
CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

used

12

.

pro�ler(-Old, +New)

Query or change the status of the pro�ler. The status is one of off, plain or cummulative.

plain implies the time used by childs of a predicate is not added to the time of the predicate.

For status cummulative the time of childs is added (except for recursive calls). Cummulative

pro�ling implies the stack is scanned upto the top on each time slice to �nd all active predicates.

This implies the overhead grows with the number of active frames on the stack. Cummulative

pro�ling starts debuggin mode to disable tail recursion optimisation, which would otherwise

remove the necessary parent environments. Switching status from plain to cummulative

resets the pro�ler. Switching to and from status off does not reset the collected statistics,

thus allowing to suspend pro�ling for certain parts of the program.

reset pro�ler

Swiches the pro�ler to off and clears all collected statistics.

pro�le count(+Head, -Calls, -Promilage)

Obtain pro�le statistics of the predicate speci�ed by Head. Head is an atom for predi-

cates with arity 0 or a term with the same name and arity as the predicate required (see

current predicate/2). Calls is uni�ed with the number of `calls' and `redos' while the pro-

�ler was active. Promilage is uni�ed with the relative number of counts the predicate was

active (cummulative) or on top of the stack (plain). Promilage is an integer between 0 and

1000.

3.37 Memory Management

Note: limit stack/2 and trim stacks/0 have no e�ect on machines that do not o�er dynamic

stack expansion. On these machines these predicates simply succeed to improve portability.

garbage collect

Invoke the global- and trail stack garbage collector. Normally the garbage collector is invoked

automatically if necessary. Explicit invokation might be useful to reduce the need for garbage

collections in time critical segments of the code. After the garbage collection trim stacks/0

is invoked to release the collected memory resources.

limit stack(+Key, +Kbytes)

Limit one of the stack areas to the speci�ed value. Key is one of local, global or trail. The

limit is an integer, expressing the desired stack limit in K bytes. If the desired limit is smaller

than the currently used value, the limit is set to the nearest legal value above the currently

used value. If the desired value is larger than the maximum, the maximum is taken. Finally,

if the desired value is either 0 or the atom unlimited the limit is set to its maximum. The

maximum and initial limit is determined by the command line options -L, -G and -T.

trim stacks

Release stack memory resources that are not in use at this moment, returning them to the

operating system. Trim stack is a relatively cheap call. It can be used to release memory

resources in a backtracking loop, where the iterations require typically seconds of execution

time and very di�erent, potentionally large, amounts of stack space. Such a loop should be

written as follows:

12

show profile/1 is de�ned in Prolog and takes a considerable amount of memory.

{ 59 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

cputime (User) cpu time since Prolog was started in seconds

inferences Total number of passes via the call and redo ports since Prolog was

started.

heapused Bytes heap in use.

local Allocated size of the local stack in bytes.

localused Number of bytes in use on the local stack.

locallimit Size to which the local stack is allowed to grow

global Allocated size of the global stack in bytes.

globalused Number of bytes in use on the global stack.

globallimit Size to which the global stack is allowed to grow

trail Allocated size of the trail stack in bytes.

trailused Number of bytes in use on the trail stack.

traillimit Size to which the trail stack is allowed to grow

atoms Total number of de�ned atoms.

functors Total number of de�ned name/arity pairs.

predicates Total number of predicate de�nitions.

modules Total number of module de�nitions.

externals Total number of external references in all clauses.

codes Total amount of byte codes in all clauses.

Table 3.2: Keys for statistics/2

3.36 Finding Performance Bottlenecks

SWI-Prolog o�ers a statistical program pro�ler similar to Unix prof(1) for C and some other lan-

guages. A pro�ler is used as an aid to �nd performance pigs in programs. It provides information

on the time spent in the various Prolog predicates.

The pro�ler is based on the assumption that if we monitor the functions on the execution stack on

time intervals not correlated to the program's execution the number of times we �nd a procedure

on the environment stack is a measure of the time spent in this procedure. It is implemented

by calling a procedure each time slice Prolog is active. This procedure scans the local stack and

either just counts the procedure on top of this stack (plain pro�ling) or all procedures on the stack

(cummulative pro�ling). To get accurate results each procedure one is interested in should have a

reasonable number of counts. Typically a minute runtime will su�ce to get a rough overview of the

most expensive procedures.

pro�le(+Goal, +Style, +Number)

Execute Goal just like time/1. Collect pro�ling statistics according to style (see profiler/2)

and show the top Number procedures on the current output stream (see show profile/1).

The results are kept in the database until reset profiler/0 or profile/3 is called and can

be displayed again with show profile/1. profile/3 is the normal way to invoke the pro�ler.

