bit integer, the
maximum possible simulation time is 2,147,483,647 time-units. Large
internal delays would unnecessarily limit the number of stimuli that can be
simulated before maximum time is reached.

The correspondence between time-units and real-time can be optionally
entered in the !DELAY statement’s TIME-UNITS keyword-field. For
example:

!DELAY time-units=1e-9

specifies that one time-unit corresponds to one nanosecond. If this corre-
spondence is specified, SIMIC reports its value at run time.

2.7.3.2 Delay Curves

Delays are specified with fixed-point or floating-point numbers having up to
six significant digits. A fixed-point number is a decimal number, possibly
containing a decimal point (a rightmost decimal point is implicit for inte-
gers). A floating-point number is a fixed-point number multiplied by an inte-
gral power of 10; the letter “E” (or “e”) separates this exponent from the
fixed-point number. The plus (+) sign for positive exponents is optional. For
example, the number 72 can be represented as:

72, 72., 7200e-2, .0072e4, etc.

Chapter 2.7 Circuit Modeling Modeling Delays

2.7-8 SIMIC User’s Guide Revision 1.0 9/2/91

Delays may vary linearly with loading, as shown in Figure 2.7-4. The delay
vs. loading relation in this figure can be described as either:

1. A line that goes through the coordinates (2,4) and (6,8), or,

2. A line that has a y-intercept of 2 and a slope of 1.

Figure 2.7-4 Typical Delay vs. Loading Relation

The two-point form is:
(<load1>,<delay1>)(<load2>,<delay2>)

In this example, the two-point representation would therefore be:
(2,4)(6,8)

which defines a delay whose value is 4 when the loading is 2, and 8 when
the loading is 6. Optional whitespace may be placed between the right
parenthesis of the first point and the left parenthesis of the second.

The intercept-slope form is:
[<intercept>,<slope>]

In this example, the intercept-slope representation would be:
[2,1]

Two-point and intercept-slope forms may be used interchangeably.

Constant delays are a special case, with zero slope. For example, a constant
delay of 4 could be represented as:

4 or (1,4)(10,4) or [4,0] etc.

(2,4)

DELAY

LOADING

(6,8)

(0,2)

Chapter 2.7 Circuit Modeling Modeling Delays

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-9

2.7.3.3 Global Delays

Global delays are specified in the !DELAY section of the SNL description.
Rise and fall delays are independently specifiable. Each global delay char-
acteristic is assigned a unique name that is referenced by individual PART
and TYPE statements in the !LOGICAL section. Each global delay defini-
tion has the form:

DELAY=<name> RISE=<delay> FALL=<delay>

for delay characteristics having different rise and fall delays, or
DELAY=<name> CHANGE=<delay>

for delay characteristics having identical rise and fall delays. In both forms,
<delay> is a delay specification. For example:

DELAY=del5 RISE=[2,1] FALL=7

defines a global delay having a rise delay characteristic as shown in Figure
2.7-4 and a constant fall delay of 7, independent of loading.

The <delay> specification may contain minimum and maximum delays as
well as typical delays. Its complete format is:

<typical-delay>;<minimum-delay>;<maximum-delay>

where each delay specification is either a two-point or intercept-slope
description. For example:
DELAY=del12_8_15 CHANGE=[12,1];8;(0,15)(2,19)

The typical delay must be specified. If either the minimum or maximum
delay is omitted, it defaults to the typical delay.

Delays are assigned to TYPE and PART outputs with the OUTPUT-DELAY
(ODEL) keyword-field, and to busses with the BUS-DELAY (BDEL) key-
word-field. The value part of these keyword-fields, which contains the glo-
bal delay names, is in a one-to-one correspondence with the respective
outputs and busses. For example,
 P=a2 T=full-adder I=a[2],b[2],c[1] $

O=s[2],c[2] ODEL=del5,del12_8_15

assigns the global delay del5 to output s[2] and del12_8_15 to c[2].

If a signal’s delay is unspecified, the delay defaults to 0. Thus, if the first
delay in the above PART statement were omitted:
P=a2 T=full-adder I=a[2],b[2],c[1] $

O=s[2],c[2] ODEL=,del12_8_15

the rise and fall delays of signal s[2] default to 0. Note the placeholder
comma preceding the delay name del12_8_15. If this comma were miss-
ing, then delay del12_8_15 would be assigned to s[2] and the rise and
fall delays of c[2] would default to 0.

Chapter 2.7 Circuit Modeling Modeling Delays

2.7-10 SIMIC User’s Guide Revision 1.0 9/2/91

As mentioned above, the global delay definitions are specified in the
!DELAY section, and are referenced by PART and TYPE statements in the
!LOGICAL section:

The !LOGICAL section could be in the same network description file as the
!DELAY section, or it could be in a different file. Delays defined in a
!DELAY section are truly global; that is, available to PART and TYPE state-
ments in all network description files explicitly selected with the GET FILE
keyword option or referenced by an !INCLUDE statement. Furthermore,
the global delay tables can be contained in multiple !DELAY sections, pos-
sibly in different files. Regardless of how the delay tables are organized,
however, global delay names must be unique. Assigning the same name
(e.g., del5) to two different delay characteristics is a fatal error.

Global delays are very convenient when constructing simulation libraries
for variants of a particular technology. Here, the functions of the logic cells
and loading characteristics are identical, but each variant requires a different
set of delay-vs.-loading curves. This is accomplished very simply by creat-
ing separate files, each containing a !DELAY section for one variant, and
then referencing the appropriate delay table file with the GET FILE option.

!DELAY time-units=1e-9

.........

DELAY=del5 RISE=[2,1] FALL=7

DELAY=del12_8_15 CHANGE=[12,1];8;(0,15)(2,19)

.........

.........

.........

!LOGICAL

.........

 P=a2 T=full-adder I=a[2],b[2],c[1] $

O=s[2],c[2] ODEL=del5,del12_8_15

.........

Chapter 2.7 Circuit Modeling Modeling Delays

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-11

2.7.3.4 Local Delays

Delays may also be assigned locally, within a PART or TYPE statement,
without referencing a named global delay. Local delays are unnamed; they
are specified directly. This is especially useful for generating SNL descrip-
tions with automated netlisters. The format for defining local delay charac-
teristics is identical to the <delay> format, described above, for the DELAY
statement’s RISE, FALL, and CHANGE keywords. The corresponding key-
words for PART and TYPE busses are BUS-RISE (BRISE), BUS-FALL
(BFALL), and BUS-CHANGE (BCHANGE). For outputs, the correspond-
ing keywords are OUTPUT-RISE (ORISE), OUTPUT-FALL (OFALL),
and OUTPUT-CHANGE (OCHANGE).

For example, assume that a type block named my_type is being defined for
a subcircuit that has three input pins, two bidirectional pins, and two outputs
pins. Then the TYPE statement:
T=my_type I=a,b,c B=d,e O=f,g BCHANGE=3,4 $

ORISE=(5,3)(20,4) OFALL=[3,1] OCHANGE=,2

assigns:

bus D rise and fall delays of 3

bus E rise and fall delays of 4

output F a rise delay of (5,3)(20,4) and a fall delay of [3,1]

output G rise and fall delays of 2.

2.7.3.5 Specifying Pin Loading

Loading can be specified for all pins of a TYPE statement and all pins of an
instantiated component in a PART statement. A load value can also be spec-
ified for each signal, typically representing wiring capacitance. Load values
are specified as fixed-point or floating-point numbers. If no loading is spec-
ified for a signal or a pin, then the loading value is defaulted to 0.

Like delays, the general format for specifying loading is a three-tuple of val-
ues—typical, minimum, and maximum—separated by semicolons.

The keywords for specifying pin loads in PART and TYPE statements are
BUS-LOADS (BLOD), INPUT-LOADS (ILOD), and OUTPUT-LOADS

(OLOD) for bus, input, and output pins, respectively. The specified values
are in a one-to-one correspondence with the respective signals. For exam-
ple, adding loading to the above TYPE statement for my_type:
T=my_type I=a,b,c B=d,e O=f,g BCHANGE=3,4 $

ORISE=(5,3)(20,4) OFALL=[3,1] OCHANGE=,2 $

 ILOD=1,,3 BLOD=5;4;6,7.89 OLOD=10,11

assigns:

input pin A a load of 1

input pin B a load of 0 (since no loading is specified)

Chapter 2.7 Circuit Modeling Modeling Delays

2.7-12 SIMIC User’s Guide Revision 1.0 9/2/91

input pin C a load of 3

bus pin D typical,minimum,maximum loading of 5;4;6

bus pin E a load of 7.89

output pin F a load of 10

output G a load of 11.

Nets are assigned loading by instantiating the built-in LOAD element:
P=<name> T=load O=<net-name> OLOD=<value>

or
P=<net-name> T=load OLOD=<value>

where:

• <net-name> is the hierarchical name of the net

• <value> is the load value assigned to the net.

In the first form, with the OUTPUT keyword-field explicitly specified, the
assigned part name, <name>, is arbitrary (this is the only case where a part
name has no significance).

As an example of the second form, the statement:
PART=a.b.c TYPE=load OLOD=3;2;5

assigns typical,minimum,maximum loading of 3,2,5, respectively, to the
signal named a.b.c.

2.7.3.6 Resultant Delays

When a load-dependent driver delay is specified, either by reference to a
global delay or by a local delay, the SIMIC compiler totals all loading asso-
ciated with the driven net to obtain the resultant delay from the specified
delay vs. loading characteristic. Calculations are performed in floating
point, and the results rounded to the nearest integer.

For example, in the circuit shown in Figure 2.7-5, the total loading on the
net named signal is (1.1 + 2.6 + 2.5 + 3.4 =) 9.6. Thus, the AND gate’s
rise delay is 24 (5 + 2×9.6 = 24.2 rounded down), and its fall delay is 13 (3
+ 1×9.6 = 12.6 rounded up).

If the result after interpolation is negative, SIMIC sets the delay to 0.

Chapter 2.7 Circuit Modeling Modeling Delays

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-13

Figure 2.7-5 Delay Computation Example

2.7.3.7 Delays At Paralleled Elements

Drivers are sometimes paralleled to decrease rise and fall delays for heavily-
loaded busses. Usually, the drivers are either identical or at least close in
their drive capabilities. The SIMIC compiler considers elements paralleled
when (1) their outputs are tied together, (2) they are all the same type, which
must be one of the following built-in primitives: INV, AND, NAND, OR,
NOR, BTGRN, BTGRP, UTGRN, or UTGRP, and (3) they have the same
inputs (though not necessarily in the same order). When these criteria are
met, SIMIC replaces the paralleled elements with a single element whose
delay characteristic has:

1. a y-intercept that is the minimum y-intercept of all the paralleled ele-
ments, and

2. a slope obtained by treating the slope of each element’s delay vs. loading
characteristic as a resistance and computing the equivalent resistance of
the parallel combination

The rise and fall delay constructions are performed independently. Figure
2.7-6 illustrates this replacement.

ILOD=2.5

ILOD=2.6

OLOD=1.1

Net loading=3.4

FALL=[3,1]

RISE=[5,2]

P=driver t=and i=a,b o=signal orise=[5,2] $

ofall=[3,1] olod=1.1

p=load1 t=inv i=signal ilod=2.6

p=load2 t=inv i=signal ilod=2.5

p=signal t=load olod=3.4

signal

Chapter 2.7 Circuit Modeling Modeling Delays

2.7-14 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.7-6 Illustration of Parallel Element Delay Reduction

2.7.3.8 Modifying Delays At Run Time

The SET command can be used to modify delays at run time. This is useful
for circuit debugging and experimentation. The options that can be specified
are:

1. <n> - set delay to the specified value, <n> (an integer)

2. +<p>% or -<p>% - increase or decrease delay by the specified percent-
age, <p> (an integer). (Note: the + sign is optional)

The RISE, FALL, and CHANGE keywords are used to specify that rise
delays, fall delays, or both, respectively, be modified in the requested man-
ner. The LIST keyword specifies which signals should be affected. For
example,

SET RISE=30 LIST=a,b,c

sets the rise delay of the three signals to 30, while
SET CHANGE=-10% LIST:

reduces all delays by 10% (note that specification of a percentage less than,
or equal to, -100% will set the affected delays to 0).

The Section Modifying Delay Values in Chapter 2.6 contains a more com-
plete description of interactive delay modification.

DELAY

LOADING

delay of first element

delay of second element

parallel replacement delay

Chapter 2.7 Circuit Modeling Decays

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-15

2.7.4 Decays

By default, SIMIC instantaneously sets a floating net to the Z state, which
represents an unknown value at floating strength. Decay times can be set to
non-zero values on a per-node basis either in the circuit’s SNL description
of by using the SET DECAY run command (see the Section Modifying

Decay Values in Chapter 2.6).

When a node has a non-zero decay time, its value instantaneously changes
to C, representing logic 1 at floating strength, if it was previously a driven
1, or to D, representing logic 0 at floating strength, if it was previously a
driven 0. The node will remain at these values until it decays to Z (or it is
driven again).

2.7.4.1 Specifying Decays In SNL

Decay characteristics are specified in PART or TYPE statement with the
BUS-DECAY (BDEC) keyword-field for busses or the OUTPUT-DECAY
(ODEC) keyword-field for outputs. The specified values for these key-
words have a one-to-one correspondence with the busses and outputs,
respectively. The decay values that can be specified are:

1. a positive number specifying the decay time

2. the name of a global delay

3. the reserved word INFINITE, or any prefix of this word.

The first and third options are self-explanatory. The second option, specify-
ing a global delay, allows the decay time to depend on loading (capacitance).
Since delay characteristics specify two delays, rise and fall, the node’s decay
time is taken as the average value of the two delays for the given node
capacitance. Generally, it is easiest to represent load-dependent decays by
creating special global delays that contain the CHANGE keyword-field.

For example, the TPADN, a built-in primitive, is a tristating element with
two inputs, EN (enable) and D (data). When EN is logical-1, the output is
equal to the data input, and when EN is logical-0, the output tristates. Given
the PART statement:

p=tri t=tpadn i=enable,data5 o=out5 odec=del83

suppose that, for the capacitance at the net named out5, the rise and fall
delays for the delay characteristic del83 are 90 and 110, respectively, Then
the decay time for this net will be their average value, 100.

Note: if different decay times are specified for a signal that has multiple
drivers (wire-tie), then the signal’s decay will be the minimum value speci-
fied for any of its drivers.

Chapter 2.7 Circuit Modeling Input High Impedance Default

2.7-16 SIMIC User’s Guide Revision 1.0 9/2/91

2.7.4.2 Modifying Decays At Run Time

The SET DECAY command can be used to modify decays at run time. The
DECAY keyword supports the same three options as the SET command’s
delay modification keywords, plus a fourth option, setting infinite decay:

1. <n> - set decay to the specified value, <n> (an integer)

2. +<p>% or -<p>% - increase or decrease decay by the specified percent-
age, <p> (an integer). (Note: the + sign is optional)

3. * - restore original decay from SNL description

4. INFINITE - set decay to infinite (any prefix of this word is valid)

The LIST keyword specifies the signals to be affected by the selected
option. For example:

SET DECAY=infinite LIST=a,b

sets the decays of the two signals to infinite.

2.7.5 Input High Impedance Default

By default, the value Z, unknown value at floating strength, is treated as an
X at (unidirectional) element inputs that are not strength-sensitive. (Of
course, a signal’s strength may be very important at bus pins, where the sig-
nal may be wire-tied. and flow may be bidirectional.)

This default is applicable to many modern technologies. For example if a
CMOS inverter’s input is floating, its output value will be uncertain. How-
ever, it is not correct for all technologies. In current-mode logic, a floating
signal may be equivalent to 0. In the old DTL technology, a floating signal
is equivalent to 1 at an AND gate input, and to 0 at an OR gate input.

If the default is inappropriate, the logical equivalent of Z may be explicitly
specified in PART and TYPE statements, on a per-input basis, using the
INPUT-HIZ (IHIZ) keyword-field. For example, the PART statement:

part=d type=and i=a,b,c ihiz=1,0

specifies that a floating unknown value should be treated as logical-1 at
input a, and as logical-0 at input b. Since no IHIZ value is specified for
input c, a floating unknown at this input will be treated as X.

Chapter 2.7 Circuit Modeling Verifying Timing Tolerances

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-17

2.7.6 Verifying Timing Tolerances

When simulation is performed to verify logical correctness and complete-
ness, timing considerations are deferred. At this time, the effects transient
input states and narrow margins between events are ignored. However, in
the final phases of design verification, these situations must be detected and
corrected to eliminate potential timing problems.

2.7.6.1 Functional Timing Checks

Timing checks are supported for the DNL and DPL (DL) latch and the
DNCF, DPCF (DCF), JKNCF (JKCF), JKPCF, TNCF (TCF), and TPCF
edge-triggered flip-flops. These checks can be specified within a TIMING-
CHECKS block in any PART statement instantiating these built-in primi-
tives.

In the following description, the active clock edge is the clock transition that
causes the latch or flip-flop output to change state. This edge is the rising
clock transition for the DPL (DL), DPCF (DCF), JKPCF, and TPCF primi-
tives, and the falling clock transition for the DNL, DNCF, JKNCF (JKCF),
and TNCF (TCF) primitives.

The supported timing checks are:

1. SETUP – this check specifies the minimum duration that an input must
be stable prior to an active clock edge:

• DNL, DPL, DNCF, DPCF – setup from D (SETUP.D)

• JKNCF, JKPCF – setup from J (SETUP.J) and setup from K
(SETUP.K)

• Additionally, all eight primitives support setup from reset
(SETUP.NR), and setup from set (SETUP.NS). These setup times
represent the minimum duration that the reset (set) must be inactive to
reliably set (reset) the memory element via clock

2. HOLD – this check specifies the minimum duration that an input must be
stable after an active clock edge:

• DNL, DPL, DNCF, DPCF – hold to D (HOLD.D)

• JKNCF, JKPCF – hold to J (HOLD.J) and hold to K (HOLD.K)

• Additionally, all eight primitives support hold to reset (HOLD.NR),
and hold to set (HOLD.NS)

3. PULSE-WIDTHS – this check specifies the minimum width of a pulse
on the set, reset, or clock lines. All eight primitives support: pulse-width
reset (PW.NR), pulse-width set (PW.NS), and high and low pulse-width
clock (PW.C.H and PW.C.L respectively).

Chapter 2.7 Circuit Modeling Verifying Timing Tolerances

2.7-18 SIMIC User’s Guide Revision 1.0 9/2/91

The setup and hold checks for the asynchronous, active-low, set and reset
inputs of all eight primitives are associated with the time duration between
the rising (trailing) edge of pulses on these inputs and the active clock edge.

Unspecified timing checks default to 0 (disabled).

The syntax of a TIMING-CHECKS block is:
TIMING-CHECKS=begin; <spec>; …;<spec>; end;

where <spec> is a timing specification of the form
<timing-check> = <limit>

Referencing a timing check by itself, without a qualifying pin name or clock
level—SETUP, HOLD, PW—specifies all checks of that type. For example,
in a TIMING-CHECKS block for a JKCF instance, SETUP specifies all
setup checks; SETUP.J, SETUP.K., SETUP.NR, and SETUP.NS. Val-
ues specified for qualified timing checks supercede those specified for
unqualified checks.

As an example, the timing block:
part=FF1 type=DCF i=reset,set,clk,data o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.D = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

specifies:

1. All setups are 5 units.

2. All holds are 5 units, except hold from D which is 10.

3. All pulse-widths are 4, except clock-low pulse-width is 3.

Delay vs. loading curves, as well as MINIMUM, TYPICAL, and MAXIMUM
delay sets can be used for specifying <limit>. If delay curves are used, then
the loading on the part’s output is used to determine the timing check value.
The syntax is identical to specifying local delays. For example:

timing-checks= $

BEGIN; $

SETUP = 25;20; $=maximum delay same as typical

HOLD = [4,2];[3,1];[5,3]; $

PW = (5,1)(7,3);4;[9,3]; $

end;

Chapter 2.7 Circuit Modeling Verifying Timing Tolerances

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-19

2.7.6.2 Controlling Spike Propagation

The Subsection Combinational Timing Hazards in Chapter 2.6 describes the
spike hazard, a timing problem characterized by a sequence of changes at
an element’s inputs such that an element output begins responding to the
first input state, but before its response time elapses, a second input change
occurs, causing the output to return to its original value. This situation is
illustrated in Figure 2.7-7 for a two-input AND gate.

Figure 2.7-7 Spike Hazard At An AND Gate

In this figure, the rise at signal A would normally cause output C to rise at
time

t1 = tA + Tr
However, at time tB < t1, signal B executes a transition to 0, which forces
signal C to be 0 at, or before, time

t2 = tB + Tf.

What value or values should signal C be assigned in the interval between tB
and t2?

Since propagation delays are inertial, i.e., associated with charging and dis-
charging node capacitance, and since, by assumption, the time required to
charge signal C to the logic-1 threshold is Tr, one possible answer to this
question is to maintain C at a constant 0, since the peak voltage level it
reaches at time tB must be less than this threshold. This model, which
ignores (filters out) the effects of transient input states whose duration is less
than the output’s response time, is called inertial filtering.

Alternatively, since simulation is usually performed to predict the circuit’s
operation in the real world, and since actual input arrival times, gate delays,
and wiring delays will almost certainly differ from simulated values (the
operation of circuits from separate production lots will also differ), it is very
possible that an output pulse that almost happened during simulation will
actually happen on some manufactured chips. Thus, another possible

C
A
B

rise delay=Tr

fall delay=Tf

A

B

C

tA tB t1 t2

Tr

Tf

Chapter 2.7 Circuit Modeling Verifying Timing Tolerances

2.7-20 SIMIC User’s Guide Revision 1.0 9/2/91

answer to the above question, based on a conservative approach, is to set the
value of signal C to X within this interval, since actual operation may be
indeterminate at the time of simulation. This model, which creates an X-
pulse when a spike hazard is detected, and propagates this pulse to all
fanouts, is called spike propagation.

SNL supports flexible per-node control on the degree of pessimism intro-
duced into spike propagation. The SIMIC XPROPAGATE run command
provides the same control at run time (see the Section Enabling And Dis-

abling X-Propagation in Chapter 2.6).

Two parameters may be specified in any PART or TYPE statement to con-
trol spike propagation at each output:

1. filter – specifies a transient width threshold. Spike-producing tran-
sient input states that are narrower than this threshold will be inertially
filtered, while transients at least as wide as the threshold will be propa-
gated as X-pulses, if possible (the transient may still be filtered because
of large differences between rise and fall delays; see below).

2. liberal – controls when to start the X-pulse. An X-pulse always ends
at the time that the affected signal in guaranteed to have reached its
known final value.

The filter threshold is expressed as percentage of the output’s response
time. Thus, in the above example, if this threshold is 10%, then the spike
will be inertially filtered if the difference in arrival times of the events at A
and B, tB – tA, is less than 0.1×Tr. This value is specified as an integer
between 0 and 100, inclusive, optionally followed by a percent (%) sign.

The value filter=0 introduces the greatest pessimism, since any input
transient is at least as wide as this threshold. The value filter=100 intro-
duces no pessimism, since all input transients are inertially filtered (this
threshold corresponds to an input whose duration is the response time; but
this is not a spike situation since the output has exactly enough time to
respond).

The liberal value linearly controls the start of the X-pulse between the
extremes of (a) the time of the input event causing the spike and (b) the time
that the output would have responded to the first event. In the above exam-
ple, these extremes are tB and t1. Adopting this notation to describe the gen-
eral case, the X-pulse starts at time

tstart = tB + <liberal/100)>×(t1 – tB)
where <liberal/100> is the liberal value expressed as a decimal fraction
from 0 to 1. The liberal values is specified as an integer between 0 and
100, inclusive, optionally followed by a percent (%) sign.

The value liberal=0 introduces the greatest pessimism, since it starts the
X-pulse at tB, the time that the spike hazard is detected. The value

Chapter 2.7 Circuit Modeling Verifying Timing Tolerances

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-21

liberal=100 introduces the least pessimism, since it starts the X-pulse
at t1.

Note that when an output’s rise and fall delays differ sufficiently, its
response to the second input event can be earlier than its response to the first
event. Using the notation of the above example, t2 may be earlier than t1 if
Tf is sufficiently small. Since the X-pulse always ends at t2, and since it is
possible to specify a liberal values that bring tstart close to t1, it is there-
fore possible to specify a starting time for the X-pulse that is later than its
ending time. If this situation occurs, the X-pulse is not generated, and the
transient input state is effectively inertially filtered.

The SNL keywords that specify the filter parameter are BUS-FILTER
(BFILTER) for busses and OUTPUT-FILTER (OFILTER) for outputs.
Similarly, the SNL keywords that specify the liberal parameter are
BUS-LIBERAL (BLIBERAL) for busses and OUTPUT-LIBERAL

(OLIBERAL) for outputs.

Unspecified values for any of these keyword options are defaulted to 0, the
most pessimistic settings. To globally disable spike propagation when veri-
fying logical correctness rather than timing, use the

NO XPROPAGATE SPIKE:
command (see Enabling And Disabling X-Propagation in Chapter 2.6).

As an example, the PART statement
p=p15 t=xyz i=a,b,c o=d,e,f $

odel=dela,delb,delc ofilter=10%,,50 $

oliberal=30,20%

assigns:
 output D a filter value of 10% and a liberal value of 30%

 output E a filter value of 0 and a liberal value of 20%

 output F a filter value of 50% and a liberal value of 0

Chapter 2.7 Circuit Modeling Wire-Ties

2.7-22 SIMIC User’s Guide Revision 1.0 9/2/91

2.7.7 Wire-Ties

Wire-ties are created by assigning different element outputs or busses the
same signal name. Figure 2.7-8 illustrates this situation for the outputs of
two TPADN primitives having the identical output signal, sig. Wire-ties
can also be created dynamically, when two differently-named signals are
connected through an ON ideal switch (BTGN or BTGP).

Figure 2.7-8 Sample Wire-Tie

2.7.7.1 Wire-Tie Dominance

If, in Figure 2.7-8, only one of the TPADN elements drives sig (the other
being disabled with its enable input at logical-0), or if both elements drive
the same level, then the value at sig is well-defined. If the elements simul-
taneously drive different values, then a conflict exists, and the resulting
value at sig depends on the specified wire-tie characteristics. SIMIC sup-
ports three types of wire-ties:

1. Wired-AND (0-dominance) – if any of the strongest components con-
nected to the wire-tie is driving a logical-0, then the signal’s value is 0

2. Wired-OR (1-dominance) – if any of the strongest components con-
nected to the wire-tie is driving a logical-1, then the signal’s value is 1.

3. CONFLICT (X-dominance) – if either (a) the state of at least one of the
strongest drivers connected to the wire-tie is unknown, or (b) one or
more of the strongest drivers is driving logical-0, while one or more of
the remaining strongest drivers is simultaneously driving logical-1, then
the signal’s value is undefined (set to X).

A wire-tie’s dominance can be specified in a PART or TYPE statement with
the BUS-DOMINANCE (BDOM) keyword-field for busses or the OUTPUT-
DOMINANCE (ODOM) keyword-field for outputs. These keywords associate
in a one-to-one correspondence with the PART or TYPE statement’s busses
and outputs, respectively. The values expected for these keywords are the

EN1

EN2

DAT1

DAT2

SIG

P1

P2

p=p1 t=tpadn i=en1,dat1 o=sig odel=del1 $

odecay=dec1

p=p2 t=tpadn i=en2,dat2 o=sig odel=del2 $

odecay=dec2

Chapter 2.7 Circuit Modeling Wire-Ties

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-23

dominance categories 0, 1, or X.

For example, assume that a part has three outputs, each tied to other signals
(but not to each other). If the wire-tie associated with the first output func-
tions as a wired-AND, the wire-tie associated with the second output func-
tions as a CONFLICT tie, and the wire-tie associated with the third output
functions as a wired-OR, then ODOM=0,,1 should be specified in the PART
statement.

If the dominance is unspecified, the default wire-tie type is CONFLICT
(ODOM=X). Thus, wire-tie dominance only requires specification at wire-
tied signals whose mutual interaction functions as a wired-AND or wired-
OR.

A wire-tie’s dominance can be specified in any PART or TYPE statement
associated with the common signal. If specified for more than one driver, the
specifications must be identical.

For example, in the circuit of Figure 2.7-8, neither PART statement specifies
a dominance for signal SIG, so by default, the wire-tie is X-dominant. Plac-
ing an output dominance specification in either PART statement, or in both,
specifies the wire-tie’s dominance, even if other drivers are connected to
SIG. If placed in multiple statements, all dominance specifications must be
identical.

2.7.7.2 Specifying Drive Strength

Most wire-tied configurations are designed to have at most one active driver
at any one time (e.g., address and data lines between a CPU, ROM, and
RAM). Sometimes, however, correct operation requires that a strong driver
overpower a weaker one. For these situations, it is necessary to incorporate
drive strength into driver models.

Drive strength can be specified in any PART or TYPE statement. This value
can be one of the following reserved words:

POWER, DRIVING, RESISTIVE, FLOATING.
Any prefix of these words is valid.

High (pullup) and low (pulldown) drive strengths may be specified indepen-
dently, or simultaneously if identical. The associated keywords are:

BUS-DRIVE (BDRIVE) – high and low drive strength for busses
BUS-LDRIVE (BLDRIVE) – low drive strength for busses
BUS-HDRIVE (BHDRiVE) – high drive strength for busses
OUTPUT-DRIVE (ODRIVE) – high and low drive strength for

outputs
OUTPUT-LDRIVE (OLDRIVE) – low drive strength for outputs
OUTPUT-HDRIVE (OHDRiVE) – high drive strength for outputs

Chapter 2.7 Circuit Modeling Wire-Ties

2.7-24 SIMIC User’s Guide Revision 1.0 9/2/91

If a signal’s high or low drive strength is unspecified, the default strength is
DRIVING.

For example, the PART statement:
P=p22 T=xyz I=a,b,c B=d,e O=f,g $

BHDRIVE=,res BLDRIVE=fl,pow ODRIVE=pow,res

assigns the following drive strengths:
bus D – high-drive=DRIVING, low-drive=FLOATING
bus E – high-drive=RESISTIVE, low-drive=POWER
output F – high-drive=low-drive=POWER
output G – high-drive=low-drive=RESISTIVE

Additionally, the BTGRN and BTGRP resistive bidirectional switches and
the UTGRN and UTGRP resistive unidirectional switches can be assigned
depths with the SERIES-DEPTH (SDEPTH) keyword-field. (The Subsec-
tion Depths And Strengths in Chapter 2.6 describes the correspondence
between series depths and drive strengths.) The series depth value may be
an integer between 1 and 32,767 inclusive. If unspecified, the default series-
depth is 1.

Figure 2.7-9 illustrates a sample circuit that requires proper drive strength
assignments in order to model its operation. The inverter loop represents a
single memory cell inside a RAM. The bit line connects to all cells asso-
ciated with a particular memory bit through series transistors, only one of
which is ON at any time. The write amplifier, w, drives the bit line at
POWER strength. When this value propagates through the series transistor,
with a series-depth of 1, its strength is reduced to DRIVING. This is strong
enough to overcome the RESISTIVE strength of inverter i2, so the value
of d_in is written into the memory cell.

Figure 2.7-9 Memory Cell Read/Write Circuit

WRITE

D_IN
I1

W

p=w t=tpadn i=write,d_in o=bit odrive=pow

p=r t=tpadn i=read,bit o=d_out

p=x t=btgrn i=addr b=bit,q sdepth=1

p=i1 t=inv i=q o=nq

p=i2 t=inv i=nq o=q odrive=resistive

READ

R

I2

D_OUT
ADDR

BIT

Q NQ

Chapter 2.7 Circuit Modeling Hierarchical Precedence of Electrical Attributes

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-25

2.7.8 Hierarchical Precedence of Electrical Attributes

SNL maintains a top-down hierarchical precedence for electrical attributes
(delay, loading, decay, drive strength, IHIZ default) as well as for signal
names. Electrical attributes specified at a higher level of the hierarchy over-
ride, or take precedence over, corresponding specifications at a lower level.
Thus, any attribute specified in a PART statement overrides the correspond-
ing value specified in the instantiated part’s TYPE statement, which, in turn,
overrides the corresponding attribute value specified in its constituent PART
statements.

The following example illustrates hierarchical precedence. It defines a type
block, hier_demo, that contains two xor macro instances (the XOR is a
gate-level implementation of a 2-input exclusive-or). The sequential col-
umn numbers at the left are “source line” designations, that are referenced
below, and are not part of the SNL description:

The electrical attributes at the pins of an isolated xor type block are:

pin loading source line

x 3 9,10 (sum of pin loads)

y 8 8 (overrides 9,10)

z 4 8

1. !delay

2. delay=del1 rise=3

3. delay=del2 change=1

4. !logical

5. type=hier_demo i=a,b,c,d o=e,f ilod=,,,10 $

 odel=,del1

6. p=xor1 t=xor i=a,b o=e ilod=7 olod=3

7. p=xor2 t=xor i=c,d o=f ohdrive=res $

 odel=del2

8. type=xor i=x,y o=z ilod=,8 olod=4

9. p=n1 t=nand i=x,y ilod=1,1

10. p=n2 t=or i=x,y ilod=2,2

11. p=z t=and i=n1,n2 orise=5 ofall=6

Chapter 2.7 Circuit Modeling Hierarchical Precedence of Electrical Attributes

2.7-26 SIMIC User’s Guide Revision 1.0 9/2/91

The electrical attributes at the pins of the hier_demo type block are:

Note that the delay at output f is del1, as specified in the type statement of
hier_demo. This completely overrides the ODEL=del2 specification in
the PART statement for xor2, even though del1 has no fall delay speci-
fied. This is because the missing fall delay specification in del1 causes an
implicit assignment of 0 for this delay, and the rise/fall delay pair of del1
(3/0) overrides the rise/fall delay pair of del2 (1/1).

pin delay source line

z rise=5, fall=6 11

pin loading source line

a 7 6 (overrides 9,10)

b 8 8 (overrides 9,10)

c 3 9,10

d 10 5 (overrides 8 which
overrides 9,10)

e 3 6 (overrides 8)

f 4 8

pin delay source line

e rise=5 fall=6 11

f del1 5 (overrides 7
which overrides 11)

Chapter 2.7 Circuit Modeling Unused Bus and Output Pins

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-27

2.7.9 Unused Bus and Output Pins

If a type block has a fixed number of pins, as defined in its TYPE statement,
then it is an error if the number of inputs, outputs, or busses specified in an
instantiating PART statement does not match those in the TYPE statement.
Sometimes, however, output or bus pins of instantiated types are not used.
In this case, the UNUSED reserved word should be specified as the “connec-
tion” for these pins; it is self-documenting, and it informs SIMIC that no
error was made specifying connectivity.

For example, Figure 2.7-10 illustrates a macro, DFF, containing a DCF and
in inverter to make the q output available. Also shown are two part state-
ments (within another type block) that instantiate this macro. The second
instance does not use the q output of the macro. Note that because of the
UNUSED entry, the q signal of instance ff2 has no user-assigned name. It
can still, however, be examined during simulation, if necessary. An
UNUSED pin is “pushed into” the macro, for this macro instance. Thus, the
q signal in ff2 can be referenced as ff2.q.

Figure 2.7-10 Example of Unused Instance Pin

D
NS

NR

Q

ns

d

cl

nr

nq

q

type=dff i=nr,ns,cl,d o=q,nq

 p=q t=dcf i=nr,ns,cl,d o=q

 p=nq t=inv i=q

c= these part statements are in a different

c= type block

p=ff1 t=dff i=nr1,ns1,cl1,d1 o=q1,nq1

p=ff2 t=dff i=nr2,ns2,cl2,d2 o=unused,nq2

Chapter 2.7 Circuit Modeling Specifying Level of Abstraction

2.7-28 SIMIC User’s Guide Revision 1.0 9/2/91

2.7.10 Specifying Level of Abstraction

Sometimes, when a subcircuit requires optimization or when multiple
designs of the subcircuit are being investigated, multiple descriptions of the
subcircuit will be created and tested. It is convenient to assign all variants
the same type name, since it may be instantiated many times; using different
names would require editing the netlist each time another variant is tested.

