
CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

End = 2

In Edinburgh Prolog the second argument is missing. It is �xed to be '$VAR'.

free variables(+Term, -List)

Unify List with a list of variables, each sharing with a unique variable of Term. For example:

?- free_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]

X = G367

Y = G366

Z = G371

copy term(+In, -Out)

Make a copy of term In and unify the result with Out. Ground parts of In are shared by

Out. Provided In and Out have no sharing variables before this call they will have no sharing

variables afterwards. copy term/2 is semantically equivalent to:

copy_term(In, Out) :-

recorda(copy_key, In, Ref),

recorded(copy_key, Out, Ref),

erase(Ref).

3.16 Analysing and Constructing Atoms

name(?Atom, ?String)

String is a list of ASCII values describing Atom. Each of the arguments may be a vari-

able, but not both. When String is bound to an ASCII value list describing an integer

and Atom is a variable Atom will be uni�ed with the integer value described by String (e.g.

`name(N, "300"), 400 is N + 100' succeeds).

int to atom(+Int, +Base, -Atom)

Convert Int to an ascii representation using base Base and unify the result with Atom. If

Base 6= 10 the base will be prepended to Atom. Base = 0 will try to interpret Int as an ASCII

value and return 0'c. Otherwise 2 � Base � 36. Some examples are given below.

int to atom(45, 2, A) �! A = 2

0

101101

int to atom(97, 0, A) �! A = 0

0

a

int to atom(56, 10, A) �! A = 56

int to atom(+Int, -Atom)

Equivalent to int_to_atom(Int, 10, Atom).

term to atom(?Term, ?Atom)

Succeeds if Atom describes a term that uni�es with Term. When Atom is instantiated Atom is

converted and then uni�ed with Term. Otherwise Term is \written" on Atom using write/1.

{ 39 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

read_history(h, '!h', [trace], '%w ?- ', Goal, Bindings)

history depth(-Int)

Dynamic predicate, normally not de�ned. The user can de�ne this predicate to set the history

depth. It should unify the argument with a positive integer. When not de�ned 15 is used as

the default.

prompt(-Old, +New)

Set prompt associated with read/1 and its derivates. Old is �rst uni�ed with the current

prompt. On success the prompt will be set to New if this is an atom. Otherwise an error

message is displayed. A prompt is printed if one of the read predicates is called and the cursor

is at the left margin. It is also printed whenever a newline is given and the term has not been

terminated. Prompts are only printed when the current input stream is user.

3.15 Analysing and Constructing Terms

functor(?Term, ?Functor, ?Arity)

Succeeds if Term is a term with functor Functor and arity Arity. If Term is a variable it

is uni�ed with a new term holding only variables. functor/3 silently fails on instantiation

faults

8

arg(+Arg, +Term, ?Value)

Term should be instantiated to a term, Arg to an integer between 1 and the arity of Term.

Value is uni�ed with the Arg-th argument of Term.

?Term =.. ?List

List is a list which head is the functor of Term and the remaining arguments are the arguments

of the term. Each of the arguments may be a variable, but not both. This predicate is called

`Univ'. Examples:

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

numbervars(+Term, +Functor, +Start, -End)

Unify the free variables of Term with a term constructed from the atom Functor with one

argument. The argument is the number of the variable. Counting starts at Start. End is

uni�ed with the number that should be given to the next variable. Example:

?- numbervars(foo(A, B, A), this_is_a_variable, 0, End).

A = this_is_a_variable(0)

B = this_is_a_variable(1)

8

In version 1.2 instantiation fauls let to error messages. The new version can be used to do type testing without

the need to catch illegal instantiations �rst.

{ 38 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

write(+Stream, +Term)

Write Term to Stream.

writeq(+Term)

Write Term to the current output, using brackets and operators where appropriate. Atoms

that need quotes are quoted. Terms written with this predicate can be read back with read/1

provided the currently active operator declarations are identical.

writeq(+Stream, +Term)

Write Term to Stream, inserting quotes.

print(+Term)

Prints Term on the current output stream similar to write/1, but for each (sub)term of Term

�rst the dynamic predicate portray/1 is called. If this predicate succeeds print assumes the

(sub)term has been written. This allows for user de�ned term writing.

print(+Stream, +Term)

Print Term to Stream.

portray(+Term)

A dynamic predicate, which can be de�ned by the user to change the behaviour of print/1 on

(sub)terms. For each subterm encountered that is not a variable print/1 �rst calls portray/1

using the term as argument. For lists only the list as a whole is given to portray/1. If portray

succeeds print/1 assumes the term has been written.

read(-Term)

Read the next Prolog term from the current input stream and unify it with Term. On a syntax

error read/1 displays an error message, attempts to skip the erroneous term and fails. On

reaching end-of-�le Term is uni�ed with the atom end_of_file.

read(+Stream, -Term)

Read Term from Stream.

read clause(-Term)

Equivalent to read/1, but warns the user for variables only occurring once in a term (sin-

gleton variables) which do not start with an underscore if style check(singleton) is active