The predicates below are low-level predicates that can be used for special cases.

show pro�le(+Number)

Show the collected results of the pro�ler. Stops the pro�ler �rst to avoid interference from

show profile/1. It shows the top Number predicates according the percentage cpu-time

{ 58 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

unknown(-Old, +New)

Unify Old with the current value of the unknown system ag. On success New will be used to

specify the new value. New should be instantiated to either fail or trace and determines the

interpreter's action when an unde�ned predicate which is not declared dynamic is encountered

(see dynamic/1). fail implies the predicate just fails silently. trace implies the tracer is

started. Default is trace. The unknown ag is local to each module and unknown/2 is module

transparent. Using it as a directive in a module �le will only change the unknown ag for

that module. Using the :/2 construct the behaviour on trapping an unde�ned predicate can be

changed for any module. Note that if the unknown ag for a module equals fail the system

will not call exception/3 and will not try to resolve the predicate via the dynamic library

system. The system will still try to import the predicate from the public module.

style check(+Spec)

Set style checking options. Spec is either +<option>, -<option>, ?<option> or a list of such

options. +<option> sets a style checking option, -<option> clears it and ?<option> succeeds

or fails according to the current setting. consult/1 and derivates resets the style checking

options to their value before loading the �le. If {for example{ a �le containing long atoms

should be loaded the user can start the �le with:

:- style_check(-atom).

Currently available options are:

Name Default Description

singleton on read clause/1 (used by consult/1) warns on variables

only appearing once in a term (clause) which have a name

not starting with an underscore.

atom on read/1 and derivates will produce an error message on

quoted atoms or strings longer than 5 lines.

dollar o� Accept dollar as a lower case character, thus avoiding the

need for quoting atoms with dollar signs. System mainte-

nance use only.

discontiguous on Warn if the clauses for a predicate are not together in the

same source �le.

string o� Read and derivates transform "..." into a prolog string

instead of a list of ASCII characters.

3.35 Obtaining Runtime Statistics

statistics(+Key, -Value)

Unify system statistics determined by Key with Value. The possible keys are given in the

table 3.2.

statistics

Display a table of system statistics on the current output stream.

time(+Goal)

Execute Goal just like once/1 (i.e. leaving no choice points), but print used time, number of

logical inferences and the average number of lips (logical inferences per second). Note that

SWI-Prolog counts the actual executed number of inferences rather than the number of passes

through the call- and redo ports of the theoretical 4-port model.

{ 57 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

protocola(+File)

Equivalent to protocol/1, but does not truncate the File if it exists.

noprotocol

Stop making a protocol of the user interaction. Pending output is ushed on the �le.

protocolling(-File)

Succeeds if a protocol was started with protocol/1 or protocola/1 and uni�es File with the

current protocol output �le.

3.34 Debugging and Tracing Programs

trace

Start the tracer. trace/0 itself cannot be seen in the tracer. Note that the Prolog toplevel

treats trace/0 special; it means `trace the next goal'.

tracing

Succeeds when the tracer is currently switched on. tracing/0 itself can not be seen in the

tracer.

notrace

Stop the tracer. notrace/0 itself cannot be seen in the tracer.

debug

Start debugger (stop at spy points).

nodebug

Stop debugger (do not trace, nor stop at spy points).

debugging

Print debug status and spy points on current output stream.

spy(+Pred)

Put a spy point on all predicates meeting the predicate speci�cation Pred. See section 3.3.

nospy(+Pred)

Remove spy point from all predicates meeting the predicate speci�cation Pred.

nospyall

Remove all spy points from the entire program.

leash(?Ports)

Set/query leashing (ports which allow for user interaction). Ports is one of +Name, -Name,

?Name or a list of these. +Name enables leashing on that port, -Name disables it and ?Name

succeeds or fails according to the current setting. Recognised ports are: call, redo, exit,

fail and unify. The special shorthand all refers to all ports, full refers to all ports except

for the unify port (default). half refers to the call, redo and fail port.

visible(+Ports)

Set the ports shown by the debugger. See leash/1 for a description of the port speci�cation.

Default is full.

{ 56 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

absolute �le name(+File, -Absolute)

Expand Unix �le speci�cation into an absolute path. User home directory expansion (~ and

~user) and variable expansion is done. The absolute path is canonised: references to `.' and

`..' are deleted. SWI-Prolog uses absolute �le names to register source �les independant of the

current working directory.

expand �le name(+WildChart, -List)

Unify List with a sorted list of �les or directories matching WildChart. The normal Unix

wildchart constructs `?', `*', `[...]' and `{...}' are recognised. The interpretation of `{...}'

is interpreted slightly di�erent from the C shell (csh(1)). The comma separated argument can

be arbitrary patterns, including `{...}' patterns. The empty pattern is legal as well: `{.pl,}'

matches either `.pl' or the empty string.

chdir(+Path)

Change working directory to Path.