Any component instantiated in a PART statement will have one of the fol-
lowing levels of abstraction:

MACRO, BOOLEAN, BEHAVIORAL, PRIMITIVE.

It is an error to assign the same type name to multiple type blocks at the
same level of abstraction. For example, every macro’s type block must have
a unique name. If multiple type blocks at the same level of abstraction have
the same name, SIMIC will accept the first definition found, and issue a
warning message that multiple type blocks have identical names. The solu-
tion is to place the variant definitions in separate files, and select the appro-
priate file with the GET FILE keyword option.

In contrast, identically-named variants defined at different levels of abstrac-
tion can be placed in the same file. For example, one definition of a full-
adder could be a macro, and another could be, say, a BOOLEAN type. The
COMPOSITION keyword-field is used to specify which model (level of
abstraction) is referenced by each instantiating PART statement.

If the COMPOSITION keyword is not specified, the SIMIC compiler
searches for definitions in the order listed above. Thus, in the above situa-
tion, SIMIC would always instantiate the MACRO full-adder definition. To
instantiate the BOOLEAN definition:

p=fad t=full-adder i=a1,b1,c1 o=s1,co1 $

 composition=boolean

SIMIC also issues a warning message when type blocks at different levels
of abstraction have the same name. For example (although not good prac-
tice), it is possible to define a MACRO or BOOLEAN having the same
name as a SIMIC primitive, which would always be instantiated instead of
the primitive unless the PART statement contains COMPOSITION=PRIM-
ITIVE. This could lead to considerable confusion without the message.

Although unrelated, the COMPOSITION keyword serves another function.
It is an error to define a type block containing only a TYPE statement unless
it is a BOOLEAN type block. In this case, the TYPE statement would con-
tain a BOOLEAN equation block identifying it as such. Sometimes, how-
ever, when experimentation is necessary, it may be desirable to omit the
equations from the SNL description and specify them at run time, via the
CLAMP command. In this case the keyword-field COMPOSITION=BOOL-
EAN should be placed in the TYPE statement to identify it as a BOOLEAN
type in place of the missing equations.

SIMIC
searches for
an instantiated
type’s defini-
tion in the
order listed
here, unless
the instantiat-
ing PART
statement
explicitly spec-
ifies its com-
position.

The composi-
tion keyword
should also be
used for a type
block contain-
ing only the
type state-
ment of a
BOOLEAN
whose equa-
tions are sup-
plied at run-
time.

Chapter 2.7 Circuit Modeling Physical Size Metrics

Revision 1.0 9/2/91 SIMIC User’s Guide 2.7-29

2.7.11 Physical Size Metrics

SIMIC supports three metrics that can provide assistance in obtaining esti-
mates of the main type’s physical size. These metrics are:

• PADS – the number of physical pads for the cell

• TRANSISTORS (TRANS) – the number of transistors in a cell

• WIDTH (W) – the width of a cell

These keyword-fields may be placed in any PART or TYPE statement. Their
associated values are integers:

PADS=<integer)

TRANS=<integer>

WIDTH=<integer>

SIMIC makes no use of these numbers other than to total them during com-
pilation, whenever a PART or TYPE statement containing the metrics is
encountered, and report their respective sums.

In a standard cell methodology, the metrics should be placed in the TYPE
statement for each cell, and the instantiating PART statements should not
contain them. The resulting sums reported by SIMIC would then represent
the total physical contributions of all instantiated cells.

In a custom design methodology, the cell TYPE statements might contain
metrics for the smallest possible cell, and instantiating PART statements
might contain the differences between these values and the actual instance
values.

For example, if the TYPE statement of the full-adder in Figure 2.7-2 is
changed to include size metrics:

type=full-adder i=ia,ib,c-in o=sum,c-out $

trans=26 width=50

the messages SIMIC issues in response to the GET command for compiling
the four-bit adder would be:

Main Get Network : FOUR-BIT

GET completed, Circuit totals: Parts = 21; Signals = 32

 Inputs = 9; Busses = 0; Outputs = 6

Physical Totals:

 Width = 200

 Transistors = 104

Chapter 2.7 Circuit Modeling Physical Size Metrics

2.7-30 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 2.8 Tester Interface Introduction

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-1

Chapter 2.8 Tester Interface

2.8.1 Introduction

Present day test equipment offers flexibility beyond that found only a few
years ago. However, there are common resources associated with all test
equipment, such as programmable master clock periods, timing generators
that shape device inputs and strobes that monitor device outputs. SIMIC’s
tester-oriented stimulus and strobe definition language emulates the tester
environment, allowing test programs to be described concisely and then be
debugged during simulation. This has the distinct advantage of minimizing
the amount of precious production tester time required for debugging.
SIMIC also provides special information about bidirectional pads to insure
accurate, non-destructive tests. Finally, since circuit faults are made visible
by strobes placed exactly where they will occur on the tester, this mode of
simulation allows the most accurate prediction of fault coverage by the
SIMIC fault simulator.

2.8.2 Tester Emulation Mode

2.8.2.1 Defining Master Test Period

The master period specifies a time interval corresponding to a tester cycle.
The start of each interval begins a new test. The default test period is defined
with the PERIOD (PE) keyword option of the DEFINE (DE) command:

DEFINE PERIOD=<n>

where <n> is the number of time-units in each test period. Defining a period
automatically switches SIMIC into tester emulation mode, and it will
remain in tester emulation mode until the master test period is explicitly
removed. This is accomplished by setting the value to 0 with the command:

DEFINE PERIOD=0

The size of the period can be changed during simulation with the APPLY
(AP) PERIOD run command and its BEGIN (BE) option. Its format is:

APPLY PERIOD=<n> BEGIN=<m>

where <n> is the size of the new test period in time-units, and <m> is the
test number at which this period becomes effective. Note that the DEFINE
PERIOD command is functionally equivalent to the APPLY PERIOD com-
mand with a BEGIN value of 1.

Defining a
non-zero
period auto-
matically
causes SIMIC
to enter tester
emulation
mode.

Chapter 2.8 Tester Interface Tester Emulation Mode

2.8-2 SIMIC User’s Guide Revision 1.0 9/2/91

2.8.2.2 Defining Drive Values

The drive values, which the tester would apply to primary inputs and pri-
mary bidirectional busses functioning as inputs, are specified by defining
patterns. Syntactically, tester emulation patterns are identical to the simu-
late-till-stable patterns described in Chapter 2.3. However, when the global
period has been set to a non-zero value (with the DEFINE PERIOD com-
mand), SIMIC successively applies the next pattern at the beginning of the
next test period, rather than at the time the circuit state stabilizes.

2.8.2.3 Defining Timing Generators

Timing generators are essentially timing masks used in conjunction with the
current drive value. Two types of masks can be specified; a drive mask,
which controls logic levels driven within the test period, and an enable
mask, which controls when and whether to tristate drives within the test
period. All masks are defined by event times, called marks, that are refer-
enced to the start of the test period.

One of the following four different drive mask types can be used for each
defined timing generator:

1. Non-Return-to-Zero (NRZ). This mask allows rise and/or fall transitions
to be independently skewed from the beginning of the test period.

2. Return-to-Zero (RZ). This mask is used to define the shape of a positive
pulse, generated whenever the drive value is a logical-1 for that period.
When the drive is logical-0, the signal remains logical-0 throughout the
entire test period1.

3. Return-to-One (RO). This mask is used to define the shape of a negative
pulse, generated whenever the drive value is a logical-0 for that period.
When the drive is logical-1, the signal remains logical-1 throughout the
entire test period1.

4. Return-to-Complement (RC). This mask is commonly used to test setup
and hold requirements. It specifies the shape of a negative pulse, when
the drive is logical-0, or a positive pulse, when the drive is logical-1, that
is preceded and followed by the drive’s complement.

Additionally, one of the following three enable mask types can be used for
each defined timing generator to control when and whether the drive is
tristated (Z).

1. No-Envelope (NE). This mask allows drive-to-tristate and tristate-to-
driving transitions to be independently skewed from the beginning of
the test period.

1. This may not always be true if the timing generator definition (as defined by its mark locations) extends

over multiple periods (pulse-extended periods, as described below).

Chapter 2.8 Tester Interface Tester Emulation Mode

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-3

2. Return-to-Drive (RD). This mask is used to shape the tristating window
when the driving pattern is a Z.

3. Return-to-Float (RF). This mask is used to shape the driving window
when the driving pattern is not a Z.

It is important to note that SIMIC retains the previous drive value during
periods where the drive is specified as Z. This history determines the behav-
ior of the signal when enable mask skews and drive mask skews are not
identical. To understand this behavior, view SIMIC as always producing a
drive value consistent with the drive format mask and the current (or
retained) drive value, which is then connected (or disconnected) as specified
by the enable format mask.

The combination of drive and enable masks constitute a SIMIC time-set.
The time-set is specified with the DEFINE command. One format for this
definition is:

DEFINE T<name>.<dformat>=<dmarks>

where <name> is a user-defined name for the time-set, <dformat> is one of
the drive mask types described above, and <dmarks> is a list of marks, or
timing values, whose order and number depends on the <dformat> selected.
In this format, no enable mask was specified.

If not specified, then the enable mask defaults to NE with 0 skewing, with
one exception: if the NRZ driving format mask is used and the rise and fall
skews are identical, then the default is NE with skewing that matches the rise
and fall skews.

In order to specify the enable mask the following format is used:

DEFINE T<name>.<dformat>.<eformat>=<dmarks>;<emarks>

Note the addition of <eformat>, which selects one of the enable formats
described above, and <emarks> which is a list of timing values, whose order
and number depends on the selected enable format.

Table 2.8-1 describes the drive mask formats and their associated timing
marks.

 SIMIC does not require mark specifications to be restricted to a single
period. A period is called pulse-extended if it continues an active time-set
spanning multiple periods. When a new time-set is applied, it is possible for
its marks to overlap with the marks of the previous time-set, if the latter’s
period was pulse-extended. In this situation, SIMIC merges the specifica-
tions by following the individual timing mark actions, in the order that they
occur. This transient situation ends with the last mark of the previous time-
set.

Chapter 2.8 Tester Interface Tester Emulation Mode

2.8-4 SIMIC User’s Guide Revision 1.0 9/2/91

Drive Mask
Format

Order And
Number

Of Marks
Description

NRZ O, Z O specifies the time to go to logical-1,
when the drive value is logical-1. Z speci-
fies the time to go to logical-0, if the drive
value is logical-0. If Z is omitted, then Z is
set to the value specified for O.

RZ O, Z1, Z2 O specifies the time to go to logical-1,
when the drive value is logical-1. Z1 spec-
ifies the time to go to logical-0, regardless
of the drive value. Z2 specifies the time to
go to logical-0, only when the time-set is
first applied (see explanation in text). If
omitted, then Z2 is set to 0. In order for
the definition to be valid, the magnitudes
of the marks must be ordered as follows:

Z2 < O < Z1

RO Z, O1, O2 Z specifies the time to go to logical-0,
when the drive value is logical-0. O1 spec-
ifies the time to go to logical-1, regardless
of the drive value. O2 specifies the time to
go to logical-1, only when the time-set is
first applied (see explanation in text). If
omitted, then O2 is set to 0. In order for
the definition to be valid, the magnitudes
of the marks must be ordered as follows:

O2 < Z < O1

RC T, C1, C2 T specifies the time to go to the drive
value. C1 specifies the time to return to the
complement of the drive value. C2 speci-
fies the time to go to the complement of
the drive value, prior to T. If C2 is omit-
ted, then C2 is set to 0. In order for the
definition to be valid, the magnitudes of
the marks must be ordered as follows:

C2 < T < C1

Table 2.8-1 Drive Mask Formats

Chapter 2.8 Tester Interface Tester Emulation Mode

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-5

Enable
Mask

Format

Order And
Number

Of Marks
Description

NE F, D F specifies the time to disable the drive,
when the pattern value is ‘Z’. D specifies
the time to enable the drive, when the pat-
tern value is not a ‘Z’.

RD F, D F specifies the time to disable the drive,
when the pattern value is ‘Z’. D specifies
the time to enable the drive, when the pat-
tern value is ‘Z’. In order for the definition
to be valid:

F < D

RF D, F D specifies the time to enable the drive,
when the pattern value is not ‘Z’. F speci-
fies the time to disable the drive, when the
pattern value is not ‘Z’. In order for the
definition to be valid:

D < F

Table 2.8-2 Enable Mask Formats

Unfortunately, testers differ in whether they support pulse-extended periods
and in how they transition between old and new time-sets. The timing marks
Z2 in the RZ drive format and O2 in the RO drive format are only relevant
during this transition period, when the new time-set is first applied. They
allow injection of a mark forcing the new time-set to become active (e.g.,
for the RZ format, the signal is forced to 0 at time Z2, regardless of the pre-
vious timing-set’s definition). If unspecified, Z2 and O2 default to 0, causing
a new RZ or RO time-set to become active at the beginning of the period.

Table 2.8-2 describes the enable mask formats and their associated timing
marks.

Any timing mark can be suppressed by placing an asterisk (*) as a substitute
for the value. For example, to prevent an NRZ timing generator from tristat-
ing, even when the pattern value is ‘Z’, an asterisk should be placed in the
‘F’ value of the NE enable format specification, i.e:

Define tnofloat.nrz.ne=500,500;*,0

The number of definable time-sets, active time-sets, number and type of
time-set switches, mark suppression, number of periods for which a time-set
can be active, and other properties may be restricted by the target tester’s

Care should
be taken to
limit time-set
definitions to
the capabili-
ties of the tar-
get tester.

Chapter 2.8 Tester Interface Tester Emulation Mode

2.8-6 SIMIC User’s Guide Revision 1.0 9/2/91

capabilities. Therefore, timing-set definitions should be limited to the capa-
bilities of the target tester. For example, while SIMIC supports definition of
an unlimited number of time-sets whose active interval can span an arbitrary
number of (pulse-extended) test periods, testers contain fixed limits on these
resources.

Figure 2.8-1 illustrates the effects of the drive format mask selection:

Define period=1000

Define tnrz.nrz=300

Define trz.rz=300,700

Define tro.ro=300,700

Define trc.rc=300,700

Figure 2.8-1 Effect Of Sample Drive Format Masks

Note that the NRZ format starts in an unknown (X) state in the first period.

1000 2000 3000 40000

Pattern
Value

tnrz

trz

tro

trc

Chapter 2.8 Tester Interface Tester Emulation Mode

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-7

Figure 2.8-2 illustrates the effects of the enable mask formats. Note: the
shaded sections are disabled (Z) drivers:

Define period=1000

Define tne.nrz.ne=0,0;500,500

Define trd.nrz.rd=0,0;300,700

Define trf.nrz.rf=0,0;300,700

Figure 2.8-2 Effect Of Sample Enable Format Masks

2.8.2.4 Assigning Time-Sets to Input and Bidirectional Pads

Once a time-set has been defined as described above, it is attached to pri-
mary pads with the APPLY (AP) TIMING (TI) run command and the LIST
(LI) keyword option. The syntax of this command is:

APPLY TIMING=<time-set> LIST=<signal list>

where <time-set> is the name of a defined time-set (e.g., tne), and
<signal list> is the list of primary signals to be assigned the specified time-
set. If a primary input/bidirectional pad has not been assigned a timing gen-
erator, then the default generator (TDEFAULT.NRZ.NE=0,0;0,0) will
be applied.

Time-sets may be changed at any time during simulation with the APPLY
TIMING command with the BEGIN (BE) keyword option. The form of this
command is:

APPLY TIMING=<time-set> LIST=<signal list> BEGIN=<m>

where <m> is the test number where this time-set is to be applied.

1000 2000 3000 40000

Pattern
Value

tne

trd

trf

Z 0 Z 1

Chapter 2.8 Tester Interface Tester Emulation Mode

2.8-8 SIMIC User’s Guide Revision 1.0 9/2/91

2.8.2.5 Defining Strobes

SIMIC supports two different types of strobes. The first is a point (or edge)
strobe (SP) and the second is a window strobe (SW). In SIMIC, the point
strobe can be viewed as a window strobe of zero width. The strobed signal
must maintain a constant value within the active window of the strobe, oth-
erwise a strobe error will result. By default, a strobe warning will be gen-
erated for each strobe error. This warning may be disabled with the
command:

NO WARN STROBE:

and re-enabled with the command:

WARN STROBE:

In addition, a breakpoint can be set if a strobe error occurs with the com-
mand:

BREAK STROBE:

This breakpoint can be disabled with the command:

NO BREAK STROBE:

The format for defining a strobe is:

DEFINE S<name>.<type>=<position>

where <name> is an user defined name for the strobe, <type> is either SP
(for a point strobe), or SW (for a window strobe), and <position> is a single
value for SP, indicating the time to fire the strobe, or two values for SW, indi-
cating the time to start and the time to stop the window strobe, respectively.
All times are in time-units, relative to the start of the period. For example,
the following command defines a window strobe, whose window begins at
time 600 and ends at time 700:

DEFINE SDEMO1.SW=600,700

To define a point strobe at time 800:

DEFINE SDEMO2.SP=800

2.8.2.6 Assigning Strobes to Outputs and Bidirectional Pads

Strobes are assigned to primary signals in the same fashion as time-sets,
described above, with the APPLY TIMING run command. This format is:

APPLY TIMING=<strobe> LIST=<signal list>

where <strobe> is the name of the strobe (e.g., SDEMO1), and <signal list>

is the list of primary output/bidirectional signals to assign the specified
strobe.

Strobes may be changed at any time during simulation with the APPLY

Chapter 2.8 Tester Interface Test Program Output

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-9

TIMING command with the BEGIN keyword option. The form of this com-
mand is:

APPLY TIMING=<strobe> LIST=<signal list> BEGIN=<m>

where <m> is the test number where this time-set is to be applied.

For any output that does not have a strobe assigned, a default point strobe
will be placed one time unit prior to the end of the test period.

2.8.3 Test Program Output

2.8.3.1 Introduction

SIMIC has a special file format for interfacing with testers, called the tester
interface file. This file has the default extension of tgn, and is created by
issuing the TGEN (TG) command and the FILE (FI) keyword option:

TGEN FILE:

or

TGEN FILE=<filename>

prior to simulation, where <filename> is a user-supplied name for the file.
This file is supported for all three stimulus modes.

Since testing involves the final design, the simulation that generates the
tester interface file should utilize the most accurate estimates of propagation
delays, wiring delays, and timing checks. No degree of unwarranted opti-
mism should be introduced in this simulation. To insure that timing checks
and combinational hazard analysis are not defeated or made more lenient,
the tester interface file will not be generated if any run command relaxes or
restricts X-propagation for timing checks and combinational hazards.

2.8.3.2 Tester Interface File Contents

The tester interface file will contain the following sections:

1. A time/date/version stamp - This consists of a single line REMARK that
contains the time, date and SIMIC version that created the file.

2. A target specification - The intended tester is specified with the TGEN
command and the TARGET (TA) keyword option:

TGEN TARGET=<name>

where <name> is the tester’s name. If unspecified, then the name
defaults to “???”.

Chapter 2.8 Tester Interface Test Program Output

2.8-10 SIMIC User’s Guide Revision 1.0 9/2/91

3. A Channel section - This section contains, for each primary signal:

• The signal’s name.

• A character (I, O, or B) specifying that the signal is a primary input,
primary output, or primary bus, respectively.

• A pin field. This field is always set to unknown (-) by SIMIC.

• A column field. This field locates the position in the output section
(see (7) below) that contains the signal’s value. If this is a bidirectional
signal, then the value in this position corresponds to the applied pat-
tern value of this signal.

• A channel field. This field is set unknown by SIMIC, either with no
entry (for input or output signals) or a hyphen (-) for bidirectional sig-
nals. The value of this field specifies the tester channel to assign to this
signal.

• A second column field. This field is only present if the signal is bidi-
rectional. It specifies the position in the output section (see (7) below)
that contains the value of the wire-tied signal (when the DISCON-
NECT option is disabled), or the value of the wire-tied signal, exclud-
ing the primary drive value (when the DISCONNECT option is
enabled). The DISCONNECT (DI) option is enabled by default; to
disable this feature, use the run command:

NO TGEN DISCONNECT:

and to re-enable it:

TGEN DISCONNECT:

or

TGEN DISCONNECT=ALL

The first option will disconnect the primary drive value, except when
there is a wire-tie conflict (value will be X). The second option, ALL,
will disconnect the primary drive value for all situations.

4. A Run section - This section begins with an !RUN statement. It only
exists if tester emulation mode is in effect. The contents of this section
define:

• The default period (specified by the DEFINE PERIOD command).

• The correspondence between SIMIC time-units and real-time. This
would have been specified in the !DELAY section of the network
description. If it was not specified, then the value, “???”, is displayed,
to indicate that this value is not known.

• The time-set, and strobe definitions (DEFINE T<name> and DEFINE
S<name> Test commands respectively).

• The time-set and/or strobe to signal assignments (APPLY TIMING
Test command).

Chapter 2.8 Tester Interface Test Program Output

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-11

5. A simulations options header - This consists of a number of REMARK
lines that describe the options selected for simulation.

6. A signal name header - This consists of a number of COMMENT lines that
contain the names of the signals to be reported, arranged in columns
according to the positional placement of the primary signals in the out-
put section.

7. A test output section - This section begins with an !TGEN statement. It
contains a record for each test. For simulate-till-stable mode, a test out-
put is generated each time the circuit becomes stable., for waveforms, a
test output is generated whenever the circuit becomes stable, or a pri-
mary input changes while the circuit is unstable, and for tester emulation
mode, a test output is generated whenever a new period is entered. Each
record contains the word TEST, followed by the current test number, fol-
lowed by the simulation test output values, in groups of 5 up to 50 values
per line. The “spillover” lines will not contain the TEST or test number
field.

SIMIC automatically compresses identical test output. This can occur
for two reasons. First, in simulate until stable mode, consecutive input
patterns are identical. Second, in test emulation mode, consecutive input
patterns are identical, and the strobed results do not change. This can
occur in sequential logic, where several clock cycles are needed to prop-
agate values to the output. These compressed pattern records will start
with the word DO, followed by a number representing the number of
times to repeat this test, followed by an open parenthesis, followed by
the test output in the same format as the TEST records, followed by a
close parenthesis.

Values in this table will be only (0, 1, X or Z), since strength is not
important to the test equipment. However, in switch level circuits, there
can be very weak “sneak” paths that the tester should treat as high
impedance. The threshold depth at which a path should be considered
weak, and a ‘Z’ should be output to the tester interface file, is specified
with the HIZ option of the TGEN command. For example:

TGEN HIZ=20000

specifies that any paths that have a resultant depth of 20000 or more will
be represented as ‘Z’.

8. Remark statements - besides the above mentioned REMARK output,
SIMIC will place any REMARKs in the run command statements, issued
after the TGEN FILE command into the file. This allows designers to
include commentary to the test engineers directly in this tester interface
file. Additionally, SIMIC places SNL remarks read from the backanno-
tation file into this section of the file; thus, net loading information will
be available if timing problems are discovered.

Chapter 2.8 Tester Interface Test Program Output

2.8-12 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.8-3 illustrates a sample circuit description and run file that defines
timing generators and strobes and specifies that a tester interface file be gen-
erated.

Figure 2.8-4 illustrates the resulting tester interface file:

c= Network Description File

!f p= t= i= o=

type=tgntst a oa,ob b=b

%declare hex=a[0:1]

oa and a[0]

ob and a[1]

b tpad one,a[0]

b1 tpad one,a[1] b

pu tpad one,one a[1] odrive=res

c= Run File

define file=tgntst

get type=tgntst

c= ** Define and apply patterns

define p1.3 = 000 01x 010 000 zzz 000

apply pattern=p1

c= ** Define time-sets and strobes

define t1.ro=10,20

define t2.nrz=5

define s1.sp=29

define pe=30

c= ** Apply time-sets and strobes

apply timing=t1 list=a[0]

apply timing=t2 list=a[1]

apply timing=s1 list=&busses,&outputs

c= ** enable tester interface file

c= ** and specify target tester

tgen file: target=testamatic

simulate

quit

Figure 2.8-3 Sample Circuit Description And Run File To
Illustrate Tester Interface File

Chapter 2.8 Tester Interface Test Program Output

Revision 1.0 9/2/91 SIMIC User’s Guide 2.8-13

Remark= ‘Tgen’ by SIMIC Version 1.00.00 on Wed Oct 2 09:21:06 1991

Define Target=TESTAMATIC

!Channel

C= Name IO Pin Col Chan Col

 A[0] I - 1

 A[1] I - 2

 B B - 3 - 4

 OA O - 5

 OB O - 6

!Run

Define Period=30

Define Time-Units=???

Define S1.SP=29

Define T1.RO.NE=10,20;0,0

Define T2.NRZ.NE=5,5;5,5

Apply Timing=T1 List=A[0]

Apply Timing=T2 List=A[1]

Apply Strobe=S1

Remark= Options: (Fault Free Simulation)

Remark= Tester Stimuli, Near Filter, Spike Propagation

Remark= Stable After Decay, Dynamic Delay

C= A..BO O

C= [AB A B

C= 0[

C=]1

C=]

!Tgen

TEST 1 000X1 0

TEST 2 01X11 1

TEST 3 010X1 1

TEST 4 000X1 0

TEST 5 ZZZXX 1

TEST 6 000X1 0

Figure 2.8-4 Tester Interface File Generated For Run Of Figure 2.8-3

Chapter 2.8 Tester Interface Test Program Output

2.8-14 SIMIC User’s Guide Revision 1.0 9/2/91

Chapter 2.9 The History Files Description

Revision 1.0 9/2/91 SIMIC User’s Guide 2.9-1

Chapter 2.9 The History Files

2.9.1 Description

If requested, SIMIC can save signal event history information in binary
files. The purpose of these files is to interface to simulation display and anal-
ysis programs. Two files are created: the general history file and the sequen-
tial history file. Both files store information in a compressed format to
significantly reduce their size.

Access routines can be provided to allow easy generation of other formats
from the history file format. Contact Genashor to find out if a particular for-
mat conversion program is already available or can be provided.

2.9.1.1 The General History File

The default extension for this file is hig. This file contains:

1. Circuit statistics. This is used to check the integrity between this and the
sequential history file and to provide information on the signals that are
included in the history.

2. Circuit state dump information. These are snapshots of the state of the
network at specified intervals. The snapshots are used to provide a fast
way of “jumping” from one time to another. It also provides a method of
“resyncing” the state of the network when history information is sup-
pressed (with the PRANGE keyword option).

2.9.1.2 The Sequential History File

The default extension for this file is his. This file contains signal, time, and
test information for simulation events, as well as indications of when history
information is suppressed during the simulation.

2.9.2 Enabling History File Generation

History file generation is enabled by selecting the signals to trace with the
HISTORY (HI) command’s LIST (LI) keyword option:

HISTORY LIST:

to select all signals not masked by the STRING option, or:
HISTORY LIST=<list of signals>

to select the signals specified in <list of signals> not masked by the
STRING option.
The STRING masking options are described in the Section Name-Based

Chapter 2.9 The History Files Restricting History Output To A Specified Interval

2.9-2 SIMIC User’s Guide Revision 1.0 9/2/91

Filtering this chapter.

The NO prefix may be used with the LIST keyword to remove signals. For
example, the sequence of commands:

HISTORY LIST:

NO HISTORY LIST=abc,def

would cause all signals (not filtered by the STRING option) to be traced in
the History file, except signals abc and def.

2.9.3 Restricting History Output To A Specified Interval

HISTORY output can be restricted to a specified test (patterns) or time
(waveforms) with the PRANGE option of the HISTORY command. See the
Section Restricting Simulation Options To A Specified Simulation Interval

in Chapter 2.6.

2.9.4 Specifying a Dump Interval

Once enabled, dumps to the General History file are performed every 100
test steps (by default). This default can be changed with the PSTEP (PS)
keyword option:

HISTORY PSTEP=<n>

where <n> is the test interval to perform the dumps. The dumps can be dis-
abled with the command:

NO HISTORY PSTEP:

2.9.5 Specifying the History File Names

By default, SIMIC uses the default file name to construct the history file
names. This default can be overridden with the FILE (FI) keyword option:

HISTORY FILE=<file name>

The default file name can be re-specified with:
HISTORY FILE:

It is important to note that the default extension should not be overridden,
since the general and sequential history files must have unique names.

Chapter 2.9 The History Files Name-Based Filtering

Revision 1.0 9/2/91 SIMIC User’s Guide 2.9-3

2.9.6 Name-Based Filtering

2.9.6.1 Overview

While the LIST keyword provides flexibility in selecting and excluding sig-
nals to be traced in the History file, this method can be inconvenient for sit-
uations where many signals distributed throughout the circuit should be
excluded. One such situation arises in standard cell methodologies, where
the values of certain (or all) signals internal to the library cells either need
not, or should not, be saved for display.

SIMIC supports a methodology of automatically filtering signals based
either on their names, or on the names of the parts that generate them. This
filtering mechanism does not by itself select new signals or reject previously
selected signals; rather it acts as a screen for signals specified in future
LIST keyword-fields. The filter screen is not active with the NO prefix.

Two basic types of name-based filters are currently supported:

1. Part name filtering. A signal is filtered if the lowest-level component of
the generating part’s hierarchical name is numeric or alphanumeric (that
is, non-numeric).

2. Signal name filtering. A signal is filtered if its hierarchical name
matches any predefined filtering pattern (template).

Obviously, naming conventions for parts and signals internal to library cells
must be compatible with these two filter types, in order to fully take advan-
tage of SIMIC’s automatic name-based filtering.

By default, no name-based filtering is performed for the HISTORY com-
mand.

2.9.6.2 Filtering Based On Part Names

If the parts that generate internal cell signals are all assigned, say, numeric
names, then part name filtering can be used to automatically exclude these
signals.

For example, suppose that a cell library has a full-adder cell, and that
this cell is defined as shown in Figure 2.9-1. Signals and1, and2, and
and3 are all internal to the cell, and their generating parts have been
assigned instance names whose characters are strictly numerics (0-9). The
remaining signals, sum and carry-out, are not internal signals, and their
generating part names are not numeric (although some characters in these
names may be numerics, e.g., or1).

Name-based
filtering is a
method of sys-
tematically
excluding sig-
nals from the
History file.
Thus, it does
not operate on
LIST specifi-
cations when
the NO com-
mand prefix is
used.

Chapter 2.9 The History Files Name-Based Filtering

2.9-4 SIMIC User’s Guide Revision 1.0 9/2/91

Figure 2.9-1 Full-Adder Cell For Numeric Filtering

A filter for the internal signals is set up with the NO prefix and the STRING
(STRI) keyword option (the NO prefix specifies “do not include names of
the specified type”):

NO HISTORY STRING=&NUMERIC

Any prefix of the word NUMERIC is valid (e.g., &N, &NU, etc.).

Caution: SIMIC will also accept NUMERIC, without the leading &. This
would be another valid name-based filter whose effects are entirely different
from &NUMERIC. See Filtering Based On Signal Names below.

Filtering will occur when subsequent signals are specified with the
HISTORY command’s LIST keyword.

Note that the hierarchical part name of the instantiated full-adder need not
be numeric; only the lowest component of the part name is relevant. For
example, suppose that two full-adder instances in the circuit are:

p=a t=full-adder i=a1,b1,cin1 o=s1,cout1

p=b t=full-adder i=a2,b2,cin2 o=s2,cout2

The names of the parts generating the internal signals will be a.1, a.2,
a.3, b.1, b.2, and b.3; the lowest components of these hierarchical
names are all numeric. If the command:

HISTORY LIST:

is issued after the above command, then the output signals of these six parts
will not be present in the History file.

A filter can be removed (disabled) by re-specifying it without the NO prefix:
HISTORY STRING=&NUMERIC

Filters can be introduced and removed as necessary. For example, the run
command sequence:

NO HISTORY STRING=&NUMERIC

HISTORY LIST=a.()

HISTORY STRING=&NUMERIC

HISTORY LIST=b.()

causes signals a.and1, a.and2, and a.and3 to be absent from the His-
tory file, and signals b.and1, b.and2, b.and3 to be included (a speci-

c= Full-Adder cell

t=full-adder i=a,b,carry-in o=sum,carry-out

 p=xor t=exor i=a,b,carry-in o=sum

p=1 t=and i=a,carry-in o=and1

p=2 t=and i=b,carry-in o=and2

p=3 t=and i=a,b o=and3

p=or1 t=or i=and1,and2,and3 o=carry-out

The leading
“&” specifies
filtering based
on part
names.
Omitting it
causes
filtering based
on signal
names.

Chapter 2.9 The History Files Name-Based Filtering

Revision 1.0 9/2/91 SIMIC User’s Guide 2.9-5

fication such as a.() is a wildcard—it means “all signals whose names
begin with a.”. See the Subsection Signal Specification Options in Chapter
2.4 for a full description of signal name specification).

In addition to numeric part name filtering, SIMIC also supports filtering of
signals whose generating elements have alphanumeric (non-numeric) part
names. This filter is introduced with the command:

NO HISTORY STRING=&ALPHANUMERIC

Any prefix of the word ALPHANUMERIC is valid (e.g., &A, &AL, etc.).

This filter is removed with the command:
HISTORY STRING=&ALPHANUMERIC

To use this filter for the full-adder cell, the part naming convention would
be reversed; the parts generating signals and1, and2, and and3, would be
assigned non-numeric names, while the parts generating sum and carry-
out would be assigned numeric names.

The &NUMERIC and &ALPHANUMERIC filters are complemetary; specify-
ing both would filter all subsequently-specified signals. SIMIC issues a
warning message if both filters are activated, and will perform the filtering.

2.9.6.3 Filtering Based On Signal Names

The second type of name-based filter operates on signal names. Here, a filter
is specified as a template or pattern. If a signal’s hierarchical name contains
this pattern, it is excluded from the History file.

 Signal-name based filters are activated with the command:
NO HISTORY STRING=<template>

The simplest form of <template> is a character string, possibly quoted. For
example, the command:

NO HISTORY STRING=and

would filter all signals whose names contain the substring “and”. Thus, if
the circuit contains two instances of the full-adder cell illustrated in
Figure 2.9-1:

p=a t=full-adder i=a1,b1,cin1 o=s1,cout1

p=b t=full-adder i=a2,b2,cin2 o=s2,cout2

then the command:
HISTORY LIST:

will cause all signals associated with these two macro instances to appear in
the History file except signals a.and1, a.and2, a.and3, b.and1,
b.and2, and b.and3.

A signal name filter can be removed (disabled) by re-specifying it without
the NO prefix:

HISTORY STRING=<template>

Chapter 2.9 The History Files Name-Based Filtering

2.9-6 SIMIC User’s Guide Revision 1.0 9/2/91

Filters can be introduced and removed as necessary. For example, the run
command sequence:

NO HISTORY STRING=and

HISTORY LIST=a.()

HISTORY STRING=and

HISTORY LIST=b.()

causes signals a.and1, a.and2, and a.and3 to be absent from the His-
tory file, and signals b.and1, b.and2, b.and3 to be included.

SIMIC does not assign any significance to the filter template. For example,
the command:

NO HISTORY STRING=NUMERIC

would cause all subsequently specified signals containing the substring
“NUMERIC” to be filtered from the signals included in the History file.

Templates such as “and” are not good choices for filters, since this character
sequence is likely to be used within part names. For example, this template
would cause the signal operand.sum to be filtered from the History file,
since “and” is a substring of “operand”. A better method would be to use
special characters in the names of internal cell signals. Figure 2.9-2 illus-
trates a full-adder library cell definition using the “?” character in internal
signal names. The appropriate filter would be activated with the command:

NO HISTORY STRING=”?”

Figure 2.9-2 Full-Adder Cell For “?” Signal Name Filtering

The general form of <template> is:
<repetition> * <character-string>

where <repetition> is an integer specifying the minimum number of repeti-
tions of the character string <character-string>. Optional spaces may be
placed before or after the asterisk. For example:

NO HISTORY STRING=2*”?”

would cause filtering of subsequently specified signals whose names con-
tain two or more question marks, regardless of their distribution.

