
CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

bool PL call(term, module)

Call term just like the Prolog predicate once/1. Term is called in the speci�ed module, or in

the context module if module = NULL. Returns TRUE if the call succeeds, FALSE otherwise.

Figure 5.3 shows an example to obtain the number of de�ned atoms. All checks are omitted

to improve readability.

Discarding Data

The Prolog data created during setting up the call and calling Prolog can in most cases be discarded

right after the call. See �gure 5.3 for an example.

void PL mark(bktrk buf)

Mark the global and trail stacks in bktrk buf.

void PL bktrk(bktrk buf)

Undo all changes in the runtime stacks since a snapshot has been made in bu�er using

PL mark(). Changes to the heap are not a�ected.

It is not necessary to call PL bktrk() for each PL mark(). The user should ensure that PL bktrk()

is never called with a bu�er that is created after a bu�er to which PL bktrk() has been called. Thus

PL mark(b1) ... PL mark(b2) ... PL bktrk(b1) is valid, but it is not allowed to call PL bktrk(b2)

after this sequence.

int

count_atoms()

{ term t;

int atoms;

bktrk_buf buf;

PL_mark(&buf); /* mark the global stack */

t = PL_new_term(); /* create `statistics(atoms, Var)' */

PL_unify_functor(t, PL_new_functor(PL_new_atom("statistics"), 2));

PL_unify_atomic(PL_arg(t,1), PL_new_atom("atoms"));

PL_call(t); /* call it */

/* extract the value from the 2nd arg */

atoms = PL_integer_value(PL_atomic(PL_arg(t, 2)));

PL_bktrk(&buf); /* discard global stack data created */

return atoms;

}

Figure 5.3: Calling Prolog

{ 79 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

Instantiating and Constructing Terms

Terms are instantiated as in Prolog itself by uni�cation. Variables can be uni�ed with atomic data,

with a functor and with other terms. New terms are �rst constructed as a single unbound variable.

term PL new term()

Create a new term. The term is an unbound variable living on the global stack. In the current

implementation it lives until Prolog backtracks to before this call. Garbage collection might

change this in the future.

atomic PL new atom(char *)

Create a Prolog atom from a C char *. The contents of the char * are copied to the Prolog

heap.

atomic PL new string(char *)

Create a Prolog string, living on the global stack. The contents of the char * are copied into

Prolog's data area.

atomic PL new integer(long)

Create a Prolog integer from a C long. Note that the integer is truncated to 28 bits. No checks

on this are performed.

atomic PL new
oat(double)

Create a Prolog
oat living on the global stack from double.

functor PL new functor(atomic, int)

Create a Prolog functor identi�er form atomic (which should be an atom) and int, the arity.

Arity is valid for any arity � 0. Arity = 0 is used internally, but none of the interface functions

use it.

bool PL unify(term, term)

Unify two terms. Return value is TRUE or FALSE.

bool PL unify atomic(term, atomic)

Unify a term with an atomic value.

bool PL unify functor(term, functor)

Unify a term with a functor. The uni�cation simply succeeds if term is already instantiated to

a term with functor functor. If term is variable it will be instantiated to the most general term

of functor (e.g. a term with all arguments unbound variables). Otherwise FALSE is returned.

If this call succeeds the arguments can be further instantiated by calling PL arg() and recur-

sively unifying the returned terms.

An example of using these functions is shown in �gure 5.3.

Calling Prolog from C

The Prolog system can be called back from C. This is done by constructing a term with the functions

described above and then calling PL call(). PL call() executes the goal and returns TRUE or FALSE

depending on success or failure of the called predicate. There are no means to backtrack over the

Prolog predicate. If alternatives are wanted call findall/3 and read the result from the third

argument.