3.32 User Toplevel Manipulation

break

Recursively start a new Prolog top level. This Prolog top level has it's own stacks, but shares

the heap with all break environments and the top level. Debugging is switched o� on entering

a break and restored on leaving one. The break environment is terminated by typing the

system's end-of-�le character (control-D). If the -t toplevel command line option is given

this goal is started instead of entering the default interactive top level (prolog/0).

abort

Abort the Prolog execution and start a new top level. If the -t toplevel command line

options is given this goal is started instead of entering the default interactive top level. Break

environments are aborted as well. All open �les except for the terminal related �les are closed.

The input- and output stream again refers to user.

10

halt

Terminate Prolog execution. Open �les are closed and if the command line option -tty is not

active the terminal status (see Unix stty(1)) is restored.

prolog

This goal starts the default interactive top level. prolog/0 is terminated (succeeds) by typing

control-D.

3.33 Creating a Protocol of the Unser Interaction

SWI-Prolog o�ers the possibility to log the interaction with the user on a �le.

11

All Prolog interac-

tion, including warnings and tracer output, are written on the protocol �le.

protocol(+File)

Start protocolling on �le File. If there is already a protocol �le open then close it �rst. If File

exists it is truncated.

10

BUG: Erased clauses which could not actually be removed from the database, because they are active in the

interpreter, will never be garbage collected after an abort.

11

A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

{ 55 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

setenv(+Name, +Value)

Set Unix environment variable. Name and Value should be instantiated to atoms or integers.

The environment variable will be passed to shell/[0-2] and can be requested using getenv/2.

unsetenv(+Name)

Remove Unix environment variable from the environment.

get time(-Time)

Return the number of seconds that elapsed since the epoch of Unix, 1 January 1970, 0 hours.

Time is a oating point number. Its granularity is system dependant. On SUN, this is 1/60

of a second.

convert time(+Time, -Year, -Month, -Day, -Hour, -Minute, -Second, -MilliSeconds)

Convert a time stamp, provided by get time/1, file time/2, etc. Year is uni�ed with the

year, Month with the month number (January is 1), Day with the day of the month (starting

with 1), Hour with the hour of the day (0{23), Minute with the minute (0{59). Second with

the second (0{59) and MilliSecond with the milli seconds (0{999). Note that the latter might

not be acurate or might always be 0, depending on the timing capabilities of the system.

3.31 Unix File System Interaction

access �le(+File, +Mode)

Succeeds when File exists and can be accessed by this prolog process under mode Mode. Mode

is one of the atoms read, write or execute. File may also be the name of a directory. Fails

silently otherwise.

exists �le(+File)

Succeeds when File exists. This does not imply the user has read and/or write permission for

the �le.

same �le(+File1, +File2)

Succeeds if both �lenames refer to the same physical �le. That is, if File1 and File2 are the

same string or both names exist and point to the same �le (due to hard or symbolic links

and/or relative vs. absolute paths).

exists directory(+Directory)

Succeeds if Directory exists. This does not imply the user has read, search and or write

permission for the directory.

delete �le(+File)

Unlink File from the Unix �le system.

rename �le(+File1, +File2)

Rename File1 into File2. Currently �les cannot be moved across devices.

size �le(+File, -Size)

Unify Size with the size of File in characters.

time �le(+File, -Time)

Unify the last modi�cation time of File with Time. Time is a oating point number expressing

the seconds ellapsed since Jan 1, 1970.

{ 54 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

:- format_predicate(n, dos_newline(_Arg)).

dos_newline(Arg) :-

between(1, Ar, _), put(13), put(10), fail ; true.

3.29 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide

terminal independant I/O for screen terminals. The library package tty builds on top of these

predicates.

tty get capability(+Name, +Type, -Result)

Get the capability named Name from the termcap library. See termcap(5) for the capability

names. Type speci�es the type of the expected result, and is one of string, number or bool.

String results are returned as an atom, number result as an integer and bool results as the

atom on or off. If an option cannot be found this predicate fails silently. The results are only

computed once. Succesive queries on the same capability are fast.

tty goto(+X, +Y)

Goto position (X, Y) on the screen. Note that the predicates line count/2 and

line position/2 will not have a well de�ned behaviour while using this predicate.

tty put(+Atom, +Lines)

Put an atom via the termcap library function tputs(). This function decodes padding infor-

mation in the strings returned by tty get capability/3 and should be used to output these

strings. Lines is the number of lines a�ected by the operation, or 1 if not applicable (as in

almost all cases).

set tty(-OldStream, +NewStream)

Set the output stream, used by tty put/2 and tty goto/2 to a speci�c stream. Default is

user output.

3.30 Unix Interaction

shell(+Command, -Status)

Execute Command on the operating system. Command is given to the bourne shell (/bin/sh).

Status is uni�ed with the exit status of the command.

shell(+Command)

Equivalent to `shell(Command, 0)'.

shell

Start an interactive Unix shell. Default is /bin/sh, the environment variable SHELL overrides

this default.

getenv(+Name, -Value)

Get Unix environment variable (see csh(1) and sh(1)). Fails if the variable does not exist.