As another example:
NO HISTORY STRING=2*”.”

would cause filtering of all signals at a hierarchical depth greater than 2.

c= Full-Adder cell

t=full-adder i=a,b,carry-in o=sum,carry-out

 p=xor t=exor i=a,b,carry-in o=sum

p=and1 t=and i=a,carry-in o=?1

p=and2 t=and i=b,carry-in o=?2

p=and3 t=and i=a,b o=?3

p=or1 t=or i=and1,and2,and3 o=carry-out

Appendix A SIMIC Built-in Primitives

Revision 1.0 9/2/91 SIMIC User’s Guide A-1

Appendix A SIMIC Built-in Primitives

This appendix contains a quick-reference look-up table and description of
each SIMIC built-in primitive.

Format of Primitive Descriptions

The description of each primitive contains:

1. a symbol showing its defined pin names and an equivalent logic dia-
gram, where appropriate,

2. a truth table describing its function, where possible,

3. boolean equations describing its function, where possible,

4. a written description, when more information is required than can be
conveyed by truth tables or equations,

5. an “equivalent type statement”, which would be used in a hypothetical
type block to define the primitive’s pin names and their order.

In the symbols for the primitives, clock inputs of edge-triggered flip-flops
are indicated with a “>” on the clock input pin. Also a small circle (bubble)
indicates an active-low input pin.

When a dash (—) appears in a truth table, it indicates that the corresponding
input may have any logic value (0, 1, or X). Unless otherwise stated, input
combinations not covered by any truth table row cause an unknown (X)
value at each output.

Pin Naming Conventions

Pins of primitives may be grouped into ports. The syntax for fixed-size ports
is (angle brackets enclose syntactic items, and are not characters within the
port reference):

<port_name>[<start>:<end>]

where <port_name> is the name of the port, and <start> and <end> are the
limits of a consecutive range of pin indices (which may be either ascending
or descending). For example:

a[1:2]

specifies that there are two ordered pins named a[1] and a[2], and

b[2:1]

specifies that there are two ordered pins named b[2] and b[1].

Appendix A SIMIC Built-in Primitives

A-2 SIMIC User’s Guide Revision 1.0 9/2.91

An extended vector notation is used to represent variable-size ports. Its syn-
tax can either be:

<port_name>[<from>-<to>:<end>]

or

<port_name>[<start>:<from>-<to>]

where <from>-<to> represents a range of values for <start> or <end>,
depending on whether the first or second limit is variable. For example:

addr[15-0:0]

specified that from 1 to 16 signals may be connected to port addr. If, for
example, four signals are connected, then they will be connected to pins
addr[3], addr[2], addr[1], and addr[0]. If two signals are connected,
then they will be connected to pins addr[1] and addr[0].

Instantiating Primitives Correctly

Each primitive’s “equivalent type statement” defines a template to correctly
instantiate it. For example, to instantiate an AANOR element whose inputs
are the signals q, r, s, and t, and whose output signal, u, is the function:

q*r + s*t

the AANOR “equivalent type statement” is referenced:

Type=AANOR i=A[1],A[2],B[1],B[2] o=Q

Using this TYPE statement, a PART statement

Part=pname Type=AANOR i=q,r,s,t o=u

can be constructed to connect the signals properly by-pin-order.

Alternatively, a PART statement can be constructed to connect the signals
properly by-pin-name:

Part=pname Type=AANOR $

i=q(A[1]),s(B[1]),r(A[2]),t(B[2]) o=u

Appendix A SIMIC Built-in Primitives

Revision 1.0 9/2/91 SIMIC User’s Guide A-3

SIMIC BUILT-IN ELEMENTS

Type Description

SIMPLE COMBINATORIAL GATES

Type=INV i=I o=Q Inverter gate

Type=AND i=I[1:1-32767] o=Q AND gate

Type=NAND i=I[1:1-32767] o=Q NAND gate

Type=OR i=I[1:1-32767] o=Q OR gate

Type=NOR i=I[1:1-32767] o=Q NOR gate

Type=EXOR i=I[1:1-32767] o=Q Exclusive-OR gate

Type=EXNOR i=I[1:1-32767] o=Q Exclusive-NOR gate

COMBINATORIAL FUNCTIONS

Type=AANOR i=A[1:2],B[1:2] o=Q AND-AND-NOR function

Type=OONAND i=A[1:2],B[1:2] o=Q OR-OR-NAND function

Type=MUX i=A,B,C o=Q 2-input Multiplexer function

LATCHES

Type=NANDL i=R,S o=Q NAND latch

Type=NORL i=R,S o=Q NOR latch

Type=DL i=NR,NS,C,D o=Q
Type=DPL i=NR,NS,C,D o=Q

D latch with positive clock

Type=DNL i=NR,NS,C,D o=Q D latch with negative clock

FLIP-FLOPS

Type=DNCF i=NR,NS,C,D o=Q D flip-flop with negative clock

Type=DCF i=NR,NS,C,D o=Q
Type=DPCF i=NR,NS,C,D o=Q

D flip-flop with positive clock

Type=JKCF i=NR,NS,C,J,K o=Q
Type=JKNCF i=NR,NS,C,J,K o=Q

JK flip-flop with negative clock

Type=JKPCF i=NR,NS,C,J,K o=Q JK flip-flop with positive clock

Type=TCF i=NR,NS,T o=Q
Type=TNCF i=NR,NS,T o=Q

T flip-flop with negative clock

Type=TPCF i=NR,NS,T o=Q T flip-flop with positive toggle

Appendix A SIMIC Built-in Primitives

A-4 SIMIC User’s Guide Revision 1.0 9/2.91

TRISTATE FUNCTIONS

Type=TGATE i=P,N o=Q P-N totem tristate driver

Type=TINVN i=EN,D o=Q Tristate inverter, high enable

Type=TINVP i=EN,D o=Q Tristate inverter, low enable

Type=TPADN i=EN,D o=Q Tristate buffer, high enable

Type=TPADP i=EN,D o=Q Tristate buffer, low enable

PROGRAMMABLE FUNCTIONS AND MEMORIES

Type=BOOLEAN i=I[1:1-32767] o=Q[1:1-32767]
state=STATE[1:1-32767]

User-definable function

Type=ROM i=CS,RE,WE,AE,ADDR[0-15:0]
o=DATA[0-99:0]

ROM element

Type=RAMA i=CS,RE,WE,C,ADDR[0-15:0],
DATAIN[0-99:0] o=DATA[0-99:0]

RAM element with clocked write

Type=RAMB i=CS,RE,WE,RADDR[0-15:0],
WADDR[0-15:0],DATAIN[0-99:0] o=DATA[0-99:0]

RAM (RAMC with separate read
and write address lines)

Type=RAMC i=CS,RE,WE,AE,ADDR[0-15:0],
DATAIN[0-99:0] o=DATA[0-99:0]

RAM with Address Enable

Type=PLA i=CS,EN,I[1:1-32767] o=Q[1:1-32767] User-definable PLA element

SWITCHES

Type=BTGN i=I b=B[1:2] Ideal Bidirectional switch (alias
BTG) enabled when I is logical-1

Type=BTGP i=I b=B[1:2] Ideal Bidirectional switch enabled
when I is logical-0

Type=BTGRN i=I b=B[1:2] Resistive Bidirectional switch
enabled when I is logical-1

Type=BTGRP i=I b=B[1:2] Resistive Bidirectional switch
enabled when I is logical-0

Type=UTGRN i=EN,D o=Q Resistive Unidirectional switch
enabled when I is logical-1

Type=UTGRP i=EN,D o=Q Resistive Unidirectional switch
enabled when I is logical-0

SIMIC BUILT-IN ELEMENTS

Type Description

Appendix A SIMIC Built-in Primitives

Revision 1.0 9/2/91 SIMIC User’s Guide A-5

BACKANNOTATION ELEMENTS

Type=DELAY i=I o=Q Path delay element

Type=NET o=Q Net loading element

SIMIC BUILT-IN ELEMENTS

Type Description

Appendix A SIMIC Built-in Primitives AANOR

A-6 SIMIC User’s Guide Revision 1.0 9/2.91

AANOR

Model:

Boolean Description:

Equivalent Type Statement:
Type=AANOR i=A[1],A[2],B[1],B[2] o=Q

Q = (A[1]*A[2] + B[1]*B[2])

= (A[1] + A[2])*(B[1] + B[2])

Truth Table:

A[1] A[2] B[1] B[2] Q

0 — 0 — 1

0 — — 0 1

— 0 0 — 1

— 0 — 0 1

1 1 — — 0

— — 1 1 0

Q

A[1]

A[2]

B[1]

B[2]

Appendix A SIMIC Built-in Primitives AND

Revision 1.0 9/2/91 SIMIC User’s Guide A-7

AND

Model:

Boolean Description:

Equivalent Type Statement:
Type=AND i=I[1:1–32767] o=Q

Q = I[1] * I[2] * ... I[n]

Truth Table:

(For two inputs)

i[1] i[2] Q

0 — 0

— 0 0

X X X

X 1 X

1 X X

1 1 1

Q

n

I[1] … I[n]

Appendix A SIMIC Built-in Primitives BOOLEAN

A-8 SIMIC User’s Guide Revision 1.0 9/2.91

BOOLEAN

Model:

Boolean Description:

Equivalent Type Statement:

Truth Table:

(See Text) (See Text)

Type=BOOLEAN i=I[1:1–32767] o=Q[1:1–32767] [state=STATE[1:1–32767]]

I[1] … I[n]

n m

Q[1] … Q[m]

Appendix A SIMIC Built-in Primitives BOOLEAN

Revision 1.0 9/2/91 SIMIC User’s Guide A-9

Description: BOOLEAN

Boolean equations describe the relationships between the inputs, outputs,
and internal state-variables (for sequential elements) of a Boolean element.
There should be an equation for every output and state-variable. Typically,
these equations are obtained from the network description, but they can be
(re)defined afterwards by the SIMIC CLAMP command.

All equations associated with a particular Boolean element must be speci-
fied within a single BOOLEAN keyword-field:

BOOLEAN=<boolean_block>

where <boolean_block> is a BEGIN/END block of the form:

BEGIN; equation; equation; ... ; END;

The continuation character, $, is used to continue the equations over multi-
ple lines.

A boolean part is a SNL PART statement that references the BOOLEAN
built-in primitive (TYPE=BOOLEAN):

p=<part_name> t=boolean i=<input_list> $

 o=<output_list> state=<state_list> $

 boolean=<boolean_block>

 A boolean type is a SNL TYPE statement that includes boolean equations
(BOOLEAN=) or explicitly declares the statement as a boolean type
(COMPOSITION=BOOLEAN):

t=<type_name> i=<input_list> $

 o=<output_list> state=<state_list> $

 boolean=<boolean_block>

All instances of the same boolean type (<type_name>) will have the same
functionality.

Each boolean equation within the <boolean_block> is a four-valued (0,
1, X, Z) unidirectional assignment of the form:

<variable> == <expression>;

or

<variable> := <expression>;

In the first form, the left-hand-side variable will be assigned a value of X if
the expression evaluates to Z, whereas in the second form, the Z will be pre-
served.

Terms or sub-expressions that are common to multiple expressions may be
assigned to variables that hold intermediate values. These variables are
called partials; they may be freely used to eliminate repreated expressions.

A variable on the left-hand-side of an equation must be either an output, a
state-variable, or a partial. The right-hand-side expression may contain any
combination of inputs, outputs, state-variables, partial variables, and con-

Note: X
represents
“could be either
0 or 1”, and Z
represents
“tristating,
unknown
value”

Appendix A SIMIC Built-in Primitives BOOLEAN

A-10 SIMIC User’s Guide Revision 1.0 9/2.91

stants (‘0’, ‘1’, ‘X’, ‘Z’—enclosed in either apostrophes or double quotes—
representing logical-0, logical-1, unknown, and high-impedance, respec-
tively).

Value Updates

The value of a partial variable term is updated immediately upon computa-
tion, and is therefore available for use in the boolean equations that follow.

Outputs and state-variables, however, retain their original values in all
expressions, even if a previous equation assigned a new value (concurrent
assignment). This can be viewed as a an implicit clocked assignment. The
updated values of state-variables will be available the next time the element
becomes active (i.e., the next time one of its inputs changes state). The new
output values will be available when their respective rise, fall, or decay
times elapse.

Initialization

At the beginning of simulation (time = 0, test = 1), all state-variables and
outputs are initialized to ‘X’. Partial variables are always initialized to ‘X’
prior to evaluating the boolean expressions.

The Boolean Operators

The supported operators are, in their order of precedence (highest to low-
est):

The binary (i.e., defined for two operands) EQUAL (NOT-EQUAL) com-
parison operators are ‘1’ if the two operands being compared have equal
(unequal) values (‘0’, ‘1’, ‘X’, ‘Z’), and ‘0’ otherwise.

The binary Exclusive-OR and Exclusive-NOR operators can be expressed
in terms of the other operators:

A @ B is equivalent to ^A*B + A*^B

A ^@ B is equivalent to ^A*^B + A*B

Operators:

Symbol Operation

^ Unary Complement

=, ^= EQUAL, NOT-EQUAL Comparison

* AND

+, @, ^@ OR, Exclusive-OR, Exclusive-NOR

Appendix A SIMIC Built-in Primitives BOOLEAN

Revision 1.0 9/2/91 SIMIC User’s Guide A-11

Truth Tables for Boolean Element Operators

.

Equal

= 0 1 X Z

0 1 0 0 0

1 0 1 0 0

X 0 0 1 0

Z 0 0 0 1

Unary
Complement

^

0 1

1 0

X X

Z X

Not-Equal

^= 0 1 X Z

0 0 1 1 1

1 1 0 1 1

X 1 1 0 1

Z 1 1 1 0

AND

* 0 1 X Z

0 0 0 0 0

1 0 1 X Z

X 0 X X X

Z 0 Z X Z

OR

+ 0 1 X Z

0 0 1 X Z

1 1 1 1 1

X X 1 X X

Z Z 1 X Z

Exclusive-Or

@ 0 1 X Z

0 0 1 X Z

1 1 0 X X

X X X X X

Z Z X X X

Exclusive-Nor

^@ 0 1 X Z

0 1 0 X X

1 0 1 X Z

X X X X X

Z X Z X X

Appendix A SIMIC Built-in Primitives BOOLEAN

A-12 SIMIC User’s Guide Revision 1.0 9/2.91

Operators of equal precedence are evaluated from left to right. Parenthesis
may be used to alter the order of evaluation. For example:

^a + b @ c * d

is evaluated as:

((^a) + b) @ (c * d)

If this expression is parenthesized as:

(^a) + (b @ (c * d))

the resulting value would be identical to a right to left evaluation.

Example – Definition of a Boolean Type

The following TYPE statement defines a master-slave positive-edge trig-
gered D flip-flop. The reset (nr) and set (ns) asynchronous inputs are
active-low. On the falling edge of clock (c), the state of the d input is trans-
ferred to the master rank. On the rising edge of clock, the state of the master
rank is transferred to the slave rank. (Note: this example is for illustrative
purposes only—most D flip-flops do not operate in ths manner.) If the nr
and ns inputs go from the 00 to the 11 state simultaneously, then a timing
problem exists and the flip-flop state becomes unknown.

TYPE=dffe I=nr,ns,c,d O=q,nq $

STATE=prev_c,prev_r,prev_s,m BOOLEAN= $

BEGIN; $

clk_rise == c*^prev_c; $

clk_fall == ^c*prev_c; $

tm == (d*clk_fall + m*^clk_fall)*nr + ^ns; $

tq == (m*clk_rise + q*^clk_rise)*nr + ^ns; $

rs_race == (prev_r = ’0’)*(prev_s = ’0’)* $

(nr = ’1’)*(ns = ’1’); $

m == tm*^rs_race + ’X’*rs_race; $

q == tq*^rs_race + ’X’*rs_race; $

nq == ^tq*^rs_race + ’X’*rs_race; $

prev_c == c; $

prev_r == nr; $

prev_s == ns; $

END;

In this definition, the following variables are state-variables:

1. prev_c -- remembers the previous value of c.

2. prev_r -- remembers the previous value of nr.

3. prev_s -- remembers the previous value of ns.

Appendix A SIMIC Built-in Primitives BOOLEAN

Revision 1.0 9/2/91 SIMIC User’s Guide A-13

and the following variables are partial terms:

1. clk_fall (becomes 1 if c executes a 1→0 transition).

2. clk_rise (becomes 1 if c executes a 0→1 transition).

3. rs_race(becomes 1 if nr,ns went from 0,0 to 1,1 simultaneously).

4. tm (if no race, the new value for m, the master rank state variable).

5. tq (if no race, the new value for q, the slave rank state variable).

A typical PART statement that instantiates this dffe is:

PART=df1 TYPE=dffe I=re,se,cl,da O=q,notq

Note that no state-variables are referenced in the PART statement, which
specifies signal/pin connections, since state-variables are internal to the
dffe.

Modifying Boolean Types at Run Time

When debugging a design, it is useful to be able to modify a BOOLEAN
definition during the simulation session. This is accomplished with the
CLAMP command in one of the following formats:

CLAMP TYPE=<type_name> BOOLEAN=<boolean_block>

CLAMP PART=<part_name> BOOLEAN=<boolean_block>

where:

• <type_name> is the name of the boolean TYPE to modify.

• <boolean_block> is the BEGIN; equation; equation; ... END; format
as described above.

• <part_name> is the name of a BOOLEAN instance to modify.

If all instances of a BOOLEAN definition are to be changed, the first form
of the CLAMP command is used. If the BOOLEAN function was defined
with a TYPE statement (boolean type), then <type_name> is the type’s
name as specified in the TYPE keyword-field. Alternatively, if the BOOL-
EAN function was defined with a PART statement (boolean part), then
<type_name> consists of the name of the macro containing the part, fol-
lowed by a dot (.), followed by the PART’s instance name. For example, in
the following macro:

Type=buf I=a O=b

Part=q I=a O=b BOOLEAN=BEGIN;b == a; END;

<type_name> would be buf.q. The CLAMP TYPE command will replace
all instances of this type with the new equations.

Appendix A SIMIC Built-in Primitives BOOLEAN

A-14 SIMIC User’s Guide Revision 1.0 9/2.91

If only a specific instance of a BOOLEAN type requires modification, then
the second form of the CLAMP command is used. Here, the PART keyword-
field specifies the BOOLEAN’s instance name.

Note that the number of inputs, outputs, or state-variables cannot be
changed with the CLAMP command. This requires a change in the network
description and a subsequent re-compilation of the circuit.

Appendix A SIMIC Built-in Primitives BTGN and BTGP

Revision 1.0 9/2/91 SIMIC User’s Guide A-15

BTGN and BTGP

Model:

Boolean Description:

Equivalent Type Statement:
Type=BTGP i=C b=B[1],B[2]
Type=BTGN i=C b=B[1],B[2]

(See Text)

Truth Table:

(See Text)

B[1] B[2]

C

Appendix A SIMIC Built-in Primitives BTGN and BTGP

A-16 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

The BTGN and BTGP primitives are ideal switches having zero resistance
and delay. They can be viewed as instantaneous relays, shorting the two
ports B[1] and B[2] whenever the control, C, is enabled. The BTGN primi-
tive is positive enabled on the C input (enabled with a logical-1), whereas
the BTGP is negative enabled (enabled with a logical-0). Loading on nodes
dynamically shorted together is reflected back to the source drivers, and
their delays are modified accordingly. For example:

Assuming that nodes A, B, and C each have 1 unit of load, then the driver at
the end of the chain would see:

• 1 Unit of load when C1 is disabled, since only node A is directly con-
nected to the driver to contributes to the loading.

• 2 Units of load if C1 is enabled and C2 is disabled, since both nodes
A and B contribute to the loading.

• 3 Units of load if both switches are enabled.

Disabling Dynamic Delay Computation

By default, dynamic delay computation is enabled. If you do not want to
propagate loading through dynamically connected nodes (and have driver
delays modified accordingly), this feature can be disabled by issuing the run
command:

NO SIMULATE BTGDELAY:

This will force all nodes to maintain their isolated loading values, even
when connected by enabled BTGNs or BTGPs.

In

A B

C1 C2

C

Appendix A SIMIC Built-in Primitives BTGRN and BTGRP

Revision 1.0 9/2/91 SIMIC User’s Guide A-17

BTGRN and BTGRP

Model:

Boolean Description:

Equivalent Type Statement:
Type=BTGRP i=C b=B[1],B[2] sdepth=1
Type=BTGRN i=C b=B[1],B[2] sdepth=1

(See Text)

Truth Table:

(See Text)

B[1] B[2]

C

Appendix A SIMIC Built-in Primitives BTGRN and BTGRP

A-18 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

The BTGRN and BTGRP primitives are non-ideal switch elements. ON-
resistance is specified by assigning a SERIES-DEPTH (SDEPTH) value
upon instantiating the switch in a SNL PART statement. The SDEPTH value
can range from 1 to 32766, where 1 is the minimum resistance and 32766 is
the maximum resistance of the switch. If unspecified, the SDEPTH value is
defaulted to 1. The BTGRN is enabled when its control input, C, is a logical-
1, while the BTGRP is enabled when C is a logical-0.

It is important that charge-storage be modeled reasonably in switch network
(i.e. decays are larger than delays), otherwise the simulation could produce
transient X pulses, slowing down the simulation throughput and possibly
generating oscillations during network value convergence.

SIMIC optimizes switch level networks during compilation, merging paral-
leled gates and converting bidirectional BTGRNs and BTGRPs to their
respective unidirectional counterparts, UTGRNs and UTGRPs, where pos-
sible.

Appendix A SIMIC Built-in Primitives DCF, DPCF

Revision 1.0 9/2/91 SIMIC User’s Guide A-19

DCF, DPCF

Model:

Boolean Description:

Equivalent Type Statement:
Type=DCF i=NR,NS,C,D o=Q Type=DPCF i=NR,NS,C,D o=Q

M=(C*D + C*M0 + D*M0)*NR + NS

Q=(C*M0 + C*Q0 + M0*Q0)*NR + NS

where M0 is the previous master-rank state,
and Q0 is the previous slave-rank state.

Note: Q changes on the rising clock edge.

Truth Table:

NR NS C M Q

— 0 — 1 1

0 1 — 0 0

1 1 0 D Q0

1 1 0→1 M0 M0

D
NS

NR

Q

NS

D

C

NR

D

Appendix A SIMIC Built-in Primitives DCF, DPCF

A-20 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

DCF (DPCF) is a positive-edge master-slave D flip-flop. Its set (NS) and
reset (NR) inputs are active-low, and the set dominates when both are low.
The DCF is modeled as a master-slave flip-flop using two state variables:
master = M and slave = Q. The slave is loaded from the master on the rising
edge of clock, C, while the D input is enabled when clock is low.

During circuit compilation, the master-rank is assigned a delay equal to the
unloaded slave delay.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the DCF supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock edge(rise). Three setup checks are available:
setup from data (SETUP.D), setup from trailing edge of reset when
data=1 (SETUP.NR), and setup from trailing edge of set when data=0
(SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock edge (rise). Three hold checks are supported: hold
from data (HOLD.D), hold from reset (HOLD.NR), and hold from set
(HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=DCF i=reset,set,clk,data o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.D = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units, except hold from D which is 10.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives DNCF

Revision 1.0 9/2/91 SIMIC User’s Guide A-21

DNCF

Model:

Boolean Description:

Equivalent Type Statement:
Type=DNCF i=NR,NS,C,D o=Q

M=(C*D + C*M0 + D*M0)*NR + NS

Q=(C*M0 + C*Q0 + M0*Q0)*NR + NS

where M0 is the previous master-rank state,
and Q0 is the previous slave-rank state.

Note: Q changes on the falling clock edge.

Truth Table:

NR NS C M Q

— 0 — 1 1

0 1 — 0 0

1 1 1 D Q0

1 1 1→0 M0 M0

D
NS

NR

Q

NS

D

C

NR

D

Appendix A SIMIC Built-in Primitives DNCF

A-22 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

DNCF is a negative-edge master-slave D flip-flop. Its set (NS) and reset (NR)
inputs are active-low, and the set dominates when both are low. The DNCF
is modeled as a master-slave flip-flop using two state variables: master = M

and slave = Q. The slave is loaded from the master on the falling edge of
clock, C, while the D input is enabled when clock is high.

During circuit compilation, the master-rank is assigned a delay equal to the
unloaded slave delay.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the DNCF supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock edge(fall). Three setup checks are available:
setup from data (SETUP.D), setup from trailing edge of reset when
data=1 (SETUP.NR), and setup from trailing edge of set when data=0
(SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock edge (fall). Three hold checks are supported: hold
from data (HOLD.D), hold from reset (HOLD.NR), and hold from set
(HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=DNCF i=reset,set,clk,data o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.D = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units, except hold from D which is 10.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives DL, DPL

Revision 1.0 9/2/91 SIMIC User’s Guide A-23

DL, DPL

Model:

Boolean Description:

Equivalent Type Statement:
Type=DL i=NR,NS,C,D o=Q Type=DPL i=NR,NS,C,D o=Q

Q=(C*D + C*Q0 + D*Q0)*NR + NS

where Q0 is the previous output state.

Note: D propagates to Q when clock is high,
and Q latches when clock is low.

Truth Table:

NR NS C Q

— 0 — 1

0 1 — 0

1 1 1 D

1 1 0 Q0

D
NS

NR

Q

C

NS

D

C

NR

Q

Appendix A SIMIC Built-in Primitives DL, DPL

A-24 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

DL (DPL) is a level-sensitive D latch. Its set (NS) and reset (NR) inputs are
active-low, and the set dominates when both are low. When clock, C, is high,
the D input propagates to the Q output. When clock is low, the D input is dis-
abled, and the latch retains its last-driven D value.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the DL supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock change (fall). Three setup checks are available:
setup from data (SETUP.D), setup from trailing edge of reset when
data=1 (SETUP.NR), and setup from trailing edge of set when data=0
(SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock change (fall). Three hold checks are supported:
hold from data (HOLD.D), hold from reset (HOLD.NR), and hold from
set (HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=DL i=reset,set,clk,data o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.D = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units, except hold from D which is 10.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives DNL

Revision 1.0 9/2/91 SIMIC User’s Guide A-25

DNL

Model:

Boolean Description:

Equivalent Type Statement:
Type=DNL i=NR,NS,C,D o=Q

Q=(C*D + C*Q0 + D*Q0)*NR + NS

where Q0 is the previous output state.

Note: D propagates to Q when clock is low,
and Q latches when clock is high.

Truth Table:

NR NS C Q

— 0 — 1

0 1 — 0

1 1 0 D

1 1 1 Q0

D
NS

NR

Q

C

NS

D

C

NR

Q

Appendix A SIMIC Built-in Primitives DNL

A-26 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

DNL is a level-sensitive D latch. Its set (NS) and reset (NR) inputs are active-
low, and the set dominates when both are low. When clock, C, is low, the D
input propagates to the Q output. When clock is high, the D input is disabled,
and the latch retains its last-driven D value.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the DNL supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock change (rise). Three setup checks are avail-
able: setup from data (SETUP.D), setup from trailing edge of reset
when data=1 (SETUP.NR), and setup from trailing edge of set when
data=0 (SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock change (rise). Three hold checks are supported:
hold from data (HOLD.D), hold from reset (HOLD.NR), and hold from
set (HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=DNL i=reset,set,clk,data o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.D = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units, except hold from D which is 10.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives EXNOR

Revision 1.0 9/2/91 SIMIC User’s Guide A-27

EXNOR

Model:

Boolean Description:

Equivalent Type Statement:
Type=EXNOR i=i[1:1-32767] o=Q

Q is high when an even number of inputs are
high, low when an odd number of inputs are
high, and X when any input is X

Q I[0] I[2]... I[n]⊕ ⊕=

Truth Table:

(For two inputs)

I[1] I[2] Q

0 0 1

0 1 0

1 0 0

1 1 1

n

I[1] … I[n] Q

Appendix A SIMIC Built-in Primitives EXOR

A-28 SIMIC User’s Guide Revision 1.0 9/2.91

EXOR

Model:

Boolean Description:

Equivalent Type Statement:
Type=EXOR i=I[1:1-32767] o=Q

Q is high when an odd number of inputs are
high, low when an even number of inputs are
high, and X when any input is X

Q I[0] I[2]... I[n]⊕ ⊕=

Truth Table:

(For two inputs)

I[1] I[2] Q

0 0 0

0 1 1

1 0 1

1 1 0

QI[1] … I[n]

n

Appendix A SIMIC Built-in Primitives INV

Revision 1.0 9/2/91 SIMIC User’s Guide A-29

INV

Model:

Boolean Description:

Equivalent Type Statement:
Type=INV i=I o=Q

Q = I

Truth Table:

(For two inputs)

I Q

0 1

1 0

QI

Appendix A SIMIC Built-in Primitives JKCF, JKNCF

A-30 SIMIC User’s Guide Revision 1.0 9/2.91

JKCF, JKNCF

Model:

Boolean Description:

Equivalent Type Statement:
Type=JKCF i=NR,NS,C,J,K o=Q Type=JKNCF i=NR,NS,C,J,K o=Q

D=J*Q0 + K*Q0 + J*K

M=(C*D + C*M0 + M0*D)*NR + NS

Q=(C*M0 + C*Q0 + M0*Q0)*NR + NS

where M0 is the previous master-rank and Q0
is the previous slave-rank.

Note: Q changes on the falling edge of clock.

Truth Table:

NR NS J K C M Q

— 0 — — — 1 1

0 1 — — — 0 0

1 1 0 0 1 Q0 Q0

1 1 0 1 1 0 Q0

1 1 1 0 1 1 Q0

1 1 1 1 1 Q0 Q0

1 1 — — 1→0 M0 M0

J
NS

NR

Q

K

Q

NS

J

K

NR

C

Appendix A SIMIC Built-in Primitives JKCF, JKNCF

Revision 1.0 9/2/91 SIMIC User’s Guide A-31

Description:

JKCF (JKNCF) is a negative-edge master-slave JK flip-flop, using two state
variables: master = M and slave = Q. The slave is loaded from the master on
the falling edge of clock. The set (NS) and reset (NR) inputs are active-low,
and the set dominates.

During circuit compilation, the master-rank is assigned a delay equal to the
unloaded slave delay.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the JKCF supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock edge (fall). Four setup checks are available:
setup from J (SETUP.J), setup from K (SETUP.K), setup from trail-
ing edge of reset when logic-1 is clocked-in (SETUP.NR), and setup
from trailing edge of set when logic-0 is clocked-in (SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock edge fall). Four hold checks are supported: hold
from J (HOLD.J), hold from K (HOLD.K), hold from reset
(HOLD.NR), and hold from set (HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=JKCF i=reset,set,clk,j,k o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.J = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units, except hold from j which is 10.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives JKPCF

A-32 SIMIC User’s Guide Revision 1.0 9/2.91

JKPCF

Model:

Boolean Description:

Equivalent Type Statement:
Type=JKPCF i=NR,NS,C,J,K o=Q

D=J*Q0 + K*Q0 + J*K

M=(C*D + C*M0 + M0*D)*NR + NS

Q=(C*M0 + C*Q0 + M0*Q0)*NR + NS

where M0 is the previous master-rank and Q0
is the previous slave-rank.

Note: Q changes state on the rising edge of
clock.

Truth Table:

NR NS J K C M Q

— 0 — — — 1 1

0 1 — — — 0 0

1 1 0 0 0 Q0 Q0

1 1 0 1 0 0 Q0

1 1 1 0 0 1 Q0

1 1 1 1 0 Q0 Q0

1 1 — — 0→1 M0 M0

J
NS

NR

Q

K

Q

NS

J

K

NR

C

Appendix A SIMIC Built-in Primitives JKPCF

Revision 1.0 9/2/91 SIMIC User’s Guide A-33

Description:

JKPCF is a positive-edge master-slave JK flip-flop, using two state vari-
ables: master = M and slave = Q. The slave is loaded from the master on the
rising edge of clock. The set (NS) and reset (NR) inputs are active-low, and
the set dominates.

During circuit compilation, the master-rank is assigned a delay equal to the
unloaded slave delay.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the JKPCF supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock edge (rise). Four setup checks are available:
setup from J (SETUP.J), setup from K (SETUP.K), setup from trail-
ing edge of reset when logic-1 is clocked-in (SETUP.NR), and setup
from trailing edge of set when logic-0 is clocked-in (SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock edge (rise). Four hold checks are supported: hold
from J (HOLD.J), hold from K (HOLD.K), hold from reset
(HOLD.NR), and hold from set (HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=JKPCF i=reset,set,clk,j,k o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD.J = 10; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units, except hold from j which is 10.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives LOAD

A-34 SIMIC User’s Guide Revision 1.0 9/2.91

LOAD

Model:

Boolean Description:

Equivalent Type Statement:
Type= LOAD o=Q olod=0

The LOAD element is used for backannota-
tion; it adds loading to the specified net.

For example:
p=sig5 t=load olod=7

and
p=cap t=load o=sig5 olod=7

both add 7 units of loading to net sig5. If the
output keyword-field is present, as shown in
the second statement above, the name used in
the part keyword-field is arbitrary (unlike all
other instantiations).

Truth Table:

(Not Applicable)

Q

Appendix A SIMIC Built-in Primitives MUX

Revision 1.0 9/2/91 SIMIC User’s Guide A-35

MUX

Model:

Boolean Description:

Equivalent Type Statement:
Type=MUX i=A,B,C o=Q

Q=A*C + B*C + A*B

Truth Table:

A B C Q

— 0 0 0

— 1 0 1

0 — 1 0

1 — 1 1

0 0 — 0

1 1 — 1

A

B

C
Q

Appendix A SIMIC Built-in Primitives NAND

A-36 SIMIC User’s Guide Revision 1.0 9/2.91

NAND

Model:

Boolean Description:

Equivalent Type Statement:
Type=NAND i=I[1:1-32767] o=Q

Q = I[1] * I[2] * ... I[n]

Truth Table:

(For two inputs)

I[1] I[2] Q

0 — 1

— 0 1

X X X

X 1 X

1 X X

1 1 0

Q

n

I[1] … I[n]

Appendix A SIMIC Built-in Primitives NANDL

Revision 1.0 9/2/91 SIMIC User’s Guide A-37

NANDL

Model:

Boolean Description:

Equivalent Type Statement:
Type=NANDL i=R,S o=Q

Q = S + R*Q0

where Q0 is the previous output state.

Truth Table:

R S Q

— 0 1

0 1 0

1 1 Q0

R

S Q

Appendix A SIMIC Built-in Primitives NOR

A-38 SIMIC User’s Guide Revision 1.0 9/2.91

NOR

Model:

Boolean Description:

Equivalent Type Statement:
Type=NOR i=I[1:1-32767] o=Q

Q = I[1] + I[2] + ... I[n]

Truth Table:

(For two inputs)

i[1] i[2] Q

1 — 0

— 1 0

X X X

X 0 X

0 X X

0 0 1

Q

n
I[1] … I[n]

Appendix A SIMIC Built-in Primitives NORL

Revision 1.0 9/2/91 SIMIC User’s Guide A-39

NORL

Model:

Boolean Description:

Equivalent Type Statement:
Type=NORL i=R,S o=Q

Q =R * (S + Q0)

where Q0 is the previous output state.