{ 78 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

pl_display(t)

term t;

{ functor functor;

int arity, n;

switch(PL_type(t))

{ case PL_VARIABLE:

printf("_%d", t);

break;

case PL_ATOM:

printf("%s", PL_atom_value(PL_atomic(t)));

break;

case PL_STRING:

printf("\"%s\"", PL_string_value(PL_atomic(t)));

break;

case PL_INTEGER:

printf("%d", PL_integer_value(PL_atomic(t)));

break;

case PL_FLOAT:

printf("%f", PL_float_value(PL_atomic(t)));

break;

case PL_TERM:

functor = PL_functor(t);

arity = PL_functor_arity(functor);

printf("%s", PL_atom_value(PL_functor_name(functor)));

printf("(");

pl_display(PL_arg(t, 1));

for(n = 2; n <= arity; n++)

{ printf(", ");

pl_display(PL_arg(t, n));

}

printf(")");

break;

default:

PL_fatal_error("Illegal type in pl_display(): %d",

PL_type(t));

}

PL_succeed;

}

Figure 5.2: Foreign de�nition of display/1

{ 77 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

atomic PL atomic(term)

Return the atomic value of term in Prolog internal representation. Term should be atomic

(e.g. atom, integer,
oat or string).

long PL integer value(atomic)

Transforms an integer from Prolog internal representation into a C long.

double PL
oat value(atomic)

Transforms a
oat from Prolog internal representation into a C double.

char * PL atom value(atomic)

Transforms an atom from Prolog internal representation into a 0-terminated C char *. The

pointer points directly into the Prolog heap and can assumed to be static. The contents of the

character string however should under NO circumstances be modi�ed.

char * PL string value(string)

Transform a string from Prolog internal representation into a C char *. The pointer points

directly into the Prolog data area. Unlike the pointer returned by PL atom value() the C user

should copy the value to a private data area if its value should survive the current foreign

language call. Like PL atom value(), changing the contents of the character string is NOT

allowed.

functor PL functor(term)

term should be a complex term. The return value is a unique identi�er of the term's name

and arity. The following example demonstrates this:

pl_same_functor(t1, t2)

term t1, t2;

{ if (PL_type(t1) != PL_TERM || PL_type(t2) != PL_TERM)

PL_fail;

if (PL_functor(t1) == PL_functor(t2))

PL_succeed;

PL_fail;

}

atomic PL functor name(functor)

Return an atom representing the name of functor. To get the functor name as char * of a term

which is known to be compound:

#define functor name(term) PL atom value(PL functor name(PL functor(term)))

int PL functor arity(functor)

Return a C integer representing the arity of functor.

term PL arg(term, int)

Return the int-th argument of term. Argument counting starts at 1 and is valid up to and

including the arity of term. No checks on these boundaries are performed.

Figure 5.2 shows a de�nition of display/1 to illustrate the described functions.

{ 76 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

typedef struct /* define a context structure */

{ ...

} context;

foreign_t

my_function(a0, a1, handle)

term a0, a1;

foreign_t handle;

{ struct context * ctxt;

switch(PL_foreign_control(handle))

{ case PL_FIRST_CALL:

ctxt = (struct context *) malloc(sizeof(struct context));

...

PL_retry(ctxt);

case PL_REDO:

ctxt = (struct context *) PL_foreign_context(handle);

...

PL_retry(ctxt);

case PL_CUTTED:

free(ctxt);

PL_succeed;

}

}

Figure 5.1: Skeleton for non-deterministic foreign functions

Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of type term. To analyse

a term one should �rst obtain the type of the term. Primitive terms can then be transformed

into atomic data in internal Prolog representation. This atomic data can be transformed into C-

data types. Complex terms are analysed in terms on their functor and arguments. The arguments

themselves are terms, allowing the same procedure to be repeated recursively.

int PL type(term)

Obtain the type of term, which should be a term returned by one of the other interface

predicates or passed as an argument. The function returns the type of the Prolog term. The

type identi�ers are listed below.

PL VARIABLE An unbound variable. The value of term as such is a unique

identi�er for the variable.

PL ATOM A Prolog atom.

PL STRING A Prolog string.

PL INTEGER A Prolog integer.

PL FLOAT A Prolog
oating point number.

PL TERM A compound term. Note that a list is a compound term

with name `.' and arity 2.

{ 75 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

non-deterministic foreign predicates is slightly more complicated as the foreign function needs context

information for generating the next solution. Note that the same foreign function should be prepared

to be simultaneously active in more than one goal. Suppose the natural number below n/2 is a non-

deterministic foreign predicate, backtracking over all natural numbers lower than the �rst argument.

Now consider the following predicate:

quotient_below_n(Q, N) :-

natural_number_below_n(N, N1),

natural_number_below_n(N, N2),

Q =:= N1 / N2, !.

In this predicate the function natural number below n/2 simultaneously generates solutions for

both its invocations.

Non-deterministic foreign functions should be prepared to handle three di�erent calls from Prolog:

Initial call (PL FIRST CALL)

Prolog has just created a frame for the foreign function and asks it to produce the �rst answer.