{ 53 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

Set a tabstop on the current position. If an argument is supplied set a tabstop on the

position of that argument. This will cause all ~t's to be distributed between the previous

and this tabstop.

+ Set a tabstop relative to the current position. Further the same as ~|.

w Give the next argument to write/1.

Example:

simple_statistics :-

<obtain statistics> % left to the user

format('~tStatistics~t~72|~n~n'),

format('Runtime: ~`.t ~2f~34| Inferences: ~`.t ~D~72|~n',

[RunT, Inf]),

....

Will output

Statistics

Runtime: 3.45 Inferences: 60,345

sformat(-String, +Format, +Arguments)

Equivalent to format/3, but \writes" the result on String instead of the current output stream.

Example:

?- sformat(S, '~w~t~15|~w', ['Hello', 'World']).

S = "Hello World"

sformat(-String, +Format)

Equivalent to `sformat(String, Format, []).'

3.28.3 Programming Format

format predicate(+Char, +Head)

If a sequence ~c (tilde, followed by some character) is found, the format derivates will �rst

check whether the user has de�ned a predicate to handle the format. If not, the built in

formatting rules described above are used. Char is either an ascii value, or a one character

atom, specifying the letter to be (re)de�ned. Head is a term, whose name and arity are used

to determine the predicate to call for the rede�ned formatting character. The �rst argument

to the predicate is the numeric argument of the format command, or the atom default if

no argument is speci�ed. The remaining arguments are �lled from the argument list. The

example below rede�nes ~n to produce Arg times return followed by linefeed (so a (Grr.)

DOS machine is happy with the output).

{ 52 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

required by the format speci�cation. If only one argument is required and this is not a list of

ASCII values the argument need not be put in a list. Otherwise the arguments are put in a

list.

Special sequences start with the tilde (~), followed by an optional numeric argument, followed

by a character describing the action to be undertaken. A numeric argument is either a sequence

of digits, representing a positive decimal number, a sequence `<character>, representing the

ASCII value of the character (only useful for ~t) or a asterisk (*), in when the numeric

argument is taken from the next argument of the argument list, which should be a positive

integer. Actions are:

~

Output the tilde itself.

a Output the next argument, which should be an atom. This option is equivalent to w.

Compatibility reasons only.

c Output the next argument as an ASCII value. This argument should be an integer in the

range [0, ..., 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric

argument is speci�ed a dot is inserted argument positions from the right (useful for doing

�xed point arithmetic with integers, such as handling amounts of money).

D Same as d, but makes large values easier to read by inserting a comma every three digits

left to the dot or right.

e Output next argument as a oating point number in exponentional notation. The numeric

argument speci�es the precission. Default is 6 digits. Exact representation depends on the

C library function printf(). This function is invoked with the format %.<percission>e.

E Equivalent to e, but outputs a capital E to indicate the exponent.

f Floating point in non-exponentional notation. See C library function printf().

g Floating point in e or f notation, whichever is shorter.

G Floating point in E or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument to displayq/1 (canonical write).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not

properly implemented yet.

p Give the next argument to print/1.

q Give the next argument to writeq/1.

r Print integer in radix the numeric argument notation. Thus ~16r prints its argument

hexadecimal. The argument should be in the range [2, ... 36]. Lower case letters are used

for digits above 9.

R Same as r, but uses upper case letters for digits above 9.

s Output a string of ASCII characters from the next argument.

t All remaining space between 2 tabstops is distributed equaly over ~t statements between

the tabstops. This space is padded with spaces by default. If an argument is supplied

this is taken to be the ASCII value of the character used for padding. This can be used

to do left or right alignment, centering, distributing, etc. See also ~| and ~+ to set tab

stops. A tabstop is assumed at the start of each line.

{ 51 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

\n <NL> is output

\l <LF> is output

\r <CR> is output

\t <TAB> is output

\\ The character `\' is output

\% The character `%' is output

\nnn where nnn is an integer (1-3 digits) the character with

ASCII code nnn is output (NB : nnn is read as DECIMAL)

Escape sequences to include arguments from Arguments. Each time a % escape sequence is

found in Format the next argument from Arguments is formatted according to the speci�cation.

%t print/1 the next item (mnemonic: term)

%w write/1 the next item

%q writeq/1 the next item

%d display/1 the next item

%p print/1 the next item (identical to %t)

%n put the next item as a character (i.e. it is an ASCII value)

%r write the next item N times where N is the second item

(an integer)

%s write the next item as a String (so it must be a list of

characters)

%f perform a ttyflush/0 (no items used)

%Nc write the next item Centered in N columns.

%Nl write the next item Left justi�ed in N columns.

%Nr write the next item Right justi�ed in N columns. N is a

decimal number with at least one digit. The item must be

an atom, integer, oat or string.

swritef(-String, +Format, +Arguments)

Equivalent to writef/3, but \writes" the result on String instead of the current output stream.