Truth Table:

R S Q

1 — 0

0 1 1

0 0 Q0

R

S

Q

Appendix A SIMIC Built-in Primitives OONAND

A-40 SIMIC User’s Guide Revision 1.0 9/2.91

OONAND

Model:

Boolean Description:

Equivalent Type Statement:
Type=OONAND i=A[1],A[2],B[1],B[2] o=Q

Q = (A[1] + A[2])*(B[1] + B[2])

= A[1]*A[2] + B[1]*B[2]

Truth Table:

A[1] A[2] B[1] B[2] Q

1 — 1 — 0

1 — — 1 0

— 1 1 — 0

— 1 — 1 0

0 0 — — 1

— — 0 0 1

Q

A[1]

A[2]

B[1]

B[2]

Appendix A SIMIC Built-in Primitives OR

Revision 1.0 9/2/91 SIMIC User’s Guide A-41

OR

Model:

Boolean Description:

Equivalent Type Statement:
Type=OR i=I[1:1–32767] o=Q

Q = I[1] + I[2] + ... I[n]

Truth Table:

(For two inputs)

i[1] i[2] Q

1 — 1

— 1 1

X X X

X 0 X

0 X X

0 0 0

Q

n

I[1] … I[n]

Appendix A SIMIC Built-in Primitives PLA

A-42 SIMIC User’s Guide Revision 1.0 9/2.91

PLA

Model:

Boolean Description:

Equivalent Type Statement:
Type=PLA i=CS,EN,I[1:1-32767] o=Q[1:1-32767]

(See Text)

Truth Table:

CS EN Q

0 — Z

1 0 <disabled>

X — X

— X X

1 1 <function>

Q[1] … Q[m]

I[1] … I[n]
m

EN

CS

n

Appendix A SIMIC Built-in Primitives PLA

Revision 1.0 9/2/91 SIMIC User’s Guide A-43

Description:

The PLA primitive models an AND/OR plane implementation of a PLA.
The PLA’s data inputs are used to generate the AND plane outputs, and the
AND plane outputs are used to generate the OR plane outputs, which are
also the outputs of the PLA.

The first input, CS, controls whether the output is enabled (driving) or not
(tristating). The second input, EN, controls whether to perform the AND/
OR function or output a user-specified disabled value. The remaining PLA
inputs are the data inputs.

The personality of the PLA is set by CLAMP run commands.

Setting the Disabled Value

When the EN input is logical-0, the outputs are set to the disabled value
specified by the ENABLE option of the CLAMP command. This value can
be either 1 or 0. If unspecified, the value defaults to 0. For example:

CLAMP PART=pla1 ENABLE=1

specifies that all outputs should be logical-1 whenever the enable, EN, is
logical-0.

The Connection Plane Maps

The AND and OR planes are personalized by the use of connection maps
that specify either a TRUE connection, a COMPLEMENT connection, or
NO connection to each specific input line of the plane. SIMIC uses the char-
acter 1 for TRUE, 0 for COMPLEMENT, and X for NO connection.

Setting the AND Plane

The AND plane personality is set by the CLAMP command as follows:

CLAMP PART=<name> AND=<ninputs>*<nproducts> $

BITMAP=<connection_map>

where <name> is the PLA’s part name, <ninputs> is the number of inputs
to the AND plane (which must be the number of data inputs), and
<nproducts> is the number of AND plane product terms (and the number of
inputs to the OR plane). This keyword-field is used for error checking.

The <connection_map> contains <nproducts> items, each containing
<ninputs> 0, 1, or X characters that define a single product term, ordered
according to the PLA data inputs.

Appendix A SIMIC Built-in Primitives PLA

A-44 SIMIC User’s Guide Revision 1.0 9/2.91

Setting the OR Plane

The OR plane personality is set by the CLAMP command as follows:

CLAMP PART=<name> OR=<nproducts>*<noutputs> $

BITMAP=<connection_map>

where <name> is the PLA’s part name, <nproducts> is the number of inputs
to the OR plane (which must be the number of AND plane outputs), and
<noutputs> is the number of OR plane sum terms (and the number of PLA
outputs). This keyword-field is used for error checking.

The <connection_map> contains <noutputs> items, each containing
<nproducts> 0, 1, or X entries that define a single sum term, ordered by the
AND plane outputs. The sum terms, in turn, are ordered by the PLA outputs.

PLA Example:

The following example illustrates a PLA implementation of a 4-bit to 7-bit
decoder to interface a BCD input to a seven-segment decimal digit display:

digit Q[3:0]
Segment

7 6 5 4 3 2 1

0 0000 ON ON ON ON ON ON

1 0001 ON ON

2 0010 ON ON ON ON ON

3 0011 ON ON ON ON ON

4 0100 ON ON ON ON

5 0101 ON ON ON ON ON

6 0110 ON ON ON ON ON ON

7 0111 ON ON ON

8 1000 ON ON ON ON ON ON ON

9 1001 ON ON ON ON ON

1

2

3

7

6

5

4

CS

EN

Q[3:0]
PLA

SEG[7:1]

Appendix A SIMIC Built-in Primitives PLA

Revision 1.0 9/2/91 SIMIC User’s Guide A-45

Assuming that the i-th segment (1 ≤ i ≤ 7) is ON when SEG[i] is logical
ONE, and is OFF when SEG[i] is logical ZERO, and that the remaining six
states of Q[3:0] can be treated as don’t-cares, then the following equations
are one realization of the decoder:

SEG[7] = Q[3] + Q[2]*Q[1] + Q[2]*Q[0] + Q[2]*Q[1]

SEG[6] = Q[3]+ Q[1] + Q[2]*Q[0] + Q[2]*Q[1]*Q[0]

SEG[5] = Q[3] + Q[1]*Q[0] + Q[2]*Q[1] + Q[2]*Q[0]

SEG[4] = Q[2]*Q[0] + Q[1]*Q[0]

SEG[3] = Q[2]*Q[0] + Q[1]*Q[0] + Q[2]*Q[1] + Q[2]*Q[1]*Q[0]

SEG[2] = Q[2] + Q[1] + Q[0]

SEG[1] = Q[3] + Q[1]*Q[0] + Q[1]*Q[0] + Q[2]

The following table summarizes product term usage in these equations:

Note that there are two entries in the table marked with an asterisk—seg-
ment-2’s Q[1] term and segment-1’s Q[2] term. The segment equations
actually require the complements of these terms, which in this example will
be realized by entering 0s in the OR plane. Alternatively, Q[1] and Q[2]
could be generated as two more output terms of the AND plane.

Segment

Product Term 7 6 5 4 3 2 1

1 Q[3] ✓ ✓ ✓ ✓

2 Q[2] ✓ ✓*

3 Q[2]*Q[1] ✓ ✓

4 Q[2]*Q[1]*Q[0] ✓ ✓

5 Q[2]*Q[0] ✓ ✓

6 Q[2]*Q[1] ✓ ✓

7 Q[2]*Q[0] ✓ ✓ ✓

8 Q[1] ✓ ✓*

9 Q[1]*Q[0] ✓

10 Q[1]*Q[0] ✓ ✓

11 Q[1]*Q[0] ✓ ✓

12 Q[0] ✓

Appendix A SIMIC Built-in Primitives PLA

A-46 SIMIC User’s Guide Revision 1.0 9/2.91

The PLA might be instantiated in the SNL description as:

part=pla1 type=pla i=one,one,q[3:0] o=seg[7:1]

where the CS and EN inputs have been tied to logic ONE to permanently
enable the PLA outputs (of course, other connections to these inputs would
be made if this were not desirable).

Personalization of the PLA is accomplished by the two CLAMP commands
defining the AND and OR planes; typically, these commands would physi-
cally be in a separate file that would be read at run time by an EXECUTE
command.

Using the above table, and assuming the PLA’s part name is pla1, the
CLAMP command defining the AND plane would be:

clamp part=pla1 and=4*12 bitmap= $

 1xxx x1xx x10x x101 x1x0 x01x x0x0 xx1x $

 xx11 xx10 xx00 xxx1

There are 12 product terms, each describing four connections ordered
according to the PLA data inputs. For example, the first term, 1xxx, repre-
sents a TRUE connection to Q[3] and NO connection to the other inputs,
and therefore is the product term Q[3]. Similarly, the third term, x10x, rep-
resents NO connection to Q[3], a TRUE connection to Q[2], a COMPLE-
MENTED connection to Q[1], and NO connection to Q[0], and therefore is
the product term Q[2]*Q[1]. (Note that the 12 product terms are ordered
according to the rows of the usage table above.)

The CLAMP command defining the OR plane would be:

clamp part=pla1 or=12*7 bitmap= $

 1x1x11xxxxxx 1xx1xx11xxxx 1x1x1xxxxx1x $

 xxxxxx1xx1xx xxx1x11xx1xx x1xxxxx0xxx1 $

 10xxxxxx1x1x

There are 7 sum terms that generate the PLA outputs. The first term corre-
sponds to seg[7], since this is the first signal in the output keyword-field of
the above PART statement instantiating the PLA. The other sum terms are
ordered accordingly.

Ordering of the 12 connection entries within each sum term follows the
AND plane outputs. For example, the first sum term specifies the OR of the
TRUE values of the first, third, fifth, and sixth product terms, and NO con-
nection to any of the others. This is exactly the product term usage of seg-
ment-7, as indicated in the above table. Similarly, the sixth sum term
specifies the OR of the TRUE value of the second product term, the COM-
PLEMENT of the eighth product term (i.e., Q[1]), and the TRUE value of
the twelfth produce term. As noted above, this use of the COMPLEMENT
in the OR plane eliminated the need to generate Q[1] in the AND plane,
since Q[1] was available.

End of Example

Appendix A SIMIC Built-in Primitives RAMA

Revision 1.0 9/2/91 SIMIC User’s Guide A-47

RAMA

Model:

Boolean Description:

Equivalent Type Statement:
Type=RAMA i=CS,RE,WE,C,ADDR[15-0:0],DATAIN[99-0:0] o=DATA[99-0:0]

(See Text)

Truth Table:

CS RE WE CLK DATA

0 — — — Z

— 0 — — Z

1 X — — X

X 1 — — X

X X — — X

1 1 — —1 contents at
locacation

ADDR

DATA[n] … DATA[0]

n

n

m

CS

RE

WE

ADDR[m] … ADDR[0]

DATAIN[n] … DATAIN[0]

C

1. Note: If the clock rises, and the chip is selected and write enabled, then the contents of the
DATAIN bus are written to the current address, specified by ADDR. If the RAMA is simulta-
neously read enabled, the new contents will be at the DATA outputs (write-before-read).

Appendix A SIMIC Built-in Primitives RAMA

A-48 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

This is a single port RAM primitive. The number of DATAIN lines must be
equal to the number of DATA lines (therefore, the semicolon between the
ADDR and DATAIN inputs is optional in the instantiating PART state-
ment’s input field, since the number of DATAIN lines is constrained). Data
is written to the RAM on a rising clock edge and CS and WE are high.

Initializing the Contents of a RAM

Normally, RAM contents are initialized during simulation by performing
writes to the RAM. However, SIMIC also supports RAM initialization prior
to simulation via the CLAMP command. The command structure is:

CLAMP PART=<name> DATA=<addresses and data>

where <name> is the RAM’s part name, and <addresses and data> is the
data to write into the RAM in the following format:

X<address> <data> X<address> <data> ...

where <address> is the starting address for the data that follows, in hexa-
decimal, and <data> is the data described in hexadecimal. For example:

CLAMP PART=RAM1 DATA= $

X0000 00 01 02 03 04 05 06 07 $

08 09 0A 0B 0C 0D 0E 0F $

XC000 FF FF FF FF

Specifying the Last Valid Address

The last valid address for the RAM can be specified in the SNL description.
If a write or read operation occurs beyond this address, then an appropriate
error message will be issued. This is done via the LASTADDR keyword in
the PART statement. For example if the last valid address is 3000, you
would include LASTADDR=3000 in the PART statement. If unspecified,
the last valid address is defaulted to 2n-1, where n is the number of address
lines.

X Address Line Handling

If there are unknowns (X) on address lines during a read or write, then
SIMIC will compare the data at each location that could be accessed and set
to X only those bits that conflict. By default, if more than 4 address lines are
unknown, then SIMIC will abandon this scheme and instead output an X for
each output if a read is enabled, and set all RAM locations to X if a write is
enabled. This threshold can be set globally by the DEFINE command:

DEFINE XADDRESS=<n>

where <n> is the maximum number of X address lines to enumerate.

Appendix A SIMIC Built-in Primitives RAMB

Revision 1.0 9/2/91 SIMIC User’s Guide A-49

RAMB

1. Note: If the write address, specified by WADDR, and the read address, specified by RADDR,
are identical, then the newly-written contents of the selected address appears at the DATA out-
put (write-before-read).

Type=RAMB i=CS,RE,WE,RADDR[15-0:0],WADDR[15-0:0],DATAIN[99-0:0] $
 o=DATA[99-0:0]

Model:

Boolean Description:

Equivalent Type Statement:

(See Text)

Truth Table:

CS RE WE DATA

0 — — Z

— 0 — Z

1 X — X

X 1 — X

X X — X

1 1 0 contents of RADDR

1 1 1 contents of RADDR1

n

DATA[n] … DATA[0]

DATAIN[n] … DATAIN[0]

WADDR[m] … WADDR[0]

RADDR[m] … RADDR[0]

WE

RE

CS

m

m

n

Appendix A SIMIC Built-in Primitives RAMB

A-50 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

This is a dual port RAM primitive. The number of DATAIN lines must be
equal to the number of DATA lines and the number of RADDR lines must
equal the number of WADDR lines (therefore, the semicolons between the
RADDR, WADDR, and DATAIN inputs are optional in the instantiating
PART statement’s input field, since their dimensions are constrained).

Initializing the Contents of a RAM

Normally, RAM contents are initialized during simulation by performing
writes to the RAM. However, SIMIC also supports RAM initialization prior
to simulation via the CLAMP command. The command structure is:

CLAMP PART=<name> DATA=<addresses and data>

where <name> is the RAM’s part name, and <addresses and data> is the
data to write into the RAM in the following format:

X<address> <data> X<address> <data> ...

where <address> is the starting address for the data that follows, in hexa-
decimal, and <data> is the data described in hexadecimal. For example:

CLAMP PART=RAM1 DATA= $

X0000 00 01 02 03 04 05 06 07 $

08 09 0A 0B 0C 0D 0E 0F $

XC000 FF FF FF FF

Specifying the Last Valid Address

The last valid address for the RAM can be specified in the SNL description.
If a write or read operation occurs beyond this address, then an appropriate
error message will be issued. This is done via the LASTADDR keyword in
the PART statement. For example if the last valid address is 3000, you
would include LASTADDR=3000 in the PART statement. If unspecified,
the last valid address is defaulted to 2n-1, where n is the number of address
lines.

X Address Line Handling

If there are unknowns (X) on address lines during a read or write, then
SIMIC will compare the data at each location that could be accessed and set
to X only those bits that conflict. By default, if more than 4 address lines are
unknown, then SIMIC will abandon this scheme and instead output an X for
each output if a read is enabled, and set all RAM locations to X if a write is
enabled. This threshold can be set globally by the DEFINE command:

DEFINE XADDRESS=<n>

where <n> is the maximum number of X address lines to enumerate.

Appendix A SIMIC Built-in Primitives RAMC

Revision 1.0 9/2/91 SIMIC User’s Guide A-51

RAMC

1.Note: If the RAMC is simultaneously read enabled and write enabled, then the newly-written
contents of the selected address appears at the DATA output (write-before-read).

Model:

Boolean Description:

Equivalent Type Statement:
Type=RAMC i=CS,RE,WE,AE,ADDR[15-0:0],DATAIN[99-0:0] o=DATA[99-0:0]

(See Text)

Truth Table:

CS AE RE WE DATA

0 — — — Z

— 0 — — Z

— — 0 — Z

1,X 1,X X — X

X 1,X 1,X — X

1,X X 1,X — X

1 1 1 0 contents of ADDR

1 1 1 1 new contents of
ADDR1

DATA[n] … DATA[0]
n

n

m

AE

WE

RE

CS

ADDR[m] … ADDR[0]

DATAIN[n] … DATAIN[0]

Appendix A SIMIC Built-in Primitives RAMC

A-52 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

This is a single port RAM primitive. The number of DATAIN lines must be
equal to the number of DATA lines (therefore, the semicolon between the
ADDR and DATAIN inputs is optional in the instantiating PART state-
ment’s input field, since the number of DATAIN lines is constrained).

Initializing the Contents of a RAM

Normally, RAM contents are initialized during simulation by performing
writes to the RAM. However, SIMIC also supports RAM initialization prior
to simulation via the CLAMP command. The command structure is:

CLAMP PART=<name> DATA=<addresses and data>

where <name> is the RAM’s part name, and <addresses and data> is the
data to write into the RAM in the following format:

X<address> <data> X<address> <data> ...

where <address> is the starting address for the data that follows, in hexa-
decimal, and <data> is the data described in hexadecimal. For example:

CLAMP PART=RAM1 DATA= $

X0000 00 01 02 03 04 05 06 07 $

08 09 0A 0B 0C 0D 0E 0F $

XC000 FF FF FF FF

Specifying the Last Valid Address

The last valid address for the RAM can be specified in the SNL description.
If a write or read operation occurs beyond this address, then an appropriate
error message will be issued. This is done via the LASTADDR keyword in
the PART statement. For example if the last valid address is 3000, you
would include LASTADDR=3000 in the PART statement. If unspecified,
the last valid address is defaulted to 2n-1, where n is the number of address
lines.

X Address Line Handling

If there are unknowns (X) on address lines during a read or write, then
SIMIC will compare the data at each location that could be accessed and set
to X only those bits that conflict. By default, if more than 4 address lines are
unknown, then SIMIC will abandon this scheme and instead output an X for
each output if a read is enabled, and set all RAM locations to X if a write is
enabled. This threshold can be set globally by the DEFINE command:

DEFINE XADDRESS=<n>

where <n> is the maximum number of X address lines to enumerate.

Appendix A SIMIC Built-in Primitives ROM

Revision 1.0 9/2/91 SIMIC User’s Guide A-53

ROM

Model:

Boolean Description:

Equivalent Type Statement:
Type=ROM i=CS,RE,ADDR[15-0:0] o=DATA[99-0:0]

(See Text)

Truth Table:

CS RE DATA

0 — Z

— 0 Z

1 X X

X 1 X

X X X

1 1 contents at location ADDR

n
DATA[n] … DATA[0]

ADDR[m] … ADDR[0]

RE

CS

m

Appendix A SIMIC Built-in Primitives ROM

A-54 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

This is a single port ROM primitive.

Initializing the Contents of a ROM

A ROM is initialized prior to simulation via the CLAMP command. The
command structure is:

CLAMP PART=<name> DATA=<addresses and data>

where <name> is the ROM’s part name, and <addresses and data> is the
data to write into the ROM in the following format:

X<address> <data> X<address> <data> ...

where <address> is the starting address for the data that follows, in hexa-
decimal, and <data> is the data described in hexadecimal. For example:

CLAMP PART=ROM1 DATA= $

X0000 00 01 02 03 04 05 06 07 $

08 09 0A 0B 0C 0D 0E 0F $

XFF00 FF FF FF FF

Specifying the Last Valid Address

The last valid address for the ROM can be specified in the SNL description.
If a read operation occurs beyond this address, then an appropriate error
message will be issued. This is done via the LASTADDR keyword in the
PART statement. For example if the last valid address is 3000, you would
include LASTADDR=3000 in the PART statement. If unspecified, the last
valid address is defaulted to 2n-1, where n is the number of address lines.

X Address Line Handling

If there are unknowns (X) on address lines during a read, then SIMIC will
compare the data at each location that could be accessed and set to X only
those bits that conflict. By default, if more than 4 address lines are unknown,
then SIMIC will abandon this scheme and instead output an X for each out-
put. This threshold can be set globally by the DEFINE command:

DEFINE XADDRESS=<n>

where <n> is the maximum number of X address lines to enumerate.

Appendix A SIMIC Built-in Primitives TCF, TNCF

Revision 1.0 9/2/91 SIMIC User’s Guide A-55

TCF, TNCF

Model:

Boolean Description:

Equivalent Type Statement:
Type=TCF i=NR,NS,C o=Q Type=TNCF i=NR,NS,C o=Q

M=(Q0*C + M0*C + M0*Q0)*NR + NS

Q=(C*M0 + C*Q0 + M0*Q0)*NR + NS

where M0 is the previous master-rank state,
and Q0 is the previous slave-rank state.

Note: Q changes on the falling edge of clock.

Truth Table:

NR NS C M Q

— 0 — 1 1

0 1 — 0 0

1 1 1 Q0 Q0

1 1 1→0 M0 M0

NS

NR

Q

NS

C

NR

Q

Appendix A SIMIC Built-in Primitives TCF, TNCF

A-56 SIMIC User’s Guide Revision 1.0 9/2.91

Description:

TCF (TNCF) is a negative-edge-triggered master-slave T flip-flop, using two
state variables: master = M and slave = Q. The complement of the slave is
loaded into the master when clock is ONE. The master is then loaded into
the slave on the falling clock edge. The set (NS) and reset (NR) inputs are
active-low, and the set dominates.

During circuit compilation, the master-rank is assigned a delay equal to the
unloaded slave delay.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the TCF supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock edge(fall). Two setup checks are available:
setup from reset (SETUP.NR), and setup from set (SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock edge (fall). Two hold checks are supported: hold
from reset (HOLD.NR), and hold from set (HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=TCF i=reset,set,clk o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives TGATE

Revision 1.0 9/2/91 SIMIC User’s Guide A-57

TGATE

Model:

Boolean Description:

Equivalent Type Statement:
Type=TGATE i=P,N o=Q

Truth Table:

P N Q

0 0 1

0 1 X

1 0 Z

1 1 0

Description:

The TGATE primitive models the common totem pole output driver. If both “transistors” are
enabled and the high and low drive strengths are equal, and conflict messages are enabled, then
a conflict warning is generated.

Q

VDD

VSS

N

P

Appendix A SIMIC Built-in Primitives TINVN

A-58 SIMIC User’s Guide Revision 1.0 9/2.91

TINVN

Model:

Boolean Description:

Equivalent Type Statement:
Type=TINVN i=EN,D o=Q

Truth Table:

EN Q

0 Z

1 D

Description:

The TINVN primitive is a tristating inverter with high enable.

Q

EN

D

Appendix A SIMIC Built-in Primitives TINVP

Revision 1.0 9/2/91 SIMIC User’s Guide A-59

TINVP

Model:

Boolean Description:

Equivalent Type Statement:
Type=TINVP i=EN,D o=Q

Truth Table:

EN Q

0 D

1 Z

Description:

The TINVP primitive is a tristating inverter with low enable.

Q

EN

D

Appendix A SIMIC Built-in Primitives TPADN

A-60 SIMIC User’s Guide Revision 1.0 9/2.91

TPADN

Model:

Boolean Description:

Equivalent Type Statement:
Type=TPADN i=EN,D o=Q

Truth Table:

EN Q

1 D

0 Z

Description:

The TPADN primitive is a non-inverting tristating buffer with high enable.

QD

EN

Appendix A SIMIC Built-in Primitives TPADP

Revision 1.0 9/2/91 SIMIC User’s Guide A-61

TPADP

Model:

Boolean Description:

Equivalent Type Statement:
Type=TPADP i=EN,D o=Q

Truth Table:

EN Q

0 D

1 Z

Description:

The TPADP primitive is a non-inverting tristating buffer with low enable.

Q

EN

D

Appendix A SIMIC Built-in Primitives TPCF

A-62 SIMIC User’s Guide Revision 1.0 9/2.91

TPCF

Model:

Boolean Description:

Equivalent Type Statement:
Type=TPCF i=NR,NS,C o=Q

M=(Q0*C + M0*C + M0*Q0)*NR + NS

Q=(C*M0 + C*Q0 + M0*Q0)*NR + NS

where M0 is the previous master-rank state,
and Q0 is the previous slave-rank state.

Note: Q changes on the rising edge of clock.

Truth Table:

NR NS C M Q

— 0 — 1 1

0 1 — 0 0

1 1 0 Q0 Q0

1 1 0→1 M0 M0

NS

NR

Q

NS

C

NR

Q

Appendix A SIMIC Built-in Primitives TPCF

Revision 1.0 9/2/91 SIMIC User’s Guide A-63

Description:

TPCF is a positive-edge-triggered master-slave T flip-flop, using two state
variables: master = M and slave = Q. The complement of the slave is loaded
into the master when clock is ZERO. The master is then loaded into the
slave on the rising clock edge. The set (NS) and reset (NR) inputs are active-
low, and the set dominates.

During circuit compilation, the master-rank is assigned a delay equal to the
unloaded slave delay.

Timing checks

Timing checks can be assigned by a TIMING-CHECKS block. The timing
checks that the TPCF supports are:

• SETUP – this check specifies the duration that an input must be stable
prior to an active clock edge(rise). Two setup checks are available:
setup from reset (SETUP.NR), and setup from set (SETUP.NS)

• HOLD – this check specifies the duration that an input must be stable
after an active clock edge (rise). Two hold checks are supported: hold
from reset (HOLD.NR), and hold from set (HOLD.NS)

• PULSE-WIDTHS – this check specifies the minimum width of a
pulse on the set, reset, or clock lines. The pulse-widths supported are:
pulse-width reset (PW.NR), pulse-width set (PW.NS), and high and
low pulse-width clock (PW.C.H and PW.C.L respectively).

Unspecified timing checks default to 0 (disabled).

For example:

part=FF1 type=TPCF i=reset,set,clk o=q1 $

timing-checks= $

BEGIN; $

SETUP = 5; $

HOLD = 5; $

PW = 4; $

PW.C.L = 3; $

END;

The above specifies:
1. All setups are 5 units.
1. All holds are 5 units.
1. All pulse-widths are 4, except clock-low pulse-width is 3.

Appendix A SIMIC Built-in Primitives UTGRN

A-64 SIMIC User’s Guide Revision 1.0 9/2.91

UTGRN

Model:

Boolean Description:

Equivalent Type Statement:
Type=UTGRN i=EN,D o=Q

Truth Table:

EN Q

1 D

0 Z

Description:

The UTGRN primitive is identical to the BTGRN primitive, but only provides unidirectional
flow. The circuit compiler automatically converts BTGRN elements to UTGRN elements where
possible, to improve simulation throughput.

QD

EN

Appendix A SIMIC Built-in Primitives UTGRP

Revision 1.0 9/2/91 SIMIC User’s Guide A-65

UTGRP

Model:

Boolean Description:

Equivalent Type Statement:
Type=UTGRP i=EN,D o=Q

Truth Table:

EN Q

0 D

1 Z

Description:

The UTGRP primitive is identical to the BTGRP primitive, but only provides unidirectional flow.
The circuit compiler automatically converts BTGRP elements to UTGRP elements where possi-
ble, to improve simulation throughput.

QD

EN

Appendix A SIMIC Built-in Primitives UTGRP

A-66 SIMIC User’s Guide Revision 1.0 9/2.91

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-1

Appendix B SNL Statements and Keywords

Statement Classification

SNL statements can be classified as one of the following:

1. Annotation. This can be either text following a !DOCUMENTATION
(!DOC) directive, or text in a single line prefixed by the COMMENT
(C) or REMARK (R) keywords.

2. Declare. This statement begins with a %DECLARE (%DCL) directive.
It specifies attributes, such as print format, for groups of signals.

3. Delay. These are statements following a !DELAY (!DEL) directive.
They define global delay-vs.-loading curves, and the correspondence
between simulation time-units and real-time.

4. Format. This statement begins with a !FORMAT (!F) directive. It
specifies an expected keyword-field ordering for subsequent statements
in the Delay and Logical sections. It is used to reduce file size and make
files more human readable.

5. Include. This statement begins with a !INCLUDE (!INC) directive. It
specifies a list of Network Description files to include during compila-
tion.

6. Logical. These are statements following a !LOGICAL (!L) directive.
They describe topological and electrical characteristics of a circuit or
subcircuit.

Directives must start a SNL statement (optionally following whitespace).
The !DOCUMENTATION, !DELAY, and !LOGICAL directives respectively
declare the beginning of sections of statements that contain commentary,
delay definitions, and circuit description. They are “sticky”, that is, they
remain in effect until one of the other two directives overrides them, or until
the end of the Network Description file is reached. For example:

!LOGICAL T=buf1 I=a O=b

!LOGICAL P=b T=and I=a O=b

!DELAY DELAY=del1 RISE=10 FALL=12

and
!LOGICAL

T=buf1 I=a O=b

P=b T=and I=a O=b

!DELAY

DELAY=del1 RISE=10 FALL=12

are functionally equivalent. New files are always assumed to start with the
!LOGICAL section. In the above example, the !LOGICAL directive may
be omitted without modifying any meaning, if this is the first text in the file.

Appendix B SNL Statements and Keywords

B-2 SIMIC User’s Guide Revision 1.0 9/2/91

Annotation

Annotation can be performed in a number of ways:

1. Beginning the annotating text with a !DOCUMENTATION directive.
This method is very useful when the text spans many lines. Any text fol-
lowing a !DOCUMENTATION directive is, for the most part, ignored by
the SIMIC parser. CAUTION: the first non-whitespace character in a
line of text should never be ‘!’ or ‘%’, since it may be misinterpreted as
a directive.

2. Prefixing the annotation with COMMENT= (C=). This causes the rest
of the physical line to be treated as commentary. This type of annotation
does not continue beyond a physical line. It is used for in-line comments
and small blocks of commentary.

3. Prefixing the annotation with REMARK= (R=). This is similar to
COMMENT, but if the REMARK is placed within an active type block (one
that has been instantiated into the circuit being compiled), the annotation
will be displayed during the circuit compilation process.

4. Placing commentary to the right of the continuation character ($). This
allows intra-statement annotation. The $ must be followed by an equals
sign (=), otherwise SIMIC will report that it found text beyond a contin-
uation character.

Declare Statements

The %DECLARE statements serve two primary functions:

1. Declare statements group signals into an array (vector) under a root
name within a type block and assign a print radix (format) to the array.
Declaring vectors allows groups of signals to be interconnected as a sin-
gle entity and be displayed in a more convenient format during simula-
tion. The syntax of this declaration for one dimensional arrays is:

%DECLARE <format>=<root>[<range>]

where <range> specifies the starting (leftmost) and ending (rightmost)
limits of the array. The syntax for two dimensional arrays is:

%DECLARE <format>=<root>[<range2>][<range1>]

where the <range2> defines the limits of the second dimension and
<range1> defines limits of the array’s first dimension. Each range spec-
ification is of the form:

<start>:<end>

or

<start>

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-3

where <start> and <end> are integers. In the second form, <end> is
assumed to be equivalent to <start>.

Finally, <format> is one of the following:

• LEVEL (LEV) – individual levels for each bit.

• OCTAL (OCT) – octal representation.

• HEXADECIMAL (HEX) – hexadecimal representation.

• INTEGER1 (INT1) – One’s complement representation.

• INTEGER2 (INT) – Two’s complement representation.

• POSINTEGER (POSINT) – Positive integer representation.

The OCT (HEX) print format consists of right-justified groups of 3 (4)
bits. The INT1, INT, and POSINT formats consists of a single group
containing all array bits. If all bits of a group are tristated (Z), then the
single character ‘Z’ is displayed for the group. Otherwise, if any bit of a
group is tristated or ‘X’ then the single character ‘X’ is displayed. The
following table illustrates sample outputs for a 5 bit vector:

2. Declare statements specify a default delay tolerance for delays within a
type block. Delay tolerances are percentages that are used to compute
minimum and maximum delays from typical delays. This format of the
declare statement is:

%DECLARE TOLERANCE=<min_max>

or

%DECLARE TOLERANCE=<min>,<max>

where:

<min_max> is a number (fixed or floating point), optionally followed
by a percent sign (%), representing the default spread of minimum and
maximum delays for elements in this type block, unless explicitly over-
ridden by a delay specification. The minimum delay is computed as

(<typical delay> × (1 - (<min_max> / 100)))
and the maximum delay is computed as

 (<typical delay> × (1 + (<min_max> / 100))).

LEV OCT HEX INT1 INT POSINT

00000 00 00 0 0 0

11111 37 1F 0 –1 31

1000X 2X 1X X X X

ZZZZZ ZZ ZZ Z Z Z

ZZZ000 Z0 ZX X X X

Appendix B SNL Statements and Keywords

B-4 SIMIC User’s Guide Revision 1.0 9/2/91

<min> is a number, optionally followed by a percent sign (%), repre-
senting the default minimum delay tolerance for the elements in this
type block, unless explicitly overridden by a delay specification. The
minimum delay is computed as

(<typical delay> × (1 - (<min> / 100))).

<max> is a number, optionally followed by a percent sign (%), repre-
senting the default maximum delay tolerance for the elements in this
type block, unless explicitly overridden by a delay specification. The
maximum delay is computed as

(<typical delay> × (1 + (<max> / 100))).

Some examples:

%DECLARE TOLERANCE=50%

implies: minimum=(typical × 0.5), maximum=(typical × 1.5)

%DECLARE TOLERANCE=20,50

implies: minimum=(typical × 0.8), maximum=(typical × 1.5)

%DECLARE TOLERANCE=,50

implies: minimum=(typical × 1), maximum=(typical × 1.5)

%DECLARE TOLERANCE=50,

implies: minimum=(typical × 0.5), maximum=(typical × 1)

If the minimum tolerance is greater than or equal to 100%, then the min-
imum delay will be set to 0.

Delay Statements

Delay statements specify global delay characteristics and optionally, the
relationship between simulation time-units and real-time. They are placed
in the !DELAY section. If a signal’s delay is unspecified, the delay defaults
to 0.

The global delay characteristics consist of named delay vs. loading curve
families. These delays are referenced by-name in PART and TYPE state-
ments. The delay and loading values defining these delay characteristics
may either be fixed-point or floating-point numbers, where a floating point
number is represented in exponential notation as a fixed-point number fol-
lowed by either of the letters ‘E’ or ‘e’ and a positive or negative integral
power of 10. For example:

37, 370e-1, 0.37e2, 3.7e+1

all represent the number 37. The plus sign is optional for positive exponents.

 Delay vs. loading curves can be specified either by a two-point form or an
intercept-slope form. For example, consider the following delay vs. loading
curve:

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-5

This characteristic can be described as either:

1. A line that goes through the coordinates (2,4) and (6,8), or,

2. A line that has a y-intercept of 2 and a slope of 1.

The two-point form is:
(<load1>,<delay1>)(<load2>,<delay2>)

In this example, the two-point representation would therefore be:
(2,4)(6,8)

The intercept-slope form is:
[<intercept>,<slope>]

In this example, the intercept-slope representation would be:
[2,1]

Two-point and intercept-slope forms may be used interchangeably.

If a delay does not vary with loading (the curve has a slope of 0), then only
the constant value need be specified. This is the single-point form. For
example, the following “curves” are equivalent:

(1,4)(10,4)

4

[4,0]

Global symbolic names are assigned to each family of delay curves (typical,
minimum, and maximum). Delays are then assigned pins or nets by refer-
encing the symbolic names. The format for defining a symbolic delay family
is:

DELAY=<name> RISE=<curves> FALL=<curves>

or
DELAY=<name> CHANGE=<curves>

(2,4)

DELAY

LOADING

(6,8)

(0,2)

Appendix B SNL Statements and Keywords

B-6 SIMIC User’s Guide Revision 1.0 9/2/91

In the first form, the rise delays are specified in theRISE keyword-field, and
the fall delays are specified in the FALL keyword-field. If either of these
fields is omitted, then the corresponding delays default to 0. In the second
form, which may be used when the rise and fall delays are equal, the
CHANGE keyword-field specifies the common rise and fall delays.

<name> is a user-defined symbolic name to attach to the curves described
in the statement, and <curves> are typical, minimum, and maximum delay
curves in the two-point, intercept-slope, and/or single-point formats
described above. If the minimum or maximum values are omitted, then they
default to the typical value. The components of the family are separated by
semicolons (;) as follows:

<typical> ; <minimum> ; <maximum>

For example, the following delay statement defines a delay whose minimum
value is 2, typical value is 3, and maximum value is 4, and assign this delay
characteristic the symbolic name DEMO_DEL:

DELAY=demo_del CHANGE=3;2;4

Global delays are assigned to pins of parts and types with the ODEL and
BDEL keywords:

part=c type=and i=a,b odel=demo_del

In the compilation process, SIMIC totals all pin loading and net loading on
each signal. The signal’s assigned delay characteristics are then used to
compute its delay. Internally, these operations are all performed using float-
ing point arithmetic. The computed value is rounded to the nearest integer.

The relationship between simulation time-units and real-time can be
described with the TIME-UNITS (TUNIT) keyword-field of the !DELAY
statement. For example, if each SIMIC time-unit corresponds to 1 nS, this
statement would be:

!DELAY TIME-UNITS=1e-9

If specified, SIMIC will display this correspondence in the simulation out-
put header in the PRINT, WRITE, and TGEN output, as well as write it to
the history file header information block.