Redo call (PL REDO)

The previous invocation of the foreign function associated with the current goal indicated it

was possible to backtrack. The foreign function should produce the next solution.

Terminate call (PL CUTTED)

The choice point left by the foreign function has been destroyed by a cut. The foreign function

is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type foreign t ap-

pended to the argument list for deterministic foreign functions. The macro PL foreign control()

extracts the type of call from the control argument. The foreign function can pass a context

handle using the PL retry() macro and extract the handle from the extra argument using the

PL foreign context() macro.

void PL retry(handle)

The foreign function succeeds while leaving a choice point. On backtracking over this goal the

foreign function will be called again, but the control argument now indicates it is a `Redo' call

and the macro PL foreign context() will return the handle passed via PL retry(). This handle

is a 30 bits signed value (two bits are used for status indication).

int PL foreign control(control argument)

Extracts the type of call from the control argument. The return values are described above.

Note that the function should be prepared to handle the PL CUTTED case and should be aware

that the other arguments are not valid in this case.

long PL foreign context(control argument)

Extracts the context from the context argument. In the call type is PL FIRST CALL the context

value is 0L. Otherwise it is the value returned by the last PL retry() associated with this goal

(both if the call type is PL REDO as PL CUTTED).

Note: If a non-deterministic foreign function returns using PL succeed or PL fail, Prolog assumes

the foreign function has cleaned its environment. No call with control argument PL CUTTED will

follow.

The code of �gure 5.1 shows a skeleton for a non-deterministic foreign predicate de�nition.

{ 74 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

5.4 Interface Data types

The interface functions can be divided into two groups. The �rst group are functions to obtain data

from Prolog or pass data to Prolog. These functions use Prolog internal data types. The second

group consists of type conversion functions convert between Prolog internal data and C primitive

types. Below is a description of the Prolog data types used in the interface.

term Terms represent arbitrary Prolog data (variables, atoms, integers,
oats and compound

terms). Terms live either until backtracking takes us back to a point before the term was

created or the garbage collector has collected the term.

atomic Atomics are Prologs primitive data types (integers, atoms and
oats). They can be trans-

formed to C data types (int, char * resp. double). The Prolog representation for an integer is

a tagged version of that integer. The mapping between C ints and Prolog integers can only be

di�erent over di�erent releases of SWI-Prolog. Atoms are represented by a pointer to a data

structure on the Prolog heap. Each such data structure is a unique representation of a string

(e.g. to verify that two atoms represent the same string comparing the atoms su�ces). The

mapping between atoms and string are likely to vary over di�erent sessions of Prolog. Floats

are represented as (tagged) pointers to a
oat living on the global stack. For their life time

the same rules apply as for terms. Whether two
oats represent the same number can only be

discovered by transforming both to C
oats and then comparing them. Strings are represented

as a tagged pointer to a char * on the global stack or heap. The rules for their lifetime and

comparison equal those for
oats and terms.

functor A functor is the internal representation of a name/arity pair. They are used to �nd the

name and arity of a compound term as well as to construct new compound terms. Like atoms

they live for the whole Prolog session and are unique.

module A module is a unique handle to a Prolog module. Modules are used only to call predicates

in a speci�c module.

5.5 The Foreign Include File

Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function speci�ed in the predicate

de�nition of the foreign predicate. The arguments (1, ..., arity) pass the Prolog arguments to the

goal as Prolog terms. Foreign functions should be declared of type foreign t. Deterministic foreign

functions have two alternatives to return control back to Prolog:

void PL succeed

Succeed deterministically. PL succeed is de�ned as \return TRUE".

void PL fail

Fail and start Prolog backtracking. PL fail is de�ned as \return FALSE".

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using the PL FA NONDETERMINISTIC attribute (see

PL register foreign()) it is possible to register a predicate as a non-deterministic predicate. Writing

{ 73 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

� Communicating about modules

� Printing standard Prolog warning/error messages

� Global actions on Prolog (halt, break, abort, etc.)