Example:

?- swritef(S, '%15L%w', ['Hello', 'World']).

S = "Hello World"

swritef(-String, +Format)

Equivalent to swritef(String, Format, []).

3.28.2 Format

format(+Format)

De�ned as `format(Format) :- format(Format, []).'

format(+Format, +Arguments)

Format is an atom, list of ASCII values, or a Prolog string. Arguments provides the arguments

{ 50 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

checklist(+Pred, +List)

Pred is applied successively on each element of List until the end of the list or Pred fails. In

the latter case the checklist/2 fails.

maplist(+Pred, ?List1, ?List2)

Apply Pred on all successive pairs of elements from List1 and List2. Fails if Pred can not be

applied to a pair. See the example above.

sublist(+Pred, +List1, ?List2)

Unify List2 with a list of all elements of List1 to which Pred applies.

3.27 Forall

forall(+Cond, +Action)

For all alternative bindings of Cond Action can be proven. The example veri�es that all

arithmic statements in the list L are correct. It does not say which is wrong if one proves

wrong.

?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),

Result =:= Formula).

3.28 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The �rst is

writef/[1,2], which is compatible with Edinburgh C-Prolog. The second is format/[1,2], which

is compatible with Quintus Prolog. We hope the Prolog community will once de�ne a standard

formatted write predicate. If you want performance use format/[1,2] as this predicate is de�ned

in C. Otherwise compatibility reasons might tell you which predicate to use.

3.28.1 Writef

write ln(+Term)

Equivalent to write(Term), nl.

writef(+Atom)

Equivalent to writef(Atom, []).

writef(+Format, +Arguments)

Formatted write. Format is an atom whose characters will be printed. Format may contain

certain special character sequences which specify certain formatting and substitution actions.

Arguments then provides all the terms required to be output.

Escape sequences to generate a single special character:

{ 49 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

bagof(+Var, +Goal, -Bag)

Unify Bag with the alternatives of Var, if Goal has free variables besides the one sharing with

Var bagof will backtrack over the alternatives of these free variables, unifying Bag with the

corresponding alternatives of Var. The construct Var^Goal tells bagof not to bind Var in Goal.

Bagof/3 fails if Goal has no solutions.

The example below illustrates bagof/3 and the ^ operator. The variable bindings are printed

together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).

foo(a, b, d).

foo(b, c, e).

foo(b, c, f).

foo(c, c, g).

Yes

3 ?- bagof(C, foo(A, B, C), Cs).

A = a, B = b, C = G308, Cs = [c, d] ;

A = b, B = c, C = G308, Cs = [e, f] ;

A = c, B = c, C = G308, Cs = [g] ;

No

4 ?- bagof(C, A^foo(A, B, C), Cs).

A = G324, B = b, C = G326, Cs = [c, d] ;

A = G324, B = c, C = G326, Cs = [e, f, g] ;

No

5 ?-

setof(+Var, +Goal, -Set)

Equivalent to bagof/3, but sorts the result using sort/2 to get a sorted list of alternatives

without duplicates.

3.26 Invoking Predicates on all Members of a List

All the predicates in this section call a predicate on all members of a list or until the predicate called

fails. The predicate is called via apply/2, which implies common arguments can be put in front of

the arguments obtained from the list(s). For example:

?- maplist(plus(1), [0, 1, 2], X).

X = [1, 2, 3]

we will phrase this as \Predicate is applied on ..."

{ 48 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

list to set(+List, -Set)

Succeeds if Set holds the same elements as List in the same order, but has no duplicates. See

also sort/1.

intersection(+Set1, +Set2, -Set3)

Succeeds if Set3 uni�es with the intersection of Set1 and Set2. Set1 and Set2 are lists without

duplicates. They need not be ordered.

subtract(+Set, +Delete, -Result)

Delete all elements of set `Delete' from `Set' and unify the resulting set with `Result'.

union(+Set1, +Set2, -Set3)

Succeeds if Set3 uni�es with the union of Set1 and Set2. Set1 and Set2 are lists without

duplicates. They need not be ordered.

subset(+Subset, +Set)

Succeeds if all elements of Subset are elements of Set as well.

merge set(+Set1, +Set2, -Set3)

Set1 and Set2 are lists without duplicates, sorted to the standard order of terms. Set3 is uni�ed

with an ordered list without duplicates holding the union of the elements of Set1 and Set2.