Format Statements

The !FORMAT statement reduces the amount of text that needs to be
entered. It specifies the expected order of keyword-fields in subsequent SNL
statements of a !DELAY or !LOGICAL section. Having made this specifi-
cation, all keywords may be omitted in subsequent statements that have this
exact format. Only keywords in statements that are exceptions from the
expected order need be entered.

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-7

The !FORMAT statement syntax is:
!FORMAT <keyword>= <keyword>=

where <keyword> is one of the valid SNL keywords for that section. For
example, in the !DELAY section, a valid !FORMAT statement would be:

!FORMAT DELAY= RISE= FALL=

This !FORMAT statement specifies that subsequent delay statements will
contain the delay name followed by the rise specification, followed by the
fall specification. A possible format for PART statements in the !LOGICAL
section, would be:

!FORMAT PART= TYPE= I= O=

The following are guidelines for using the !FORMAT directive:

1. A !FORMAT statement may be defined uniquely for the !DELAY and
!LOGICAL sections.

2. A !FORMAT statement remains in effect for a section until the next
!FORMAT statement in that section. This is true even when multiple
Network Description Files are used. !FORMAT statements remain in
effect from file to file.

3. To cancel the !FORMAT statement, issue a !FORMAT statement without
any keywords following it.

4. If a statement does not require a value for one of the keywords specified
in the current !FORMAT statement, enter a hyphen (-) as a “place-
holder” for that keyword’s value to skip by the keyword.

5. If no values are required for keywords at the end of the !FORMAT list,
hyphens are not required, since no keywords are skipped.

6. In contrast, if a statement requires a keyword-field that is not specified
by the current !FORMAT statement, or if you want to specify the key-
words in a different order, you must enter the entire keyword-field. This
will suspend the formatting for the rest of the statement. Therefore, all
subsequent keyword-fields must be explicitly entered (of course abbre-
viations are acceptable). Clearly, the most efficient way to add a key-
word-field is to append it to the end of the line.

The following example demonstrates the various usages of formatted PART
statements. In this example, all the PART statements are equivalent:

!format part= type= i= o=

- and a,b part=c

c and a,b

c and i=a,b o=c

part=c type=and i=a,b o=c

The first PART statement illustrates guidelines (4) and (6). The hyphen skips
over the !FORMAT statement’s PART= keyword, so its AND entry is associ-

Appendix B SNL Statements and Keywords

B-8 SIMIC User’s Guide Revision 1.0 9/2/91

ated with the !FORMAT statement’s TYPE= keyword. The entry after the
input signal field, (A,B), would normally associate with the !FORMAT

statement’s O= field, but the PART=C entry, containing a keyword, over-
rides formatting.

The second PART statement illustrates guideline (5). Here, the O= entry was
omitted (since the output signal’s name will default to the identical part
name), but no placeholder hyphen was necessary because no other fields fol-
low.

The third PART statement illustrates guideline (6). Having used a keyword
to specify the inputs (I=A,B), formatting is suspended, and a complete key-
word-field (O=C) is required to specify the output signal.

Include Statements

Additional files may be referenced from a network description with the
!INCLUDE directive. The format is:

!INCLUDE FILE=<file list>

where <file list> is a list of files separated by commas. A default of FILE=
is defined for this statement, so the statement may be written:

!INCLUDE <file list>

Included files may also contain !INCLUDE statements. The current maxi-
mum !INCLUDE nesting depth of 4.

The contents of an included file are logically placed at the location of the
!INCLUDE statement referencing the file. Since type blocks are not explicit
ended, !INCLUDE statements should be carefully placed to avoid inadvert-
ent addition of the included text within a type block definition.

Logical Statements

Logical statements describe circuit topology and electrical characteristics.
They are contained in !LOGICAL sections, either following a !LOGICAL
statement or at the beginning of a new file (new files are always assumed to
start with a !LOGICAL section). There are two basic statements; the TYPE
statement and the PART statement.

A TYPE statement begins the definition of a type block. It assigns the
macro a global type name and defines its external pins. It may also assign
electrical attributes to the pins and declare the type block’s level of abstrac-
tion (composition).

In a structural type block, or macro, the TYPE statement is followed by one
or more PART statements that instantiate components within the type block.

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-9

PART statements may also assign electrical attributes to the pins of instan-
tiated components.

A type block ends either when a new TYPE statement, or the end of all files,
has been reached during circuit compilation.

While TYPE statements and PART statements perform totally different
functions (semantic differences), they only differ syntactically by the pres-
ence of a PART keyword-field, which must appear in PART statements, but
cannot exist in TYPE statements. This PART field specifies an instance
name for the referenced type. Both statements must contain a TYPE key-
word-field and at least one of the following keyword-fields: I (inputs), O
(outputs), or B (bidirectional).

SNL supports many keywords for PART and TYPE statements. These key-
words can be classified as follows:

1. Topological. These include the keywords: PART, TYPE, I, O, B and
COMP.

2. Electrical attributes. These specify delay and decay curves (ODEL,
BRISE, ODEC, etc.), loading (ILOD, OLOD, BLOD), wire-tie opera-
tions (ODOM, BDOM), spike control (OFILT, OLIB, BFILT, BLIB),
high impedance default (IHIZ), etc.

3. Physical attributes. These include: number of pads (PADS), number of
transistors (TRANS), cell widths (W); which are totaled and displayed
after circuit loading. Also attributes such as pad placement (APAD,
IPAD, OPAD, BPAD) and power pads (A) are ignored by SIMIC, but are
supported as valid keywords to allow use of SNL descriptions for other
applications (e.g. place and route programs).

4. Special characteristics. These attribute apply only to a class of primi-
tive types. The include timing checks (TIMING-CHECKS), ON-resis-
tance for switches (SDEPTH), and last valid address for ROMS and
RAMS (LASTADDR).

Electrical attributes are assigned to pins in their respective order for TYPE
statements, and to nets in their respective order of connection for PART
statements.

Example: Assigning Electrical Attributes

Suppose a cell library contains a three-input, three output cell named 6370
with:

• input pins named ia, ib, and ic having pin loads of 1, 2, and 3
respectively, and

• output pins named ox, oy, and oz having the electrical attributes:
ox: pin-load=10, rise-delay=20, fall-delay=0
oy: pin-load=9, delays defined by global delay del13

Appendix B SNL Statements and Keywords

B-10 SIMIC User’s Guide Revision 1.0 9/2/91

oz: pin-load=8, delays defined by global delay del50

The cell’s TYPE statement might be:
TYPE=6370 I=ia,ib,ic O=ox,oy,oz ILOD=1,2,3 $

OLOD=10,9,8 ODEL=,del13,del50 ORISE=20

If an instance of this cell is named q, and has input signals named a, b, and
c and output signals named x, y, and z, then the PART statement:

PART=q TYPE=6370 I=a,b,c O=x,y,z

places this cell in the circuit and causes this instance to inherit all electrical
attributes of the cell library definition (that is, loads of 1, 2, and 3 are added
to nets a, b, and c, respectively, signal x has a rise-delay of 20 and a fall-
delay of 0, etc.).

If this is a custom library rather than a standard cell library, then different
instances of the same cell may have different electrical attributes. For exam-
ple, suppose that instance q of the 6370 differs from the cell definition in
the following manner: (a) the loading at pins ia, ic, and ox are 5, 6, and
12, respectively, and (b) the delay characteristics of pins ox and oy are
described by global delays del30 and del40, respectively. If connections
are made by-order, then the instantiating PART statement might be:

PART=q TYPE=6370 I=a,b,c O=x,y,z ILOD=5,,6 $

OLOD=12 ODEL=del30,del40

Alternatively, if connections are made by-pin-name, then the instantiating
PART statement might be:

PART=q TYPE=6370 I=c(ic),b(ib),a(ia) $

O=z(oz),y(oy),x(ox) ILOD=6,,5 $

OLOD=,,12 ODEL=,del40,del30

End of Example

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-11

Appendix B SNL Statements and Keywords

B-12 SIMIC User’s Guide Revision 1.0 9/2/91

Supported PART and TYPE Statement Keywords

The following table summarizes all currently-supported SNL keywords for
PART and TYPE statements. For each keyword, it (a) lists all keyword
aliases, (b) briefly describes the keyword’s function, (c) describes the
expected value’s form (i.e., the type of entry expected on the right hand side
of the keyword’s equal sign), and (d) where applicable, the default value if
the keyword is omitted.

Most keywords, or their minimum abbreviations, are valid in both PART
and TYPE statements. Those keywords that are only valid for TYPE state-
ments are marked with “(T)”, and those that are only valid for PART state-
ments are marked with “(P)”.

The expected keyword values fall into the following categories:

1. Delay curve format – the format for describing delay curve families, as
described in the Delay Statements section of this Appendix,

2. Global delay reference – the name of a delay relation, as specified in the
delay statement’s DELAY= keyword-field,

3. A numeric value – either an integer, or a “number” which, in this table,
represents either a fixed-point or floating-point numeric format (note
that an integer is a special case of the fixed-point format),

4. A reserved value – represented in the table by capitalized words (e.g.,
INFINITE, POWER, etc.). Any valid prefix of these reserved words
may be entered,

5. Signal name format – A valid signal name, which is either

a) any sequence of characters beginning with an underscore (_), ques-
tion mark (?) or an alphanumeric character (0-9, a-z, A-Z) and
optionally containing more characters that are alphanumeric charac-
ters, underscores, question marks, hyphens, percent signs, exclama-
tion marks, and periods, or

b) any sequence of characters enclosed in single or double quotes.

6. Specialized specification blocks – BOOLEAN and TIMING-CHECKS
blocks.

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-13

.

Keyword Description

A
APIN
AUX-PINS

Specifies auxiliary pad pins such as VDD
and VSS. Although not used by SIMIC, it
is valuable for interfacing to place and
route programs.
Value: Currently undefined.

APAD
AUX-PADS

Specifies location to place the correspond-
ing auxiliary pad pin (APIN) for place and
route programs.
Value: Currently undefined.

B
BPIN (T)
BNET (P)
BUS-PINS (T)
BUS-NETS (P)

Specifies a bidirectional pin (T) or signal
(P) name.
Value: Signal name format.

BCHANGE
BUS-CHANGE

Local delay specification for equal rise
and fall delays at a bus.
Value: Delay curve format.
Default: 0 rise and fall delays.

BDEC
BUS-DECAY

Specifies decay time for a bus.
Value: Global delay reference, a number,

or INFINITE.
Default: 0 (instantaneous) decay.

BDEL
BUS-DELAY

Specifies bus rise and fall delays using
global delay statements.
Value: Global delay reference.
Default: 0 rise and fall delays.

BDOM
BUS-DOMINANCE

Specifies wire-tie dominance for a bus.
Value: 0, 1, or X (for wired-AND, wired-

OR, or No dominance, respectively).
Default: X (No dominance).

BDRIVE
BUS-DRIVE

Specifies both high and low drive
strengths for a bus.
Value: POWER, DRIVING, RESISTIVE,

FLOATING.
Default: DRIVING.

Appendix B SNL Statements and Keywords

B-14 SIMIC User’s Guide Revision 1.0 9/2/91

BFALL
BUS-FALL

Local fall delay specification for a bus.
Value: Delay curve format.
Default: 0 fall delays.

BFILTER
BUS-FILTER

Specifies spike filter parameter for a bus.
Value: Integer, 0 through 100, optionally
followed by percent (%) sign.
Default: 0.

BHDRIVE
BUS-HDRIVE

Specifies high drive strength for a bus.
Value: POWER, DRIVING, RESISTIVE,

FLOATING.
Default: DRIVING.

BLDRIVE
BUS-LDRIVE

Specifies low drive strength for a bus.
Value: POWER, DRIVING, RESISTIVE,

FLOATING.
Default: DRIVING.

BLIBERAL
BUS-LIBERAL

Specifies spike liberal parameter for a bus.
Value: Integer, 0 through 100, optionally
followed by percent (%) sign.
Default: 0.

BLOD
BUS-LOADS

Specifies loading at a bus pin.
Value: Number
Default: 0.

BOOLEAN For BOOLEAN part and type specifica-
tion of BOOLEAN equations. Invalid in
any other case.
Value: BOOLEAN equation block.

BPAD
BUS-PADS

Specifies location of bidirectional pads for
place and route programs.
Value: Signal name format.

BRISE
BUS-RISE

Local rise delay specification for a bus.
Value: Delay curve format.
Default: 0 fall delays.

C
COM
COMMENT

Comment to end of physical line.

Keyword Description

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-15

COMP
COMPOSITION

Specifies the composition of the type
being defined in a TYPE statement.
Value: MACRO, BOOLEAN,

BEHAVIORAL.
Default: MACRO.

Specifies the referenced type’s composi-
tion. in a PART statement.
Value: MACRO, PRIMITIVE,

BOOLEAN, BEHAVIORAL.
Default search order: MACRO, BOOL-

EAN, BEHAVIORAL, PRIMITIVE

I
INET (P)
IPIN (T)
INPUT-NETS (P)
INPUT-PINS (T)

Specifies an input pin (T) or signal (P)
name.
Value: Signal name format.

IHIZ
INPUT-HIZ

Specifies how to treat a floating input to a
gate-level component.
Value: 0, 1, or X.
Default: X.

ILOD
INPUT-LOADS

Specifies loading at an input pin.
Value: Number
Default: 0.

IPAD
INPUT-PADS

Specifies location of input pads for place
and route programs.
Value: Signal name format.

LASTADDR For RAMS and ROMS, specifies the last
valid address.
Value: Integer.
Default: Highest addressable location.

O
ONET (P)
OPIN (T)
OUTPUT-NETS (P)
OUTPUT-PINS (T)

Specifies an output pin (T) or signal (P)
name.
Value: Signal name format.

OCHANGE
OUTPUT-CHANGE

Local delay specification for equal rise
and fall delays at an output.
Value: Delay curve format.
Default: 0 rise and fall delays.

Keyword Description

Appendix B SNL Statements and Keywords

B-16 SIMIC User’s Guide Revision 1.0 9/2/91

ODEC
OUTPUT-DECAY

Specifies decay time for an output.
Value: Global delay reference, number, or

INFINITE.
Default: 0 (instantaneous) decay.

ODEL
OUTPUT-DELAY

Specifies rise and fall delays for an output
using global delay statements.
Value: Global delay reference.
Default: 0 rise and fall delays.

ODOM
OUTPUT-DOMINANCE

Specifies wire-tie dominance for an out-
put.
Value: 0, 1, or X, for wired-AND, wired-

OR, or No dominance, respectively.
Default: X (No dominance).

ODRIVE
OUTPUT-DRIVE

Specifies both high and low drive
strengths for an output.
Value: POWER, DRIVING, RESISTIVE,

FLOATING.
Default: DRIVING.

OFALL
OUTPUT-FALL

Local fall delay specification for an out-
put.
Value: Delay curve format.
Default: 0 fall delay.

OFILTER
OUTPUT-FILTER

Specifies spike filter parameter for an out-
put.
Value: Integer, 0 through 100, optionally
followed by percent (%) sign.
Default: 0.

OHDRIVE
OUTPUT-HDRIVE

Specifies high drive strength for an output.
Value: POWER, DRIVING, RESISTIVE,

FLOATING.
Default: DRIVING.

OLDRIVE
OUTPUT-LDRIVE

Specifies low drive strength for an output.
Value: POWER, DRIVING, RESISTIVE,

FLOATING.
Default: DRIVING.

Keyword Description

Appendix B SNL Statements and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide B-17

OLIBERAL
OUTPUT-LIBERAL

Specifies spike liberal parameter for an
output.
Value: Integer, 0 through 100, optionally
followed by percent (%) sign.
Default: 0.

OLOD
OUTPUT-LOADS

Specifies loading at an output pin.
Value: Number
Default: 0.

OPAD
OUTPUT-PADS

Specifies location of output pads for place
and route programs.
Value: Signal name format.

ORISE
OUTPUT-RISE

Local rise delay specification for an out-
put.
Value: Delay curve format.
Default: 0 rise delay.

P
PART

Specifies an instantiation name for a refer-
enced TYPE in a macro definition (type
block).
Value: Signal name format.

PADS Specifies the number of physical pads for
the cell (macro). Values are summed for
each occurrence of the cell. Used by place
and route programs.
Value: Integer.
Default: 0

R
REM
REMARK

Comment to end of physical line. Remark
is displayed during circuit compilation.

SDEPTH
SERIES-DEPTH

For resistive switches, specifies the “ON
resistance” of the switch.
Value: Integer from 1 to 32766.
Default: 1

STATE For BOOLEAN types and parts, specifies
the BOOLEAN state variables for that
type or part.
Value: Signal name format.
Default: No state variables.

Keyword Description

Appendix B SNL Statements and Keywords

B-18 SIMIC User’s Guide Revision 1.0 9/2/91

T
TYPE

Defines a macro name in a TYPE state-
ment.
References a TYPE in a PART statement.
Value: Signal name format.

TIMING-CHECKS D-latch and all flip-flops, specifies timing
check values, such as SETUP and HOLD.
Value: TIMING-CHECKS block.
Default: All timing checks disabled.

TRANS
TRANSISTORS

Specifies the number of transistors for a
defined cell (macro). Values are summed
for each instantiation of the cell. Used by
place and route programs.
Value: Integer.
Default: 0

W
WIDTH

Specifies the cell width for standard cells,
or number of gates for gate array designs.
Used by place and route programs.
Value: Integer.
Default: 0

Keyword Description

Overview Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-1

Appendix C Run Commands and Keywords

Overview

This Appendix summarizes the keyword options and expected values for
SIMIC run commands. The appropriate sections of this Guide should be
consulted for complete descriptions of these options.

Comments may be placed at the end of any run command or between com-
mands. Each comment begins with the COMMENT (C) keyword, followed by
an equal sign (=). Comments always end at the end of the physical line.
Remarks may also be placed at the end of run commands or between them.
Remarks are similar to comments, except that they are written to the tester
interface file. Each remark begins with the REMARK (REM) keyword, fol-
lowed by an equal sign (=).

The supported keyword values for two common keywords, LIST and
PRANGE, are described below.

Table I lists the supported SIMIC commands and their minimum abbrevia-
tions.

Table II lists the supported SIMIC keywords and their minimum abbrevia-
tions.

Table III lists the supported SIMIC reserved keyword values recognized for
certain keyword fields, and their minimum abbreviations.

SIMIC recognizes any valid abbreviation of reserved words in Tables I
through III, ranging from the given minimum abbreviation to the full word.

Table IV summarizes expected keyword values; these values are described
under the commands that require them. Many keywords are used by multi-
ple commands.

The LIST Keyword

The expected value for LIST keyword is designated as <signals> in this
Appendix. Other keywords (for example, ONE and ZERO) also accept the
same specification. The following can be included in the list of specifica-
tions for <signals>:

1. Signal names

2. Meta-words specifying primary signal values:

a. &INPUTS – specifies “all primary inputs”

b. &OUTPUTS – specifies “all primary inputs”

Appendix C Run Commands and Keywords Overview

C-2 SIMIC User’s Guide Revision 1.0 9/2/91

c. &BUSSES – specifies “all primary busses”

d. &BUSINS – specifies “the stimulus values at all primary busses”
which may differ from the values of &BUSSES (the latter being the
wire-tied result of primary stimulus values and internally-driven val-
ues)

3. Wildcard specification of the form <prefix>(), which represents “all sig-
nal names beginning with <prefix>” (for example, A.B.() specifies
“all signals whose names begin with A.B.”)

4. Factored specification of the form <prefix>(<suffix1>, …, <suffixn>),
which represents the signals
<prefix><suffix1>, …, <prefix><suffixn>

(for example, ab(cd, ef, gh) specifies abcd, abef, and abgh)

5. Vector aliases defined in a DEFINE command (see the Specifying Sig-

nal Groups and Output Radix Format Section in this Chapter)

6. Alternative specification of each signal in the form <partname>.<n>,

where <partname> is the instance name of the part generating the sig-
nal, and <n> is the signal’s output number (e.g., if the signal is the fourth
output of this element, then <n> would be 4).

The PRANGE Keyword

Each command that supports the PRANGE keyword maintains its own sep-
arate specification (i.e., a PRANGE specification for one command does not
affect the active interval of any other command).

The PRANGE keyword values are test intervals for pattern and timing gen-
erator stimuli, or time intervals for waveform stimuli. Integers are always
used in this specification.

If no PRANGE option is specified for a command, then SIMIC defaults the
command’s active interval to “enabled for the entire simulation range”
(equivalent to PRANGE:)

A PRANGE interval is specified as:
<starting point>-<ending point>

For example, the following command restricts output to the write file from
test (time) 100 to test (time) 200 only:

WRITE PRANGE=100-200

PRANGE specifications are “sticky”, or cumulative. For example, if the
command:

WRITE PRANGE=300-400

were issued after the above command, the combined effect would be iden-
tical to the single command:

Overview Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-3

WRITE PRANGE=100-200, 300-400

As a special case of an interval, if <starting point> is omitted, 0 is assumed.
Thus,

WRITE PRANGE=-20000

enables the WRITE command from 0 (beginning of the simulation) through
test (or time) 20,000.

<ending point> may also be omitted in the interval specification. In this
case, the interval is open-ended (until the last input stimulus state has been
propagated). For example:

WRITE PRANGE=30000-

enables the WRITE command from test (time) 30,000 to the end of simula-
tion.

Individual tests (particular times) are specified as a single integer with no
hyphen.

When a NO prefix is used with a command, it excludes the PRANGE interval.
For example, the sequence of commands:

WRITE PRANGE=1000-2000

NO WRITE PRANGE=1101-1199

enables write output from test (time) 1000 to 2000, but disable this output
from test (time) 1101 to 1199. The two commands are equivalent to the sin-
gle command:

WRITE PRANGE=1000-1100,1200-2000

Table I Commands And Their Minimum Abbreviations

APPLY (AP)

BREAK (BR)

CLAMP (CL)

DEFINE (DE)

EXECUTE (EX)

GET (GE)

HISTORY (HI)

LOOK (LO)

PRINT (PR)

?CHECKS (?CH)

?DECAY (?DEC)

?DEFINE (?DE)

?DELAY (?DEL)

?DRIVE (?DR)

?LOADING (?LO)

?PRINT (?PR)

?SPIKES (?SP)

?WRITE (?WR)

QUIT (QU)

RESTORE (RE)

SAVE (SA)

SET (SE)

SIMULATE (SI)

TGEN (TG)

TRACE (TR)

WARN (WA)

WRITE (WR)

XPROPAGATE (XP)

Appendix C Run Commands and Keywords Overview

C-4 SIMIC User’s Guide Revision 1.0 9/2/91

Table II Keywords And Their Minimum Abbreviations

AFILE (AF)

AND (AN)

BEGIN (BE)

BITMAP (BI)

BOOLEAN (BO)

BTG (BT)

BTGCONTROLS (BTGC)

BTGDELAY (BTGD)

BTGSOURCES (BTGS)

CHANGE (CH)

COMMENT (C)

CONFLICT (CON)

DATA (DA)

DECAY (DE)

DISCONNECT (DI)

ENABLE (EN)

EXPAND (EX)

FALL (FA)

FILE (FI)

FILTER (FILT)

HAZARD (HA)

HEADER (HE)

HIZ (HI)

INPUTS (IN)

LFILE (LF)

LIBERAL (LIB)

LIST (LI)

MEMLATCH (MEML)

MEMSPIKE (MEMS)

NEAR (NE)

ONE (ON)

OR (OR)

OSCILLATION (OS)

OUTPUTS (OU)

PARTS (PAR)

PATTERNS (PA)

PERIOD (PE)

PLA (PL)

PRANGES (PR)

PSTEP (PS)

PULSE (PU)

RDEPTHS (RD)

REMARK (REM)

REPORT (REP)

RFILE (RF)

RISE (RI)

ROM (RO)

SFILE (SF)

SPIKE (SP)

STABILITY (STAB)

STOP (STOP)

STRING (STRI)

STROBE (STRO)

TARGET (TA)

TERM (TE)

TIMING (TI)

TNUM (TN)

TSTEP (TS)

TYPE (TY)

UNSTABLE (UN)

VALUES (VA)

X (X)

XADDRESS (XA)

ZERO (ZE)

Overview Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-5

Table III Keyword Values And Their Minimum Abbreviations

&ALPHANUMERIC (&A)

&NUMERIC (&N)

ALL (A)

BINARY (B)

DRIVING (D)

DYNAMIC (D)

FLOATING (F)

HEXADECIMAL (H)

INFINITE (I)

INT1 (INT1)

INTEGER (I)

INTEGER1 (INTEGER1)

INTEGER2 (I)

LEVEL (L)

LEVELS (L)

MAXIMUM (MA)

MINIMUM (MI)

OCTAL (O)

POSINTEGER (P)

POSTDECAY (PO)

POWER (P)

PREDECAY (PR)

RESISTIVE (R)

STATIC (S)

STRENGTHS (S)

SYMBOLS (S)

TYPICAL (T)

Appendix C Run Commands and Keywords Overview

C-6 SIMIC User’s Guide Revision 1.0 9/2/91

 Table IV Syntactic Items

Syntactic Item Description

<address_data> RAM content specification consisting of a
sequence of segments, where each segment
contains an initial address—the letter X fol-
lowed by the hexadecimal address—followed
by the segment’s hexadecimal data.

<boolean_block> One or more semicolon-terminated Boolean
equations enclosed within a BEGIN END
block.

<connection_map> A sequence of 1, 0, or X characters represent-
ing true, complemented, or no-connection,
respectively, to define the AND or OR plane
personalities of a PLA. The number of charac-
ters must equal the plane size specified with
the respective AND or OR keyword fields.

<defaults> Optional dot-delimited defaults specification
for primitive entries of a defined pattern or
waveform, consisting of:

• an integer specifying the default duration,
• a default format specification; any prefix

of BINARY, OCTAL, HEXADECIMAL,
or INTEGER,

• a default strength specification; any valid
prefix of POWER, DRIVING, RESIS-
TIVE, or FLOATING

<decay spec> Either an integer, an integer percentage, or a
prefix of INFINITE. An integer percentage is
an integer between 0 and 100, inclusive, fol-
lowed by a percent sign (%), and optionally
preceded by a plus (+) or minus(-) sign.

<delay spec> Either an integer or an integer percentage.The
latter is an integer between 0 and 100, inclu-
sive, followed by a percent sign (%), and
optionally preceded by a plus (+) or minus(-)
sign.

<dformat> Timing generator drive mask specification:
NRZ, RZ, RO, or RC.

Overview Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-7

<dis_val> Either 0 or 1, specifying PLA output values
when the enable input, EN, is 0.

<dmarks> Comma-separated list of integers representing
drive mask event times (referenced from start
of the time-set).

<eformat> Timing generator enable mask specification:
NE, RD, or RF.

<emarks> Comma-separated list of integers representing
enable mask event times (referenced from
start of the time-set).

<file name> A file name consistent wilth the operating sys-
tem. This specification could optionally con-
tain a pathname or directory as well as the
file’s extension (to override SIMIC file exten-
sion defaults). Names containing characters
other than alphanumerics, underscores,
hyphens, exclamation marks, question marks,
or periods should be enclosed in quotes.

<file list> Either a single <file name>, or a comma-sepa-
rated list of <file name> specifications.

<filt_lib> An integer between 0 and 100 inclusive,
optionally followed by a percent (%) sign.

<filter string> A pattern of characters, possibly enclosed in
quotes, and optionally preceded by an integer
repetition factor and asterisk (*).

<format> Format specification consisting of any prefix
of HEXADECIMAL, INTEGER2, LEVEL,
OCTAL, or POSINTEGER, or the full words
INT1 or INTEGER1.

<integer> Integer specifying a count or multiplier.

<main type> The name of the subcircuit to be loaded and
simulated.

<name> The name of a defined stimulus sequence, tim-
ing generator, strobe, or vector alias stripped
of the initial P, W, T, S, or V letter. The name
must contain valid SIMIC name characters.

 Table IV Syntactic Items

Syntactic Item Description

Appendix C Run Commands and Keywords Overview

C-8 SIMIC User’s Guide Revision 1.0 9/2/91

<ninputs> Integer specifying the number of inputs to the
AND plane of a PLA.

<noutputs> Integer specifying the number of outputs of
the OR plane of a PLA.

<nproducts> Integer specifying the number of outputs of
the AND plane of a PLA.

<part_bool> The hierarchical name of a BOOLEAN
instance.

<part_pla> The hierarchical name of a PLA instance.

<part_ram> The hierarchical name of a RAM instance.

<parts_ff> Comma-separated list of SIMIC latch or flip-
flop instance (part) names.

<pname> The name of a pattern stimulus sequence,
beginning with the letter P.

<prange spec> A comma-separated specification of integer
ranges and/or integers representing PRANGE

keyword values.

<pw> Either the letter P or the letter W, respectively
designating the start of a pattern or waveform
name..

<sequence> The hierarchical definition of a pattern or
waveform sequence consisting of primitive
entries, named references, positioning specifi-
cations, and loops.

<sformat> Strobe format; either SP or SW.

<signals> Comma-separated list of signals, either pri-
mary or secondary (internal).

<signals and format> Comma-separated list of signals, either pri-
mary or secondary (internal), and the asterisk
(*) and sharp (#) format control characters.

<signals_ff> Comma-separated list of D-latch or edge-trig-
gered flip-flop outputs (SIMIC primitives).

<signals_pi> Comma-separated list of primary inputs and/
or primary busses.

 Table IV Syntactic Items

Syntactic Item Description

Overview Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-9

<signals_po> Comma-separated list of primary outputs and/
or primary busses.

<smarks> Single integer, or comma-separated pair of
integers representing strobe event times (ref-
erenced from start of the time-set).

<strobe> The name of a strobe beginning with the letter
S.

<table> The name of a timing table, a prefix of TYPI-
CAL, MINIMUM, or MAXIMUM.

<time> Integer specifying a simulation time (time-
units).

<time-set> The name of a time-set, beginning with the
letter T.

<timing-check> The name of a supported timing check, either
qualified (e.g., SETUP.D, HOLD.K, PW.C.L)
or unqualified (e.g., SETUP, HOLD, PW).
Timing check names may not be abbreviated.
See Appendix A for descriptions of the timing
checks associated with SIMIC latch and edge-
triggered flip-flop primitives.

<tnum> Integer specifying a test number.

<type_bool> The name of a BOOLEAN TYPE.

<width> Integer specifying the width of a pattern or
waveform.

<wname> The name of a waveform stimulus sequence,
beginning with the letter W.

 Table IV Syntactic Items

Syntactic Item Description

Appendix C Run Commands and Keywords APPLY (AP)

C-10 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: APPLY (AP)

Function

The APPLY command associates named stimulus sequences—patterns or
waveforms, previously specified with one or more DEFINE commands—
with primary inputs (including primary busses). All primary inputs must be
assigned stimuli before simulation can begin. The APPLY commands may
specify either patterns or waveforms, but not both.

For Tester Emulation Mode, the APPLY command additionally:

1. associates named time-sets—timing generator characteristics previ-
ously specified with DEFINE commands—with primary inputs

2. associates named output strobes—previously specified with DEFINE

commands—with primary outputs

3. changes master test period.

Usage

Associating Stimuli With Primary Inputs And Busses

To associate a pattern that starts at test number <tnum> with primary inputs
and/or primary busses:

 APPLY PATTERNS=<pname> LIST=<signals_pi> $

BEGIN=<tnum>

The number of primary inputs specified in the LIST keyword-field must be
equal to the width of pattern <pname>.

If the BEGIN keyword option is omitted, the pattern will start immediately,
if at the start of simulation or if the circuit state is stable, or when the circuit
state becomes stable. For example:

APPLY PATTERNS=pabc LIST=pi1,pi2 BEGIN=101

associates the pattern pabc (of width 2) with primary inputs pi1 and pi2,
and schedules this association to start at Test 101, while

APPLY PATTERNS=pabc LIST=pi1,pi2

causes the pattern to immediately determine the next values of these signals.

To associate a waveform that starts at time <time> with primary inputs and/
or primary busses:

 APPLY PATTERNS=<wname> LIST=<signals_pi> $

BEGIN=<time>

The number of primary inputs specified in the LIST keyword-field must be
equal to the width of waveform <wname>.

APPLY (AP) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-11

If the BEGIN keyword option is omitted, the waveform will start immedi-
ately, if at the start of simulation, or one time-unit after the command is
issued. For example:

APPLY PATTERNS=wabc LIST=pi1,pi2 BEGIN=101

associates the waveform wabc (of width 2) with primary inputs pi1 and
pi2, and schedules this association to start at Time 101, while

APPLY PATTERNS=wabc LIST=pi1,pi2

causes the waveform to immediately determine the next values of these sig-
nals.

The LIST keyword may be omitted for the special case that (a) the stimulus
width is equal to the number of primary inputs and busses, and (2) bit posi-
tions within the stimulus correspond to the ordering of inputs and busses in
the main type’s TYPE statement, with input values preceding bus values.

Associating Time-Sets With Primary Inputs And Busses

To associate a time-set (timing generator definition) with one or more pri-
mary inputs and/or busses starting at Test <tnum>:

APPLY TIMING=<time-set> LIst=<signals_pi> $

BEgin=<tnum>

For example
APPLY TIMING=timing1 LIST=pi1,pi2 BEGIN=150

associate the time-set timing1 with primary inputs pi1 and pi2, starting
at Test 150.

If the BEGIN keyword option is omitted, the time-set will start immediately,
if at the start of simulation or if the circuit state is stable, or when the circuit
state becomes stable.

If no time-set has been APPLYed to a primary input or bus, then the default
timing generator tdefault.nrz.ne=0,0:0,0 (zero rise, fall, tristate, and
drive delays) is associated.

Associating Strobes With Primary Outputs And Busses

The TIMING and LIST keywords are also used to associate a strobe with
one or more primary outputs and/or busses starting at Test <tnum>:

APPLY TIMING=<strobe> LIST=<signals_po> $

BEGIN=<tnum>

For example
APPLY TIMING=strob1 LIST=po1,po2 BEGIN=150

associate the strobe strob1 with primary outputs pi1 and pi2, starting
at Test 150.

Appendix C Run Commands and Keywords APPLY (AP)

C-12 SIMIC User’s Guide Revision 1.0 9/2/91

If the BEGIN keyword option is omitted, the strobe will start immediately,
if at the start of simulation or if the circuit state is stable, or when the circuit
state becomes stable.

If no strobe has been APPLYed to a primary input or bus, then a default point
(edge) strobe, placed one-time unit prior to the end of the test period, is asso-
ciated.

Changing The Master Test Period

The master test period can be changed during simulation with the command:
APPLY PERIOD=<time> BEGIN=<tnum>

For example:
APPLY PERIOD=1000 BEGIN=150

schedules the master test period to change to 1000 time-units at Test 150.

BREAK (BR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-13

Run Command: BREAK (BR)

Function

The BREAK command causes simulation to stop when user-specified condi-
tions occur. At a breakpoint, the state of the simulated circuit is “frozen”,
allowing the user to perform interactive debugging (probe signals, change
delays, resimulate, etc.) or to control the course of future simulation.

Previously-set BREAK conditions are cancelled using the NO prefix. Unless
explicitly indicated, keyword options that support the keyword=value field
format also support this format with the NO prefix. For example:

NO BREAK RISE=sig1

cancels the specific break when a rise transition occurs at signal sig1. All
keyword options support the keyword: field format with the NO prefix. For
example:

NO BREAK RISE:

cancels all previous breakpoints on rise transitions.

Usage

See the Section Setting Simulation Breakpoints in Chapter 2.6 for a com-
plete description of the BREAK command.

The BREAK command can be restricted to a specified interval of tests, for
patterns, or time, for waveforms, with the PRANGE keyword option:

BREAK PRANGE=<prange spec>

Break On The Occurrence Of Signal Transitions

The CHANGE keyword specifies any level transition; either a rise,0→X,
0→1, X→1, or a fall, 1→X, 1→0, X→0:

BREAK CHANGE=<signals>

sets a breakpoint when any of the specified signals changes state, while:
BREAK CHANGE:

sets a breakpoint when any transition occurs (for single-stepping through
the simulation).