� Querying the status of Prolog

A C-�le to be included normally de�nes a number of functions that implement foreign language

Prolog predicates, private support functions and an installation function. The user should compile

this �le into a `.o' �le using `cc -c �le ...', after which Prolog can be asked to load the �le using

the simpli�ed load foreign/2 predicate or the more
exible load foreign/5 predicate. Prolog

will call the Unix loader ld(1) to create an executable. It will then determine the actual size of

the executable, allocate memory for it and call the loader again to create an executable that can be

loaded in the allocated memory. After the executable is loaded the entry point of the new executable

is called. This function should register all de�ned foreign predicates with Prolog.

5.3 Loading Foreign Modules

load foreign(+File, +Entry)

Load a foreign �le or list of �les speci�ed by File. The �les are searched for similar to

consult/1. Except that the `.o' extension is used rather than `.pl'. Thus `test' is a

valid speci�cation for `test.o' in the current directory, `[test, library(basics)]' speci-

�es `test.o' in the current directory and `basics.o' in one of the library directories. To

simplify maintenance of packages in heterogeneous networks the system �rst tries whether the

object �le is available from a subdirectory whose name depends on the system used. The

names of the subdirectories is shown below.

Directory Machine

sun4 Sparc Station 1 and SUN-4

sun3 SUN-3

hpux HP9000 running HPUX

Entry de�nes the entry point of the resulting executable. The entry point will be called by

Prolog to install the foreign predicates.

load foreign(+File, +Entry, +Options, +Libraries, +Size)

The �rst two arguments are identical to those of load foreign/2. Options is (a list of)

additional option to be given to the loader. The default command is:

ld -N -A <symbolfile> -T <offset> -e <entry> -o <executable>

<files> -lc

The options are inserted just before the �les. Libraries is (a list of) libraries to be passed to

the loader. They are inserted just after the �les.

If Size is speci�ed Prolog �rst assumes that the resulting executable will �t in Size bytes and

do the loading in one pass. If the executable turns out to be larger than Size bytes the loading

sequence is started again, using the calculated size. To determine the size of an executable

specify a size that is too small. Prolog will then print the actual size on the current output

stream.

foreign �le(?File)

Is true if File is the absolute path name of a �le loaded as foreign �le.

{ 72 {

Chapter 5

Foreign Language Interface

SWI-Prolog o�ers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives

of the foreign language interface are
exibility and performance. Most Prolog foreign language

interfaces allow the user only to pass primitive data via the interface. The user should normally

specify for each argument whether it is an input or output argument as well as the type of the

argument. Because type checking and conversion to/from C data types is done by Prolog the actual

foreign code is usually short if something simple is wanted. The SWI-Prolog interface does not o�er

these primitives. Instead Prolog terms in their internal representation are passed via the interface.

This allows the user to write `logical' predicates and pass arbitrary Prolog data over the interface. As

a trade-o� the user is responsible for type checking and should be careful not to violate consistency

rules as Prolog provides access to its internal data structures.

5.1 Portability of the Foreign Interface

The foreign language interface is highly system dependent. It can easily be ported to machines for

which the C linker allows you to link an object �le using the symbol table of a (running) executable

and use BSD Unix format a.out �les. On many Unix systems such an object �le can be created

using the -A option of ld(1). See the introduction section for a list of systems to which the foreign

interface is available.

5.2 Overview of the Interface

A special include �le called \SWI-prolog.h" should be included with each C-source �le that is to be

loaded via the foreign interface. This C-header �le de�nes various data types, macros and functions

that can be used to communicate with SWI-Prolog. Functions and macros can be divided into the

following categories:

� Analysing arbitrary Prolog terms

� Constructing new terms or instantiating existing ones

� Returning control information to Prolog

� Registering foreign predicates with Prolog

� Calling Prolog from C

71

CHAPTER 4. USING MODULES 1992-6-4

:- module(findall, [findall/3]).

:- dynamic

solution/1.

:- module_transparent

findall/3,

store/2.

findall(Var, Goal, Bag) :-

assert(findall:solution('$mark')),

store(Var, Goal),

collect(Bag).

store(Var, Goal) :-

Goal, % refers to context module of

% caller of findall/3

assert(findall:solution(Var)),

fail.

store(_, _).

collect(Bag) :-

...,

Figure 4.1: Findall using modules

:- op(1150, fx, (meta_predicate)).

meta_predicate((Head, More)) :- !,

meta_predicate1(Head),

meta_predicate(More).

meta_predicate(Head) :-

meta_predicate1(Head).

meta_predicate1(Head) :-

Head =.. [Name|Arguments],

member(Arg, Arguments),

module_expansion_argument(Arg), !,

functor(Head, Name, Arity),

module_transparent(Name/Arity).

meta_predicate1(_). % just a mode declaration

module_expansion_argument(:).

module_expansion_argument(N) :- integer(N).