3.24 Sorting Lists

sort(+List, -Sorted)

Succeeds if Sorted can be uni�ed with a list holding the elements of List, sorted to the standard

order of terms (see section 3.5). Duplicates are removed.

msort(+List, -Sorted)

Equivalent to sort/2, but does not remove duplicates.

keysort(+List, -Sorted)

List is a list of Key-Value pairs (e.g. terms of the functor `-' with arity 2). keysort/2 sorts

List like msort/2, but only compares the keys. Can be used to sort terms not on standard

order, but on any criterion that can be expressed on a multi-dimensional scale. Sorting on

more than one criterion can be done using terms as keys, putting the �rst criterion as argument

1, the second as argument 2, etc.

predsort(+Pred, +List, -Sorted)

Sorts similar to msort/2, but determines the order of two terms by applying Pred to pairs of

elements from List (see apply/2). The predicate should succeed if the �rst element should be

before the second.

3.25 Finding all Solutions to a Goal

�ndall(+Var, +Goal, -Bag)

Creates a list of the instantiations Var gets successively on backtracking over Goal and uni�es

the result with Bag. Succeeds with an empty list if Goal has no solutions. findall/3 is

equivalent to bagof/3 with all free variables bound with the existence operator (^), except

that bagof/3 fails when goal has no solutions.

{ 47 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

append(?List1, ?List2, ?List3)

Succeeds when List3 uni�es with the concatenation of List1 and List2. The predicate can be

used with any instantiation pattern (even three variables).

member(?Elem, ?List)

Succeeds when Elem can be uni�ed with one of the members of List. The predicate can be

used with any instantiation pattern.

memberchk(?Elem, +List)

Equivalent to member/2, but leaves no choice point.

delete(+List1, ?Elem, ?List2)

Delete all members of List1 that simultaneously unify with Elem and unify the result with

List2.

select(?List1, ?Elem, ?List2)

Select an element of List1 that uni�es with Elem. List2 is uni�ed with the list remaining from

List1 after deleting the selected element. Normally used with the instantiation pattern +List1,

-Elem, -List2, but can also be used to insert an element in a list using -List1, +Elem, +List2.

nth0(?Index, ?List, ?Elem)

Succeeds when the Index-th element of List uni�es with Elem. Counting starts at 0.

nth1(?Index, ?List, ?Elem)

Succeeds when the Index-th element of List uni�es with Elem. Counting starts at 1.

last(?Elem, ?List)

Succeeds if Elem uni�es with the last element of List.

reverse(+List1, -List2)

Reverse the order of the elements in List1 and unify the result with the elements of List2.

atten(+List1, -List2)

Transform List1, possibly holding lists as elements into a `at' list by replacing each list with

its elements (recursively). Unify the resulting at list with List2. Example:

?- flatten([a, [b, [c, d], e]], X).

X = [a, b, c, d, e]

length(?List, ?Int)

Succeeds if Int represents the number of elements of list List. Can be used to create a list

holding only variables.

merge(+List1, +List2, -List3)

List1 and List2 are lists, sorted to the standard order of terms (see section 3.5). List3 will be

uni�ed with an ordered list holding the both the elements of List1 and List2. Duplicates are

not removed.

3.23 Set Manipulation

is set(+Set)

Succeeds if set is a proper list (see proper list/1) without duplicates.

{ 46 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

cputime

Evaluates to a oating point number expressing the cpu time (in seconds) used by Prolog up

till now. See also statistics/2 and time/1.

3.21 Adding Arithmetic Functions

Prolog predicates can be given the role of arithmetic function. The last argument is used to return

the result, the arguments before the last are the inputs. Arithmetic functions are added using the

predicate arithmetic function/1, which takes the head as its argument. Arithmetic functions are

module sensitive, that is they are only visible from the module in which the function is de�ned and

delared. Global arithmetic functions should be de�ned and registered from module user. Global def-

initions can be overruled locally in modules. The builtin functions described above can be rede�ned

as well.

arithmetic function(+Head)

Register a Prolog predicate as an arithmetic function (see is/2, >/2, etc.). The Prolog predi-

cate should have one more argument than speci�ed byHead, which it either a term Name/Arity,

an atom or a complex term. This last argument is an unbound variable at call time and should

be instantiated to an integer or oating point number. The other arguments are the parame-

ters. This predicate is module sensitive and will declare the arithmetic function only for the

context module, unless declared from module user. Example:

1 ?- [user].

:- arithmetic_function(mean/2).

mean(A, B, C) :-

C is (A+B)/2.

user compiled, 0.07 sec, 440 bytes.

Yes

2 ?- A is mean(4, 5).

A = 4.500000

current arithmetic function(?Head)

Succesively uni�es all arithmetic functions that are visible from the context module with Head.

3.22 List Manipulation

is list(+Term)

Succeeds if Term is bound to the empty list ([]) or a term with functor `.' and arity 2.

proper list(+Term)

Equivalent to is list/1, but also requires the tail of the list to be a list (recursively). Exam-

ples:

is_list([x|A]) % true

proper_list([x|A]) % false

{ 45 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

+IntExpr << +IntExpr

Bitwise shift IntExpr1 by IntExpr2 bits to the left.