The DECAY keyword specifies a decay to Z (floating unknown):
BREAK DECAY=<signals>

sets a breakpoint when any of the specified signals decays, while:
BREAK DECAY:

sets a breakpoint when any signal decays.

Appendix C Run Commands and Keywords BREAK (BR)

C-14 SIMIC User’s Guide Revision 1.0 9/2/91

The RISE, FALL, CHANGE, X, and DECAY keywords accept the same type
of signal specification as the LIST keyword.

The FALL keyword specifies a fall transition; 1→X, 1→0, X→0:
BREAK FALL=<signals>

sets a breakpoint when any of the specified signals executes a fall transition,
while:

BREAK FALL:

sets a breakpoint when any signal executes a fall transition.

The MEMLATCH keyword specifies a transition from a known state to an
unknown state at a SIMIC primitive D-latch or edge-triggered flip-flop due
to a sensitized unknown input (e.g., unknown clock):

BREAK MEMLATCH=<signals_ff>

sets a breakpoint when an unknown input value is sensitized at a built-in
memory element whose output is one of the specified signals, while:

BREAK MEMLATCH:

sets a breakpoint when the state of any built-in memory element becomes
unknown due to a sensitized unknown input.

The RISE keyword specifies a rise transition; 0→X, 0→1, X→1:
BREAK RISE=<signals>

sets a breakpoint when any of the specified signals executes a rise transition.
For example:

BREAK RISE=sig1,sig2

will cause a break from simulation any time signals sig1 or sig2 execute
a transition to logic-1. The command:

BREAK RISE:

sets a breakpoint when any signal executes a rise transition.

The X keyword specifies a level transition from a known state to an
unknown state, 1→X, 0→X:

BREAK X=<signals>

sets a breakpoint when any of the specified signals becomes unknown,
while:

BREAK X:

sets a breakpoint when any signal becomes unknown.

Break On The Occurrence Of Timing Hazards

The timing hazards described in this section are primarily due to the distri-
bution of propagation delays within the circuit.

The HAZARD keyword is a shorthand designation of all switching hazards—
pulse, spike, or near. The command:

BREAK HAZARD=<signals>

BREAK (BR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-15

sets a breakpoint when a pulse, spike, or near hazard occurs at any of the
specified signals. For example, the command:

BREAK HAZARD=sig1

is equivalent to:
BREAK PULSE=sig1 SPIKE=sig1 NEAR=sig1

The command:
BREAK HAZARD:

sets a breakpoint when a pulse, spike, or near hazard occurs at any signal.

The MEMSPIKE keyword specifies the occurrence of a spike hazard at a
flip-flop primitive, and is therefore a subset of SPIKE. It narrows focus to
spikes that could cause steady-state errors. The command:

BREAK MEMSPIKE=<signals_ff>

sets a breakpoint when a spike hazard occurs at any of the specified flip-flop
output signals, while:

BREAK MEMSPIKE:

sets a breakpoint when a spike hazard occurs at any flip-flop. When a spike
occurs at a flip-flop for which the MEMSPIKE keyword option has been
specified, the break message will contain memspike as the cause of the
break, rather than spike.

The NEAR keyword specifies the occurrence of a near hazard (see also
DEFINE NEAR). The command:

BREAK NEAR=<signals>

sets a breakpoint when a near hazard occurs at any of the specified signals,
while:

BREAK NEAR:

sets a breakpoint when a near hazard occurs at any signal.

The PULSE keyword specifies the occurrence of a pulse hazard (see also
DEFINE PULSE). The command:

BREAK PULSE=<signals>

sets a breakpoint when a pulse hazard occurs at any of the specified signals,
while:

BREAK PULSE:

sets a breakpoint when a pulse hazard occurs at any signal.

The SPIKE keyword specifies the occurrence of a spike hazard. The com-
mand:

BREAK SPIKE=<signals>

sets a breakpoint when a spike hazard occurs at any of the specified signals,
while:

BREAK SPIKE:

sets a breakpoint when a spike hazard occurs at any signal.

Appendix C Run Commands and Keywords BREAK (BR)

C-16 SIMIC User’s Guide Revision 1.0 9/2/91

The STROBE keyword specifies the condition that a strobe error occurs at
any primary output or bus. This is only defined for tester emulation mode.
The command:

BREAK STROBE:

sets a breakpoint for this situation.

The UNSTABLE keyword designates the condition that a change of primary
input state has occurred while the circuit was still in an unstable state (loss
of fundamental mode of operation for waveform and tester emulation
modes). The command:

BREAK UNSTABLE:

sets a breakpoint for this situation.

Break On The Occurrence Of Timing Check Violations

Breakpoints can be set for timing check violations at SIMIC latches and flip-
flops. The PARTS keyword is used to specify which memory elements to
monitor for the selected timing check(s). The command:

BREAK PARTS=<parts_ff> <timing-check>: ...

selects specific memory elements to monitor. For example,
BREAK PARTS=ff1,ff2 SETUP.D: PW:

sets breakpoints for data setup-time and all pulse-width check violations at
the memory elements named ff1 and ff2.

The command:
BREAK PARTS: <timing-check>: ...

sets breakpoints when a violation of the specified timing checks occurs at
any memory element. For example,

BREAK PARTS: SETUP: HOLD: PW:

will cause any timing check violation at any memory element to trigger a
break from simulation.

Break On The Occurrence Of Wire-tie Conflicts

The CONFLICT keyword specifies a wire-tie conflict. The command:
BREAK CONFLICT=<signals>

sets a breakpoint when a wire-tie conflict occurs at any of the specified sig-
nals, while the command:

BREAK CONFLICT:

sets a breakpoint when any wire-tie conflict occurs.

The CONFLICT keyword accepts the same type of signal specification as
the LIST keyword.

BREAK (BR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-17

Break On Oscillation

The OSCILLATION keyword specifies excessive activity in response to a
single change of input state (see also DEFINE OSCILLATION). The com-
mand:

BREAK OSCILLATION:

sets a breakpoint when any signal exhibits excessive activity.

Break Periodically

The PSTEP keyword specifies a stable-state count. The command:
BREAK PSTEP=<integer>

causes a break from simulation whenever the circuit state has become stable
the specified number of times. For example,

BREAK PSTEP=5

sets a breakpoint every fifth stable state. If the stimulus mode is patterns, the
break would occur every fifth test. If, however, the stimulus mode is wave-
form (time-based) or tester emulation, the break interval could exceed five
tests, since the circuit state may not stabilize by the end of each test.

The colon form must be used to cancel breakpoints based on stable states:
BREAK PSTEP:

The TSTEP keyword specifies a time interval. The command:
BREAK TSTEP=<integer>

causes periodic breaks from simulation with the specified interval (number
of time-units). For example,

BREAK TSTEP=50

sets a breakpoint every fifty time-units.

The colon form must be used to cancel breakpoints based on elapsed time:
BREAK TSTEP:

Directing Break Messages

Whenever a break occurs, SIMIC issues one or more messages describing
the cause or causes. By default, these messages are directed to the terminal.
The command:

NO BREAK TERM:

disables break messages at the terminal. These messages can be re-enabled
at the terminal with the command:

BREAK TERM:

Break messages can also be directed a file with the FILE keyword. The
form:

BREAK FILE=<file name>

explicitly specifies a file name, and possibly its extension. The command:

Appendix C Run Commands and Keywords BREAK (BR)

C-18 SIMIC User’s Guide Revision 1.0 9/2/91

BREAK FILE:

specifies a file with the default file name (see DEFINE FILE). If the second
form is used, or if no file extension is specified in the first form, the file’s
default extension is brk.

Regardless of how they were enabled, break messages to a file are disabled
with the command:

NO BREAK FILE:

CLAMP (CL) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-19

Run Command: CLAMP (CL)

Function

The CLAMP command can be used to force signals to remain at specified
values until explicitly released (with the NO CLAMP command), either for
debugging or for circuit initialization.

The CLAMP command is used to define the functionality of the SIMIC PLA
primitive (specifically, its AND plane and its OR planes), and may be used
to define the functionality of BOOLEAN elements.

The CLAMP command is used to initialize the contents of the SIMIC ROM
primitive, and may also be used to initialize the contents of the RAM prim-
itives.

Usage

Forcing And Releasing Signal Values

Signals may be forced to logic-0, logic-1, X (unknown), or Z (floating
unknown) with the respective commands:

CLAMP ZERO=<signals> TNUM=<tnum>

CLAMP ONE=<signals> TNUM=<tnum>

CLamp X=<signals> TNUM=<tnum>

CLAMP HIZ=<signals> TNUM=<tnum>

The specified signals will be clamped to the specified value at the start of the
specified test. If the TNUM keyword option is omitted, the signals will be
clamped to the specified value at the start of the next test, after simulation is
resumed.

Clamped signals remain at their forced values until released with the NO
CLAMP command. The LIST keyword, with either a list of signals or its
colon form, may be additionally used to release signals regardless of forced
value. For example:

NO CLAMP ONE=a,b TNUM=50

releases signals a and b from being forced to logic-1 at test 50 (but does
nothing if they are not forced to this value). The command:

NO CLAMP ONE: TNUM=50

releases all signals forced to logic-1 at test 50, while:
NO CLAMP LIST: TNUM=50

releases all forced signals at test 50. If the TNUM keyword option is omitted,
signals are released at the start of the next test, after simulation is resumed.

Appendix C Run Commands and Keywords CLAMP (CL)

C-20 SIMIC User’s Guide Revision 1.0 9/2/91

Defining PLA Functionality

A PLA’s personality is defined by specifying the product terms of its AND
plane and the sum terms of its OR plane.

The AND plane personality is set by the CLAMP command as follows:

CLAMP PART=<part_pla> $

AND=<ninputs>*<nproducts> $

BITMAP=<connection_map>

where <part_pla> is the PLA’s part name, <ninputs> is the number of
inputs to the AND plane (which must be the number of data inputs), and
<nproducts> is the number of AND plane product terms (and the number of
inputs to the OR plane). This keyword-field is used for error checking.

The <connection_map> contains <nproducts> items, each containing
<ninputs> 0, 1, or X characters that define a single product term, ordered
according to the PLA data inputs. These characters correspond to comple-
mented, true, or don’t-care, respectively.

The OR plane personality is set by the CLAMP command as follows:

CLAMP PART=<part_pla> $

OR=<nproducts>*<noutputs> $

BITMAP=<connection_map>

where <part_pla> is the PLA’s part name, <nproducts> is the number of
inputs to the OR plane (which must be the number of AND plane outputs),
and <noutputs> is the number of OR plane sum terms (and the number of
PLA outputs). This keyword-field is used for error checking.

The <connection_map> contains <noutputs> items, each containing
<nproducts> 0, 1, or X entries that define a single sum term, ordered by the
AND plane outputs. These characters correspond to complemented, true,
or don’t-care, respectively. The sum terms, in turn, are ordered by the PLA
outputs.

For example, if a PLA with three data inputs, a, b, and c (plus CS and EN),
two outputs, sum and cout, and instance name fadd implements a full-
adder with equations:

then the following CLAMP commands personalize the PLA:
CLAMP PART=fadd AND=3*7 $

BITMAP=100 010 001 111 11x x11 1x1

CLAMP PART=fadd OR=7*2 $

BITMAP=1111xxx xxxx111

When the PLA’s EN input is logic-0, the outputs are set to the disabled value
specified by the ENABLE option of the CLAMP command:

sum = abc + abc + abc + abc

cout = ab + bc + ac

CLAMP (CL) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-21

 CLAMP PART=<part_pla> ENABLE=<dis_val>

where <dis_val> can be either 1 or 0. If unspecified, the value defaults to 0.
For example:

CLAMP PART=pla1 ENABLE=1

causes all outputs to be logic-1 whenever the enable, EN, is logic-0.

Defining BOOLEAN Functionality

The CLAMP command can be used to define the functionality of all
instances of a BOOLEAN type or of a single BOOLEAN part with the
respective commands:

CLAMP TYPE=<type_name> BOOLEAN=<boolean_block>

CLAMP PART=<part_name> BOOLEAN=<boolean_block>

where:

• <type_name> is the name of the BOOLEAN TYPE to modify.

• <boolean_block> is the BEGIN; equation; equation; ... END; format
illustrated below.

• <part_name> is the name of a BOOLEAN instance to modify.

For example, if a BOOLEAN TYPE represents a full-adder having three
inputs, a, b, and c, and two outputs, sum and cout, and the full-adder
equations are:

then the following CLAMP commands would make every instance of this
element have this functionality:

CLAMP TYPE=fadd BOOLEAN= $

BEGIN ; $

sum = a*^b*^c + ^a*b*^c + ^a*^b*c ; $

cout = a*b + b*c + a*c ; end ;

If only instance fad5 need be defined at run-time, the same command
would be used, except the keyword field TYPE=fadd would be replaced
with PART=fad5.

Initializing the Contents of a RAM

Normally, RAM contents are initialized during simulation by performing
writes to the RAM. However, SIMIC also supports partial or complete ini-
tialization of the RAMA, RAMB, and RAMC primitives prior to simulation
via the CLAMP command. The command structure is:

CLAMP PART=<part_ram> DATA=<addresses_data>

where <part_ram> is the RAM’s part name, and <addresses_data> is the
data to write into the RAM in the following format:

sum = abc + abc + abc + abc

cout = ab + bc + ac

Appendix C Run Commands and Keywords CLAMP (CL)

C-22 SIMIC User’s Guide Revision 1.0 9/2/91

X<address> <data> X<address> <data> ...

where <address> is the starting address for the data that follows, in hexa-
decimal, and <data> is the data described in hexadecimal. For example:

CLAMP PART=RAM1 DATA= $

X0000 00 01 02 03 04 05 06 07 $

08 09 0A 0B 0C 0D 0E 0F $

XC000 FF FF FF FF

DEFINE (DE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-23

Run Command: DEFINE (DE)

Function

The DEFINE command can be used to define global simulation parameters
and the default file name.

The DEFINE command is used to define primary input stimuli.

The DEFINE command is used to define vector alias names that group sig-
nals and assign the group an output format for PRINT/WRITE operations.

The DEFINE command is used to initiate tester emulation mode and to
define timing generators and strobes.

Usage

Defining Global Parameters

The BTGDELAY keyword controls whether loading is propagated through
ON ideal switches (BTGN and BTGP) to dynamically adjust driver delays.
By default, SIMIC performs dynamic delay modification. The command:

DEFINE BTGDELAY = STATIC

forces fixed delays at drivers of ideal switches. The command:

DEFINE BTGDELAY = DYNAMIC

enables dynamic delay modification.

The FILE keyword specifies the default file name:

DEFINE FILE = <file name>

The name, <file name>, is prefixed to the default file extension associated
with particular run commands to systematize file naming. It should not con-
tain an extension. Example:

DEFINE FILE = mycircuit

The NEAR keyword defines the window for near hazard analysis. By default,
this window is 2×(average gate propagation delay). The multiplier can be
changed from its default value of 2 to another value with:

DEFINE NEAR = <integer>

The SIMIC default is equivalent to:

DEFINE NEAR = 2

The OSCILLATION keyword defines the threshold for excessive activity.
By default, a signal’s activity is excessive it executes 10 level transitions in

Appendix C Run Commands and Keywords DEFINE (DE)

C-24 SIMIC User’s Guide Revision 1.0 9/2/91

response to a single change of input state. Excessively active signals are
forced to X until the next input event. This definition can be changed with:

DEFINE OSCILLATION = <integer>

The SIMIC default is equivalent to:

DEFINE OSCILLATION = 10

The maximum specifiable value is 255. Oscillation checks can be disabled
with the command:

DEFINE OSCILLATION = INFINITE

The PULSE keyword defines the width of pulse hazards. By default, this
width is 3×(average gate propagation delay). The multiplier can be changed
from its default value of 3 to another value with:

DEFINE PULSE = <integer>

The SIMIC default is equivalent to:

DEFINE PULSE = 3

The RDEPTH keyword defines the correspondence between the gate-level
RESISTIVE drive strength and switch-level series depth. By default, this
drive strength corresponds to a depth of 3. This default can be changed with:

DEFINE RDEPTH = <integer>

The SIMIC default is equivalent to:

DEFINE RDEPTH = 3

The STABILITY keyword controls whether decays are included in the def-
inition of circuit state stability. The command:

DEFINE STABILITY = POSTDECAY

defines the circuit state to be stable only after all transitions to non-tristating
values have occurred, and all tristated signals with finite decay have
decayed, in response to a primary input event. This is the SIMIC default.
The command:

DEFINE STABILITY = PREDECAY

defines the circuit state to be stable after all transitions to non-tristating val-
ues have occurred, in response to a primary input event.

The XADDRESS keyword controls handling of unknown (X) address lines
at the ROM and RAM (RAMA, RAMB, and RAMC) SIMIC primitives. By
default, if four or fewer address lines are unknown, SIMIC exhaustively
reads all possibly addressed locations to set differing output lines to X, or
writes data to all possibly addressed locations. If the number of unknown
address lines exceeds this threshold, output data is all-X on a read, and the
entire RAM contents are set to X on a write. The command:

DEFINE XADDRESS = <integer>

changes the threshold to the specified number. The SIMIC default is equiv-
alent to:

DEFINE XADDRESS = 4

DEFINE (DE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-25

Defining Primary Input Stimuli

Primary input stimuli are defined using the command form:
DEFINE <pw><name>.<width><defaults>= $

<sequence>

where:

• <pw> is either a P (for patterns) or W (for waveforms),

• <name> is a user-defined name for the input sequence, immediately
following the <pw> designator; combined, the two entries form the
sequence’s complete name,

• <width> is the number of signals for which the input sequence is
defined,

• <defaults> (optional) specifies default attributes of the stimulus
sequence appearing on the right side of the equal sign, and

• <sequence> is the stimulus sequence being defined.

The optional <defaults> on the left side of the equal sign are:
.<duration>.<format>.<strength>

where:

• <duration>, called the default duration, is

for patterns, the number of tests to maintain each input state of
<sequence> before applying the next one. If unspecified, each input
state is maintained for one test (the default duration is 1)

 for waveforms, the amount of time to maintain each input state of
<sequence> before applying the next one. If unspecified, the default
duration is 0, which means that all stimulus timing must be
described in <sequence>

• <format> is the default format (radix) of <sequence> (BINARY,
OCTAL, HEXADECIMAL, INTEGER). If unspecified, the default is
BINARY, and

• <strength> is the default strength of <sequence> (POWER, DRIV-
ING, RESISTIVE, FLOATING). If unspecified, the default is
DRIVING.

A single dot (.) separates adjacent options on the left side of the equal sign.

For example, the command:
define pall.3 = 000 001 010 011 100 101 110 111

defines a pattern, since the <pw> character is P. The pattern’s name is,
pall, and its width is 3. Since there are no <duration>, <format>, or
<strength> specifications following the width entry, the default duration of
each stimulus state is one test, the radix of <sequence> is BINARY, and the

Appendix C Run Commands and Keywords DEFINE (DE)

C-26 SIMIC User’s Guide Revision 1.0 9/2/91

stimuli have DRIVING strength. See Chapter 2.3 for a complete description
of these options and specification of the sequence, <sequence>.

Defining Vector Aliases

The DEFINE command may be used to group signals at run time, assign a
name to each group, its vector alias, and associate a radix with each group
for PRINT/WRITE output. The format for this command is:

DEFINE V<name>.<format>=<signals>

where <name> is a user-supplied alias for the vector, and <format> is one
of the following format specifications:

• LEVEL – individual levels for each bit.

• OCTAL – octal representation.

• HEXADECIMAL – hexadecimal representation.

• INTEGER1 (INT1) – One’s complement representation.

• INTEGER2 – Two’s complement representation.

• POSINTEGER – Positive integer representation.
Except for the one’s complement specification, which can only be
INTEGER1 or INT1, any valid specification prefix is sufficient.

For example, to display a, b, c, and d together in hexadecimal format, and
e, f, g, and h together in integer format, the following commands can be
used:

DEFINE VAB.HEX=a,b,c,d

DEFINE VEF.INT=e,f,g,h

PRINT LIST=vab*vef

Initiating Tester Emulation Mode

The PERIOD keyword defines a master period corresponding to a tester
cycle. The start of each interval begins a new test. The default test period is
defined with the command:

DEFINE PERIOD=<time>

where <time> is the number of time-units in each test period. Defining a
period automatically switches SIMIC into tester emulation mode, and it will
remain in tester emulation mode until the master test period is explicitly
removed. This is accomplished by setting the value to 0 with the command:

DEFINE PERIOD=0

Defining Timing Generators

This section presents a syntactic overview of defining timing generators.
See Chapter 2.8 for a complete description.

DEFINE (DE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-27

Timing generator formats and drive envelopes (time-sets) are specified with
the DEFINE command. If the primary input does not tristate, the following
format may be used to define a timing generator:

DEFINE T<name>.<dformat>=<dmarks>

where <name> is a user-defined name for the time-set, <dformat> is one of
the drive mask types listed below, and <dmarks> is a list of marks, or timing
values, whose order and number depends on the <dformat> selected:

1. NRZ (Non-Return-to-Zero).

2. RZ (Return-to-Zero)

3. RO (Return-to-One).

4. RC (Return-to-Complement)

For example,

DEFINE TDAT1.NRZ=20,40

defines a timing generator named tdat1 with a NRZ format that delays
transition to logic-1 by 20 time-units (from the beginning of the tester
cycle), and transitions to logic-0 by 40 time-units.

The correct number of timing marks on the right, and their significance,
depends on the selected drive mask.

If the primary input does tristate, the following format may be used to define
a timing generator:

DEFINE T<name>.<dformat>.<eformat>= $

<dmarks>;<emarks>

where the additional <eformat> option is one of the enable masks listed
below, controlling the mode of driving/ tristating transitions, and the addi-
tional <emarks> field specifies the times at which these transitions should
occur:

1. NE (No-Envelope)

2. RD (Return-to-Drive)

3. RF (Return-to-Float)

For example,

Note the addition of <eformat>, which selects one of the enable formats
described above, and <emarks> which is a list of timing values, whose order
and number depends on the selected enable format.

DEFINE TDAT2.NRZ.NE=20,40;50,70

defines a NRZ timing generator named tdat2 with the same characteristics
as tdat1 above for driven transitions. However, for tdat2, transitions
from driving to floating are delayed 50 time-units (from the beginning of the
tester cycle), and transitions from floating to driving are delayed 70 time-
units.

Appendix C Run Commands and Keywords DEFINE (DE)

C-28 SIMIC User’s Guide Revision 1.0 9/2/91

Defining Timing Generators

SIMIC supports two different types of strobes. The first is a point (or edge)
strobe (SP), and the second is a window strobe (SW). The format for defining
a strobe is:

DEFINE S<name>.<sformat>=<smarks>

where <name> is the user-defined name for the strobe, <sformat> is either
SP (for a point strobe), or SW (for a window strobe), and <smarks> is a sin-
gle value for SP, indicating the time to fire the strobe, or two values for SW,
indicating the time to start and the time to stop the window strobe, respec-
tively. All times are in time-units, relative to the start of the period.

For example, the following command defines a window strobe, whose win-
dow begins at time 600 and ends at time 700:

DEFINE SDEMO1.SW=600,700

To define a point strobe at time 800:

DEFINE SDEMO2.SP=800

EXECUTE (EX) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-29

Run Command: EXECUTE (EX)

Function

The EXECUTE command is used to execute run command files.

Usage

The FILE keyword specifies the name of the run command file to execute.
The command form:

EXECUTE FILE:

causes the run commands in the file having the default file name and default
extension run to be executed. The command form:

EXECUTE FILE=<file list>

Here, <file list> explicitly specifies one or more run command files to be
executed.

Executed run files may themselves contain EXECUTE commands. The max-
imum level of EXECUTE command nesting is 4.

Appendix C Run Commands and Keywords GET (GE)

C-30 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: GET (GE)

Function

The GET command is used to compile textual network descriptions and load
the resulting binary representation.

The GET command is used to load a previously-compiled representation.

The GET command is used to read backannotation data and recompute prop-
agation delays to reflect net loading.

The GET command is used to load minimum, typical, or maximum delay
sets.

Usage

GET command options are explained in Chapter 2.2.

Circuit Compilation Options

The TYPE keyword specifies the main type, the top-level circuit to be sim-
ulated. If only the default network description file need be read (default file
name, file extension of net), the circuit could be compiled with:

GET TYPE=<main type>

The FILE keyword may be used to specify the file(s) containing the net-
work description:

GET TYPE=<main type> $

FILE=<file name1>,<file name2> ...

Any number of network description files may be specified; the files are read
in the order they appear in the list. For example:

GET TYPE=full-adder FILE=cellib,mycircuit

causes files cellib and mycircuit to be read, in that order.

The TYPE keyword initiates compilation. The FILE keyword option, and
the keyword options described below, must be specified either prior to the
GET TYPE command, or in the same command.

By default, SIMIC aborts compilation if 20 circuit description errors have
been found. This default can be changed with the STOP keyword:

GET STOP=<integer>

The SIMIC default is equivalent to:

GET STOP=20

GET (GE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-31

The LFILE keyword specifies the name of the listing file to be generated
after compilation. By default, no listing file is generated. The command:

GET LFILE:

specifies that the listing file’s name should have the default file name and the
default listing file extension, lst. The command:

GET LFILE=<file name>

explicitly specifies the listing file’s name.

The REPORT keyword controls the amount of information to be written to
the listing file. The command:

GET REPORT= SYMBOLS

specifies that only part and signal names be written to the listing file. Any
prefix of the word SYMBOLS is valid. The command:

GET REPORT= ALL

specifies that in addition to these names, topological and electrical informa-
tion be written to this file as well.

The request to generate a listing file can be cancelled with either:

NO GET LFILE: or NO GET REPORT:

By default, SIMIC does not create a binary file containing the compiled cir-
cuit description. The SFILE keyword specifies that this file be generated.
The command:

GET SFILE:

assigns this file the default file name and the default file extension, rnt. The
command:

GET SFILE=<file name>

explicitly names this file.

Once this file is created, the circuit description can be quickly retrieved in
subsequent simulation sessions with the RFILE keyword option, without
requiring re-compilation of the network description.

A previous GET SFILE command can be cancelled with:

NO GET SFILE:

Loading A Previously-Compiled Circuit Description

The RFILE keyword option restores a previously-compiled description.
The command:

GET RFILE:

restores the circuit description contained in the file whose name is the
default file name and whose extension is rnt. The command:

GET RFILE=<file name>

explicitly names this file.

Appendix C Run Commands and Keywords GET (GE)

C-32 SIMIC User’s Guide Revision 1.0 9/2/91

Updating Wiring Delays With Backannotation Data

The AFILE keyword option causes a backannotation file (containing net
LOAD elements) to be read, and driver delays to be updated accordingly. The
command:

GET AFILE:

causes the file with default file name and default extension ann to be read,
while the command:

GET AFILE=<file name>

explicitly names this file.

Updating Wiring Delays With Backannotation Data

Either of three tables (delay sets), corresponding to TYPICAL, MINIMUM,
and MAXIMUM timing values may be loaded with the TIMING keyword
option. The command is:

GET TIMING=<table>

where <table> is either TYPICAL, MINIMUM, or MAXIMUM.

HISTORY (HI) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-33

Run Command: HISTORY (HI)

Function

The HISTORY command is used to save simulation event history to inter-
face with post-simulation display and analysis programs. Two history files
are created; the general history file and the sequential history file. Their
default extensions are hig and his respectively. By default, history files are
not created.

Usage

The HISTORY command is described in Chapter 2.9.

The HISTORY command can be restricted to a specified interval of tests, for
patterns, or time, for waveforms, with the PRANGE keyword option:

HISTORY PRANGE=<prange spec>

Specifying File Name

The FILE keyword option is used to specify the filename components of the
two history files. The command:

HISTORY FILE:

assigns the default file, while the command:
HISTORY FILE=<file name>

assigns a file name explicitly. Note: no file extension should be specified in
this form of the command.

Specifying Signals To Trace

The LIST keyword selects the signals for which events are to be saved. His-
tory file creation is enabled by this selection. The signals specified with this
keyword are subject to name-based filtering (see STRING keyword option
below); only unfiltered signals are accepted for history trace. The command:

HISTORY LIST:

selects all unfiltered signals, while the command:
HISTORY LIST=<signals>

selects all signals in the specified list that are unfiltered.

The NO prefix can be used to selectively remove signals. Signals specified
with the NO prefix are not filtered. For example, the sequence of commands:

HISTORY LIST:

NO HISTORY LIST=abc

causes all unfiltered signals to be traced except signal abc.

Appendix C Run Commands and Keywords HISTORY (HI)

C-34 SIMIC User’s Guide Revision 1.0 9/2/91

Specifying A Dump Interval

Once enabled, history dumps (snapshots) are performed every 100 test steps
(by default). This default can be changed with the command:

HISTORY PSTEP=<integer>

where <integer> is the test interval to perform the dumps. History dumps
can be disabled with the command:

NO HISTORY PSTEP:

Name-Based Filtering

The STRING keyword may be used to systematically filter signals from
subsequent HISTORY LIST specifications.

Filtering based on the name of the part generating each signal can be speci-
fied with one of two complementary options. The command:

NO HISTORY STRING=&NUMERIC

will cause any signals generated by a part whose lowest-level name compo-
nent is purely numeric (e.g., a.b.c.153) to be filtered. Alternatively, the
command:

NO HISTORY STRING=&ALPHANUMERIC

will cause any signals generated by a part whose lowest-level name compo-
nent is not a pure numeric (e.g., a.b.c.d12) to be filtered.

Filtering based on the signal’s hierarchical name can be specified with the
command:

NO HISTORY STRING=<filter string>

where <filter string> is a pattern of characters, possibly enclosed in quotes.
For example, the command:

NO HISTORY STRING=”#”

will filter all signals in subsequent HISTORY LIST specifications whose
names contain the character “#”.

The general form of signal-name based filtering is:

NO HISTORY STRING= <integer>*<filter string>

where <integer> specifies a filter string repetition factor. For example:

NO HISTORY STRING=2*”.”

causes all signals at a hierarchical level of three or higher (their names con-
taining at least 2 dots) to be filtered from subsequentHISTORY LIST spec-
ifications.

Using the STRING keyword without the NO prefix removes a filter. The
command:

HISTORY STRING=”#”

causes subsequently specified signals containing “#” in their names to be
traced.

LOOK (LO) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-35

Run Command: LOOK (LO)

Function

The LOOK command is used to interactively probe signal values while the
state of the simulated circuit is frozen in time.

Optionally, information may also be requested about the inputs to the ele-
ment generating the signal (if the signal is not a primary input) and/or the
loads driven by the signal.

Usage

The LOOK command is described in the Section Probing For Signal State

Information in Chapter 2.6.

Probing Specific Signals

The LIST keyword is used to specify the signals of interest: The command:
LOOK LIST=<signals>

causes the current values of the specified signals to be reported at the termi-
nal. The LIST keyword option is not sticky; only the values of currently
specified signals are reported. For example:

>>: LOOK LIST=A

At Time= 23, Test=101:

A= '0' [Primary Input]

>>: LOOK LIST=CARRY-OUT

At Time= 23, Test=101:

CARRY-OUT= '1' [OR]

The command:

LOOK LIST:

produces a table of all signals states (in alphanumeric sequence). The table’s
format is equivalent to the PRINT (or WRITE) “dump” format, discussed in
the Subsection Selecting Signals to Output in Chapter 2.4.

For internal signals, the INPUTS keyword option causes additional infor-
mation to be reported on the inputs of the elements that generate the signals.
The command form is:

LOOK INPUTS:

Appendix C Run Commands and Keywords LOOK (LO)

C-36 SIMIC User’s Guide Revision 1.0 9/2/91

For example:
>>: LOOK INPUTS: LIST=CARRY-OUT

AT TIME= 23, TEST= 101:

CARRY-OUT= ‘1’ [OR]

I:= AND1= ‘0’ [AND]

I:= AND2= ‘1’ [AND]

I:= AND3= ‘0’ [AND]

In this example, the carry-out signal is a logic-1, and it is generated by
an OR gate. This gate has three inputs, and1, and2, and3, each the output
of an AND gate. The second input, and2, is causing the logic-1 at carry-
out.

The INPUTS keyword option is sticky; once enabled, each subsequent
LOOK LIST command will also contain element input information for inter-
nal signals.The command:

NO LOOK INPUTS:

removes this information from subsequent LOOK output.

Fanout information can also be included in the LOOK LIST output. with
the command:

LOOK OUTPUTS:

For example:
>>: LOOK OUTPUTS: LIST=AND2

At Time= 23, Test= 101:

AND2= ‘1’ [AND]

O:= CARRY-OUT [OR]

additionally reports that and2 fans out to the OR gate named carry-out.

The OUTPUTS keyword option is sticky; once enabled, each subsequent
LOOK LIST command will also contain the instance names of all parts
driven by the traced signal. Fanout information can be subsequently
removed from LOOK output with the command:

NO LOOK OUTPUTS:

Displaying All Signals At A Specified State

Many times it is useful to see if there are any signals at an ‘X’ or ‘Z’ state.
To display all signals at an ‘X’ state, use the command:

LOOK X:

Similarly, to display all signals at a ‘Z’ (tristate) value, issue the command:
LOOK HIZ:

The format of both reports is identical to the LOOK LIST=<signals> com-
mand’s report format. These two commands do not honor the INPUTS: or
OUTPUTS: keyword options, if in effect.

PRINT (PR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-37

Run Command: PRINT (PR)

Function

The PRINT command is used to report selected signal values in a tabular
format during simulation. Output is directed to the terminal.

Usage

The PRINT command is described in Chapter 2.4.

The PRINT command can be restricted to a specified interval of tests, for
patterns, or time, for waveforms, with the PRANGE keyword option:

PRINT PRANGE=<prange spec>

Specifying Signals and Format

The LIST keyword is used to select signals and format the output: The com-
mand form for this selection is:

PRINT LIST=<signals and format>

where <signals and format> has the form of a <signals> specification, pos-
sibly augmented with formatting options. These options are:

1. Inserting one or more blank vertical columns between signals. This is
accomplished by entering an asterisk (*) for each blank column.

2. Forcing a new row in the table. This is accomplished by entering a
pound sign (#) at the desired point.

Commas or whitespace are optional before or after * or #.

For example:
PRINT LIST=u,v,*w**x#y

will cause the simulation output to consist of the value of signal u, followed
by the value of v, followed by a blank column, followed by the value of w,
followed by two blank columns, followed by the value of x. The value of
signal y will be output at the first position of the next line.

The second form of the LIST keyword:
PRINT LIST:

specifies that the values of all signals be reported in “dump” format; groups
of five values ordered alphabetically, according to the symbol section of the
listing file.

The PRINT command’s LIST keyword is “sticky”; any signal specified
will continue to be reported until explicitly removed. Removing signals

Appendix C Run Commands and Keywords PRINT (PR)

C-38 SIMIC User’s Guide Revision 1.0 9/2/91

from the list is accomplished with the NO prefix. For example:
NO PRINT LIST=a,b

removes signals a and b from the list of reported signals. The format options
“*” and “#” are not specified with the NO prefix. The command:

NO PRINT LIST:

removes all signals, thereby terminating PRINT output.

Suppressing Signal Strength

By default, a 15-character set is used to represent combined level and
strength information. Optionally, output can be restricted to a 4-character set
representing levels; 0, 1, X, and Z (although Z represents the combination
of unknown level at floating strength). The VALUES keyword option is used
to select value representation. The command:

PRINT VALUES=LEVELS

selects the 4-character representation, while the command:
PRINT VALUES=STRENGTHS

restores the 15-character default representation.

Requesting Output At Stable Points

The default PRINT operation is to output the requested simulation values
each time the circuit becomes stable. The PSTEP (PS) keyword option can
be used to control frequency of this output, or inhibit it. The command:

PRINT PSTEP=<integer>

changes this interval. For example:

PRINT PSTEP=5

specifies that output occur every fifth stable point.