Figure 4.2: De�nition of meta predicate/1

{ 70 {

CHAPTER 4. USING MODULES 1992-6-4

imported into another module if this module is imported with use module/[1,2]. Note that

predicates are normally exported using the directive module/2. export/1 is meant to handle

export from dynamically created modules.

4.9 Compatibility of the Module System

The principles behind the module system of SWI-Prolog di�er in a number of aspects from the

Quintus Prolog module system.

� The SWI-Prolog module system allows the user to rede�ne system predicates.

� All predicates that are available in the system and user modules are visible in all other modules

as well.

� Quintus has the `meta predicate/1' declaration were SWI-Prolog has the

module transparent/1 declaration.

The meta predicate/1 declaration causes the compiler to tag arguments that pass module sensitive

information with the module using the :/2 operator. This approach has some disadvantages:

� Changing a meta predicate declaration implies all predicates calling the predicate need to be

reloaded. This can cause serious consistency problems.

� It does not help for dynamically de�ned predicates calling module sensitive predicates.

� It slows down the compiler (at least in the SWI-Prolog architecture).

� At least within the SWI-Prolog architecture the run-time overhead is larger than the overhead

introduced by the transparent mechanism.

Unfortunately the transparent predicate approach also has some disadvantages. If a predicate A

passes module sensitive information to a predicate B, passing the same information to a module

sensitive system predicate bothA and B should be declared transparent. Using the Quintus approach

only A needs to be treated special (i.e. declared with meta predicate/1)

1

. A second problem arises

if the body of a transparent predicate uses module sensitive predicates for which it wants to refer

to its own module. Suppose we want to de�ne findall/3 using assert/1 and retract/1

2

. The

example in �gure 4.1 gives the solution.

The Quintus meta predicate/1 directive can in many cases be replaced by the transparent dec-

laration. Figure 4.2 gives a de�nition of meta predicate/1 as available from the `quintus' library

package.

The discussion above about the problems with the transparent mechanism show the two cases in

which this simple transformation does not work.

1

Although this would make it impossible to call B directly.

2

The system version uses recordz/2 and recorded/3.

{ 69 {

CHAPTER 4. USING MODULES 1992-6-4

?- assert(world:done). % asserts done/0 into module world

?- world:assert(done). % the same

?- world:done. % calls done/0 in module world

4.7 Dynamic Modules

Sofar, we discussed modules that were created by loading a module-�le. These modules have been

introduced on facilitate the development of large applications. The modules are fully de�ned at

load-time of the application and normally will not change during execution. Having the notion of a

set of predicates as a self-contained world can be attractive for other purposes as well. For example,

assume an application that can reason about multiple worlds. It is attractive to store the data of a

particular world in a module, so we extract information from a world simply by invoking goals in

this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a

speci�c module will create this module as a side-e�ect if it did not yet exist. Example:

?- assert(world_1, consistent),

world_1:unkown(_, fail).

These calls create a module called world 1 and make the call `world 1:consistent' succeed. Unde�ned

predicates will not start the tracer or autoloader for this module (see unknown/2).

Import and export from dynamically created world is arranged via the predicates import/1 and

export/1:

?- world_5:export(solve(_,_)). % exports solve/2 from world_5

?- world_3:import(world_5:solve(_,_)). % and import it to world_3

4.8 Module Handling Predicates

This section gives the predicate de�nitions for the remaining built-in predicates that handle modules.

:- module(+Module, +PublicList)

This directive can only be used as the �rst term of a source �le. It declares the �le to be a

module �le, de�ning Module and exporting the predicates of PublicList. PublicList is a list of

name/arity pairs.

module transparent +Name/+Arity, ...

Preds is a comma separated list of name/arity pairs (like dynamic/1). Each goal associated

with a transparent declared predicate will inherit the context module from its parent goal.

context module(-Module)

Unify Module with the context module of the current goal. context module/1 itself is trans-

parent.

export(+Head)

Add a predicate to the public list of the context module. This implies the predicate will be

{ 68 {

CHAPTER 4. USING MODULES 1992-6-4

make the user responsible for chosing the correct module, inviting unclear programming by asserting

in other modules. The predicate assert/1 is supposed to assert in the module it is called from and

should do so without being told explicitely. For this reason, the notion context module has been

introduced.