(default). Used to read Prolog source �les (see consult/1).

read clause(+Stream, -Term)

Read a clause from Stream.

read variables(-Term, -Bindings)

Similar to read/1, but Bindings is uni�ed with a list of `Name = Var ' tuples, thus providing

access to the actual variable names.

read variables(+Stream, -Term, -Bindings)

Read, returning term and bindings from Stream.

read history(+Show, +Help, +Special, +Prompt, -Term, -Bindings)

Similar to read variables/2, but allows for history substitutions. history read/6 is used

by the top level to read the user's actions. Show is the command the user should type to show

the saved events. Help is the command to get an overview of the capabilities. Special is a list

of commands that are not saved in the history. Prompt is the �rst prompt given. Continuation

prompts for more lines are determined by prompt/2. A %w in the prompt is substituted by the

event number. See section 2.4 for available substitutions.

SWI-Prolog calls history read/6 as follows:

{ 37 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

ush

Flush pending output on current output stream. flush/0 is automatically generated by read/1

and derivates if the current input stream is user and the cursor is not at the left margin.

ush output(+Stream)

Flush output on the speci�ed stream. The stream must be open for writing.

ttyush

Flush pending output on stream user. See also flush/0.

get0(-Char)

Read the current input stream and unify the next character with Char. Char is uni�ed with

-1 on end of �le.

get0(+Stream, -Char)

Read the next character from Stream.

get(-Char)

Read the current input stream and unify the next non-blank character with Char. Char is

uni�ed with -1 on end of �le.

get(+Stream, -Char)

Read the next non-blank character from Stream.

get single char(-Char)

Get a single character from input stream `user' (regardless of the current input stream). Unlike

get0/1 this predicate does not wait for a return. The character is not echoed to the user's

terminal. This predicate is meant for keyboard menu selection etc.. If SWI-Prolog was started

with the -tty ag this predicate reads an entire line of input and returns the �rst non-blank

character on this line, or the ASCII code of the newline (10) if the entire line consisted of

blank characters.

3.14 Term Reading and Writing

display(+Term)

Write Term on the current output stream using standard parenthesised pre�x notation (i.e. ig-

noring operator declarations). Display is normally used to examine the internal representation

for terms holding operators.

display(+Stream, +Term)

Display Term on Stream.

displayq(+Term)

Write Term on the current output stream using standard parenthesised pre�x notation (i.e.

ignoring operator declarations). Atoms that need quotes are quoted. Terms written with this

predicate can always be read back, regardless of current operator declarations.

displayq(+Stream, +Term)

Display Term on Stream. Equivalent to Quintus write canonical/2.

write(+Term)

Write Term to the current output, using brackets and operators where appropriate.

{ 36 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

?- open('/dev/ttyp4', read, P4),

wait_for_input([user, P4], Inputs, 0).

character count(+Stream, -Count)

Unify Count with the current character index. For input streams this is the number of charac-

ters read since the open, for output streams this is the number of characters written. Counting

starts at 0.

line count(+Stream, -Count)

Unify Count with the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)

Unify Count with the position on the current line. Note that this assumes the position is 0

after the open. Tabs are assumed to be de�ned on each 8-th character and backspaces are

assumed to reduce the count by one, provided it is positive.

�leerrors(-Old, +New)

De�ne error behaviour on errors when opening a �le for reading or writing. Valid values are

the atoms on (default) and off. First Old is uni�ed with the current value. Then the new

value is set to New.

7

tty fold(-OldColumn, +NewColumn)

Fold Prolog output to stream user on column NewColumn. If Column is 0 or less no folding is

performed (default). OldColumn is �rst uni�ed with the current folding column. To be used

on terminals that do not support line folding.

3.13 Primitive Character Input and Output

nl

Write a newline character to the current output stream. On Unix systems nl/0 is equivalent

to put(10).

nl(+Stream)

Write a newline to Stream.

put(+Char)

Write Char to the current output stream, Char is either an integer-expression evaluating to

an ASCII value (0 � Char � 255) or an atom of one character.

put(+Stream, +Char)

Write Char to Stream.

tab(+Amount)

Writes Amount spaces on the current output stream. Amount should be an expression that

evaluates to a positive integer (see section 3.19).

tab(+Stream, +Amount)

Writes Amount spaces to Stream.

7

Note that Edinburgh Prolog de�nes fileerrors/0 and nofileerrors/0. As this does not allow you to switch

back to the old mode I think this de�nition is better.

{ 35 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

open null stream(?Stream)

On Unix systems, this is equivalent to open('/dev/null', write, Stream). Characters

written to this stream are lost, but the stream information (see character count/2, etc.) is

maintained.

close(+Stream)

Close the speci�ed stream. If Stream is not open an error message is displayed. If the closed

stream is the current input or output stream the terminal is made the current input or output.

current stream(?File, ?Mode, ?Stream)

Is true if a stream with �le speci�cation File, mode Mode and stream identi�er Stream is open.