+IntExpr \/ +IntExpr

Bitwise `or' IntExpr1 and IntExpr2.

+IntExpr /\ +IntExpr

Bitwise `and' IntExpr1 and IntExpr2.

+IntExpr xor +IntExpr

Bitwise `exclusive or' IntExpr1 and IntExpr2.

\ +IntExpr

Bitwise negation.

sqrt(+Expr)

Result =

p

Expr

sin(+Expr)

Result = sinExpr . Expr is the angle in radials.

cos(+Expr)

Result = cosExpr . Expr is the angle in radials.

tan(+Expr)

Result = tanExpr . Expr is the angle in radials.

asin(+Expr)

Result = arcsinExpr . Result is the angle in radials.

acos(+Expr)

Result = arccosExpr . Result is the angle in radials.

atan(+Expr)

Result = arctanExpr . Result is the angle in radials.

atan(+YExpr, +XExpr)

Result = arctan

YExpr

XExpr

. Result is the angle in radials. The return value is in the range ��:::�.

Used to convert between rectangular and polar coordinate system.

log(+Expr)

Result = lnExpr

log10(+Expr)

Result = lgExpr

exp(+Expr)

Result = e

Expr

+Expr1 ^ +Expr2

Result = Expr1

Expr2

pi

Evaluates to the mathematical constant � (3.141593...).

e

Evaluates to the mathematical constant e (2.718282...).

{ 44 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

In case integer addition, subtraction and multiplication would lead to an integer overow the

operands are automatically converted to oating point numbers. The oating point functions (sin/1,

exp/1, etc.) form a direct interface to the corresponding C library functions used to compile SWI-

Prolog. Please refer to the C library documentation for details on percision, error handling, etc.

- +Expr

Result = �Expr

+Expr1 + +Expr2

Result = Expr1 + Expr2

+Expr1 - +Expr2

Result = Expr1 � Expr2

+Expr1 * +Expr2

Result = Expr1 � Expr2

+Expr1 / +Expr2

Result =

Expr1

Expr2

+IntExpr1 mod +IntExpr2

Result = Expr1 mod Expr2 (remainder of division).

+IntExpr1 // +IntExpr2

Result = Expr1 div Expr2 (integer division).

abs(+Expr)

Evaluate Expr and return the absolute value of it.

max(+Expr1, +Expr2)

Evaluates to the largest of both Expr1 and Expr2.

min(+Expr1, +Expr2)

Evaluates to the smallest of both Expr1 and Expr2.

.(+Int, [])

A list of one element evaluates to the element. This implies "a" evaluates to the ASCII

value of the letter a (97). This option is available for compatibility only. It will not work

if `style check(+string)' is active as "a" will then be tranformed into a string object. The

recommended way to specify the ASCII value of the letter `a' is 0'a.

random(+Int)

Evaluates to a random integer i for which 0 � i < Int . The seed of this random generator is

determined by the system clock when SWI-Prolog was started.

integer(+Expr)

Evaluates Expr and rounds the result to the nearest integer.

oor(+Expr)

Evaluates Expr and returns the largest integer smaller or equal to the result of the evaluation.

ceil(+Expr)

Evaluates Expr and returns the smallest integer larger or equal to the result of the evaluation.

+IntExpr >> +IntExpr

Bitwise shift IntExpr1 by IntExpr2 bits to the right. Note that integers are only 27 bits.

{ 43 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

The general arithmic predicates are optionaly compiled now (see please/3 and the -O command

line option). Compiled arithmetic reduces global stack requirements and improves performance.

Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

The general arithmetic predicates all handle expressions. An expression is either a simple number or

a function. The arguments of a function are expressions. The functions are described in section 3.20.

between(+Low, +High, ?Value)

Low and High are integers, High � Low . If Value is an integer, Low � Value � High. When

Value is a variable it is successively bound to all integers between Low and High.

succ(?Int1, ?Int2)

Succeeds if Int2 = Int1 +1. At least one of the arguments must be instantiated to an integer.

plus(?Int1, ?Int2, ?Int3)

Succeeds if Int3 = Int1 + Int2 . At least two of the three arguments must be instantiated to

integers.

+Expr1 > +Expr2

Succeeds when expression Expr1 evaluates to a larger number than Expr2.

+Expr1 < +Expr2

Succeeds when expression Expr1 evaluates to a smaller number than Expr2.

+Expr1 =< +Expr2

Succeeds when expression Expr1 evaluates to a smaller or equal number to Expr2.

+Expr1 >= +Expr2

Succeeds when expression Expr1 evaluates to a larger or equal number to Expr2.

+Expr1 =\= +Expr2

Succeeds when expression Expr1 evaluates to a number non-equal to Expr2.

+Expr1 =:= +Expr2

Succeeds when expression Expr1 evaluates to a number equal to Expr2.

-Number is +Expr

Succeeds when Number has successfully been uni�ed with the number Expr evaluates to.