4.6.1 De�nition and Context Module

Each predicate of the program is assigned a module, called it's de�nition module. The de�nition

module of a predicate is always the module in which the predicate was originally de�ned. Each

active goal in the Prolog system has a context module assigned to it.

The context module is used to �nd predicates from a Prolog term. By default, this module is the

de�nition module of the predicate running the goal. For meta-predicates however, this is the context

module of the goal that invoked them. We call this module transparent in SWI-Prolog. In the `using

maplist' example above, the predicate maplist/3 is declared module transparent. This implies the

context module remains extend, the context module of add extension/3. This way maplist/3 can

decide to call extend atom in module extend rather than in it's own de�nition module.

All built-in predicates that refer to predicates via a Prolog term are declared module transparent.

Below is the code de�ning maplist.

:- module(maplist, maplist/3).

:- module_transparent maplist/3.

% maplist(+Goal, +List1, ?List2)

% True if Goal can succesfully be applied to all succesive pairs

% of elements of List1 and List2.

maplist(_, [], []).

maplist(Goal, [Elem1|Tail1], [Elem2|Tail2]) :-

apply(Goal, [Elem1, Elem2]),

maplist(Goal, Tail1, Tail2).

4.6.2 Overruling Module Boundaries

The mechanism above is su�cient to create an acceptable module system. There are however cases

in which we would like to be able to overrule this schema and explicitely call a predicate in some

module or assert explicitly in some module. The �rst is useful to invoke goals in some module from

the user's toplevel or to implement a object-oriented system (see above). The latter is useful to

create and modify dynamic modules (see section 4.7).

For this purpose, the reserved term :/2 has been introduced. All built-in predicates that transform

a term into a predicate reference will check whether this term is of the form `<Module>:<Term>'.

If so, the predicate is searched for in Module instead of the goal's context module. The :/2 operator

may be nested, in which case the inner-most module is used.

The special calling construct <Module>:<Goal> pretends Goal is called from Module instead of the

context module. Examples:

{ 67 {

CHAPTER 4. USING MODULES 1992-6-4

% Define class point

:- module(point, []). % class point, no exports

% name type, default access

% value

variable(x, integer, 0, both).

variable(y, integer, 0, both).

% method name predicate name arguments

behaviour(mirror, mirror, []).

mirror(P) :-

fetch(P, x, X),

fetch(P, y, Y),

store(P, y, X),

store(P, x, Y).

The predicates fetch/3 and store/3 are predicates that change instance variables of instances. The

�gure below indicates how message passing can easily be implemented:

% invoke(+Instance, +Selector, ?ArgumentList)

% send a message to an instance

invoke(I, S, Args) :-

class_of_instance(I, Class),

Class:behaviour(S, P, ArgCheck), !,

convert_arguments(ArgCheck, Args, ConvArgs),

Goal =.. [P|ConvArgs],

Class:Goal.

The construct `Module:Goal' explicitely calls Goal in module Module. It is discussed in more detail

in section ??.

4.6 Meta-Predicates in Modules

As indicated in the introduction, the problem with a predicate based module system lies in the

di�culty to �nd the correct predicate from a Prolog term. The predicate `solution(Solution)' can

exist in more than one module, but `assert(solution(4))' in some module is supposed to refer to the

correct version of solution/1.

Various approaches are possible to solve this problem. One is to add an extra argument to all

predicates (e.g. `assert(Module, Term)'). Another is to tag the term somehow to indicate which

module is desired (e.g. `assert(Module:Term)'). Both approaches are not very attractive as they

{ 66 {

CHAPTER 4. USING MODULES 1992-6-4

4.5 Using the Module System

The current structure of the module system has been designed with some speci�c organisations for

large programs in mind. Many large programs de�ne a basic library layer on top of which the actual

program itself is de�ned. The module user, acting as the default module for all other modules of the

program can be used to distribute these de�nitions over all program module without introducing

the need to import this common layer each time explicitely. It can also be used to rede�ne built-

in predicates if this is required to maintain compatibility to some other Prolog implementation.

Typically, the load�le of a large application looks like this:

:- use_module(compatibility). % load XYZ prolog compatibility

:- use_module(% load generic parts

[error % errors and warnings

, goodies % general goodies (library extensions)

, debug % application specific debugging

, virtual_machine % virtual machine of application

, ... % more generic stuff

]).