The reserved streams user and user error are not generated by this predicate. If a stream has

been opened with mode append this predicate will generate mode write.

stream position(+Stream, -Old, +New)

Unify the position parameters of Stream with Old and set them to New. A position is repre-

sented by the following term:

'$stream_position'(CharNo, LineNo, LinePos).

It is only possible to change the position parameters if the stream is connected to a disk �le.

3.11.3 Switching Between Implicit and Explicit I/O

The predicates below can be used for switching between the implicit- and the explicit stream based

I/O predicates.

set input(+Stream)

Set the current input stream to become Stream. Thus, open(�le, read, Stream),

set input(Stream) is equivalent to see(�le).

set output(+Stream)

Set the current output stream to become Stream.

current input(-Stream)

Get the current input stream. Useful to get access to the status predicates associated with

streams.

current output(-Stream)

Get the current output stream.

3.12 Status of Input and Output Streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut)

Wait for input on one of the streams in ListOfStreams and return a list of streams on which in-

put is available in ReadyList. wait for input/3 waits for at most TimeOut seconds. Timeout

may be speci�ed as a oating point number to specify fractions of a second. If Timeout equals

0, wait for input/3 waits inde�netely. This predicate can be used to implement timeout

while reading and to handle input from multiple sources. The following example will wait for

input from the user and an explicitely opened second terminal. On return, Inputs may hold

user or P4 or both.

{ 34 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

getwd(Wd) :-

seeing(Old), see(pipe(pwd)),

collect_wd(String),

seen, see(Old),

name(Wd, String).

collect_wd([C|R]) :-

get0(C), C \== -1, !,

collect_wd(R).

collect_wd([]).

Figure 3.1: Get the working directory

tell/1 or append/1 and has not been closed since, writing will be resumed. Otherwise the

�le is created or {when existing{ truncated. See also append/1.

append(+File)

Similar to tell/1, but positions the �le pointer at the end of File rather than truncating an

existing �le. The pipe construct is not accepted by this predicate.

seeing(-SrcDest)

Unify the name of the current input stream with SrcDest.

telling(-SrcDest)

Unify the name of the current output stream with SrcDest.

seen

Close the current input stream. The new input stream becomes user.

told

Close the current output stream. The new output stream becomes user.

3.11.2 Explicit Input and Output Streams

The predicates below are part of the Quintus compatible stream-based I/O package. In this package

streams are explicitely created using the predicate open/3. The resulting stream identi�er is then

passed as a parameter to the reading and writing predicates to specify the source or destination of

the data.

open(+SrcDest, +Mode, ?Stream)

SrcDest is either an atom, specifying a Unix �le, or a term `pipe(Command)', just like see/1

and tell/1. Mode is one of read, write or append. Stream is either a variable, in which case

it is bound to a small integer identifying the stream, or an atom, in which case this atom will

be the stream indenti�er. In the latter case the atom cannot be an already existing stream

identi�er. Examples:

?- open(data, read, Stream). % Open `data' for reading.

?- open(pipe(lpr), write, printer). % `printer' is a stream to `lpr'.

{ 33 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

clause(?Head, ?Body, ?Reference)

Equivalent to clause/2, but uni�es Reference with a unique reference to the clause (see also

assert/2, erase/1). If Reference is instantiated to a reference the clause's head and body

will be uni�ed with Head and Body.

3.11 Input and Output

SWI-Prolog provides two di�erent packages for input and output. One con�rms to the Edinburgh

standard. This package has a notion of `current-input' and `current-output'. The reading and writing

predicates implicitely refer to these streams. In the second package, streams are opened explicitely

and the resulting handle is used as an argument to the reading and writing predicate to specify the

source or destination. Both packages are fully integrated; the user may switch freely between them.

3.11.1 Input and Output Using Implicit Source and Destination

The package for implicit input and output destination is upwards compatible to DEC-10 and C-

Prolog. The reading and writing predicates refer to resp. the current input- and output stream.

Initially these streams are connected to the terminal. The current output stream is changed using

tell/1 or append/1. The current input stream is changed using see/1. The stream's current

value can be obtained using telling/1 for output- and seeing/1 for input streams. The table

below shows the valid stream speci�cations. The reserved names user input, user output and

user error are for neat integration with the explicit streams.

user This reserved name refers to the terminal

user input Input from the terminal

user output Output to the terminal

stderr or user error Unix error stream (output only)

Atom Name of a Unix �le

pipe(Atom) Name of a Unix command

Source and destination are either a �le, one of the reserved words above, or a term `pipe(Command)'.

In the predicate descriptions below we will call the source/destination argument `SrcDest'. Below

are some examples of source/destination speci�cations.

?- see(data). % Start reading from �le `data'.

?- tell(stderr). % Start writing on the error stream.

?- tell(pipe(lpr)). % Start writing to the printer.