3.20 Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described above.

SWI-Prolog tries to hide the di�erence between integer arithmetic and oating point arithmetic

from the Prolog user. Arithmetic is done as integer arithmetic as long as possible and converted

to oating point arithmetic whenever one of the arguments or the combination of them requires it.

If a function returns a oating point value which is whole it is automatically transformed into an

integer. There are three types of arguments to functions:

Expr Arbitrary expression, returning either a oating point value or an

integer.

IntExpr Arbitrary expression that should evaluate into an integer.

Int An integer.

{ 42 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

3.18 Operators

op(+Precedence, +Type, +Name)

Declare Name to be an operator of type Type with precedence Precedence. Name can also be

a list of names, in which case all elements of the list are declared to be identical operators.

Precedence is an integer between 0 and 1200. Precedence 0 removes the declaration. Type is

one of: xf, yf, xfx, xfy, yfx, yfy, fy or fx. The `f' indicates the position of the functor,

while x and y indicate the position of the arguments. `y' should be interpreted as \on this

position a term with precedence lower or equal to the precedence of the functor should occur".

For `x' the precedence of the argument must be strictly lower. The precedence of a term is 0,

unless its principal functor is an operator, in which case the precedence is the precedence of

this operator. A term enclosed in brackets ((...)) has precedence 0.

The prede�ned operators are shown in table 3.1. Note that all operators can be rede�ned by

the user.

1200 xfx -->, :-

1200 fx :-, ?-

1150 fx dynamic, multifile, module_transparent,

discontiguous

1100 xfy ;, |

1050 xfy ->

1000 xfy ,

954 xfy \\

900 fy \+, not

700 xfx <, =, =.., =@=, =:=, =<, ==, =\=, >, >=, @<, @=<,

@>, @>=, \=, \==, is

600 xfy :

500 yfx +, -, /\, \/, xor

500 fx +, -, ?, \

400 yfx *, /, //, <<, >>

300 xfx mod

200 xfy ^

Table 3.1: System operators

current op(?Precedence, ?Type, ?Name)

Succeeds when Name is currently de�ned as an operator of type Type with precedence Prece-

dence. See also op/3.

3.19 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general

predicates for oating point and integer arithmetic as appropriate. The integer predicates are as

\logical" as possible. Their usage is recommended whenever applicable, resulting in faster and more

\logical" programs.

{ 41 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

atom to term(+Atom, -Term, -Bindings)

Use Atom as input to read variables/2 and return the read term in Term and the variable

bindings in Bindings. Bindings is a list of Name = Var couples, thus providing access to the

actual variable names. See also read variables/2.

concat(?Atom1, ?Atom2, ?Atom3)

Atom3 forms the concatenation of Atom1 and Atom2. At least two of the arguments must be

instantiated to atoms, intergers or oating point numbers.

concat atom(+List, -Atom)

List is a list of atoms, integers or oating point numbers. Succeeds if Atom can be uni�ed with

the concatenated elements of List. If List has exactly 2 elements it is equivalent to concat/3,

allowing for variables in the list.

atom length(+Atom, -Length)

Succeeds if Atom is an atom of Length characters long. This predicate also works for integers

and oats, expressing the number of characters output when given to write/1.

3.17 Representing Text in Strings

SWI-Prolog supports the data type string. Strings are a time and space e�cient mechanism to

handle text in Prolog. Atoms are under some circumstances not suitable because garbage collection

on them is next to impossible (Although it is possible: BIM prolog does it). Representing text as

a list of ASCII values is, from the logical point of view, the cleanest solution. It however has two

drawbacks: 1) they cannot be distinguished from a list of (small) integers; and 2) they consume (in

SWI-Prolog) 12 bytes for each character stored.

Within strings each character only requires 1 byte storage. Strings live on the global stack and their

storage is thus reclaimed on backtracking. Garbage collection can easily deal with strings.

The ISO standard proposes "..." is transformed into a string object by read/1 and derivates. This

poses problems as in the old convention "..." is transformed into a list of ascii characters. For this

reason the style check option `string' is available (see style check/2).

The set of predicates associated with strings is incomplete and tentative. Names and de�nitions

might change in the future to con�rm to the emerging standard.

string to atom(?String, ?Atom)

Logical conversion between a string and an atom. At least one of the two arguments must be

instantiated. Atom can also be an integer or oating point number.

string to list(?String, ?List)

Logical conversion between a string and a list of ASCII characters. At least one of the two

arguments must be instantiated.

string length(+String, -Length)

Unify Length with the number of characters in String. This predicate is functonally equivalent

to atom length/2 and also accepts atoms, integers and oats as its �rst argument.

substring(+String, +Start, +Length, -Sub)

Create a substring of String that starts at character Start (1 base) and has Length characters.

Unify this substring with Sub.

9

9

Future versions probably will provide a more logical variant of this predicate.

{ 40 {