:- ensure_loaded(

[... % the application itself

]).

The `use module' declarations will import the public predicates from the generic modules into the

user module. The `ensure loaded' directive loads the modules that constitute the actual application.

It is assumed these modules import predicates from each other using use module/[1,2] as far as

necessary.

In combination with the object-oriented schema described below it is possible to de�ne a neat

modular architecture. The generic code de�nes general utilities and the message passing predicates

(invoke/3 in the example below). The application modules de�ne classes that communicate using

the message passint predicates.

4.5.1 Object Oriented Programming

Another typical way to use the module system is for de�ning classes within an object oriented

paradigm. The class structure and the methods of a class can be de�ned in a module and the

explicit module-boundary overruling describes in section ?? can by used by the message passing

code to invoke the behaviour. An outline of this mechanism is given below.

{ 65 {

CHAPTER 4. USING MODULES 1992-6-4

4.4 Importing Predicates into a Module

As explained before, in the predicate based approach ad<apted by SWI-Prolog, each module has

it's own predicate space. In SWI-Prolog, a module initially is completely empty. Predicates can be

added to a module by loading a module �le as demonstrated in the previous section, using assert or

by importing them from another module.

Two mechanisms for importing predicates explicitely from another module exist. The

use module/[1,2] predicates load a module �le and import (part of the) public predicates of the

�le. The import/1 predicate imports any predicate from any module.

use module(+File)

Load the �le(s) speci�ed with File just like ensure loaded/1. The �les should all be module

�les. All exported predicates from the loaded �les are imported into the context module. The

di�erence between this predicate and ensure loaded/1 becomes apparent if the �le is already

loaded into another module. In this case ensure loaded/1 does nothing; use module will

import all public predicates of the module into the current context module.

use module(+File, +ImportList)

Load the �le speci�ed with File (only one �le is accepted). File should be a module �le.

ImportList is a list of name/arity pairs specifying the predicates that should be imported from

the loaded module. If a predicate is speci�ed that is not exported from the loaded module a

warning will be printed. The predicate will nevertheless be imported to simplify debugging.

import(+Head)

Import predicate Head into the current context module. Head should specify the source module

using the <module>:<term> construct. Note that predicates are normally imported using one

of the directives use module/[1,2]. import/1 is meant for handling imports into dynamically

created modules.

It would be rather inconvient to have to import each predicate refered to by the module, including

the system predicates. For this reason each module is assigned a default module. All predicates

in the default module are available without extra declarations. Their de�nition however can be

overruled in the local module. This schedule is implemented by the exception handling mechanism

of SWI-Prolog: if an unde�ned predicate exception is raised for a predicate in some module, the

exception handler �rst tries to import the predicate from the module's default module. On success,

normal execution is resumed.

4.4.1 Reserved Modules

SWI-Prolog contains two special modules. The �rst one is the module system. This module contains

all built-in predicates described in this manual. Module system has no default module assigned to

it. The second special module is the module user. This module forms the initial working space of

the user. Initially it is empty. The default module of module user is system, making all built-in

predicate de�nitions available as defaults. Built-in predicates thus can be overruled by de�ning them

in module user before they are used.

All other modules default to module user. This implies they can use all predicates imported into

user without explicitely importing them.

{ 64 {

CHAPTER 4. USING MODULES 1992-6-4

In this case we would like maplist to call extend atom/3 in the module extend. A name based

module system will do this correctly. It will tag the atom extend atom with the module and maplist

will use this to construct the tagged term extend atom/3. A name based module however, will

not only tag the atoms that will eventually be used to refer to a predicate, but all atoms that are

not declared public. So, with a name based module system also data is local to the module. This

introduces another serious problem:

:- module(action, [action/3]).

action(Object, sleep, Arg) :-

action(Object, awake, Arg) :-

:- module(process, [awake_process/2]).

awake_process(Process, Arg) :-

action(Process, awake, Arg).

This code uses a simple object-oriented implementation technique were atoms are used as method

selectors. Using a name based module system, this code will not work, unless we declare the selectors

puclic atoms in all modules that use them. Predicate based module systems do not require particular

precautions for handling this case.

It appears we have to choose either to have local data, or to have trouble with meta-predicates.