Another example of using the pipe/1 construct is shown on in �gure 3.1. Note that the pipe/1

construct is not part of Prolog's standard I/O reportoire.

see(+SrcDest)

Make SrcDest the current input stream. If SrcDest was already opened for reading with see/1

and has not been closed since, reading will be resumed. Otherwise SrcDest will be opened and

the �le pointer is positioned at the start of the �le.

tell(+SrcDest)

Make SrcDest the current output stream. If SrcDest was already opened for writing with

{ 32 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

predicate property(?Head, ?Property)

Succeeds if Head refers to a predicate that has property Property. Can be used to test whether a

predicate has a certain property, obtain all properties known for Head, �nd all predicates having

property or even obtaining all information available about the current program. Property is

one of:

interpreted

Is true if the predicate is de�ned in Prolog. We return true on this because, although the

code is actually compiled, it is completely transparent, just like interpreted code.

built in

Is true if the predicate is locked as a built-in predicate. This implies it cannot be rede�ned

in it's de�nition module and it can normally not be seen in the tracer.

foreign

Is true if the predicate is de�ned in the C language.

dynamic

Is true if the predicate is declared dynamic using the dynamic/1 declaration.

multi�le

Is true if the predicate is declared multi�le using the multifile/1 declaration.

unde�ned

Is true if a procedure de�nition block for the predicate exists, but there are no clauses in

it and it is not declared dynamic. This is true if the predicate occurs in the body of a

loaded predicate, an attempt to call it has been made via one of the meta-call predicates

or the predicate had a de�nition in the past. See the library package check for example

usage.

transparent

Is true if the predicate is declared transparent using the module transparent/1 declara-

tion.

exported

Is true if the predicate is in the public list of the context module.

imported from(Module)

Is true if the predicate is imported into the context module from module Module.

indexed(Head)

Predicate is indexed (see index/1) according to Head. Head is a term whose name

and arity are identical to the predicate. The arguments are uni�ed with `1' for indexed

arguments, `0' otherwise.

dwim predicate(+Term, -Dwim)

`Do What I Mean' (`dwim') support predicate. Term is a term, which name and arity are used

as a predicate speci�cation. Dwim is instantiated with the most general term built from Name

and the arity of a de�ned predicate that matches the predicate speci�ed by Term in the `Do

What I Mean' sence. See dwim match/2 for `DoWhat I Mean' string matching. Internal system

predicates are not generated, unless style check(+dollar) is active. Backtracking provides all

alternative matches.

clause(?Head, ?Body)

Succeeds when Head can be uni�ed with a clause head and Body with the corresponding clause

body. Gives alternative clauses on backtracking. For facts Body is uni�ed with the atom true.

Normally clause/2 is used to �nd clause de�nitions for a predicate, but it can also be used to

�nd clause heads for some body template.

{ 31 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

index(+Head)

Index the clauses of the predicate with the same name and arity as Head on the speci�ed

arguments. Head is a term of which all arguments are either `1' (denoting `index this argument')

or `0' (denoting `do not index this argument'). Indexing has no implications for the semantics

of a predicate, only on its performance. If indexing is enabled on a predicate a special purpose

algorithm is used to select candidate clauses based on the actual arguments of the goal. This

algorithm checks whether indexed arguments might unify in the clause head. Only atoms,

integers and functors (e.g. name and arity of a term) are considered. Indexing is very useful

for predicates with many clauses representing facts.

Due to the representation technique used at most 4 arguments can be indexed. All indexed

arguments should be in the �rst 32 arguments of the predicate. If more than 4 arguments are

speci�ed for indexing only the �rst 4 will be accepted. Arguments above 32 are ignored for

indexing.

By default all predicates with arity � 1 are indexed on their �rst argument. It is possible to

rede�ne indexing on predicates that already have clauses attached to them. This will initiate a

scan through the predicate's clause list to update the index summary information stored with

each clause.

If {for example{ one wants to represents sub-types using a fact list `sub type(Sub, Super)'

that should be used both to determine sub- and super types one should declare sub type/2

as follows:

:- index(sub_type(1, 1)).

sub_type(horse, animal).

...

...

3.10 Examining the Program

current atom(-Atom)

Successively uni�es Atom with all atoms known to the system. Note that current atom/1

always succeeds if Atom is intantiated to an atom.

current functor(?Name, ?Arity)

Successively uni�es Name with the name and Arity with the arity of functors known to the

system.

current ag(-FlagKey)

Successively uni�es FlagKey with all keys used for ags (see flag/3).

current key(-Key)

Successively uni�es Key with all keys used for records (see recorda/3, etc.).

current predicate(?Name, ?Head)

Successively uni�es Name with the name of predicates currently de�ned and Head with the

most general term built from Name and the arity of the predicate. This predicate succeeds for

all predicates de�ned in the speci�ed module, imported to it, or in one of the modules from

which the predicate will be imported if it is called.

{ 30 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

erase(+Reference)

Erase a record or clause from the database. Reference is an integer returned by recorda/3

or recorded/3, clause/3, assert/2, asserta/2 or assertz/2. Other integers might conict

with the internal consistency of the system. Erase can only be called once on a record or

clause. A second call also might conict with the internal consistency of the system.