Output based on attaining a stable state can be disabled with the NO com-
mand prefix:

NO PRINT PSTEP:

Requesting Time-Periodic Output

Output can be requested at specified time intervals using the TSTEP key-
word. The command:

PRINT TSTEP=<integer>

will cause an output to occur every <integer> simulation time-units. If the
time-step specification is preceded by a plus (“+”) sign, output will continue
regardless of circuit stability. For example:

PRINT TSTEP=+100

produces output every 100 time-units, even when the circuit state is stable.

The NO prefix can be used to disable time-periodic output:
NO PRINT TSTEP:

PRINT (PR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-39

The BEGIN keyword option may be used to skew (offset) the first TSTEP
output. This command has the form:

PRINT BEGIN=<integer>

where <integer> specifies the time offset to the first output.

To remove the offset, specify a value of 0:
PRINT BEGIN=0

Requesting Output Based On Activity

The CHANGE keyword option specifies that output be triggered by activity
at monitored signals. The command form is:

PRINT CHANGE=<signals>

where <signals> is a subset of the signals currently being monitored with
the PRINT command (other signals are ignored). This command specifies
that output should occur whenever any of the specified signals changes
state.

The command:
PRINT CHANGE:

will trigger print output when any of the monitored signals changes state.

 Subsequently, the command:
NO PRINT CHANGE=<signals>

would inhibit the specified signals in <signals> from functioning as trig-
gers, while:

NO PRINT CHANGE:

would disable all activity-based output.

Header And Tabular Format Control

SIMIC, by default, limits each output line to 80 columns. The EXPAND key-
word option can be used to modify output line width. The command form:

 PRINT EXPAND:

expands output line width to 132 columns, while the command form:
PRINT EXPAND=INFINITE

allows arbitrary output line width.

The HEADER keyword option controls whether the simulation header, con-
sisting of the simulation options and signal names, be output prior to the tab-
ular simulation values. By default, the header is enabled. The command:

NO PRINT HEADER:

disables the header output, and the command:
print header:

enables it.

When waveform stimuli are used, the test number field of the simulation

Appendix C Run Commands and Keywords PRINT (PR)

C-40 SIMIC User’s Guide Revision 1.0 9/2/91

output can be optionally suppressed with the TNUM keyword option. By
default, this field is present in every record. The command:

NO PRINT TNUM:

suppresses the test field. Each output line will contain the time, followed by
a colon, followed by the requested signal values.

The test field can be restored with the command:
PRINT TNUM:

? (query simulation parameters) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-41

Run Command: ? (query simulation parameters)

Function

The ? command is used to obtain information on circuit parameters and on
current simulation options.

Usage

Each query consists of a question mark (?) followed by a parameter key-
word specifying the type of request. Optional whitespace may delimit the
question mark and keyword. Requests for circuit parameter values also
require the LIST or PARTS keyword, whichever is appropriate, to identify
the signals or elements of interest.

The CHECK keyword requests the current values of timing check parame-
ters, and whether a WARN, BREAK, or XPROPAGATE command option is
currently active for any primitive that supports these checks. The command:

?CHECK PARTS=<parts_ff>

requests this information for the parts specified in <parts_ff>, while:
?CHECK PARTS:

requests this information for all parts supporting timing checks.

The DECAY keyword can be used to request the current decay time of any
signal in the circuit. The command:

?DECAY LIST=<signals>

requests decay times of the specified signals, while:
?DECAY LIST:

requests the decay time of every signal.

The DEFINE keyword can be used to request the current values of global
simulation parameters and definitions. The command form is:

?DEFINE

The DELAY keyword can be used to request the current rise and fall delays
of any signal in the circuit. The command:

?DELAY LIST=<signals>

requests the delays of the specified signals, while:
?DELAY LIST:

requests the delay of every signal.

The LOADING keyword requests signal loading information. The com-
mand:

?LOADING LIST=<signals>

requests the loading at the specified signals, while:

Appendix C Run Commands and Keywords ? (query simulation parameters)

C-42 SIMIC User’s Guide Revision 1.0 9/2/91

?LOADING LIST:

requests the loading at every signal.

The PRINT keyword can be used to determine the signals currently being
reported by the PRINT command. The command form is:

?PRINT

The SPIKE keyword can be used to request the current values of the spike
generation parameters (FILTER and LIBERAL attributes) of any signal in
the circuit. The command:

?SPIKE LIST=<signals>

requests the spike control parameter values of the specified signals, while:
?SPIKE LIST:

requests the spike control parameter values of every signal.

The WRITE keyword can be used to determine the signals currently being
reported by the WRITE command. The command form is:

?WRITE

QUIT (QU) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-43

Run Command: QUIT (QU)

Function

The QUIT command is used to exit SIMIC.

Usage

A SIMIC session is terminated with the command:

QUIT

Appendix C Run Commands and Keywords RESTORE (RE)

C-44 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: RESTORE (RE)

Function

The RESTORE command is used to restore a specified circuit state to be
used as the initial state for subsequent simulation.

Usage

The TNUM keyword is used to specify the state to be restored. If the circuit
state is restored from a checkpoint file, this file is assumed to have the
default file name and the default extension sav. The FILE keyword may be
used to explicitly specify the checkpoint file’s name.

Restoring The Initial Unknown State

The command:
RESTORE TNUM=0

restores the circuit to its initial state prior to simulation (with all signal val-
ues unknown), the simulation time to 0, and the Test number to 1.

Restoring The Last Stable State

The command:
RESTORE TNUM=*

restores the circuit to its most recent stable state, and the simulation time and
Test number to their values at that time.

Restoring A Checkpoint State

The command:

RESTORE FILE=<file name>

may be used to specify the checkpoint file if this is not the default file.

The command:

RESTORE TNUM=?

may be used to determine the test numbers corresponding to all saved states
in the checkpoint file.

The command:

RESTORE TNUM=<tnum>

restores the state previously saved in the checkpoint file at Test <tnum>.

RESTORE (RE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-45

By default, the Test number and simulation time are also restored to their
values at the time the state was saved. The command:

NO RESTORE PRANGE:

overrides this default, and forces the Test number and simulation time to
remain at their current values after the saved state is restored. For example,
the command sequence

NO RESTORE PRANGE:

RESTORE TNUM=500

causes the state previously saved at Test 500 to be restored, but does not
affect the current Test number and simulation time.

See the Section Replaying Portions of the Simulation in Chapter 2.6 for
more information on the RESTORE command.

Appendix C Run Commands and Keywords SAVE (SA)

C-46 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: SAVE (SA)

Function

The SAVE command is used to create a checkpoint file. Only stable circuit
states are saved. Saved states can be reloaded with the RESTORE command.

Usage

The SAVE command can be restricted to a specified interval of tests, for pat-
terns, or time, for waveforms, with the PRANGE keyword option:

SAVE PRANGE=<prange spec>

By default, the checkpoint file has the default file name and the default
extension sav. This file can be explicitly named with the FILE keyword:

SAVE FILE=<file name>

The PSTEP keyword option initiates saving circuit states. This command
specifies an interval (count) of stable states over which saves should occur:

SAVE PSTEP=<integer>

For example:

SAVE PSTEP=250

causes every 250-th stable state to be saved in the checkpoint file. For pat-
tern stimuli, this corresponds to saving the circuit state every 250 tests. This
interval may be greater for waveform and timing generator stimulus modes,
since the circuit state may not stabilize by the end of every stimulus state.

The special zero value:

SAVE PSTEP=0

causes the current state to be saved in the checkpoint file, if it is stable.

The command:

NO SAVE PSTEP:

disables saving states in the checkpoint file.

See the Section Replaying Portions of the Simulation in Chapter 2.6 for
more information on the SAVE command.

SET (SE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-47

Run Command: SET (SE)

Function

The SET command can be used to force signals to remain at specified values
for a single test.

The SET command can be used to modify the delays of specified signals at
run time.

The SET command can be used to modify decays at specified signals at run
time.

The SET command can be used to modify timing check parameters at sup-
ported elements.

Usage

Forcing Signal Values

Signals may be forced to logic-0, logic-1, X (unknown), or Z (floating
unknown) with the respective commands:

SET ZERO=<signals> TNUM=<tnum>

SET ONE=<signals> TNUM=<tnum>

SEt X=<signals> TNUM=<tnum>

SET HIZ=<signals> TNUM=<tnum>

The specified signals will be forced to the specified value at the start of the
specified test. If the TNUM keyword option is omitted, the signals will be
forced to the specified value at the start of the next test, after simulation is
resumed. At the end of the test, the forced signals are released to assume
consistent states.

Values to be SET at specified signals are scheduled in a queue. The NO pre-
fix may be used to cancel specific SET operations. The LIST keyword, with
either a list of signals or its colon form, may be additionally used to release
signals regardless of forced value. For example:

NO SET ONE=a,b TNUM=50

cancels a previous SET command forcing signals a and b to logic-1 at test
50 (but does nothing if they are not forced to this value). The command:

NO SET ONE: TNUM=50

cancels all SETs forcing signals to logic-1 at test 50, while:
NO SET LIST: TNUM=50

cancels all SET commands that force any values at test 50. If the TNUM key-
word option is omitted in the NO SET command, the next test is implied.

Appendix C Run Commands and Keywords SET (SE)

C-48 SIMIC User’s Guide Revision 1.0 9/2/91

Modifying Signal Delays

The FALL keyword option allows modification of the specified signal’s fall
delays, without affecting their rise delays. The RISE keyword option allows
modification of the specified signals’ rise delays, without affecting their fall
delays. The CHANGE keyword option sets both the rise and fall delays of the
specified signals to the specified value:

SET FALL=<delay spec> LIST=<signals>

SET RISE=<delay spec> LIST=<signals>

SET CHANGE=<delay spec> LIST=<signals>

The LIST keyword’s colon form can also be used to specify “all signals”.

The delay specification <delay spec> can either be an integer or an integer
percentage; an integer between 0 and 100, inclusive, followed by a percent
sign (%), and optionally preceded by a plus (+) or minus(-) sign.

An integer specifies an absolute value. For example,

SET RISE=20 FALL=15 LIST=a,b

sets the rise delays of signals a and b to 20 and their fall delays to 15, while:

SET CHANGE=1 LIST:

sets all rise and fall delays to one time-unit.

An integer percentage specifies a change relative to the current delay value.
For example:

SET CHANGE=10% LIST: or SET CHANGE=+10% LIST:
increases all rise and fall delays by 10%, while:

SET RISE=-20% FALL=-15% LIST=a,b

decreases the rise delays of signals a and b by 20%, and their fall delays by
15%.

If a signal has been specified that has multiple drivers (wire-tie), then all
drivers will be modified accordingly.

Modifying Signal Delays

The DECAY keyword option allows modification of the specified signal’s
decay times. The command form is:

SET DECAY=<decay spec> LIST=<signals>

The LIST keyword’s colon form can also be used to specify “all signals”.

The decay specification, <decay spec>, can be an integer or an integer per-
centage; an integer between 0 and 100, inclusive, followed by a percent sign
(%), and optionally preceded by a plus (+) or minus(-) sign. Additionally,
this decay specification can be any valid prefix of the word INFINITE:

SET DECAY=INFINITE LIST=<signals>

SET (SE) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-49

An integer specifies an absolute value. For example,

SET DECAY=500 LIST=a,b

sets the decay time at signals a and b to 500.

An integer percentage specifies a change relative to the current delay value.
For example:

SET DECAY=10% LIST: or SET DECAY=+10% LIST:
increases the decay at all signals by 10%, while

SET DECAY=-10% LIST:

decreases the decay at all signals by 10%.

The INFINITE value sets the specified signals’ decay times to infinite: For
example:

SET DECAY=INFINITE LIST:

sets all decays to infinite.

Modifying Functional Timing Check Parameters

The SET command can be used to modify timing-check parameter values.
The run command form:

SET PARTS: <timing-check>=<delay spec>

modifies the specified timing check parameter values in all parts, and

SET PARTS=<parts_ff> <timing-check>=<delay spec>

does so for the selected parts.

The keyword, <timing-check>, is the designated timing-check name (e.g.,
SETUP, HOLD, etc.), and <delay spec> is the specified value, which can
either be an integer or an integer percentage; an integer between 0 and 100,
inclusive, followed by a percent sign (%), and optionally preceded by a plus
(+) or minus(-) sign.

An integer specifies an absolute value. For example:
SET PART=F1 PW.C.L=10

assigns the value 10 time-units to the pulsewidth check parameter for low
clock.

An integer percentage specifies a change relative to the current delay value.
For example:

SET PART: SETUP=+30% HOLD=-20%

increases all setup timing checks by 30% and decrease all hold timing
checks by 20%.

Appendix C Run Commands and Keywords SIMULATE (SI)

C-50 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: SIMULATE (SI)

Function

The SIMULATE command initiates simulation.

Usage

The SIMULATE command is issued after all simulation options have been
specified. The command is:

SIMULATE

The SIMULATE command can be restricted to a specified interval of tests,
for patterns, or time, for waveforms, with the PRANGE keyword option:

SIMULATE PRANGE=<prange spec>

TGEN (TG) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-51

Run Command: TGEN (TG)

Function

The TGEN command causes the tester interface file to be created.

Usage

The TGEN command is described in the Section Test Program Output in
Chapter 2.8.

By default, the tester interface file is not created. The FILE keyword option
specifies a name for this file, thereby causing it to be generated during sim-
ulation. The command form:

TGEN FILE:

specifies that the file’s name be the default file name and the file’s extension
be the default extension tgn. The command form:

TGEN FILE=<file name>

explicitly specifies the file’s name.

The DISCONNECT keyword option controls the signal values written to the
tester interface file for bidirectional primary busses. By default, SIMIC
writes either (a) the value that the bus would have if the primary drive were
disconnected, when there is no wire-tie conflict, or (b) the actual value of the
bus when there is a conflict. The command:

NO TGEN DISCONNECT:

causes the actual value of the primary bus to be written (always including
the effect of the primary drive), while the command:.

TGEN DISCONNECT=ALL

causes the written value to always be the bus value that would result if the
primary drive were disconnected. If the default is overridden, it can be sub-
sequently restored with the command:

TGEN DISCONNECT:

The TARGET keyword option specifies the target tester, which is written to
the tester interface file. The command form is:

TGEN TARGET=<name>

where <name> is the tester’s name. If unspecified, then the name defaults
to “???”.where <name> is the tester’s name.

The HIZ keyword option defines a threshold depth such that any value at
this depth, or at a weaker depth, be reported as “Z” in the tester interface file.
The command form is:

TGEN HIZ=<integer>

Appendix C Run Commands and Keywords TGEN (TG)

C-52 SIMIC User’s Guide Revision 1.0 9/2/91

where the integer value is less than 32,768. For example:

TGEN HIZ=20000

causes any value whose depth is 20,000 or higher to be written as “Z”.

TRACE (TR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-53

Run Command: TRACE (TR)

Function

The TRACE command is used to trace circuit activity and indicate possible
event causality.

Usage

The TRACE command is described in the Section Tracing Circuit Activity in
Chapter 2.6. By default, signals are not traced.

The TRACE command can be restricted to a specified interval of tests, for
patterns, or time, for waveforms, with the PRANGE keyword option:

TRACE PRANGE=<prange spec>

The LIST keyword option selects signals to be traced, thereby enabling
trace reports. The command form:

TRACE LIST=<signals>

selects individual signals for tracing, while the command form:
TRACE LIST:

specifies that all signals be traced.

The NO command prefix is used to disable signal event tracing. The com-
mand:

NO TRACE LIST=<signals>

selectively disables event tracing for the specified signals, while:
NO TRACE LIST:

disables all event tracing.

The EXPAND keyword option specifies that causality information be addi-
tionally reported for each traced event. The command:

TRACE EXPAND:

globally enables causality information in subsequent trace reports, while the
command:

NO TRACE EXPAND:

disables causality information. By default, trace output does not contain
causality.

The BEGIN keyword option inhibits trace output from the beginning of a
test to the specified time. When used with pattern stimuli, this allows “slow”
sections of the logic to be located quickly. The command:

TRACE LIST: BEGIN=<time>

causes events occurring earlier the specified time within each test to be fil-
tered from the trace output. The command:

Appendix C Run Commands and Keywords TRACE (TR)

C-54 SIMIC User’s Guide Revision 1.0 9/2/91

NO TRACE BEGIN:

disables the BEGIN keyword option.

By default, TRACE messages are displayed at the terminal. This output is
controlled with the TERM keyword. The command:

NO TRACE TERM:

disables trace output to the terminal, while the command:
TRACE TERM:

re-enables trace output to the terminal.

Additionally, the FILE keyword option can be used to independently direct
trace output to a file. The command form:

TRACE FILE:

designates the file with default file name and default extension trc. The
command form:

TRACE FILE=<file name>

explicitly names this file. The NO prefix can be used to disable trace output
to a file:

NO TRACE FILE:

WARN (WA) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-55

Run Command: WARN (WA)

Function

The WARN command is used to monitor the circuit during simulation and
obtain messages concerning the occurrence of undesirable situations such as
timing problems, switching hazards, wire-tie conflicts, and oscillations.

Previously-set WARN conditions are cancelled using the NO prefix. Unless
explicitly indicated, keyword options that support the keyword=value field
format also support this format with the NO prefix. For example:

NO WARN SPIKE=sig1

cancels the specific request to generate a warning message whenever a spike
hazard occurs at signal sig1. All keyword options support the keyword:

field format with the NO prefix. For example:
NO WARN SPIKE:

cancels all warning messages for the occurrence of spike hazards.

Warning messages for oscillations (OSCILLATION), wire-tie conflicts
(CONFLICT), strobe errors (STROBE), primary input changes while the cir-
cuit is unstable (UNSTABLE), and all part timing checks (SETUP, HOLD,
PW) are enabled by default. All other warnings are initially disabled.

Usage

See the Sections Setting Simulation Warnings and Setting Simulation Break-

points in Chapter 2.6 for a complete description of the WARN command.

The WARN command can be restricted to a specified interval of tests, for pat-
terns, or time, for waveforms, with the PRANGE keyword option:

WARN PRANGE=<prange spec>

Warn On A Transition To Unknown

The MEMLATCH keyword specifies a transition from a known state to an
unknown state at a SIMIC primitive D-latch or edge-triggered flip-flop due
to a sensitized unknown input (e.g., unknown clock):

WARN MEMLATCH=<signals_ff>

triggers a warning when an unknown input value is sensitized at a built-in
memory element whose output is one of the specified signals, while:

WARN MEMLATCH:

triggers a warning when the state of any built-in memory element becomes
unknown due to a sensitized unknown input.

Appendix C Run Commands and Keywords WARN (WA)

C-56 SIMIC User’s Guide Revision 1.0 9/2/91

The X keyword specifies a level transition from a known state to an
unknown state, 1→X, 0→X:

WARN X=<signals>

triggers a warning when any of the specified signals becomes unknown,
while:

WARN X:

triggers a warning when any signal becomes unknown.

Warn On The Occurrence Of Timing Hazards

The timing hazards described in this section are primarily due to the distri-
bution of propagation delays within the circuit.

The HAZARD keyword is a shorthand designation of all switching hazards—
pulse, spike, or near. The command:

WARN HAZARD=<signals>

triggers a warning when a pulse, spike, or near hazard occurs at any of the
specified signals. For example, the command:

WARN HAZARD=sig1

is equivalent to:
WARN PULSE=sig1 SPIKE=sig1 NEAR=sig1

The command:
WARN HAZARD:

triggers a warning when a pulse, spike, or near hazard occurs at any signal.

The MEMSPIKE keyword specifies the occurrence of a spike hazard at a
flip-flop primitive, and is therefore a subset of SPIKE. It narrows focus to
spikes that could cause steady-state errors. The command:

WARN MEMSPIKE=<signals_ff>

triggers a warning when a spike hazard occurs at any of the specified flip-
flop output signals, while:

WARN MEMSPIKE:

triggers a warning when a spike hazard occurs at any flip-flop. When a spike
occurs at a flip-flop for which the MEMSPIKE keyword option has been
specified, the warn message will contain memspike as the cause of the warn-
ing, rather than spike.

The NEAR keyword specifies the occurrence of a near hazard (see also
DEFINE NEAR). The command:

WARN NEAR=<signals>

triggers a warning when a near hazard occurs at any of the specified signals,
while:

WARN NEAR:

triggers a warning when a near hazard occurs at any signal.

The PULSE keyword specifies the occurrence of a pulse hazard (see also
DEFINE PULSE). The command:

WARN (WA) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-57

WARN PULSE=<signals>

triggers a warning when a pulse hazard occurs at any of the specified signals,
while:

WARN PULSE:

triggers a warning when a pulse hazard occurs at any signal.

The SPIKE keyword specifies the occurrence of a spike hazard. The com-
mand:

WARN SPIKE=<signals>

triggers a warning when a spike hazard occurs at any of the specified signals,
while:

WARN SPIKE:

triggers a warning when a spike hazard occurs at any signal.

The STROBE keyword specifies the condition that a strobe error occurs at
any primary output or bus. This is only defined for tester emulation mode.
The command:

WARN STROBE:

triggers a warning for this situation.

The UNSTABLE keyword designates the condition that a change of primary
input state has occurred while the circuit was still in an unstable state (loss
of fundamental mode of operation for waveform and tester emulation
modes). The command:

WARN UNSTABLE:

triggers a warning for this situation.

Warn On The Occurrence Of Timing Check Violations

Warning messages can be requested for timing check violations at SIMIC
latches and flip-flops. The PARTS keyword is used to specify which mem-
ory elements to monitor for the selected timing check(s). The command:

WARN PARTS=<parts_ff> <timing-check>: ...

selects specific memory elements to monitor. For example,
WARN PART=ff1,ff2 SETUP.D: PW:

triggers warning messages for data setup-time and all pulse-width check
violations at the memory elements named ff1 and ff2.

The command:
WARN PARTS: <timing-check>: ...

triggers warning messages when violations of the specified timing checks
occur at any memory element. For example,

WARN PART: SETUP: HOLD: PW:

will cause any timing check violation at any memory element to trigger a
warning message.

Appendix C Run Commands and Keywords WARN (WA)

C-58 SIMIC User’s Guide Revision 1.0 9/2/91

Warn On The Occurrence Of Wire-tie Conflicts

The CONFLICT keyword specifies a wire-tie conflict. The command:
WARN CONFLICT=<signals>

triggers a warning when a wire-tie conflict occurs at any of the specified sig-
nals, while the command:

WARN CONFLICT:

triggers a warning when any wire-tie conflict occurs.

The CONFLICT keyword accepts the same type of signal specification as
the LIST keyword.

Warn On Oscillation

The OSCILLATION keyword specifies excessive activity in response to a
single change of input state (see also DEFINE OSCILLATION). The com-
mand:

WARN OSCILLATION:

triggers a warning when any signal exhibits excessive activity.

Suppressing Excessive Messages On A Per-Signal Basis

The STOP keyword option controls the maximum number of per-condition
warning messages SIMIC issues for each signal. The command form is:

WARN STOP=<integer>

By default, SIMIC will only display 10 SPIKE messages, 10 PULSE mes-
sages, etc., for each signal. Thus, SIMIC’s default is equivalent to:

WARN STOP=10

The STOP limit must be an integer ranging from 1 to 511.

To prevent any messages from being suppressed, use the command:
NO WARN STOP:

Directing Warn Messages

By default, warning messages are directed to the terminal. The command:
NO WARN TERM:

disables warn messages at the terminal. These messages can be re-enabled
at the terminal with the command:

WARN TERM:

Warn messages can also be directed a file with the FILE keyword. The
form:

WARN FILE=<file name>

explicitly specifies a file name, and possibly its extension. The command:
WARN FILE:

WARN (WA) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-59

specifies a file with the default file name (see DEFINE FILE). If the second
form is used, or if no file extension is specified in the first form, the file’s
default extension is wrn.

Regardless of how they were enabled, warn messages to a file are disabled
with the command:

NO WARN FILE:

Appendix C Run Commands and Keywords WRITE (WR)

C-60 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: WRITE (WR)

Function

The WRITE command is used to report selected signal values in a tabular
format during simulation. Output is directed to a file.

Usage

The WRITE command is described in Chapter 2.4.

The WRITE command can be restricted to a specified interval of tests, for
patterns, or time, for waveforms, with the PRANGE keyword option:

WRITE PRANGE=<prange spec>

Specifying The File Name For The WRITE File

By default, the extension of the file created by the WRITE command is wrt,
and its name is the default name specified by the DEFINE FILE command.
The FILE keyword can be used to explicitly specify this file’s name:

WRITE FILE=<file name>

where <file name> is the name of the file to be written to.

Specifying Signals and Format

The LIST keyword is used to select signals and format the output: The com-
mand form for this selection is:

WRITE LIST=<signals and format>

where <signals and format> has the form of a <signals> specification, pos-
sibly augmented with formatting options. These options are:

1. Inserting one or more blank vertical columns between signals. This is
accomplished by entering an asterisk (*) for each blank column.

2. Forcing a new row in the table. This is accomplished by entering a
pound sign (#) at the desired point.

Commas or whitespace are optional before or after * or #.

For example:
WRITE LIST=u,v,*w**x#y

will cause the simulation output to consist of the value of signal u, followed
by the value of v, followed by a blank column, followed by the value of w,
followed by two blank columns, followed by the value of x. The value of
signal y will be output at the first position of the next line.

WRITE (WR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-61

The second form of the LIST keyword:
WRITE LIST:

specifies that the values of all signals be reported in “dump” format; groups
of five values ordered alphabetically, according to the symbol section of the
listing file.

The WRITE command’s LIST keyword is “sticky”; any signal specified
will continue to be reported until explicitly removed. Removing signals
from the list is accomplished with the NO prefix. For example:

NO WRITE LIST=a,b

removes signals a and b from the list of reported signals. The format options
“*” and “#” are not specified with the NO prefix. The command:

NO WRITE LIST:

removes all signals, thereby terminating WRITE output.

Suppressing Signal Strength

By default, a 15-character set is used to represent combined level and
strength information. Optionally, output can be restricted to a 4-character set
representing levels; 0, 1, X, and Z (although Z represents the combination
of unknown level at floating strength). The VALUES keyword option is used
to select value representation. The command:

WRITE VALUES=LEVELS

selects the 4-character representation, while the command:
WRITE VALUES=STRENGTHS

restores the 15-character default representation.

Requesting Output At Stable Points

The default WRITE operation is to output the requested simulation values
each time the circuit becomes stable. The PSTEP (PS) keyword option can
be used to control frequency of this output, or inhibit it. The command:

WRITE PSTEP=<integer>

changes this interval. For example:

WRITE PSTEP=5

specifies that output occur every fifth stable point.

Output based on attaining a stable state can be disabled with the NO com-
mand prefix:

NO WRITE PSTEP:

Requesting Time-Periodic Output

Output can be requested at specified time intervals using the TSTEP key-
word. The command:

WRITE TSTEP=<integer>

Appendix C Run Commands and Keywords WRITE (WR)

C-62 SIMIC User’s Guide Revision 1.0 9/2/91

will cause an output to occur every <integer> simulation time-units. If the
time-step specification is preceded by a plus (“+”) sign, output will continue
regardless of circuit stability. For example:

WRITE TSTEP=+100

produces output every 100 time-units, even when the circuit state is stable.

The NO prefix can be used to disable time-periodic output:
NO WRITE TSTEP:

The BEGIN keyword option may be used to skew (offset) the first TSTEP
output. This command has the form:

WRITE BEGIN=<integer>

where <integer> specifies the time offset to the first output.

To remove the offset, specify a value of 0:
WRITE BEGIN=0

Requesting Output Based On Activity

The CHANGE keyword option specifies that output be triggered by activity
at monitored signals. The command form is:

WRITE CHANGE=<signals>

where <signals> is a subset of the signals currently being monitored with
the WRITE command (other signals are ignored). This command specifies
that output should occur whenever any of the specified signals changes
state.

The command:
WRITE CHANGE:

will trigger write output when any of the monitored signals changes state.

 Subsequently, the command:
NO WRITE CHANGE=<signals>

would inhibit the specified signals in <signals> from functioning as trig-
gers, while:

NO WRITE CHANGE:

would disable all activity-based output.

Header And Tabular Format Control

SIMIC, by default, limits each output line to 80 columns. The EXPAND key-
word option can be used to modify output line width. The command form:

 WRITE EXPAND:

expands output line width to 132 columns, while the command form:
WRITE EXPAND=INFINITE

allows arbitrary output line width.

WRITE (WR) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-63

The HEADER keyword option controls whether the simulation header, con-
sisting of the simulation options and signal names, be output prior to the tab-
ular simulation values. By default, the header is enabled. The command:

NO WRITE HEADER:

disables the header output, and the command:
WRITE HEADER:

enables it.

When waveform stimuli are used, the test number field of the simulation
output can be optionally suppressed with the TNUM keyword option. By
default, this field is present in every record. The command:

NO WRITE TNUM:

suppresses the test field. Each output line will contain the time, followed by
a colon, followed by the requested signal values.

The test field can be restored with the command:
WRITE TNUM:

Appendix C Run Commands and Keywords XPROPAGATE (XP)

C-64 SIMIC User’s Guide Revision 1.0 9/2/91

Run Command: XPROPAGATE (XP)

Function

The XPROPAGATE command is used to globally enable or disable X-pulse
creation/propagation for spike hazards and near hazards.

The XPROPAGATE command is used to selectively enable or disable X-
pulse creation/propagation for timing check violations at SIMIC D latches
and edge-triggered flip-flop primitives.

The XPROPAGATE command is used to selectively modify the filter and
liberal spike control parameters.

Usage

SIMIC, by default, propagates an X whenever a spike, or part timing viola-
tion (setup, hold, or pulse-width) occurs. X-propagation is controlled by the
XPROPAGATE command.

Globally Enabling And Disabling X-Propagation For Hazards

The SPIKE keyword option globally controls whether X-propagation is
performed for spike hazards. The command:

NO XPROPAGATE SPIKE:

globally disables X-propagation for spike hazards, while the command:
XPROPAGATE SPIKE:

globally re-enables it.

The NEAR keyword option globally controls whether X-propagation per-
formed for near hazards. The command:

XPROPAGATE NEAR:

enables X-propagation for near hazards, while the command:
NO XPROPAGATE NEAR:

disables it.

By default, X-propagation is disabled for near hazards.

Controlling X-Propagation For Functional Timing Violations

The PART keyword option, combined with individual timing check specifi-
cations, allow X-propagation for timing check violations to be controlled on
a per-instance, per-check basis. The command:

NO XPROPAGATE PARTS=<parts_ff> <timing-check>:

disables X-propagation for the specified timing check violations and parts,

XPROPAGATE (XP) Appendix C Run Commands and Keywords

Revision 1.0 9/2/91 SIMIC UserS Guide C-65

while the command:
NO XPROPAGATE PARTS: <timing-check>:

disables X-propagation for the specified timing checks for all parts. Differ-
ent timing checks may be specified in the same command.

 For example, assuming part f1 is a DCF primitive, the command:
NO XPROPAGATE PART=f1 HOLD: SETUP.NR:

would disable X-propagation for all hold-time violations and for setup-time
violations between the NR and CLK pins at this flip-flop.

Subsequently, X-propagation can be re-enabled with the same commands,
except the NO prefix would be omitted. For example:

XPROPAGATE PART=f1 HOLD: SETUP.NR:

re-enables X-propagation for all hold-time violations and for setup-time
violations between the NR and CLK pins at flip-flop f1 of the previous
example.

Modifying Spike Control Parameters

The liberal and filter spike control parameters can be modified indepen-
dently with the XPROPAGATE run command. The commands:

XPROPAGATE FILTER=<filt_lib> LIST=<signals>

XPROPAGATE LIBERAL=<filt_lib> LIST=<signals>

change the filter and liberal parameters, respectively, to the value <filt_lib>

for the selected signals in <signals>. The commands:
XPROPAGATE FILTER=<filt_lib> LIST:

XPROPAGATE LIBERAL=<filt_lib> LIST:

change the filter and liberal parameters, respectively, for all signals.

The <filt_lib> value is a percentage from 0 to 100, and is specified as an
integer, optionally followed by a percentage sign (e.g. 50 or 50%). For
example,

XPROPAGATE FILTER=20% LIST=abc,def

sets the filter spike control parameter of signals abc and def to 20%.

An asterisk (*) may be also be specified for <filt_lib> to restore the spike
control parameters to their original values (in the SNL description). For
example:

XPROPAGATE LIBERAL=* FILTER=* LIST:

would reset all FILTER and LIBERAL parameters to their original values.