Probably it is best to choose for the predicate based approach as novice users will not often write

generic meta-predicates that have to be used across multiple modules, but are likely to write pro-

grams that pass data around across modules. Experienced Prolog programmers should be able to

deal with the complexities of meta-predicates in a predicate based module system.

4.3 De�ning a Module

Modules normally are created by loading a module �le. A module �le is a �le holding a module/2

directive as its �rst term. The module/2 directive declares the name and the public (i.e. externally

visible) predicates of the module. The rest of the �le is loaded into the module. Below is an example

of a module �le, de�ning reverse/2.

:- module(reverse, [reverse/2]).

reverse(List1, List2) :-

rev(List1, [], List2).

rev([], List, List).

rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

{ 63 {

Chapter 4

Using Modules

4.1 Why Using Modules?

In traditional Prolog systems the predicate space was
at. This approach is not very suitable for

the development of large applications, certainly not if these applications are developed by more than

one programmer. In many cases, the de�nition of a Prolog predicate requires sub-predicates that

are intented only to complete the de�nition of the main predicate. With a
at and global predicate

space these support predicates will be visible from the entire program.

For this reason, it is desirable that each source module has it's own predicate space. A module

consists of a declaration for it's name, it's public predicates and the predicates themselves. This

approach allow the programmer to use short (local) names for support predicates without worrying

about name con
icts with the support predicates of other modules. The module declaration also

makes explicit which predicates are meant for public usage and which for private purposes. Finally,

using the module information, cross reference programs can indicate possible problems much better.

4.2 Name-based versus Predicate-based Modules

Two approaches to realise a module system are commonly used in Prolog and other languages. The

�rst one is the name based module system. In these systems, each atom read is tagged (normally

pre�xed) with the module name, with the exception of those atoms that are de�ned public. In the

second approach, each module actually implements its own predicate space.

A critical problem with using modules in Prolog is introduced by the meta-predicates that transform

between Prolog data and Prolog predicates. Consider the case where we write:

:- module(extend, [add_extension/3]).

add_extension(Extension, Plain, Extended) :-

maplist(extend_atom(Extension), Plain, Extended).

extend_atom(Extension, Plain, Extended) :-

concat(Plain, Extension, Extended).

62

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

sleep(+Time)

Suspend execution Time seconds. Time is either a
oating point number or an integer. Granu-

larity is dependent on the system's timer granularity (1/60 seconds on most Unix systems). A

negative time causes the timer to return immediately. As Unix is a multi-tasking environment

we can only ensure execution is suspended for at least Time seconds.

{ 61 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

loop :-

generator,

trim_stacks,

potentionally_expensive_operation,

stop_condition, !.

The prolog top level loop is written this way, reclaiming memory resources after every user

query.

3.38 Miscellaneous

dwim match(+Atom1, +Atom2)

Succeeds if Atom1 matches Atom2 in `Do What I Mean' sence. Both Atom1 and Atom2 may

also be integers or
oats. The two atoms match if:

� They are identical

� They di�er by one character (spy � spu)

� One character is insterted/deleted (debug � deug)

� Two characters are transposed (trace � tarce)

� `Sub-words' are glued di�erently (exists�le � existsFile � exists �le)

� Two adjacent sub words are transposed (existsFile � �leExists)

dwim match(+Atom1, +Atom2, -Di�erence)

Equivalent to dwim match/2, but uni�es Di�erence with an atom identifying the the di�erence

between Atom1 and Atom2. The return values are (in the same order as above): equal,

mismatched char, inserted char, transposed char, separated and transposed word.

wildcard match(+Pattern, +String)

Succeeds if String matches the wildcart pattern Pattern. Pattern is very simular the the Unix

csh pattern matcher. The patterns are given below:

? Matches one arbitrary character

* Matches any number of arbitrary characters

[...] Matches one of the characters speci�ed at ... <char>-<char> indicates a range.

f...g Matches any of the patterns of the comma separated list between the brackets.

Example:

?- wildcard_match('[a-z]*.{pro,pl}[%~]', 'a_hello.pl%').

Yes.

gensym(+Base, -Unique)

Generate a unique atom from base Base and unify it with Unique. Base should be an atom.

The �rst call will return <base>1, the next <base>2, etc. Note that this is no warant that the

atom is unique in the system.

13

13

BUG: I plan to supply a real gensym/2 which does give this warrant for future versions.

{ 60 {