6

ag(+Key, -Old, +New)

Key is an atom, integer or term. Unify Old with the old value associated with Key. If the key

is used for the �rst time Old is uni�ed with the integer 0. Then store the value of New, which

should be an integer, atom or arithmetic integer expression, under Key. flag/3 is a very fast

mechanism for storing simple facts in the database. Example:

:- module_transparent succeeds_n_times/2.

succeeds_n_times(Goal, Times) :-

flag(succeeds_n_times, _, 0),

Goal,

flag(succeeds_n_times, N, N+1),

fail ; flag(succeeds_n_times, Times, Times).

3.9 Declaring Properties of Predicates

This section describes directives which manipulate attributes of predicate de�nitions. The functors

dynamic/1, multifile/1 and discontiguous/1 are operators of priority 1150 (see op/3), which

implies the list of predicates they involve can just be a comma separated list:

:- dynamic

foo/0,

baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a

program. Do not rely on this feature if you want to maintain portability to other Prolog implemen-

tations.

dynamic +Functor/+Arity, ...

Informs the interpreter that the de�nition of the predicate(s) may change during execution (us-

ing assert/1 and/or retract/1). Currently dynamic/1 only stops the interpreter from com-

plaining about unde�ned predicates (see unknown/2). Future releases might prohibit assert/1

and retract/1 for not-dynamic declared procedures.

multi�le +Functor/+Arity, ...

Informs the system that the speci�ed predicate(s) may be de�ned over more than one �le.

This stops consult/1 from rede�ning a predicate when a new de�nition is found.

discontiguous +Functor/+Arity, ...

Informs the system that the clauses of the speci�ed predicate(s) might not be together in the

source �le. See also style check/1.

6

BUG: The system should have a special type for pointers, thus avoiding the Prolog user having to worry about

consistency matters. Currently some simple heuristics are used to determine whether a reference is valid.

{ 29 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

is considerably faster than the mechanisms described above, but can only be used to store simple

status information like counters, etc.

abolish(+Functor, +Arity)

Removes all clauses of a predicate with functor Functor and arity Arity from the database.

Unlike version 1.2, all predicate attributes (dynamic, multi�le, index, etc.) are reset to their

defaults. Abolishing an imported predicate only removes the import link; the predicate will

keep its old de�nition in its de�nition module. For `cleanup' of the dynamic database, one

should use retractall/1 rather than abolish/2.

retract(+Term)

When Term is an atom or a term it is uni�ed with the �rst unifying fact or clause in the

database. The fact or clause is removed from the database.

retractall(+Term)

All facts or clauses in the database that unify with Term are removed.

assert(+Term)

Assert a fact or clause in the database. Term is asserted as the last fact or clause of the

corresponding predicate.

asserta(+Term)

Equivalent to assert/1, but Term is asserted as �rst clause or fact of the predicate.

assertz(+Term)

Equivalent to assert/1.

assert(+Term, -Reference)

Equivalent to assert/1, but Reference is uni�ed with a unique reference to the asserted clause.

This key can later be used with clause/3 or erase/1.

asserta(+Term, -Reference)

Equivalent to assert/2, but Term is asserted as �rst clause or fact of the predicate.

assertz(+Term, -Reference)

Equivalent to assert/2.

recorda(+Key, +Term, -Reference)

Assert Term in the recorded database under key Key. Key is an integer, atom or term.

Reference is uni�ed with a unique reference to the record (see erase/1).

recorda(+Key, +Term)

Equivalent to recorda(Key, Value,).

recordz(+Key, +Term, -Reference)

Equivalent to recorda/3, but puts the Term at the tail of the terms recorded under Key.

recordz(+Key, +Term)

Equivalent to recordz(Key, Value,).

recorded(+Key, -Value, -Reference)

Unify Value with the �rst term recorded under Key which does unify. Reference is uni�ed with

the memory location of the record.

recorded(+Key, -Value)

Equivalent to recorded(Key, Value,).

{ 28 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

call(+Goal)

Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical

to call/1, except when the argument is bound to the cut. See !/0.

apply(+Term, +List)

Append the members of List to the arguments of Term and call the resulting term. For

example: `apply(plus(1), [2, X])' will call `plus(1, 2, X)'. Apply/2 is incorporated in

the virtual machine of SWI-Prolog. This implies that the overhead can be compared to the

overhead of call/1.

not +Goal

Succeeds when Goal cannot be proven. Retained for compatibility only. New code should use

\+/1.

once(+Goal)

De�ned as:

once(Goal) :-

Goal, !.

Once/1 can in many cases be replaced with ->/2. The only di�erence is how the cut behaves

(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.

2) a :- b, c -> d.

ignore(+Goal)

Calls Goal as once/1, but succeeds, regardless of whether Goal succeeded or not. De�ned as:

ignore(Goal) :-

Goal, !.

ignore(_).