Appendix C Run Commands and Keywords XPROPAGATE (XP)

C-66 SIMIC User’s Guide Revision 1.0 9/2/91

Revision 1.0 9/2/91 SIMIC User’s Guide i-1

Index

– (skip !format field) 1.2-12, B-7

!behavioral section 1.2-2
!delay section 1.2-2, 2.7-7 – 2.7-10, B-1, B-4 –

B-6
!delay section, multiple files 2.7-10
!documentation section 1.2-2, 1.2-17, B-1,

B-2
!format statement 1.2-2, 1.2-11, 1.2-12, B-7
!include statement 1.2-2, 2.2-3, B-8

maximum depth B-8
!logical section 1.2-2, 1.2-4 – 1.2-14, B-8 –

B-18
(print/write formatting) 2.4-3, C-37, C-60
$ (line continuation) 1.1-11, 1.2-2
$= (continuation comment) 1.1-11, 1.2-3,

1.2-16, B-2
%declare statement 1.2-2, 1.2-13, 2.4-8, 2.7-5,

B-1, B-2 – B-4
&alphanumeric string filter option 2.9-5,

C-34
&busins (all applied primary busses) meta--

word 2.4-4, C-2
&busses (all primary busses) meta-word 2.4-4,

C-2
&inputs (all primary inputs) meta-word 2.4-4,

C-1
&numeric string filter option 2.9-4, 2.9-5,

C-34
&outputs (all primary outputs) meta-word

2.4-4, C-1
* (print/write formatting) 1.1-7, 2.4-3, C-37,

C-60
* delimiter for CLAMPing pla A-43, A-44,

C-20
* in signal header 2.4-9
* restore filter and liberal SNL values 2.6-36,

C-65
* restore last stable state 2.6-38, C-44
* string specification delimiter 2.9-6
* suppress timing marks 2.8-5
: (keyword form) 1.1-9

>>: prompt 1.1-2
? value for restore tnum 2.6-38, C-44
?check part 2.6-36, C-41
?decay list 2.6-33, C-41
?define 2.5-1, C-41
?delay list 2.6-31, C-41
?loading list 2.6-33, C-41
?print 2.4-9, C-42
?spike list 2.6-35, C-42
?write 2.4-9, C-42

a, apin, aux-pins (SNL keyword) B-13
aanor SIMIC primitive A-6
abbreviation (commands) 1.1-11, C-3 – C-5
abort limit (compilation) 2.2-3, C-30
absolute positioning (stimuli) 2.3-15
abstraction, levels of 2.7-28
adding net loading 2.2-6, C-32
aliases 2.4-4, 2.4-8, C-2, C-26
all listing file option 2.2-5, C-31
all, disconnect option 2.8-10, C-51
and SIMIC primitive A-7
annotation (SNL) 1.2-15 – 1.2-17, B-1, B-2
apad, aux-pads (SNL keyword) B-13
apply

begin 2.3-5, 2.8-1, 2.8-7, 2.8-9, C-10,
C-11, C-12

list 2.3-5, 2.8-7, 2.8-8, 2.8-9, C-10, C-11
patterns 1.1-7, 2.3-5, C-10
period 2.8-1, C-12
timing 2.8-7, 2.8-8, 2.8-9, C-11

applying stimuli 2.3-5, C-10
overriding previous applies 2.3-6

applying time-sets to inputs 2.8-7, C-11
array range 1.2-13, B-2
assigning strobes to outputs 2.8-8, 2.8-9, C-11
attention interrupt 1.1-2

b, bnet, bus-nets (SNL keyword) B-13
b, bpin, bus-pins (SNL keyword) B-13
backannotating loading 2.2-6, C-32
batch operation 1.1-13
bchange, bus-change (SNL keyword) 2.7-11,

B-13

i-2 SIMIC User’s Guide Revision 1.0 9/2/91

bdec, bus-decay (SNL keyword) 2.7-15, B-13
bdel, bus-delay (SNL keyword) 2.7-9, B-6,

B-13
bdom, bus-dominance (SNL keyword)

2.7-22, B-13
bdrive, bus-drive (SNL keyword) 2.7-23,

B-13
behavioral (SNL composition) 2.7-28, B-15
bfall, bus-fall (SNL keyword) 2.7-11, B-14
bfilter, bus-filter (SNL keyword) 2.7-21, B-14
bhdrive, bus-hdrive (SNL keyword) 2.7-23,

B-14
binary (default stimulus format) 2.3-4, 2.3-11,

C-25
blank lines 1.1-11, 1.2-2
bldrive, bus-ldrive (SNL keyword) 2.7-23,

B-14
bliberal, bus-liberal (SNL keyword) 2.7-21,

B-14
blod, bus-loads (SNL keyword) 2.7-11, B-14
boolean (SNL composition) 2.7-28, A-9, B-15
boolean (SNL keyword) A-9, A-12, B-14
boolean, defining new primitive A-8 – A-14,

C-21
bpad, bus-pads (SNL keyword) B-14
break

<timing-check-name> 2.6-21, C-16
change 2.6-19, C-13
conflict 2.6-20, C-16
decay 2.6-20, C-13
fall 2.6-19, C-14
file 2.6-18, C-17
hazard 2.6-21, C-14
memlatch 2.6-19, C-14
memspike 2.6-10, 2.6-21, C-15
near 2.6-20, C-15
oscillation 2.6-20, C-17
part 2.6-21, C-16
prange 2.6-18, C-13
pstep 2.5-3, 2.6-22, C-17
pulse 2.6-20, C-15
rise 2.6-19, C-14
spike 2.6-10, 2.6-20, C-15
strobe 2.6-23, 2.8-8, C-16
term 2.6-18, C-17
tstep 2.6-22, C-17

unstable 2.6-22, C-16
x 2.6-19, C-14

break messages 2.6-12
directing 2.6-18, C-17
format 2.6-18

break, on
periodic interval (test/time) 2.6-22, C-17
specific signal transition 2.6-19, C-13

break/warn, on
combination hazard C-14, C-56
combinational hazard 2.6-20
conflict (wire-tie) 2.6-20, C-16, C-58
input change while unstable 2.6-21, C-16,

C-57
oscillation 2.6-20, C-17, C-58
restricting active interval 2.6-18
sensitized X at memory element 2.6-19,

C-14, C-55
specific signal transition C-55
spike 2.6-10
spike at memory element 2.6-10
strobe error 2.6-22, C-16, C-57
timing-check violation 2.6-21, C-16, C-57
transition to X (unknown) 2.6-19, C-14,

C-56
transition to Z (floating unknown) 2.6-20,

C-13
breakpoints, setting 2.6-18 – 2.6-23, C-13 –

C-18
brise, bus-rise (SNL keyword) 2.7-11, B-14
btgn SIMIC primitive A-15, A-16
btgp SIMIC primitive A-15, A-16
btgrn SIMIC primitive A-17, A-18
btgrp SIMIC primitive A-17, A-18
by-order connection 1.2-6
by-pin-name connection 1.2-6

c, com, comment (SNL keyword) 1.2-16, B-1,
B-2, B-14

cancel command options 1.1-10
cancelling forced values 2.6-30
case sensitivity 1.1-1, 2.1-2, 2.2-3
causality message, format 2.6-24
causality, in trace 2.6-12, 2.6-14, 2.6-24, C-53
change (SNL keyword) 2.7-9, B-5

Revision 1.0 9/2/91 SIMIC User’s Guide i-3

character set (print/write) 2.4-7
character set, and names 1.2-3
checkpoints, creating 2.6-38, C-46
checkpoints, restoring 2.6-37, C-44, C-45
clamp

<boolean-equations> 2.7-28
and A-43, A-46, C-20
bitmap A-43, A-44, A-46, C-20
boolean A-13, C-21
data A-48, A-50, A-52, A-54, C-21
enable A-43, C-21
hiz 2.6-29, C-19
list (with no prefix) 2.6-30
one 2.6-29, C-19
or A-44, A-46, C-20
part A-13, A-43, A-44, A-46, A-48, A-50,

A-52, A-54, C-20, C-21
tnum 2.6-29, C-19
type A-13, C-21
x 2.6-29, C-19
zero 2.6-29, C-19

clamp, compared to set 2.6-29
clamp, overriding set 2.6-30
combinational hazard (see near, pulse, spike

hazards)
combinational timing hazards 2.6-2
command line options

run file 1.1-12
-s 1.1-1, 2.1-2, 2.2-3

command syntax 1.1-9 – 1.1-11
command verb 1.1-9
comments (run commands) C-1
comp, composition (SNL keyword) B-15
compilation (see get) 1.1-6, 2.2-1 – 2.2-5
compilation, saving 2.2-4, C-31
composition (SNL keyword) 2.7-28
continuation 1.1-11, 1.2-2

dcf (dpcf) SIMIC primitive A-19, A-20
debugging commands 2.6-1 – 2.6-39
decays

and stability 2.5-3, C-24
default (0) 2.7-15
in SNL 2.7-15
querying values 2.6-33, C-41

run-time modification 2.6-33, 2.7-16, C-48
default delay tolerance B-3, B-4
default duration (stimuli) 2.3-3, 2.3-7, 2.3-14,

C-25
default duration, and primitive values 2.3-9
default file extensions

ann (backannotate loading) 2.2-7, C-32
brk (break messages) 2.6-18, C-18
hig (general history) 2.9-1, C-33
his (sequential history) 2.9-1, C-33
lst (listing) 2.1-2, 2.2-5, C-31
net (network descr.) 1.1-6, 2.2-2, C-30
rnt (compiled network) 2.2-4, C-31
run (run command) 1.1-12, C-29
sav (save, restore) 2.6-38, C-44, C-46
tgn (tester interface) 2.6-34, 2.8-9, C-51
trc (trace) 2.6-25, C-54
wrn (warn) 2.1-3, 2.6-23, C-59
wrt (write) 2.1-2, 2.4-2, C-60

default filename 1.1-6, 2.1-2
default format (stimuli) 2.3-3, C-25
default format, and primitive values 2.3-9
default point strobe 2.8-9
default strength (stimuli) 2.3-3, 2.3-9, C-25
default strength, and primitive values 2.3-9
default time-set 2.8-7
define

btgdelay 2.5-4, C-23
file 1.1-6, 2.1-2, C-23
near 2.6-4, C-23
oscillation 2.6-5, C-24
p<name> 1.1-6, 2.3-3, C-25
period 2.8-1, C-26
pulse 2.6-2, C-24
rdepth 2.6-6, C-24
s<name> 2.8-8, C-28
stability 2.5-4, C-24
t<name> 2.8-3, C-27
v<name> 2.4-8, C-26
w<name> 2.3-3, C-25
xaddress A-48, A-50, A-52, A-54, C-24

defining stimuli
absolute positioning 2.3-15
default duration 2.3-3, 2.3-14, C-25
default format 2.3-3, C-25
default strength 2.3-3, 2.3-9, C-25

i-4 SIMIC User’s Guide Revision 1.0 9/2/91

explicit duration 2.3-15
hierarchical 2.3-8
name 2.3-3, C-25
positioning precedence 2.3-16
radix escapes 2.3-12
repetitive 2.3-7
stimulus positioning 2.3-14 – 2.3-16
width 2.3-3, C-25

delay (SNL keyword) 2.7-9, B-5
delay names

global 2.7-9, B-5
referencing 2.7-9, B-6
uniqueness 2.7-10

delay specification
intercept-slope form 2.7-8, B-5
two-point form 2.7-8, B-5
typ;min;max 2.7-9, B-6

delay statement 1.2-1, 2.7-7 – 2.7-10, B-4 –
B-6

delay table (see !delay) 2.7-7
delay vs. loading 2.2-1, 2.7-7, 2.7-8, B-5

automatic computation 2.7-12, B-6
delays

and paralleled elements 2.7-13
default (0) 2.7-9, B-4
global (see delay statement)
local 2.7-11
resultant 2.7-12
run-time modification 2.6-15, 2.6-31,

2.6-33, 2.7-14, C-48
depth and strength correspondences 2.6-5,

C-24
disabling X-propagation 2.6-34, C-64
disconnect option, tester interface file 2.8-10,

C-51
dl (dpl) SIMIC primitive A-23, A-24
dncf SIMIC primitive A-21, A-22
dnl SIMIC primitive A-25, A-26
do loops (stimuli) 2.3-7
double quotes 1.2-3, 2.1-2
dpcf (dcf) SIMIC primitive A-19, A-20
dpl (dl) SIMIC primitive A-23, A-24
drive strength, specifying in SNL 2.7-23
drive values, tester 2.8-2
driving (default stimulus strength) 2.3-4,

2.3-9, C-25

driving (drive strength) 2.7-23, B-13, B-14,
B-16

dump format 2.4-3, 2.6-28, C-35, C-37, C-61
dynamic (ON ideal switches) 2.5-4, C-23
dynamic delays (ON ideal switches) 2.5-4,

C-23
dynamic logic, and charge decay 2.5-3

enabling X-propagation 2.6-34, C-64
entering SIMIC 1.1-1
estimating physical circuit size 2.7-29
execute file 1.1-12, C-29
exit on end-of-file 1.1-2
exiting SIMIC 1.1-2, 1.1-8
exnor SIMIC primitive A-27
exor SIMIC primitive A-28
explicit duration (stimuli) 2.3-15

fall (SNL keyword) 2.7-9, B-5
fault simulation 2.5-2
fault-free simulation 2.5-2
file extension, default (see default file exten-

sions)
file extension, specifying 2.1-1
file names

constructing 2.1-1, 2.1-2
explicit 2.1-3
implicit (default) 2.1-2, C-23
spanning directories 2.1-3

filter, spike control parameter 2.6-2, 2.7-20
restoring original SNL value 2.6-36, C-65
run-time modification 2.6-35, C-65

finding all signals at X 2.6-28, C-36
finding all signals at Z 2.6-28, C-36
fixed-point number 2.7-7, B-4
floating (drive strength) 2.7-23, B-13, B-14,

B-16
floating (stimulus strength) 2.3-4, 2.3-9, C-25
floating-point number 2.7-7, B-4
forcing signal states 2.6-29 – 2.6-31, C-19,

C-47
format statements 1.2-11 – 1.2-13, B-6 – B-8
formatting (print/write) 1.1-7
freeing forced values 2.6-30

Revision 1.0 9/2/91 SIMIC User’s Guide i-5

fundamental mode (patterns) 1.1-7, 2.3-1

get
afile 2.2-6, C-32
file 2.2-2, C-30
lfile 2.1-2, 2.2-5, C-31
report 2.2-5, C-31
rfile 2.2-6, C-31
sfile 2.2-4, C-31
stop 2.2-3, C-30
timing 2.2-6, 2.6-32, C-32
type 1.1-6, 2.2-2, 2.7-4, C-30

glitch 2.5-3
good-logic simulation 2.5-2

hex, hexadecimal (array format) 1.2-13, B-3
hex, hexadecimal (output format) 2.4-8, C-26
hexadecimal (stimulus format) 2.3-4, 2.3-11,

C-25
hierarchical names 2.7-4
hierarchical precedence, SNL 2.7-25 – 2.7-26
hierarchical stimuli 2.3-8
hierarchy (SNL macros) 2.7-1
history

file 2.9-2, C-33
list 2.9-1, C-33
prange 2.9-2, C-33
pstep 2.9-2, C-34
string 2.9-4 – 2.9-6, C-34

history file
dump interval 2.9-2, C-34
enabling generation 2.9-1, C-33
general 2.9-1
name-based filtering 2.9-3 – 2.9-6, C-34
restricting active interval 2.9-2
sequential 2.9-1
specifying name 2.9-2, C-33

hold time checks
hold (all hold checks) 2.6-5, 2.7-18, A-20,

A-22, A-24, A-26, A-31, A-33,
A-56, A-63

hold.d 2.6-4, 2.7-17, A-20, A-22, A-24,
A-26

hold.j 2.6-4, 2.7-17, A-31, A-33

hold.k 2.6-4, 2.7-17, A-31, A-33
hold.nr 2.6-4, 2.7-17, A-20, A-22, A-24,

A-26, A-31, A-33, A-56, A-63
hold.ns 2.6-4, 2.7-17, A-20, A-22, A-24,

A-26, A-31, A-33, A-56, A-63
hyphen placeholder 1.2-12

i (stimulus symbol) 2.3-12
i, inet, input-nets (SNL keyword) 1.2-5,

1.2-11, B-15
i, ipin, input-pins (SNL keyword) 1.2-4,

1.2-11, B-15
ihiz, input-hiz (SNL keyword) 2.7-16, B-15
ilod, input-loads (SNL keyword) 2.7-11, B-15
implicit file extensions (see default file exten-

sions)
incremental simulation 2.6-39
inertial filtering 2.5-3, 2.7-19
infinite (run command value)

decay value 2.6-33, C-48
disabling oscillation check 2.6-5, C-24
unlimited print/write width 2.4-5, C-39,

C-62
infinite (SNL decay value) 2.7-15, 2.7-16,

B-13, B-16
inhibit command options 1.1-10
initiate simulation 1.1-7, C-50
input high-impedance default 2.7-16
input list 1.2-4, 1.2-5
input stimuli 2.3-1, 2.3-16
instantiating macros 2.7-3
int, integer2 (2’s-complement format) 1.2-13,

2.4-8, B-3, C-26
int1, integer1 (1’s-complement format)

1.2-13, 2.4-8, B-3, C-26
integer (stimulus format) 2.3-4, 2.3-11, C-25
interval representation 2.6-6, 2.6-7
intervals, and SIMIC output characters 2.6-7
inv SIMIC primitive A-29
ipad, input-pads (SNL keyword) B-15

jkcf (jkncf) SIMIC primitive A-30, A-31
jkncf (jkcf) SIMIC primitive A-30, A-31
jkpcf SIMIC primitive A-32, A-33

i-6 SIMIC User’s Guide Revision 1.0 9/2/91

keyword-field (command) 1.1-9
keyword-field (SNL) 1.1-4, 1.2-1

lastaddr (SNL keyword) A-48, A-50, A-52,
A-54, B-15

leaving SIMIC 1.1-2, 1.1-8
lev, level (SIMIC level format) 1.2-13, 2.4-8,

B-3, C-26
levels (print/write) 2.4-7, C-38, C-61
liberal, spike control parameter 2.6-2, 2.7-20

restoring original SNL value 2.6-36, C-65
run-time modification 2.6-35, C-65

line continuation 1.1-11
list keyword, and valid names 2.4-4, C-1
listing file 2.2-4
listing file options 2.2-5
load SIMIC primitive A-34
loading at signals, querying 2.6-33, C-41
loading timing sets 2.6-31
loading, net 2.7-12, A-34
loading, pin 2.7-11
local delays 2.7-11
logical-0 (zero) 1.2-4, 1.2-6
logical-1 (one) 1.2-4, 1.2-6
look

hiz 2.6-28, C-36
inputs 2.6-27, C-35
list 2.6-26, C-35
outputs 2.6-28, C-36
x 2.6-28, C-36

look message, format 2.6-26

macro (SNL composition) 2.7-28, B-15
macro definition 1.2-4, 2.7-3
macro, instantiating 2.7-3
main type 2.2-2, 2.3-1, 2.7-4
marks, suppressing 2.8-5
master period (see period)
maximum timing 2.2-6, 2.6-31, C-32
memspike 2.6-2, 2.6-10, 2.6-21
meta-words, for primary signals 2.4-4, C-1
minimum timing 2.2-6, 2.6-31, C-32

min-max delays, and tolerance B-3, B-4
modifying decays 2.6-33, C-48
mux SIMIC primitive A-35

n (stimulus symbol) 2.3-12
name (stimulus) 2.3-3, C-25
name-based LIST filtering 2.9-3 – 2.9-6, C-34
names (character set) 1.2-3
nand SIMIC primitive A-36
nandl SIMIC primitive A-37
NE enable mask 2.8-2, 2.8-5, C-27
near filter 2.5-2
near hazard 2.6-2

and X-propagation 2.5-2, 2.6-34, C-64
defining window of 2.6-4, C-23

near propagation 2.5-2
net loading, specifying 2.7-12, A-34
network description file 1.2-1
no (command prefix) 1.1-10
no-envelope (NE) 2.8-2, 2.8-5, C-27
noname (unspecified default file) 1.1-6, 2.1-3
non-return-to-zero (NRZ) 2.8-2, 2.8-4, C-27
nor SIMIC primitive A-38
norl SIMIC primitive A-39
NRZ drive mask 2.8-2, 2.8-4, C-27

o, onet, output-nets (SNL keyword) 1.2-5,
1.2-11, B-15

o, opin, output-pins (SNL keyword) 1.2-4,
1.2-11

ochange, output-change (SNL keyword)
2.6-8, 2.7-11, B-15

oct, octal (array format) 1.2-13, B-3
oct, octal (output format) 2.4-8, C-26
octal (stimulus format) 2.3-4, 2.3-11, C-25
odec, output-decay (SNL keyword) 2.7-15,

B-16
odel, output-delay (SNL keyword) 2.7-9, B-6,

B-16
odom, output-dominance (SNL keyword)

2.7-22, B-16
odrive, output-drive (SNL keyword) 2.7-23,

B-16
ofall, output-fall (SNL keyword) 2.7-11, B-16

Revision 1.0 9/2/91 SIMIC User’s Guide i-7

offsetting (skewing) stimuli 2.3-5
ofilter, output-filter (SNL keyword) 2.7-21,

B-16
ohdrive, output-hdrive (SNL keyword)

2.7-23, B-16
oldrive, output-ldrive (SNL keyword) 2.7-23,

B-16
oliberal, output-liberal (SNL keyword)

2.7-21, B-17
olod, output-loads (SNL keyword) 2.2-7,

2.7-11, B-17
omitting output name 1.2-6
one 1.2-4, 1.2-6
oonand SIMIC primitive A-40
opad, output-pads (SNL keyword) B-17
options banner (print/write) 1.1-7, 2.4-1, 2.5-1
or SIMIC primitive A-41
orise, output-rise (SNL keyword) 2.7-11,

B-17
oscillating signals, set to X 2.6-5, C-23
oscillation check, disabling 2.6-5, C-24
oscillation, definition of 2.6-5, C-23
output list 1.2-4, 1.2-5

p, part (SNL keyword) 1.2-5, 1.2-11, B-17
pads (SNL keyword) 2.7-29, B-17
paralleled elements 2.2-1, 2.7-13
part name 1.2-5
part name (hierarchical) 2.7-4
part statement 1.1-4, 1.2-1, 1.2-5, 2.7-1, B-9
patterns 1.1-6, 2.3-1
patterns, and test emulation mode 2.8-2
period

changing during simulation 2.8-1, C-12
defining 2.8-1
pulse-extended 2.8-3

physical size metrics 2.7-29
pin loading, specifying 2.7-11
pin names, referencing (SNL) A-1, A-2
pla SIMIC primitive A-42 – A-46

defining functionality A-43 – A-46, C-20
placeholder comma 2.7-9
placeholder hyphen 1.2-12, B-7
point strobe (SP) 2.8-8, C-28
posint, posinteger (positive integer format)

1.2-13, 2.4-8, B-3, B-4, C-26
positioning precedence (stimuli) 2.3-16
postdecay (stability) 2.5-4, C-24
power (drive strength) 2.7-23, B-13, B-14,

B-16
power (stimulus strength) 2.3-4, 2.3-9, C-25
prange keyword 2.6-16, 2.6-17, C-2
predecay (stability) 2.5-4
previously-compiled description 2.2-6, C-31
primary input grouping (stimuli) 2.3-7
primary inputs 2.3-1
primitive (SNL composition) 2.7-28, B-15
primitive values (stimuli) 2.3-9
primitives 1.2-7, A-1 – A-65
primitives, user-defined

see boolean element
print

begin 2.4-6, C-39
change 2.4-6, C-39
expand 2.4-5, C-39
header 2.4-5, C-39
list 1.1-7, 2.4-2, 2.4-3, C-37
prange 2.4-7, 2.6-16, C-37
pstep 2.4-6, 2.5-3, C-38
tnum 2.4-5, C-40
tstep 2.4-6, C-38
value 2.4-7, C-38

print/write
all signals 2.4-3, C-37, C-61
array radix 2.7-5
cancel all signals 2.4-4
character set 2.4-7
column width 2.4-4, C-39, C-62
format (#) 2.4-3, C-37, C-60
format (*) 1.1-7, 2.4-3, C-37, C-60
on activity 2.4-6, C-39, C-62
options banner 1.1-7, 2.4-1, 2.5-1
periodically (over time) 2.4-6, C-38, C-61
periodically (stable-states) 2.4-5, 2.5-3,

C-38, C-61
restricting active interval 2.4-7, 2.6-16
signal header 2.4-1
specifying offset 2.4-6, C-39, C-62
specifying signals 2.4-2, 2.4-3, C-37, C-60
suppressing header 2.4-5, C-39, C-63
suppressing strengths 2.4-7, C-38, C-61

i-8 SIMIC User’s Guide Revision 1.0 9/2/91

suppressing test number 2.4-5, C-39, C-63
print/write output format 1.1-8, 2.4-1
probing all signals 2.6-28, C-35
probing signal values 2.6-26 – 2.6-29, C-35,

C-36
probing wire-ties, and displaying drivers

2.6-27
probing, and displaying element inputs 2.6-27,

C-35, C-36
probing, displaying signal loads 2.6-28, C-36
pulse hazard 2.6-2
pulse hazard, defining width of 2.6-2, C-24
pulse-extended period 2.8-3
pulse-width checks

pw (all pulse-width checks) 2.6-5, 2.7-18,
A-20, A-22, A-24, A-26, A-31,
A-33, A-56, A-63

pw.c.h 2.6-4, 2.7-17, A-20, A-22, A-24,
A-26, A-31, A-33, A-56

pw.c.l 2.6-4, 2.7-17, A-20, A-22, A-24,
A-26, A-31, A-33, A-56, A-63

pw.nr 2.6-4, 2.7-17, A-20, A-22, A-24,
A-26, A-31, A-33, A-56, A-63

pw.ns 2.6-4, 2.7-17, A-20, A-22, A-24,
A-26, A-31, A-33, A-56, A-63

query
?check part 2.6-36, C-41
?decay list 2.6-33, C-41
?define 2.5-1, C-41
?delay list 2.6-31, C-41
?loading list 2.6-33, C-41
?print 2.4-9, C-42
?spike list 2.6-35, C-42
?write 2.4-9, C-42

quit 1.1-2, 1.1-8, C-43
quotes 1.2-3, 2.1-2

r, rem, remark (SNL keyword) 1.2-15, B-1,
B-2, B-17

radix escapes (stimuli) 2.3-12
rama SIMIC primitive A-47, A-48

initializing A-48, C-21
X address lines A-48

ramb SIMIC primitive A-49, A-50
initializing A-50, C-21
X address lines A-50

ramc SIMIC primitive A-51, A-52
initializing A-52, C-21
X address lines A-52

RC drive mask 2.8-2, 2.8-4, C-27
RD enable mask 2.8-3, 2.8-5, C-27
reference time 1.1-8
referenced type 1.2-5
referencing global delays 2.7-9, B-6
remarks (run commands) C-1
repetitive sequences 2.3-7
replay simulation 2.6-38, 2.6-39
reserved names (one,unused,zero) 1.2-4
resimulate hazard 2.6-12, 2.6-15
resimulation 2.6-38, 2.6-39
resistive (drive strength) 2.7-23, B-13, B-14,

B-16
resistive (stimulus strength) 2.3-4, 2.3-9, C-25
resistive strength, mapping to depth 2.6-6
response time, and patterns 2.3-2
restore

file 2.6-37, C-44
prange 2.6-39, C-45
tnum 2.6-12, 2.6-15, 2.6-37, 2.6-39, C-44

restore circuit state 2.6-37
from checkpoint file 2.6-37, 2.6-39, C-44
to initially unknown state C-44
to last stable point 2.6-12, 2.6-37, 2.6-38,

C-44
restricting command intervals (prange) 2.4-7,

2.6-16
retrieving previously-compiled description

2.2-6, C-31
return-to-complement (RC) 2.8-2, 2.8-4, C-27
return-to-drive (RD) 2.8-3, 2.8-5, C-27
return-to-float (RF) 2.8-3, 2.8-5, C-27
return-to-one (RO) 2.8-2, 2.8-4, C-27
return-to-zero (RZ) 2.8-2, 2.8-4, C-27
RF enable mask 2.8-3, 2.8-5, C-27
rise (SNL keyword) 2.7-9, B-5
rom SIMIC primitive A-53, A-54

initializing A-54
X address lines A-54

root name 1.2-13, B-2

Revision 1.0 9/2/91 SIMIC User’s Guide i-9

representing declared array 1.2-13
run files 1.1-12
RZ drive mask 2.8-2, 2.8-4, C-27

-s command line option 1.1-1, 2.1-2
save

file 2.6-38, C-46
prange 2.6-38, C-46
pstep 2.6-38

save circuit state 2.6-38
saving circuit state C-46
saving compiled description 2.2-4, C-31
sdepth, series-depth (SNL keyword) 2.7-24,

B-17
default value A-18

search order for type names 2.7-28
series depth, specifying 2.7-24
set

<timing-check-name> 2.6-36, C-49
change 2.6-15, 2.6-31, 2.6-32, 2.7-14,

C-48
decay 2.6-33, 2.7-15, 2.7-16, C-48
fall 2.6-31, 2.6-32, 2.7-14, C-48
hiz 2.6-29, C-47
list 2.6-15, 2.6-32, 2.6-33, 2.7-14, 2.7-16,

C-48
list (with no prefix) 2.6-30, C-47
one 2.6-29, C-47
part 2.6-36, C-49
rise 2.6-31, 2.6-32, 2.7-14, C-48
tnum 2.6-29, C-47
x 2.6-29, C-47
zero 2.6-29, C-47

setting breakpoints 2.6-18 – 2.6-23
setup time checks

setup (all setup checks) 2.6-5, 2.7-18,
A-20, A-22, A-24, A-26, A-31,
A-33, A-56, A-63

setup.d 2.6-5, 2.7-17, A-20, A-22, A-24,
A-26

setup.j 2.6-4, 2.6-5, 2.7-17, 2.7-18, A-31,
A-33

setup.k 2.6-5, 2.7-18, A-31, A-33
setup.nr 2.6-4, 2.6-5, 2.7-17, 2.7-18, A-20,

A-22, A-24, A-26, A-31, A-33,

A-56, A-63
setup.ns 2.6-4, 2.6-5, 2.7-17, 2.7-18, A-20,

A-22, A-24, A-26, A-31, A-33,
A-56, A-63

signal arrays 1.2-13, B-2
signal header (print/write) 1.1-7, 2.4-1
signal loading, querying 2.6-33, C-41
signal name (hierarchical) 2.7-4
signal names, specifying 2.4-4, C-1
SIMIC Network Language (SNL) 1.1-3, 1.1-4,

1.2-1 – 1.2-17, 2.7-1 – 2.7-29
SIMIC primitives 1.2-7
simulate 1.1-7, C-50

prange C-50
simulate-till-stable (patterns) 2.3-1
simulation output format 1.1-8, 2.4-1
simulation, initiating C-50
single quotes 1.2-3
size metrics, totalled

cell widths 2.2-1, 2.7-29, B-9
pads 2.2-1, 2.7-29, B-9
transistors 2.2-1, 2.7-29, B-9

skewing stimuli 2.3-5
skip !format field 1.2-12, B-7
SNL hierarchical precedence 2.7-25 – 2.7-26
SNL keywords

categories B-9
valid values for B-12

SNL statements and keywords B-1 – B-18
SP point strobe 2.8-8, C-28
spacing signals (print/write) 1.1-7
specifying signal names

factored names 2.4-4, C-2
formatted for print/write 1.1-7, 2.4-2, 2.4-3,

C-37, C-60
meta-words 2.4-4, C-1
using part names 2.4-4, C-2
vector aliases 2.4-4, C-2
wildcard 2.4-4, 2.9-4, 2.9-5, 2.9-6, C-2

spike control parameters, querying 2.6-35,
C-42

spike control parameters, run-time modifica-
tion 2.6-35, C-65

spike filter mode 2.5-3, 2.6-10
spike hazard 2.5-3, 2.6-2, 2.7-19
spike messages suppressed 2.6-10, 2.6-23

i-10 SIMIC User’s Guide Revision 1.0 9/2/91

spike propagation control (SNL) 2.7-19 –
2.7-21

spike propagation mode 2.5-3
stability, and decays 2.5-3, C-24
state (SNL keyword) A-9, A-12, B-17
static (ON ideal switches) 2.5-4, C-23
static delays (ON ideal switches) 2.5-4, C-23
static logic, and charge decay 2.5-4
sticky parameters 1.1-10, 2.6-17
stimulus default duration 2.3-3, 2.3-14, C-25
stimulus default format 2.3-3, C-25
stimulus default strength 2.3-3, 2.3-9, C-25
stimulus definition 2.3-1 – 2.3-16
stimulus hierarchy 2.3-8
stimulus name 2.3-3, C-25
stimulus selection 2.3-5
stimulus width 2.3-3, C-25
stimulus-input association 1.1-7, 2.3-5
strength and depth correspondences 2.6-5,

C-24
strengths (print/write) 2.4-7, C-38, C-61
strobe error 2.6-22, 2.8-8
strobes

associating with inputs 2.8-8, 2.8-9
default point strobe 2.8-9
defining 2.8-8, C-28
point strobe (SP) 2.8-8, C-28
window strobe (SW) 2.8-8, C-28

suppressed spike message 2.6-10, 2.6-23
SW window strobe 2.8-8, C-28
switch-level depth 2.7-24
symbols (combined level/strength) 2.3-10
symbols listing file option 2.2-5, C-31

t, type (SNL keyword) 1.2-4, 1.2-5, 1.2-11,
B-18

target tester, specifying 2.8-9, C-51
tcf (tncf) SIMIC primitive A-55, A-56
terminal output 1.1-7
test emulation mode, initiating 2.8-1
test field (print/write) 1.1-8
test number 2.3-2
test period (see period)
tester emulation 2.3-1, 2.8-1 – 2.8-9, C-26
tester interface file 2.8-9 – 2.8-13, C-51

and X-propagation 2.6-34, 2.8-9
tgate SIMIC primitive A-57
tgen

disconnect 2.8-10, C-51
file 2.8-9, C-51
hiz 2.8-11, C-51, C-52
target 2.8-9, C-51

time field (print/write) 1.1-8
time-based inputs (waveforms) 2.3-1
time-set switching 2.3-2
time-set, default 2.8-7
time-sets, defining 2.8-3 – 2.8-7
time-stamp (write) 2.4-1
time-units 2.7-7
time-units keyword 2.7-7, B-6
time-units, and real-time 2.7-7, B-6
timing check parameters, querying 2.6-36,

C-41
timing check parameters, run-time modifica-

tion 2.6-36, C-49
timing checks, and X-propagation 2.6-34, C-64
timing checks, functional 2.7-17, 2.7-18
timing generators 2.3-1, 2.3-2

associating with inputs 2.8-7
default 2.8-7
drive masks 2.8-2
enable masks 2.8-2
NE enable mask 2.8-2, 2.8-5, C-27
NRZ drive mask 2.8-2, 2.8-4, C-27
RC drive mask 2.8-2, 2.8-4, C-27
RD enable mask 2.8-3, 2.8-5, C-27
RF enable mask 2.8-3, 2.8-5, C-27
RO drive mask 2.8-2, 2.8-4, C-27
RZ drive mask 2.8-2, 2.8-4, C-27
suppressing marks 2.8-5

timing hazards, combinational 2.6-2
timing set, typical default 2.6-31
timing sets, loading 2.6-31
timing table selection 2.2-6, C-32
timing-checks (SNL keyword) 2.6-4, 2.7-17,

2.7-18, B-18
tinvn SIMIC primitive A-58
tinvp SIMIC primitive A-59
tncf (tcf) SIMIC primitive A-55, A-56
tolerance, (SNL keyword) B-3, B-4
topological checks 2.2-1

Revision 1.0 9/2/91 SIMIC User’s Guide i-11

tpadn SIMIC primitive A-60
tpadp SIMIC primitive A-61
tpcf SIMIC primitive A-62, A-63
trace

begin 2.6-26, C-53
expand 2.6-12, 2.6-24, C-53
file 2.6-25, C-54
list 2.6-12, 2.6-15, 2.6-25, C-53
prange 2.6-24, C-53
term 2.6-25, C-54

trace activity 2.6-12
trace messages, format 2.6-24
trace, and slowest paths 2.6-26
trace, removing 2.6-15
trace, show causality 2.6-12
tracing circuit activity 2.6-24 – 2.6-26, C-53
trans, transistors (SNL keyword) 2.7-29,

B-18
troubleshooting design problems 2.6-1 – 2.6-39
true-value simulation 2.5-2
type block 1.2-4, 1.2-5, 2.7-1, B-8
type name 1.2-4
type names, and search order 2.7-28
type statement 1.1-4, 1.2-1, 1.2-4, 2.7-1, B-8
typical timing 2.2-6, 2.6-31, C-32

unused (SNL reserved name) 2.7-27
unused pins 1.2-4, 2.7-27
user-defined primitives

see boolean element
utgrn SIMIC primitive A-64
utgrp SIMIC primitive A-65

vector aliases 2.4-4, 2.4-8, C-2, C-26
vector range 1.2-13, B-2
vectors 1.2-13, B-2
version number 1.1-1

w, width (SNL keyword) 2.7-29, B-18
warn

<timing-check-name> C-57
conflict C-58
file C-58

hazard C-56
memlatch C-55
memspike C-56
near C-56
oscillation C-58
part C-57
prange C-55
pulse C-57
spike C-57
stop 2.6-23, C-58
strobe 2.8-8, C-57
term C-58
unstable C-57
x C-56

warn command
(also, see break) 2.6-23
and break option differences 2.6-23
defaults 2.6-24, C-55
syntax C-55 – C-59

warning messages
directing C-58
format 2.6-23
suppressing excessive messages 2.6-23,

C-58
waveforms 2.3-1, 2.3-2
whitespace 1.1-9, 1.2-1
width (stimulus) 2.3-3, C-25
width, and stimulus radix 2.3-13
wildcard, in signal names 2.4-4, 2.9-4, 2.9-5,

2.9-6, C-2
window strobe (SW) 2.8-8, C-28
wired-and (0-dominance) 2.7-22
wired-or (1-dominance) 2.7-22
wire-tie dominance 2.7-22

0, 1, X 2.7-23
wire-tie, conflict (X-dominance) 2.7-22
wire-ties, creating 2.7-22
wiring delays 2.2-6, C-32
write

begin 2.4-6, C-62
change 2.4-6, C-62
expand 2.4-5, C-62
file 2.1-2, 2.4-2, C-60
header 2.4-5, C-63
list 2.4-2, 2.4-3, C-60
prange 2.4-7, 2.6-16, C-60

i-12 SIMIC User’s Guide Revision 1.0 9/2/91

pstep 2.4-6, 2.5-3, C-61
tnum 2.4-5, C-63
tstep 2.4-6, C-61
value 2.4-7, C-61

write options (see print/write)

X (stimulus symbol) 2.3-11
X address lines

at rama A-48
at ramb A-50
at ramc A-52
at rom A-54
threshold C-24

X, finding all unknown signals 2.6-28, C-36
xpropagate

<timing-check-name> 2.6-34, C-64, C-65
filter 2.6-35, C-65
liberal 2.6-35, C-65
list 2.6-35, 2.6-36, C-65
near 2.5-2, 2.6-34, C-64
part 2.6-34, C-64, C-65
spike 2.5-3, 2.6-10, 2.6-34, 2.7-21, C-64

X-propagation, disabling 2.6-34, C-64
X-propagation, enabling 2.6-34, C-64
X-pulse creation/propagation 2.5-2, 2.5-3

Z (stimulus symbol) 2.3-12
Z threshold, tester interface file 2.8-11, C-51,

C-52
Z, at gate inputs 2.7-16
Z, finding all floating-unknown signals 2.6-28,

C-36
zero 1.2-4, 1.2-6