3.8 Database

SWI-Prolog o�ers three di�erent database mechanisms. The �rst one is the common assert/retract

mechanism for manipulating the clause database. As facts and clauses asserted using assert/1 or

one of it's derivates become part of the program these predicates compile the term given to them.

Retract/1 and retractall/1 have to unify a term and therefore have to decompile the program.

For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,

queries to the database are faster than querying the recorded database discussed below. See also

dynamic/1.

The second way of storing arbitrary terms in the database is using the \recorded database". In this

database terms are associated with a key. A key can be an atom, integer or term. In the last case

only the functor and arity determine the key. Each key has a chain of terms associated with it. New

terms can be added either at the head or at the tail of this chain. This mechanism is considerably

faster than the assert/retract mechanism as terms are not compiled, but just copied into the heap.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which is

an atom, integer or term. Each key can only have one atom or integer associated with it. It again

{ 27 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

!

Cut. Discard choice points of parent frame and frames created after the parent frame. Note

that the control structures ;/2, |/2 ->/2 and \+/1 are normally handled by the compiler and

do not create a frame, which implies the cut operates through these predicates. Some examples

are given below. Note the di�erence between t3/1 and t4/1. Also note the e�ect of call/1

in t5/0. As the argument of call/1 is evaluated by predicates rather than the compiler the

cut has no e�ect.

5

t1 :- (a, !, fail ; b). % cuts a/0 and t1/0

t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0

t3(G) :- a, G, fail. % if `G = !' cuts a/0 and t1/1

t4(G) :- a, call(G), fail. % if `G = !' cut has no e�ect

t5 :- call((a, !, fail ; b)). % Cut has no e�ect

t6 :- \+ (a, !, fail ; b). % cuts a/0 and t6/0

+Goal1 , +Goal2

Conjunction. Succeeds if both `Goal1' and `Goal2' can be proved. It is de�ned as (this

de�nition does not lead to a loop as the second comma is handled by the compiler):

Goal1, Goal2 :- Goal1, Goal2.

+Goal1 ; +Goal2

The `or' predicate is de�ned as:

Goal1 ; _Goal2 :- Goal1.

_Goal1 ; Goal2 :- Goal2.

+Goal1 | +Goal2

Equivalent to ;/2. Retained for compatibility only. New code should use ;/2.

+Condition -> +Action

If-then and If-Then-Else. Implemented as:

If -> Then; _Else :- If, !, Then.

If -> _Then; Else :- !, Else.

If -> Then :- If, !, Then.

\+ +Goal

Succeeds if `Goal' cannot be proven (mnemnonic: + refers to provable and the backslash is

normally used to indicate negation).

3.7 Meta-Call Predicates

Meta call predicates are used to call terms constructed at run time. The basic meta-call mechanism

o�ered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a

valid goal at runtime). A meta-call is slower than a normal call as it involves actually searching the

database at runtime for the predicate, while for normal calls this search is done at compile time.

5

Version 1.2 did not compile ;/2, etc.. To make the cut work a special predicate attribute called `cut parent' was

introduced. This implied the cut had e�ect in all the examples. The current implementation is much neater and

considerably faster.

{ 26 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

+Term1 = +Term2

Unify Term1 with Term2. Succeeds if the uni�cation succeeds.

+Term1 \= +Term2

Equivalent to `\+ Term1 = Term2'.

+Term1 =@= +Term2

Succeeds if Term1 is `structurally equal' to Term2. Structural equivalence is weaker than

equivalence (==/2), but stronger than uni�cation (=/2). Two terms are structurally equal if

their tree representation is identical and they have the same `pattern' of variables. Examples:

a =@= A false

A =@= B true

x(A,A) =@= x(B,C) false

x(A,A) =@= x(B,B) true

x(A,B) =@= x(C,D) true

+Term1 \=@= +Term2

Equivalent to `\+ Term1 =@= Term2'.

+Term1 @< +Term2

Succeeds if Term1 is before Term2 in the standard order of terms.

+Term1 @=< +Term2

Succeeds if both terms are equal (==) or Term1 is before Term2 in the standard order of terms.

+Term1 @> +Term2

Succeeds if Term1 is after Term2 in the standard order of terms.

+Term1 @>= +Term2

Succeeds if both terms are equal (==) or Term1 is after Term2 in the standard order of terms.

3.6 Control Predicates

The predicates of this section implement control structures. Normally these constructs are translated

into virtual machine instructions by the compiler. It is still necessary to implement these constructs

as true predicates to support meta-calls, as demonstrated in the example below. The predicate �nds

all currently de�ned atoms of 1 character long. Note that the cut has no e�ect when called via one

of these predicates (see !/0).

one_character_atoms(As) :-

findall(A, (current_atom(A), atom_length(A, 1)), As).

fail

Always fail.

true

Always succeed.

repeat

Always succeed, provide an in�nite number of choice points.

{ 25 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

3.4 Verify Type of a Term

var(+Term)

Succeeds if Term currently is a free variable.

nonvar(+Term)

Succeeds if Term currently is not a free variable.

integer(+Term)

Succeeds if Term is bound to an integer.

oat(+Term)

Succeeds if Term is bound to a oating point number.

number(+Term)

Succeeds if Term is bound to an integer or a oating point number.

atom(+Term)

Succeeds if Term is bound to an atom.

string(+Term)

Succeeds if Term is bound to a string.

atomic(+Term)

Succeeds if Term is bound to an atom, string, integer or oating point number.

ground(+Term)

Succeeds if Term holds no free variables.

3.5 Comparison and Uni�cation or Terms

Standard Order of Terms

Comparison and uni�cation of arbitrary terms. Terms are ordered in the so called \standard order".

This order is de�ned as follows:

1. Variables < Atoms < Strings

3

< Numbers < Terms

2. Old Variable < New Variable

4

3. Atoms are compared alphabetically.

4. Strings are compared alphabetically.

5. Numbers are compared by value. Integers and oats are treated identically.

6. Terms are �rst checked on their functor (alphabetically), then on their arity and �nally recur-

sively on their arguments, left most argument �rst.

+Term1 == +Term2

Succeeds if Term1 is equivalent to Term2. A variable is only identical to a sharing variable.

+Term1 \== +Term2

Equivalent to `\+ Term1 == Term2'.

3

Strings might be considered atoms in future versions. See also section 3.17

4

In fact the variables are compared on their (dereferenced) addresses. Variables living on the global stack are

always < than variables on the local stack. Programs should not rely on the order in which variables are sorted.

{ 24 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

?- preprocessor(Old, '/lib/cpp -C -P %f'), consult(...).

Old = none

3.3 Listing Predicates and Editor Interface

SWI-Prolog o�ers an interface to the Unix vi editor (vi(1)), Richard O'Keefe's top editor

[O'Keefe, 1985] and the GNU-EMACS invocations emacs and emacsclient. Which editor is used is

determined by the Unix environment variable EDITOR, which should hold the full pathname of the

editor. If this variable is not de�ned, vi(1) is used.

After the user quits the editor make/0 is invoked to reload all modi�ed source �les using consult/1.

If the editor can be quit such that an exit status non-equal to 0 is returned make/0 will not be

invoked. top can do this by typing control-C, vi cannot do this.

A predicate speci�cation is either a term with the same functor and arity as the predicate wanted,

a term of the form Functor/Arity or a single atom. In the latter case the database is searched

for a predicate of this name and arbitrary arity (see current predicate/2). When more than one

such predicate exists the system will prompt for con�rmation on each of the matched predicates.

Predicates speci�cations are given to the `Do What I Mean' system (see dwim predicate/2) if the

requested predicate does not exist.

ed(+Pred)

Invoke the user's preferred editor on the source �le of Pred, providing a search speci�cation

which searches for the predicate at the start of a line.

ed

Invoke ed/1 on the predicate last edited using ed/1. Asks the user to con�rm before starting

the editor.

edit(+File)

Invoke the user's preferred editor on File. File is a �le speci�cation as for consult/1 (but not

a list). Note that the �le should exist.

edit

Invoke edit/1 on the �le last edited using edit/1. Asks the user to con�rm before starting

the editor.

listing(+Pred)

List speci�ed predicates (when an atom is given all predicates with this name will be listed).

The listing is produced on the basis of the internal representation, thus loosing user's layout

and variable name information. See also portray clause/1.

listing

List all predicates of the database using listing/1.

portray clause(+Clause)

Pretty print a clause as good as we can. A clause should be speci�ed as a term `Head :- Body'

(put brackets around it to avoid operator precedence problems). Facts are represented as

`Head :- true'.

{ 23 {

CHAPTER 3. BUILT-IN PREDICATES 1992-6-4

File may also be library(Name), in which case the libraries are searched for a �le with the

speci�ed name. See also library directory/1. consult/1 may be abbreviated by just typing

a number of �le names in a list. Examples:

?- consult(load). % consult `load' or `load.pl'

?- [library(quintus)]. % load Quintus compatibility library

ensure loaded(+File)

Equivalent to consult/1, but the �le is consulted only if this was not done before. This is the

recommended way to load �les from other �les.

make

Consult all source �les that have been changed since they were consulted. It checks all loaded

source �les: �les loaded into a compiled state using pl -c ... and �les loaded using consult or

one of its derivates. make/0 is normally invoked by the edit/[0,1] and ed/[0,1] predicates.

make/0 can be combined with the compiler to speed up the development of large packages. In

this case compile the package using

sun% pl -g make -o my_program -c file ...

If `my program' is started it will �rst reconsult all source �les that have changed since the

compilation.

library directory(-Atom)

Dynamic predicate used to specify library directories. Default ., ./lib, ~/lib/prolog and

the system's library (in this order) are de�ned. The user may add library directories using

assert/1 or remove system defaults using retract/1.

source �le(-File)

Succeeds if File was loaded using consult/1 or ensure loaded/1. File refers to the full path

name of the �le (see expand file name/2). Source file/1 backtracks over all loaded source

�les.

source �le(?Pred, ?File)

Is true if the predicate speci�ed by Pred was loaded from �le File, where File is an absolute

path name (see expand file name/2). Can be used with any instantiation pattern, but the

database only maintains the source �le for each predicate. Predicates declared multi�le (see

multifile/1) cannot be found this way.

term expansion(+Term1, -Term2)

Dynamic predicate, normally not de�ned. When de�ned by the user all terms read during

consulting that are given to this predicate. If the predicate succeeds Prolog will assert Term2

in the database rather then the read term (Term1). Term2 may be a term of a the form `?-

Goal' or `:- Goal'. Goal is then treated as a directive. Term2 may also be a list, in which case

all terms of the list are stored in the database or called (for directives).

compiling

Succeeds if the system is compiling source �les with the -c option into an intermediate code

�le. Can be used to perform code optimisations in expand term/2 under this condition.

preprocessor(-Old, +New)

Read the input �le via a Unix process that acts as preprocessor. A preprocessor is speci�ed as

an atom. The �rst occurrence of the string `%f' is replaced by the name of the �le to be loaded.

The resulting atom is called as a Unix command and the standard output of this command is

loaded. To use the Unix C preprocessor one should de�ne:

{ 22 {

Chapter 3

Built-In Predicates

3.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is

printed in bold face, followed by the arguments in italics. Arguments are preceded by a `+', `{' or

`?' sign. `+' indicates the argument is input to the predicate, `{' denotes output and `?' denotes

`either input or output'.

1

Constructs like `op/3' refer to the predicate `op' with arity `3'.

3.2 Consulting Prolog Source �les

SWI-Prolog source �les normally have a su�x `.pl'. Specifying the su�x is optional. All predi-

cates that handle source �les �rst check whether a �le with su�x `.pl' exists. If not the plain �le

name is checked for existence. Library �les are speci�ed by embedding the �le name using the func-

tor library/1. Thus `foo' refers to `foo.pl' or `foo' in the current directory, `library(foo)'

refers to `foo.pl' or `foo' in one of the library directories speci�ed by the dynamic predicate

library directory/1.

SWI-Prolog recognises grammar rules as de�ned in [Clocksin & Melish, 1981]. The user may de-

�ne additional compilation of the source �le by de�ning the dynamic predicate term expansion/2.

Transformations by this predicate overrule the systems grammar rule transformations. It is not

allowed to use assert/1, retract/1 or any other database predicate in term expansion/2 other

than for local computational purposes.

2

Directives may be placed anywhere in a source �le, invoking any predicate. They are executed when

encountered. If the directive fails, a warning is printed. Directives are speci�ed by :-/1 or ?-/1.

There is no di�erence between the two.

SWI-Prolog does not have a separate reconsult/1 predicate. Reconsulting is implied automatically

by the fact that a �le is consulted which is already loaded.

consult(+File)

Read File as a Prolog source �le. File may be a list of �les, in which case all members are

consulted in turn. File may start with the csh(1) special sequences ~, ~<user> and $<var>.

1

These marks do NOT suggest instanstiation (e.g. var(+Var)).

2

It does work for consult, but makes it impossible to compile programs into a stand alone executable (see section 2.6)

21

CHAPTER 2. OVERVIEW 1992-6-4

Option Default

a

Area name Description

-L 200K (2M) local stack The local stack is used to store the execution en-

vironments of procedure invocations. The space

for an environment is reclaimed when it fails, ex-

its without leaving choice points, the alternatives

are cut of with the ! predicate or no choice points

have been created since the invocation and the last

subclause is started (tail recursion optimisation).

-G 100K (4M) global stack The global stack is used to store terms created

during Prolog's execution. Terms on this stack

will be reclaimed by backtracking to a point be-

fore the term was created or by garbage collection

(provided the term is no longer referenced).

-T 50K (4M) trail stack The trail stack is used to store assignments during

execution. Entries on this stack remain alive until

backtracking before the point of creation or the

garbage collector determines they are nor needed

any longer.

-A 5K (1M) argument stack The argument stack is used to store one of the

intermediate code interpreter's registers. The

amount of space needed on this stack is deter-

mined entirely by the depth in which terms are

nested in the clauses that constitute the program.

Overow is most likely when using long strings in

a clause.

a

Defaults may depend on local installation. The value between brackets is the default limit for machines that allow

for dynamic stack allocation.

Table 2.3: Memory areas

2.12.3 Reserved Names

The boot compiler (see -b option) does not support the module system (yet). As large parts of

the system are written in Prolog itself we need some way to avoid name clashes with the user's

predicates, database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database

keys, etc. that should be hidden from the user start with a dollar ($) sign (see style check/2).

The compiler uses the special functor VAR/1 while analysing the clause to compile. Using this

functor in a program causes unpredictable behaviour of the compiler and resulting program.

{ 20 {

